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Abstract: Fatigue S–N curves provide the number of stress cycles that result in fatigue failure at
stress range S and need to be measured for new engineering materials where data are not as readily
available as they are for well-characterized and widely used metals. A simple statistical method for
the estimation of characteristic fatigue curves defined in terms of lower-tail quantiles in probability
distributions of dependent variables is presented. The method allows for the estimation of such
quantiles with a specified confidence level, taking account of the statistical uncertainty caused by
a limited number of experimental test results available for the estimation. The traditional general
approach for estimating characteristic S–N curves by tolerance bounds is complicated and is not
much used by engineers. The presented approach allows for calculating the curves with a simple
spreadsheet. The only requirement is that the experimental log S data for the S–N curve are fairly
uniformly distributed over a finite logS interval, where S denotes the stress range. Experimental fa-
tigue test programs are often designed such that test data fulfil this assumption. Although developed
with fatigue of composite laminates in mind, the presented statistical procedure and the presented
associated charts are valid for fatigue curve estimation for any material.

Keywords: design; fatigue curves; tolerance bounds; composite laminates

1. Introduction

Composites (fibre reinforced plastics) are finding their way into many demanding
engineering applications. Demonstrating sufficient mechanical performance in the short
and long term is required by design standards, codes and users for such applications.
Typically, performance is demonstrated in engineering calculations applying mechanical
properties, failure criteria and safety factors. Modern design standards that are based
on probabilistic methods use characteristic values of mechanical properties, e.g., [1–3].
For static strength the characteristic value is to be taken as the mean minus k standard
deviations, where the factor k depends on the tolerance level and confidence one wants to
obtain and on the number of experimental tests carried out to obtain the strength. This is
described in more detail later. A good overview about the meaning of characteristic values
can be found in Madsen et al. (1986) [4]. Examples of the characteristic strength values
used specifically for composites are the A and B values used in the aerospace industry and
defined in the Mil. Standardization Handbook [5] and the characteristic strengths in the
standards for offshore applications [2,3]. It is important to note that the exact choice of
defining the characteristic value in combination with the safety factors and failure criteria
defines the target level of the safety of the design.

A similar approach as for determining the characteristic static strength can, in prin-
ciple, also be used for fatigue lifetime evaluations. However, this is less established for
composites than it is for static strength. Fatigue lifetimes can be calculated for variable load-
ing conditions by combining the S–N curves with the Miner sum approach and Goodman
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diagrams, as is well known from standard materials textbooks, e.g., [6,7]. This regular ap-
proach has been used successfully for composite laminates for many years, as documented,
for example, in references [8–14]. Alternative lifetime calculation methods have also been
proposed for composites; good overviews are given in [11,15]. It is beyond the scope of
this article to evaluate the alternative methods, but it seems that the regular approach is
by far the most widely used in industrial applications. One reason favouring the regular
approach is the requirement to use design standards and these standards tend to be based
on the regular approach [1–3,16].

The DNV standards for offshore components and thermoplastic composite pipes
require the use of characteristic S–N curves with 97.5% tolerance and 95% confidence.
Simple procedures are given to obtain these curves. However, due to the simplicity, the
curves are slightly conservative and they can only be extrapolated for a limited range
beyond the measured data.

Generally, not much published work is available looking into the probability of fail-
ure in fatigue. Methods for structural fatigue design, including probabilistic aspects, are
addressed in Lotsberg (2016) [17]. Post [18] developed a reliability-based design method-
ology, but it is based on a residual strength approach, one of the alternative methods not
covered by the official standards so far. Castro, Branner and Dimitrov present an interest-
ing approach that combines the uncertainties of the S–N curve, Goodman diagram and
Miner sum [19]. The uncertainty of the S–N curve has been addressed by several authors
describing probabilistic limits without considering the confidence level, i.e., not taking into
account the statistical uncertainty associated with the number of tests being done [20,21].
This is an important limitation, especially if the number of tests in a fatigue test program
is low.

Using a tolerance bound approach with confidence is described as being theoretically
ideal by Schneider and Maddox [22]. However, the approach is seen to be too complicated.
The foundation for the method was first given by Owen [23] and it is summarized for
fatigue by Wirsching [24]. A simple solution to obtain tolerance bounds leading to straight
lines parallel to the mean S–N curve on log-log scale was proposed by Wei et al. [25]. This is
a somewhat similar, but not identical, approach as used in the current DNV standards [2,3].
The authors of this article have shown previously that a relatively simple and accurate
method for tolerance bounds can be found for some special cases [26]. Nijssen [11] shows
a similar case in his in-depth review of fatigue prediction methods to characterize S–N
curves. This article takes these developments one step further. It allows for estimating
characteristic curves for any combination of tolerance and confidence level. This allows
easy and accurate creation of characteristic S–N curves to be used with the DNV standards
and also other standards that use different tolerances and confidence levels.

