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Abstract—This paper presents graph kernel adaptive filters
that model nonlinear input-output relationships of streaming
graph signals. To this end, we propose centralized and distributed
graph kernel recursive least-squares (GKRLS) algorithms utiliz-
ing the random Fourier features (RFF) map. Compared with
solutions based on the traditional kernel trick, the proposed
RFF approach presents two significant advantages. First, it
sidesteps the need to maintain a high-dimensional dictionary,
whose dimension increases with the number of graph nodes and
time, which renders prohibitive computational and storage costs,
especially when considering least-squares algorithms involving
matrix inverses. Second, the distributed algorithm developed in
this paper, referred to here as the graph diffusion kernel recursive
least-squares (GDKRLS) algorithm, does not require centralized
dictionary training, making it ideal for distributed learning
in dynamic environments. To examine the performance of the
proposed algorithms, we analyze the mean convergence of the
GDKRLS algorithm and conduct numerical experiments. Results
confirm the superiority of the proposed RFF-based GKRLS and
GDKRLS over their LMS counterparts.

I. INTRODUCTION

Data collected from large-scale interactive systems such

as social, financial, and biological networks exhibit certain

intrinsic relations with the network structure. For example,

in the case of social network data, the network carries the

relationships between users’ data entities. The network data

and their interdependencies are naturally represented through

graphs. Recently, graph signal processing (GSP) was devel-

oped in an effort to model and analyze data emerging from

graphs [1]–[6]. GSP enables data to be modeled as graph

signals defined on a set of nodes of a graph, providing a

natural way of accounting for both data (i.e., node attributes)

and underlying geometry (i.e., edge attributes). In GSP, the

inherent network structure and geometry of the data are

exploited by redefining classical signal processing techniques

such as sampling [7], convolution [8], and filtering [9] for

graph signals.

To deal with graph signals, GSP mainly relies on two

fundamental building blocks. The graph shift operator [10]

captures the interactions between graph nodes, while the graph

Fourier transform (GFT) [11] represents graph signals in the

spectral domain of the graph. Equipped with these building

blocks, one can construct and analyze graph filters that play a

central role in modeling unknown relationships between graph

input-output signals. In particular, graph filters are normally

constructed as rational functions of the underlying graph shift

operator. As with classical signal processing, graph filters

may take two distinct forms: finite impulse response (FIR)

[9], and infinite impulse response (IIR) [12], [13]. Graph

filters of order L are localized on the graph, i.e., only L-hop

adjacent nodes need to communicate the information for the

filter implementation. This attractive feature of graph filters

motivated their distributed implementation [14], [15].

Recently, several works have extended the concepts of

adaptive algorithms for the estimation of graph signals [16],

[17]. In an extension to these works, the concepts of distributed

adaptive strategies [18] and GSP were merged to derive graph

diffusion least mean square (GDLMS) strategies [19]. Since

the graph shift matrix is not orthonormal in general, the graph

shift operation does not preserve energy, slowing down the

convergence of GDLMS. Graph diffusion preconditioned LMS

[20] has been proposed as a solution to this problem. All

these works assume a linear relationship between graph input

and output signals. However, these linear relationships fail in

modeling many real-life systems that have complex input-

output relationships. Well-known relationships of this kind

include air pressure and temperature [21], and wind speed

and turbine output [22]. Adaptive filtering in reproducing

kernel Hilbert spaces (RKHS) [23], [24] has been found to

be a useful method of modeling these nonlinear relationships.

Kernel methods are also proven to be effective in graph setting

[25], [26]. Recently, building on the ideas of kernel adaptive

filters, graph kernel LMS (GKLMS) and graph diffusion kernel

LMS (GDKLMS) algorithms were proposed to capture the

nonlinear input-output relationships of graph signals [27], [28].

Like GDLMS, GDKLMS also suffers from slow convergence

owing to the large eigenvalue spread of the graph-shifted

signals.

In this paper, we develop graph kernel filters based on

recursive least-squares (RLS) that are robust to the eigenvalue

spread of the correlation matrix of the graph-shifted signal. To

this end, we first derive the centralized graph kernel recursive

least-squares (GKRLS) algorithm for modeling nonlinear rela-

tionships between graph input and output signals. To deal with

the growing dimensionality problem that arises in GKLMS,

we develop the centralized GKRLS using the concepts of

random Fourier features (RFF) [29]. Then, we exploit the

graph structure and propose a decentralized solution, namely,

graph diffusion kernel RLS (GDKRLS). Our analytical studies

show the proposed GDKRLS converges in the mean to an

unbiased solution. Finally, we demonstrate the performance

of the proposed algorithms through numerical examples.



Mathematical Notations: We use lowercase, bold lowercase

and bold uppercase letters to refer to scalars, column vectors

and matrices, respectively. An identity matrix of appropriate

size is denoted by I. Inverse of the matrix is (·)−1, while (·)T

is the transpose. Lastly, ⊗, col(·) and blockdiag(·) are the right

Kronecker product operator, columnwise stacking operator and

block diagonal operator, respectively.

II. PROBLEM FORMULATION

Consider a weighted undirected graph G = {N , E ,W}
with vertex set N of cardinality K and edge set E and

symmetric weighted adjacency W ∈ R
K×K defining the

relations between nodes. The (k, l)th entry of the weighted

adjacency wkl, is the weight associated to an edge/relationship

between vertices k and l. The corresponding graph Laplacian,

L = D −W, is a real, symmetric, and positive semidefinite

matrix, where D is a diagonal matrix with [D]k,k = |Nk|
being the cardinality of the neighborhood of node k. At

time index n, the graph signal is defined as a function

un = [u1,n u2,n . . . uK,n]
T : N → R, which maps each node

attribute to a scalar value. Moreover, the graph is equipped

with the graph shift operator S ∈ R
K×K whose entries

[S]k,l = skl take nonzero values if and only if (k, l) ∈ E .

Matrices that can model the graph topology such as the

graph adjacency, the graph Laplacian and their normalized

counterparts, are the usual choices for S [10]. The graph

shift operation at node k is defined as a linear combination

of local information from immediate neighboring nodes, i.e.,∑
l∈Nk

sklul,n.

Then, a linear shift-invariant (LSI) FIR graph filter, a

polynomial of the graph shift operator, combines graph-shifted

signals and provides an output, yn = [y1,n, y2,n, . . . , yK,n]
T,

given by

yn =
L−1∑

i=0

γi S
iun−i, for n ≥ L− 1, (1)

where γ = [γ0, γ1, . . . , γL−1]
T is the graph filter coefficient

vector [19]. The model in (1) efficiently captures the time-

varying dynamics of the graph signal. Moreover, it involves

only one graph shift operation at each time index n. Based

on this model, in [19], [20], GDLMS strategies for adaptive

filtering of graph signals have been proposed.

However, many real-world problems such as time series

prediction, channel equalization, and regression can not be

efficiently analyzed with linear models. Therefore, researchers

have attempted to address this shortcoming by using a non-

linear model [23], [31]. Inspired by these works, graph kernel

adaptive filters have recently been proposed by assuming the

following nonlinear relationship between the graph input and

output signals [27], [28]:

yk,n = f(zk,n) + υk,n, (2)

where f : RL → R is a nonlinear continuous function on R
L,

υk(n) is the observation noise at node k, and

zk,n = [uk,n, [Sun−1]k, . . . , [S
L−1un−L+1]k]

T. (3)

Since the graph shift S does not preserve the energy, GKLMS

and GDKLMS algorithms [27], [28] suffer from slow conver-

gence. To solve this problem, in the following, we propose a

class of graph kernel filters based on recursive least-squares.

III. PROPOSED ALGORITHM

In estimating the nonlinear function f(·) in (2), kernel

methods first map the input regressor zk,i ∈ R
L into a large-

dimensional feature space as φ(zk,i), where the inner products

can be evaluated using kernels [24]. A continuous kernel

function, which is symmetric, and positive-definite function

κ(·, ·) : RL×R
L → R, satisfies Mercer’s condition [24], [31]:

κ(zk,i, zk,n) = φ
T(zk,i)φ(zk,n). (4)

Without explicitly knowing the mapping φ(·), inner products

in higher dimensional space can be obtained via kernel func-

tion evaluation. The kernel is called reproducing kernel if it

satisfies the reproducing property [24], namely,

κ(zk,i, zk,n) = 〈κ(·, zk,i), κ(·, zk,n)〉H, (5)

where H is the reproducing kernel Hilbert space (RKHS), the

inner product space in which the reproducing kernel is defined

and complete [24], and 〈·, ·〉H denotes the corresponding inner

product. In (5), a representer evaluation at zk,i is denoted by

κ(·, zk,i). Our discussion throughout this paper is limited to

the Gaussian kernel, which is a well-known Mercer kernel.