For many materials, especially commonly used metals, S–N curves for design can
be found in data sheets or standards. There is no need to measure and calculate the
characteristic curves for these well characterized materials. The given curves are usually
”characteristic curves”, which means they describe fatigue lifetimes with a specified proba-
bility of exceedance, a kind of “guaranteed” lifetime value. A well-known example of a
characteristic S–N curve is on log-log scale the mean curve minus two standard deviations,
which is a curve which corresponds to a probability of survival (also referred to as tolerance)
of 97.7% when the logN conditional on logS is normally distributed. Note here that N
denotes number of stress cycles to failure and S denotes the stress range. Theoretically, the
number of cycles in the tests should be infinite, but practically it is well over 100. Many test
data are typically only available for widely used well-characterized materials. Methods for
structural fatigue design are addressed in Lotsberg (2016) [17].

If the material is not well characterized, its S–N curve is not readily available and needs
to be measured. This is the case for new materials and has been the case for composites
(fibre-reinforced plastics) in many projects. Even though composites are not new, they
have been widely used since the 1960s–1970s, and no particular composite dominates
the market. Different combinations of fibres and resins are used all the time, requiring
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measurements of new S–N curves. Further, properties change at different environments,
requiring even more testing [27]. Establishing the S–N curves for particular projects means
that the number of possible tests is limited due to time and cost restrictions. Typically, 10
to 20 tests of one combination of material and environmental condition are carried out.
With the limited number of test results, the characteristic curve cannot be obtained by
calculating the mean curve minus two standard deviations on a log-log scale, because this
approach would not account for the uncertainty created by a limited number of tests. The
approach used for limited number of specimens is to estimate the characteristic curve for
a given probability of survival at a specified confidence level. Different design standards
use different combinations of the survival probability and confidence level to specify
characteristic S–N curves for calculation of the fatigue damage to which safety factors are
applied. It is important to obtain the data as required by the design standard, otherwise
the safety factors specified by the standard would not give the intended level of safety.

Characteristic values of strength are small but measurable quantiles, such as the
second, fifth or tenth percentile, or the manufacturer’s “guaranteed strength”, see Madsen
et al. (1986) [4]. The characteristic value of a strength quantity serves as a quality control
parameter and is used as a basis for design. The characteristic value for a strength variable
Y with a mean value µ and standard deviation σ is often taken as µ − 2σ. For a normally
distributed strength with a known µ and σ, this implies that 97.7% of all realizations of Y
will fall above the characteristic value. This exceedance proportion is often referred to as
the survival probability, or just the tolerance. With µ and σ unknown and estimated with
statistical uncertainty from a limited number of data, a corresponding characteristic value
estimated to be used in design will need to be further away from µ than 2σ to maintain
the survival probability of 97.7% with sufficient confidence. The associated factor on σ
will thus be higher than 2 and will depend on the number of observations of Y as well as
on a required confidence level. The value of the factor on σ can be estimated consistently
by means of statistical theory for tolerance bounds and becomes, in practice, a factor on
the sample standard deviation s since σ itself is unknown. Examples of the factor on σ
for the static strength can be found in DIN55303-5 [28] and DNV-OS-C501 [2]. It is noted
in this context that the ASTM standard D2992 [29] describes a widely used method to
establish a characteristic S–N curve from test data for use in design. ASTM D2992 does not
specify a particular definition of the characteristic S–N curve, but specifies that the curve
to be used shall be taken as the lower prediction limit for the next realization of the S–N
curve, given the data, and estimated with 95% confidence. It is noted that this approach is
not compatible with tolerance bound theory, because no tolerance is associated with the
definition of the characteristic S–N curve in ASTM D2992.

Ronold and Echtermeyer (1996) [26] presented the theoretical basis for a means to
establish characteristic values from tolerance bounds for independent, as well as dependent
variables. They presented an introduction to linear regression for fatigue S–N curves, also
known as Wöhler curves. The basis for their work was S–N curves of the form:

log N = log N0 − β· log S (1)

where N is the number of cycles to failure, N0 is a constant, β describes the slope of the
curve, and S is the applied stress amplitude. In some cases S can also be the stress range
or the maximum stress. The definition of S does not influence the statistical procedures
described here.

This double logarithmic form of the S–N curve is used for most metals. It has also
been successfully used for composite laminates, especially when high numbers of cycles to
failure were measured, see Mandell et al. (2003) [30].

The statistical methods described in [26] for the estimation of characteristic S–N curves
on the basis of tolerance bounds do also work for the fatigue curves described in the lin–log
form

log N = log N0 − β·S (2)
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The general statistical procedure described in [26] for the estimation of characteristic
S–N curves based on tolerance bounds is cumbersome in that it depends on how the logS
values of the test data are distributed over the logS range covered by these data. Unlike
the corresponding procedure for independent variables, the procedure is not suitable for
tabulation or closed-form expressions of the distribution quantiles involved for dependent
variables, because there is a new distribution of the logS values of the test data each time,
i.e., for every new data set. The article [26] showed a simplification of the procedure based
on the assumption that the logS values of the test data are uniformly distributed over the
logS range covered by the data. The article presented the results of this simplification
graphically for the particular survival probability of 95% and the particular confidence
level of 95% and, thereby, made them easily accessible for practical use by designers
and engineers. The establishment of such characteristic curves was needed at that time
to establish design methods for fatigue calculations giving equivalent safety to similar
structures made of steel. (The paper actually showed strain vs. number of cycles ε–N
curve instead of the typically used S–N curve. The data shown were from a fibre-reinforced
composite laminate and for these materials, the ε–N curve representation has the advantage
of being independent of the fibre fraction of the composite and gives similar results for
laminates with different reinforcements, see Echtermeyer et al. (1996) [31] and Echtermeyer
et al. (1996) [32]. However, for the present article, the principle of the statistical analysis is
important. The results can be applied to common S–N curves and ε–N curves as well as
any other relationship where one variable is linearly dependent on another.)

In the following, the work by Ronold and Echtermeyer (1996) [26] is taken one step fur-
ther. As stated above, the simplification of the procedure for the estimation of characteristic
S–N curves assumes uniformly distributed logS values over the logS range covered by the
set of fatigue test data available to establish the S–N curve. The simplification allows the
use of easy methods to estimate the characteristic curves for various survival probabilities
and confidence levels. First, a procedure is worked out for the simulation of the factor
on the sample standard deviation in the downward offset from the sample mean of logN
to provide an estimate of the characteristic value of logN as an estimate of a specified
quantile in the distribution of logN, where N is the number of cycles to failure. Results are
presented graphically for various combinations of the survival probability and confidence
level. Second, a simple mathematical expression is introduced for the same factor on the
sample standard deviation in the downward offset from the sample mean to provide the
same estimate of the characteristic value of logN as a function of the specified survival
probability and confidence level. The simple expression is a function of the length of the
logS interval covered by the (S,N) data, and of the deviation from the centre of this interval
of the particular logS of interest for the estimation. Closed-form expressions for the coeffi-
cients in the simple expression for the factor are derived and presented. These expressions
are all functions of the specified survival probability, the specified confidence level for the
estimation and the number of observations of logN available from the fatigue tests.

The introduction of the simple expression for the factor on the sample standard
deviation with closed-form expressions for the involved coefficients thus represents a
generalization of the simplified method—presented previously [26] for just one set of
survival probability and confidence level—to a wide range of survival probabilities and
confidence levels. In addition, with its analytical formulas, it also allows for the fast and
easy calculation of characteristic fatigue curve estimates, e.g., in a spreadsheet, for use in
design.

For completeness in the following, and to place the presented analytical derivations in
context, the basics of tolerance bound theory are recapitulated from Ronold and Echter-
meyer (1996) [26] and Ronold and Lotsberg [33] before the presentation of the new material
for characteristic fatigue curve estimation itself is given.

Throughout this article, upper-case letters are used to denote stochastic variables.
For a given stochastic variable, lower-case letters are used to denote realizations, such as
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specific quantiles. This convention for notation is adopted from Madsen et al. (1986) [4].
The main symbols used are shown in Table 1.

Table 1. Symbols.

Symbol

α probability complement of confidence level
1 − α statistical confidence level
Γ gamma function
ε strain
Φ standard Gaussian cumulative distribution function
σ standard deviation
∆x increment of x
Lx length of finite interval of x = logS
hn function of n
m material property of fiber strength
n number of fatigue tests
W chi-square distributed variable with specific number of degrees of freedom
C non-central t-distributed variable
S stress range
s estimate of standard deviation σ
S stochastic standard deviation
N number of stress cycles to failure at stress range S
σ mean fibre strength
σf fibre bundle strength

2. Theoretical Methods
2.1. Theory of Tolerance Bounds for Random Variables

A tolerance interval is a range for a variable Y designed to capture a proportion γ
or more of all outcomes of Y with probability 1 − α. The probability 1 − α is commonly
referred to as the confidence level. When a one-sided tolerance interval is considered and
γ refers to the proportion of all outcomes of Y larger than the tolerance bound, then the
tolerance bound is an estimate of the 1 − γ quantile in the distribution of Y with confidence
1 − α. This is a biased estimate and 1 − α can be interpreted as the probability that the true
but unknown value of the 1 − γ quantile for Y is greater than the value of the tolerance
bound. This is useful for the estimation of characteristic values of Y which are defined as
quantiles in the probability distribution of Y, when it is required, e.g., by a design standard,
that the estimation shall be carried out with confidence.