A. RFF-based Centralized GKRLS

In the graph setting, K new input regressors are avail-

able at each time index n. Thus, given the data pairs

{zk,i, dk,i}
n−1,K

i=1,k=1

⋃
{zk,n}

K
k=1, from representer theorem

[32], the estimate of yk,n (i.e., ŷk,n) can be expressed as

ŷk,n =

n∑

i=1

K∑

l=1

αli κ(zl,i, zk,n) = hTφ(zk,n), (6)

where h is the vector in H to be learned. The vector h can be

obtained by minimizing the regularized least-squares problem

given below:

min
h

n∑

i=1

K∑

l=1

(yl,i − hTφ(zl,i))
2 + λ‖h‖2, (7)

where λ is the regularization parameter. From (7), one can see

that the model dimensionality increases with both time n and

size of the graph K (i.e., to obtain system output, we need

to perform Kn number of kernel evaluations). In the case of

standalone kernel filters, various sparsification methods such

as the coherence check criterion and novelty criterion [33],

[34] have been used to overcome the problem of growing

dimensionality by pruning the redundant input regressors.

However, these sparsification methods are not very suitable

for network/graph settings because they involve training a

dictionary, i.e., every time the underlying model changes, the

dictionary must be retrained.

RFF [29] can be used to obtain a computationally efficient

and flexible solution for (7). In the D-dimensional RFF space,



Algorithm 1: RFF-based Centralized GKRLS

Initialization: w0 ← 0 and P0 = δI

For every time index n, repeat

ψ0,n ← wn−1, P0,n ← Pn−1

for k = 1, 2, . . . ,K do

ek,n = yk,n − xT
k,nψk−1,n

Pk,n = Pk−1,n −
Pk−1,nxk,nx

T
k,nPk−1,n

λ+ xT
k,nPk−1,nxk,n

ψk,n = ψk−1,n +Pk,n xk,n ek,n

end

wn ← ψK,n, Pn ← PK,n

a shift-invariant kernel evaluation, i.e., κ(zl,i, zk,n) = κ(zl,i−
zk,n), can be approximated as an inner-product. This approx-

imation modifies the estimation problem (7) into a finite-

dimensional linear estimation problem. Moreover, RFF usage

avoids the kernel function evaluation. Consider xk,n to be the

mapping of zk,n into the RFF space R
D. Then, the kernel

evaluation can be approximated as κ(zl,i, zk,n) ≈ xT
l,ixk,n.

Thus, the estimate ŷk,n in (6) can be approximated by

ŷk,n ≈
( n∑

i=1

K∑

l=1

αl,i xl,i

)T

xk,n(n) = wTxk,n, (8)

where w ∈ R
D is the representation of the function f(·)

in RFF space. The mapping of zk,n into the D-dimensional

RFF space can be accomplished using cosine, exponential and

Gaussian feature functions. The same can be read in more

detail at [29], [30]. Estimation problem (7) takes the following

form in RFF space:

wn = min
w

n∑

i=1

K∑

l=1

(yl,i −wTxl,i)
2 + λ‖w‖2. (9)

The data from all nodes are collected in global matri-

ces for time n: Yn = [yn,yn−1, . . . ,y1]
T and Xn =

[Xn,Xn−1, . . . X1] with yi = [y1,i, y2,i, . . . , yK,i] and Xi =
[x1,i,x2,i, . . . ,xK,i], for all i = 1, 2, . . . , n. Then, (9) can

alternatively be expressed as

wn = min
w
‖Yn −X

T
nw‖

2 + λ‖w‖2. (10)

At time index n, the solution to this problem is given by

wn = PnXnYn, (11)

with Pn = (λI + XnX
T
n )

−1. Applying the recursive prop-

erties of P−1
n together with the matrix inversion lemma and

following a similar procedure as described in [35], we can

update wn at each time index n by recursively estimating Pn.