A normal population Y is considered. The population Y is a stochastic variable and
not a fixed number. The distribution of Y is a normal distribution with mean value µ
and standard deviation σ. A one-sided random interval for Y with a lower bound Yk is
established through the probability equation

P[P[Yk < Y]] > γ = 1− α (3)

which implies that, with confidence 1 − α, at least a proportion γ of the population Y
will exhibit values in excess of Yk. The proportion γ is also referred to as the tolerance
and, sometimes, as the coverage, and if Y is a strength variable it is also referred to as the
survival probability. Yk will be a random bound. When Yk takes on a realization yk, based
on n observations of Y, the random interval is turned into a tolerance interval for Y. The
realization yk is referred to as a tolerance bound. The realization yk can be interpreted as
an estimate of the 1 − γ quantile in the distribution of Y with confidence at least 1 − α,
i.e., there is a probability of at least 1 − α that the true, but unknown value of the 1 − γ
quantile in the distribution of Y is greater than yk.
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It is of interest to express the random interval bound Yk in terms of variables with
known probability distributions. The random interval bound can be expected to take the
form of

Yk = Y− c1−α·S (4)

where Y is the statistically uncertain estimate of the unknown mean value of Y and S is the
statistically uncertain estimate of the standard deviation of Y based on n observations of Y.

Hence, it is of interest to find an expression for the factor c1−α. Provided n observations
of Y are available, the probability equation defining the random estimation interval can be
rewritten as follows:

P
[
P
[
Y− c1−α · S < Y

]
> γ

]
= 1− α

P
[

P
[

Y−c1−α ·S−µ
σ < Y−µ

σ

]
> 1−Φ(u1−γ)

]
= 1− α

P
[
1−Φ(Y−c1−α ·S−µ

σ ) > 1−Φ(u1−γ)
]
= 1− α

P
[

Y−c1−α ·S−µ
σ < u1−γ

]
= 1− α

P
[
c1−α > Y−µ

S −
σ
S u1−γ

]
= 1− α

(5)

This rewriting of the probability equation utilizes that Φ() is the standard normal
cumulative distribution function, u1−γ is the 1 − γ quantile in the standard normal distri-
bution function, and (Y − µ)/σ is standard normally distributed.

2.1.1. Independent Variables

For an independent variable Y, Equation (5) can be further rewritten as

P

c1−α >

Y− µ

σ 1√
n

− u1−γ

√
n

 ·√n− 1
n
· 1

S
σ

√
n− 1

 = 1− α (6)

see Madsen et al. (1986) [4]. From this version of the probability equation, it appears that
the factor c1−α can be interpreted as the 1 − α quantile in the distribution of a variable

C =

X− µ

σ 1√
n

− u1−γ

√
n

 ·√n− 1
n
· 1

S
σ

√
n− 1

=
(
U − u1−γ

√
n
)
·
√

n− 1
n
· 1√

W
(7)

in which it is recognized that U =
(
X− µ

)√
n/σ is the standard that is normally distributed

and W = (n − 1)S2/σ2 is chi-square distributed with n − 1 degrees of freedom. It is noted
that C

√
n is a non-central t-distributed variable.

The quantile c1−α can be read off from tables; see Resnikoff and Lieberman (1957) [34],
Owen (1958) [23] and Pearson and Hartley (1976) [35]. Alternatively, it can be interpreted
as the 1 − α quantile in the simulated distribution of the variable C as obtained from Monte
Carlo simulation of its two parent random variables U and W. Yet another alternative is
to calculate the quantile c1−α by means of Hald’s approximation, see Hald (1952) [36] and
Madsen et al. (1986) [4],

c1−α ≈
Φ−1(γ) + Φ−1(1− α)·

√
1
n ·
(

1− (Φ−1(1−α))
2

2(n−1)

)
+
(

Φ−1(γ)
)2

1− (Φ−1(1−α))
2

2(n−1)

(8)

in which Φ−1() denotes the inverse standard normal distribution function.
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When the statistically uncertain estimate Y of the mean value µ takes on the realization
y and the statistically uncertain estimate S of the standard deviation σ takes on the realiza-
tion s, based on n observations of Y, the random interval bound yk takes on the numerical
realization

yk = y− c1−α · s (9)

which turns the random interval bound into a fixed tolerance bound for the stochastic
variable Y. For further details of tolerance bound theory for independent variables, see
Guttman (1970) [37], Zacks (1970) [38] and Little (1981) [39].

Note that, according to Ronold and Echtermeyer (1996) [26], this determination of the
quantile c1−α leads to the construction of lower tolerance bounds that are identical to those
defined according to the method of DIN55303 [28]. The so-called ‘A’ basis and ‘B’ basis
design allowables, according to MIL-HDBK-5B [5], are also based on this method.

The method can be well applied to estimate the characteristic static strength of a
composite laminate. The assumption is then that the static strength of the composite
laminate adheres to a normal distribution. The assumption of a normal distribution for the
static strength of composite laminates can be based on the following rationale: the static
strength of the laminate in the direction of the fibres is dominated by the strength σf of the
fibre bundles. The strength σf of a fibre bundle is proportional to the mean fibre strength σ
of the individual fibres,

σf = σ· exp(1/m)

m1/m·Γ
(

1 + 1
m

) (10)

in which m is a material constant, see Beaumont and Schultz (1990) [40], and Γ denotes the
gamma function. The individual fibre strengths very often follow a Weibull distribution;
however, regardless of this distribution type, their average will, under the central limit the-
orem, asymptotically follow a normal distribution, see Ang and Tang (1975) [41]. Hence the
mean σ and then also—through Equation (10)—the fibre bundle strength σf and the static
laminate strength can be deduced to asymptotically be normally distributed. Although it is
very difficult to find data confirming the one or the other distribution type for the laminate
strength, there is, thus, theoretical evidence to support the normal distribution and thereby
allow for the use of Equation (9) for estimation of the characteristic laminate strength with
confidence.

2.1.2. Dependent Variables

Consider now a dependent variable Y, which is normally distributed conditional on
an independent variable X, and whose mean µ has a linear variation with X. This would be
the case for the fatigue curves on a log-log scale. By a derivation in analogy with that for
independent variables above and by capitalization on the results from a linear regression
of the linear relationship between µ and X, the probability equation in Equation (5) can be
rewritten as

P

[
c1−α >

(
Y(x0)− µ(x0)

σ · hn
−

u1−γ

hn

)
· hn ·

√
n− 2 · 1

S
σ

√
n− 2

]
= 1− α (11)

in which

hn =

√√√√√ 1
n
+

(x− x0)
2

n
∑

i=1
(xi − x)2

(12)

where x0 is the particular value of the independent variable X for which the tolerance
bound for Y is to be calculated, x1 is the value of X for which the ith value of Y is observed,
and x is the mean value of the n xi values. Further, µ(x0) is the mean value of Y for X = x0, σ
is the standard deviation of the residuals of Y about the fitted linear relationship between µ
and X, and Y(x0) and S are the corresponding uncertain estimators. Note that Y is assumed
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to be homoscedastic, i.e., the standard deviation σ is assumed to be a constant, independent
of the value of X.

From this version of the probability equation it appears that the factor c1−α can be
interpreted as the 1 − α quantile in the distribution of a variable

C =

(
Y(x0)− µ(x0)

σ · hn
−

u1−γ

hn

√
n

)
· hn ·

√
n− 2 · 1

S
σ

√
n− 2

=

(
U −

u1−γ

hn

)
· hn ·

√
n− 2 · 1√

W
(13)

in which it is recognized that U =
(
Y(x0)− µ(x0)/(σhn)

)
is standard normally distributed

and W = (n − 2)S2/σ2 is chi-square distributed with n − 2 degrees of freedom.
The quantile c1−α can be interpreted as the 1 − α quantile in the simulated distribution

of the variable C as obtained from Monte Carlo simulation of its two parent random
variables U and W.

When the statistically uncertain estimate Y(x0) of the mean value µ(x0) takes on the
realization y(x0) and the statistically uncertain estimate S of the standard deviation σ takes
on the realization s, based on the n observations of Y, the random interval bound Yk for
X = x0 takes on the numerical realization

yk(x0) = y(x0)− c1−α · s (14)

which turns the random interval bound into a fixed tolerance bound for the stochastic
variable Y evaluated at X = x0.

It appears that the quantile c1−α, which is obtained as the solution of the probability
equation, is a function, not only of the proportion γ, the confidence level 1 − α, and the
number of observations n of Y, but also of the particular values of X for which Y is observed,
and of the value x0 of X for which the lower tolerance bound for Y is sought.

Thus it appears that the tolerance bound is much dependent on whether the observa-
tions of Y are clumped together within a narrow range for X or if they are distributed over
a wide range, and whether the current choice for x0 is some central value within this range
or some value outside the range. As a consequence, the tolerance bound does not form a
straight line in an X-Y diagram even though the mean value of Y vs. X does. The tolerance
bound is curved, and it is more curved the fewer data that are available for its calculation,
see Figure 1.

The derivation of the tolerance bound in Equation (14) is based on results from
linear regression of data for Y conditioned on X. Other approaches to such tolerance
bound estimation for dependent variables exist; for example, Pascual (1997) [42] presents
approximate tolerance bounds based on the maximum likelihood results for a set of fatigue
test data.

2.2. Tolerance Bounds for Dependent Variables
2.2.1. Theory

Fatigue curves, commonly referred to as S–N curves, are curves which express a
dependent variable, logN, as a linear function of an independent variable, logS, where N
denotes number of cycles to failure at stress range S. Interpretation of tolerance bounds for
logN form an attractive approach to estimation of lower-tail quantiles for logN, used for
definition of characteristic fatigue curves, with confidence.