Algorithm 1 summarizes the proposed RFF-based centralized

GKRLS.

Algorithm 2: RFF-based GDKRLS

Initialization: wk,0 ← 0 and Pk,0 = δI

For every time index n, repeat

Adaptation: For every node k, repeat

ek,n = yk,n − xT
k,nwk,n−1

Pk,n = Pk,n−1 −
Pk,n−1xk,nx

T
k,nPk,n−1

λ+ xT
k,nPk,n−1xk,n

ψk,n = wk,n−1 +Pk,n xk,n ek,n

Combination: For every node k, repeat

wk,n =
∑

l∈Nk

alk ψl,n

B. RFF-based GDKRLS

It is possible to obtain the solution to the global problem (9)

locally at each node in a fully distributed manner, as explained

below:

Adaptation: By minimizing the local regularized least-squares

cost function in RFF space at each node k, an intermediate

estimate ψk,n can be computed:

ψk,n = min
ψ
‖yk,n −XT

k,nψ‖
2 + λ‖ψ‖2

= Pk,nXk,nyk,n, (12)

where yk,n = [yk,n, yk,n−1, . . . , yk,1]
T, Xk,n = [xk,n,xk,n−1,

. . . ,xk,1] and Pk,n = (λI+Xk,nX
T
k,n)

−1.

Combination: Every node diffuses its intermediate estimate

vector to its neighbors. The local intermediate estimate vectors

are then combined with the neighboring intermediate estimate

vectors at each node k, resulting in the new local estimate:

wk,n =
∑

l∈Nk

alk ψl,n, (13)

where the non-negative combination coefficients alk satisfy the

condition
∑

l∈Nk
alk = 1 [18]. Using the recursive property of

P−1

k,n together with the matrix inversion lemma, we can obtain

the recursion for updating ψk,n at each time index n and k,

by recursively estimating Pk,n. Algorithm 2 summarizes the

proposed RFF-based GDKRLS.

IV. MEAN CONVERGENCE ANALYSIS

This section analyzes the mean convergence behavior of

the proposed RFF-based GDKLMS. To do so, the following

assumptions were made:

A1: The input regressors xk,n ∀k, n are considered mutually

independent with E[xk,nx
T
k,n] = Rxk

.

A2: The observation noise υk,n is a zero-mean Gaussian

random sequence with variance σ2
υ,k. Moreover, υk,n is

assumed to be independent of all other data.

A3: The input regressor xk,n ∀k, is an ergodic process.

Therefore, for a sufficiently large n, we can replace Pk,n

and P−1

k,n by their expected values E[Pk,n] and E[P−1

k,n],
respectively. Consequently, we can have E[Pk,n] ≈
E[P−1

k,n]
−1.
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Fig. 1. Performance of the proposed RFF-based GKRLS algorithms: (a) RFF-based centralized GKRLS. (b) RFF-based GDKRLS. Also included are the
performance of their LMS counterparts. (c) RFF dimensionality vs. steady-state NMSE of RFF-based centralized GKRLS and RFF-based GDKRLS.

In the D-dimensional RFF space, let wopt be the optimal

representation of the nonlinear function f(·) . By defining the

intermediate estimate error vector ψ̃k,n = wopt − ψk,n and

the estimate error vector w̃k,n = wopt −wk,n, the recursion

for the intermediate estimate error vector can be obtained as

ψ̃k,n = w̃k,n−1 −Pk,n xk,n

(
xT
k,nw̃k,n−1 + υk,n

)
, (14a)

w̃k,n =
∑

l∈Nk

alkψ̃k,n. (14b)

Using the recursive property of P−1

k,n, (14a) can be rewritten

as

ψ̃k,n = Pk,nP
−1

k,n−1
w̃k,n−1 −Pk,n xk,n υk,n. (15)

Under the assumption A3, Pk,nP
−1

k,n−1
≈ I and Pk,n ≈

1

n
R−1

xk
. Using these approximations, (15) can be further sim-

plified as

ψ̃k,n = w̃k,n−1 −
1

n
R−1

xk
xk,n υk,n. (16)

Finally, by collecting the local data into global matrices,

we have the following global recursion for the estimate error

vector:

w̃n = Aw̃n−1 −
1

n
An R−1

x
X̂nυn, (17)

where

w̃n = col{w̃1,n, w̃2,n, . . . , w̃K,n}, (18)

X̂n = blockdiag{x1,n,x2,n, · · · ,xK,n},

Rx = blockdiag{Rx1
,Rx2

, · · · ,RxK
},

υn = [υ1,n, υ2,n, · · · , υK,n]
T,

and A = AT ⊗ I with [A]k,l = akl. Thus, taking the

expectation on both sides of (17) together with A2, we obtain

E[w̃n] = AE[w̃n−1]. (19)

Since the matrix A is left stochastic, its spectral radius is less

than one. Therefore, one can see that the proposed GDKRLS

converges in mean and is also asymptotically unbiased in the

RFF space.

V. EXPERIMENTAL RESULTS

Experimental results are presented in this section to demon-

strate the performance of the proposed graph kernel recursive

least-squares algorithms. Our experiment is based on a 20-

node connected Erdös-Renyi graph with edge probability 0.2.

The shift matrix S was constructed in the following manner:

according to the existing adjacency, each edge weight value

was generated from a standard uniform distribution U(0, 1];
then, the shift matrix was normalized by its largest eigen-

value. At each node k, a time-series realization tk,n and the

observation noise υk,n were drawn from zero-mean Gaussian

distributions with covariance matrices Rtk = diag{σ2
tk
} and

Rυ = diag{σ2
υk
}, respectively, with σ2

tk
∈ U [1, 1.5] and

σ2
υk
∈ U [0.001, 0.01]. For each time index n, we then have

a K-dimensional vector, i.e., τn = [t1,n, t2,n, . . . , tK,n]
T.

Finally, the graph signal un, was generated by projecting τn

onto the specified graph, by solving the following optimization

problem: un = min
u

{
‖τn − u‖22 + βuTLu

}
with β = 0.6.

A Metropolis rule [18] was employed for computing the

combination coefficients alk in distributed implementations.

The network-level mean square error (NMSE), given by

NMSE = 1

K

∑N

k=1
e2k,n, was considered as the performance

metric. The proposed algorithms were simulated to estimate

the following nonlinear input-output relationship over a graph:

f(zk,n) =
√
z2k,1,n + sin2(π zk,4,n)

+
(
0.8− 0.5 exp(−z2k,2,n

)
zk,3,n. (20)

The same estimation task was also carried out by RFF-

based GKLMS (with µ = 0.03) and GDKLMS (with µ =
0.75) algorithms for comparative evaluation. The results are

shown in Figs. 1a and 1b, by plotting the NMSE in dB

against the iteration index n obtained by averaging over 1000
independent experiments. From Figs. 1a and 1b, it can be

seen that the proposed algorithms exhibit faster convergence

rate and better steady-state NMSE compared to their LMS

counterparts. Moreover, the proposed algorithms show faster

convergence rate and better steady-state NMSE when the RFF

space dimension D increases. Next, to study the effect of D



(i.e., the dimensionality of the RFF space) on the performance

of the proposed RFF-based GKRLS algorithms, we repeated

the above simulation exercise for different values of D, say

D ∈ {4, 8, 16, 32, 64, 128, 256}. The corresponding steady-

state NMSE (in dB) vs. D is shown in Fig. 1c. In addition,

the steady-state NMSE of the conventional GKRLS (i.e., the

solution for (7), which requires nK number of kernel function

evaluations for estimating the system output ŷk,n) was also

plotted for comparison purposes. From Fig. 1c, we can see

that RFF provides a resonable approximation of the kernel

evaluation for D ≥ 32.

VI. CONCLUSIONS

In this paper, RFF-based GKRLS and GDKRLS algorithms

were proposed for modeling the nonlinear relationships be-

tween graph input-output signals. Using RFF simplified the

GDKRLS implementation and bypassed dictionary learning,

which is generally regarded as an essential task in kernel

methods. Our analysis showed that the GDKRLS converges

in the mean sense to an asymptotically unbiased solution.

We performed numerical simulations to investigate the perfor-

mance of the proposed algorithms. The results showed that the

proposed graph kernel adaptive filters based on least-squares

could overcome the problem of large eigenvalue spread of the

graph-shifted signals.
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