Test programs for fatigue testing are often designed in such a manner that the log10S
values for the various tests are fairly evenly distributed over the interval for logS which is
covered by the tests.
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Let X be used to denote log10S in the following. With the assumption of uniformly
distributed xi values, i = 1, . . . n, over an interval of length Lx along the x axis, the factor hn
used in the expression for the variable C in Equation (13)

C = (U −
u1−γ

hn
) · hn ·

√
n− 2

W
(15)

simplifies to

hn =

√
1
n
+

12n
n2 − 1

· (∆x
Lx

)
2

(16)

in which ∆x denotes the positive or negative deviation x0 − x, where x0 is the logS value of
interest for prediction of the 1 − γ quantile of logN with confidence, and where the mean
value x of the n xi values, under the assumption of uniformly distributed xi values, is also
the midpoint of the interval of length Lx that covers the n xi values. For further explanation,
see Figure 1.
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Note that under the assumption of uniformly distributed logS values over the logS
range covered by the tests, the length Lx of the logS interval can be calculated as

Lx =
n

n− 1
·(log Smax − log Smin) (17)

where logSmax is the maximum and logSmin is the minimum of logS in the test set, and n is
the number of tests, each leading to a data pair (S, N).

2.2.2. Graphical Representation of the Quantile c1−α

For the given tolerance γ and given relative deviation ∆x/Lx from the midpoint of
the considered X = logS interval over which available test data are uniformly distributed,
simulations of the variable C in Equation (15) are carried out by simulating the parent
variables U and W. A Monte Carlo simulation procedure, as described in Tvedt (2006) [43],
is used for this purpose. For each combination of tolerance γ and number of fatigue tests
n, 200,000 simulations of C are carried out. The probability distribution of C results from
these simulations and the quantile c1−α can be extracted from this distribution for given
cumulative probability 1 − α, i.e., for specified confidence level 1 − α.

The results of such simulations are presented graphically in Figure 2 for nine com-
monly encountered combinations of tolerance (or probability of survival) γ and confidence
level 1 − α, viz. γ equal to 0.90, 0.95 and 0.97725 in combination with 1 − α equal to
0.75, 0.90 and 0.95. The quantile c1−α is plotted against the relative deviation of test data
∆x/Lx from the midpoint. An example of applying c1−α for a specific ∆x/Lx is graphically
indicated in Figure 1. Figure 2 shows how c1−α increases with ∆x/Lx. The tolerance bound
curve in Figure 1 is given by the regression curve of the data shifted horizontally by c1−α

for the relevant ∆x/Lx value. Therefore, the shape of the tolerance bound curve in Figure 1
is directly related to the shape of the c1−α vs. ∆x/Lx from Figure 2.

2.2.3. Mathematical Representation of the Quantile c1−α

Under the prevailing assumption that the n X values pertaining to the data set of n
observations of Y = log10N are uniformly distributed over the interval of length Lx, it can
be deduced that the quantile c1−α can be represented well by a hyperbolic expression in
∆x/Lx,

c1−α = c1 +

√
c2

2 + c2
3 · (

∆x
Lx

)
2

(18)

By comparison of the limits of the expressions in Equations (15) and (18) for large
values of ∆x/Lx, it can be deduced that

c3 = tn−2(1− α) ·
√

12n
n2 − 1

(19)

in which tn − 2(1 − α) is the 1 − α quantile in the Student’s t distribution with n − 2 degrees
of freedom. This quantile can be read off from statistical tables, see for example Snedecor
and Cochran (1989) [44] and DNV-RP-C207 [45]. The most commonly needed quantiles are
summarized in Table 2.
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Figure 2. Factor c1−α for nine different combinations of tolerance γ and confidence level 1 − α: (a)
γ = 0.9 and 1− α = 0.75; (b) γ = 0.9 and 1− α = 0.90; (c) γ = 0.9 and 1− α = 0.95; (d) γ = 0.95
and 1− α = 0.75; (e) γ = 0.95 and 1− α = 0.90; (f) γ = 0.95 and 1− α = 0.95; (g) γ = 0.97725 and
1− α = 0.75; (h) γ = 0.97725 and 1− α = 0.90; (i) γ = 0.97725 and 1− α = 0.95. The meaning of the
axis is explained in Figure 1.
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Table 2. Quantiles in the Student’s t distribution.

# Test Data tn−2(1 − α)

n 1 − α = 0.75 1 − α = 0.90 1 − α = 0.95

4 0.816 1.886 2.920
8 0.718 1.440 1.943
10 0.706 1.397 1.860
12 0.700 1.372 1.812
15 0.694 1.350 1.771
20 0.688 1.333 1.734
30 0.683 1.313 1.701
50 0.679 1.300 1.676

100 0.677 1.290 1.660

∞ 0.674 1.282 1.645

By inspection of the expression for C in Equation (15), the following expression for the
sum of the coefficients c1 and c2 can be derived

c1 + c2 = c1−α,k(n− 1) ·
√

n− 1
n

(20)

where c1−a,k(n− 1)
√

n− 1 is the 1 − α quantile in a non-central t distribution with n − 2
degrees of freedom and non-centrality parameter −u1−k

√
n− 1. u1−k is the 1 − k quantile

of the standard normal distribution function. c1−a,k(n− 1) is a function of n, 1 − α and
k and is recognized as the downward offset from the sample mean when estimating the
1 − k quantile of an independent standard normally distributed variable with confidence
1 − α. This is tabulated in Resnikoff and Lieberman (1957) [34] and in Biometrika [35]. The
parameter k is an auxiliary proportion which is a function of the true proportion γ and is
calculated as

k = 1−Φ
(√

n
n− 1

·Φ−1(1− γ)

)
(21)

where γ is the specified survival probability or tolerance, and Φ is the standard Gaussian
cumulative distribution function. Table 3 tabulates the inverse function Φ−1(γ) as a function
of γ. Table 4 tabulates c1−a,k(n− 1) as a function of n, 1 − α and k. Interpolation may be
necessary, if c1−a,k(n− 1) is needed for other values of n, 1 − α and k than those tabulated.

Table 3. The inverse standard Gaussian cumulative distribution function.

Survival Probability (Tolerance)
γ

γ Quantile of Standard Normal Variate
Φ−1 (γ)

0.50 0.000
0.75 0.674
0.90 1.282
0.95 1.645

0.97725 2.000
0.99 2.326

There are no separate closed form solutions for c1 and c2. However, based on Hald’s
approximation in Equation (8), generalized to dependent variables, the following expression
can be derived and used as an approximation to the coefficient c1

c1 ≈
Φ−1(γ)

1− (Φ−1(1−α))
2

2(n−2)

(22)

in which Φ−1 denotes the inverse standard Gaussian distribution function. When used
together with the expressions for c1 + c2 and c3, this approximation will lead to rather
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accurate results for the sought-after quantile c1−α by Equation (18). The inaccuracy in the
prediction of c1−α when using this approximation for c1 will decrease for increasing sample
size n and will eventually vanish as n approaches infinity.

Table 4. Quantiles c1−α,k(n− 1) for various auxiliary proportions k and confidence levels 1− α.

No. of
Observations, n

Auxiliary Proportion k = 0.90 Auxiliary Proportion k = 0.95 Auxiliary Proportion k = 0.99

1 − α =
0.75

1 − α =
0.90

1 − α =
0.95

1 − α =
0.75

1 − α =
0.90

1 − α =
0.95

1 − α =
0.75

1 − α =
0.90

1 − α =
0.95

4 2.501 4.258 6.158 3.152 5.312 7.657 4.396 7.340 10.552
8 1.791 2.333 2.755 2.251 2.904 3.404 3.126 3.972 4.641
10 1.702 2.133 2.454 2.147 2.660 3.038 2.977 3.641 4.143
12 1.646 2.012 2.275 2.078 2.511 2.825 2.885 3.444 3.852
15 1.591 1.895 2.108 2.012 2.366 2.621 2.796 3.257 3.585
20 1.536 1.781 1.949 1.947 2.237 2.429 2.710 3.078 3.331
30 1.479 1.664 1.788 1.877 2.094 2.233 2.619 2.895 3.079
50 1.428 1.563 1.651 1.817 1.976 2.075 2.540 2.740 2.870

100 1.380 1.471 1.528 1.758 1.862 1.929 2.470 2.601 2.683

∞ 1.282 1.282 1.282 1.645 1.645 1.645 2.326 2.326 2.326

3. Results
3.1. Verification

A verification of the hyperbolic model for c1−α in Equation (18) with the expressions
for the coefficient sum c1 + c2 and the coefficient c3 in Equations (19) to (21) has been
carried out for an example case based on n = 8 observations of logN. The verification
was conducted by comparing with the true c1−α values obtained from the distribution of
the variable C, established according to Equations (15) and (16) by simulating the parent
variables U and W. The verification was carried out for a survival probability γ = 0.95
and a confidence level 1 − α = 0.95. The results are presented in Figure 3. Excellent
agreement with simulation results (red full curve) was found when the coefficient c1 was
back-calculated from the asymptotic value of c1−α for a large value of ∆x/Lx and used in
conjunction with the expressions for c1 + c2 and c3 (blue dashed curve), assuming a straight
line for the asymptote to the intercept with the c1−α axis. The asymptotic value of c1−α

for a large value ∆x/Lx was taken as the simulated value of c1−α, assuming that the true
c1−α curve for all practical purposes is “identical” to the asymptote for this large value of
∆x/Lx. Here, ∆x/Lx = 4 was used. Just as excellent an agreement was found when the
coefficient c1 was approximated by the expression in Equation (22) (green dotted curve).
Similar verifications have been carried out for other combinations of the sample size n,
survival probability γ and confidence level 1 − α and show the same level of accuracy.

3.2. Numerical Example

As mentioned earlier, S–N curves for composite materials are often not available and
need to be tested for individual projects. A set of fatigue test data from tests on interlaminar
shear specimens of composites under dry conditions is available and used here as basis for
a numerical example. The materials used for the interlaminar shear specimens were typical
marine/offshore laminates. The glass reinforcement was WR 9622 R24-810 (woven roving)
from Ahlström AB and the polyester resin was Norpol 200-M800 from Reichold AS.

Cyclic fatigue testing was carried out on special shear lap specimens in a servo-
hydraulic test machine from about 2·103 to 2·106 cycles in the air. During cyclic fatigue
testing the specimens were loaded in both tension and compression, at a load ratio of
R = −1, i.e., the maximum stress in compression is equal to the (negative) maximum stress
in tension, and the mean stress is zero. For further details about the material and test set-up,
see Echtermeyer et al. (2004) [46].
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The dataset consists of 11 pairs of shear stress amplitude S and number of cycles to
failure N, see Table 5.

Table 5. Example test data.

Stress Amplitude
S (MPa)

Number of Cycles to
Failure N logS logN

2.60 1,591,872 0.415 6.202
3.20 1,140,319 0.505 6.057
3.20 2,680,000 0.505 6.428
3.85 19,550 0.585 4.291
3.85 802,398 0.585 5.904
3.85 204,100 0.585 5.310
5.80 15,639 0.763 4.194
6.45 4595 0.810 3.662
6.45 2137 0.810 3.330
6.45 2330 0.810 3.367
7.10 2034 0.851 3.308

A linear regression of logN on logS in accordance with the procedure given in ASTM
E739 [47] leads to the following estimated mean S–N curve

ˆE[log N] = 9.755− 7.648· log S (23)

and an estimated standard deviation in the residuals of logN equal to s = 0.473. The
experimental data is shown in Figure 3. Based on a simple visual evaluation, the data are
linear and should be suitable for an evaluation based on the methods of this paper. The
scatter is also typical for the fatigue curves of composite materials.
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Assume now, as an example, that the characteristic S–N curve is defined as the curve
with a survival probability of 97.725%, i.e., the characteristic value of logN is the mean
value minus two standard deviations under a normal distribution assumption for logN
conditional on logS. Assume also that this characteristic S–N curve is to be estimated with
95% confidence.

The procedure in Equation (12) through (14) is now used to estimate the characteristic
S–N curve with 95% confidence. This would be the theoretical or true characteristic S–N
curve estimate, given the data. Under the assumption that the logS values of the available
test data are uniformly distributed over the logS interval covered by the tests, Figure 2 is
now used to establish an alternative, approximate characteristic S–N curve estimate with
95% confidence. It is noted that this assumption is not quite fulfilled by this data set. The
results of these exercises are presented in Table 6 and Figure 4. It appears that, despite
the assumption, uniformly distributed logS values are not quite fulfilled for this data set,
and the two S–N curve estimates come out as practically identical over the range of logS
values covered by the data, and a little beyond. This serves to demonstrate that even if
the assumption of uniformly distributed logS values over the logS interval covered by the
tests is not quite fulfilled, the simplifying approach implied by using Figure 2 rather than
the more cumbersome procedure in Equation (12) through (14) may suffice for practical
purposes.

Table 6. Example tests; factor c1−α for 1− α = 0.95.

Stress Amplitude
S (MPa)

logS Covered
by Tests

By Theory
(Simulation by Equation (13))

c1−α

By Figure 2
∆x
Lx

c1−α

2.60 0.415 3.79 0.455 3.75
3.20 0.505 3.59 0.267 3.57
3.85 0.585 3.48 0.099 3.46
5.80 0.763 3.52 0.272 3.57
6.45 0.810 3.59 0.368 3.66
7.10 0.851 3.67 0.455 3.77
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4. Discussion

For practical application of the results, the characteristic fatigue curves to be used
in design are conservatively given in standards as two straight lines on a log-log scale,
parallel to the fitted mean curve based on the test data; see DNV-OS-C501 [2] and DNVGL-
RP-F119 [3]. One line is used within the range of logS covered by the measured data;
the other line is used for extrapolation beyond this range. The extrapolation is limited to
half the width of the range of logS covered by the data. The linear characteristic fatigue
curves specified in DNV-OS-C501 and DNVGL-RP-F119 have been calibrated by means
of the procedure outlined above such that some specified minimum confidence level for
the calculated characteristic logN value is met or exceeded for all logS values within the
specified range for logS. It is noted that these linear curves come out as similar to the
parallel straight line tolerance limits resulting from the approach presented by Little and
Jebe (1975) [48], based on work by Bowden (1968) [49].

The approach given here, using the curved tolerance bounds based on Equation (14)
and Figure 2 rather than the straight lines given in the standards, allows the determination
of the characteristic fatigue curve in a more accurate and still fairly simple way, and there
is no restriction on how far out on the logS axis one can extrapolate. Within the logS range
of applicability of the straight lines specified in the standards, the approach given here will
allow for higher utilization than these lines. Significant extrapolation beyond the range
of logS covered by the test data will produce characteristic fatigue life estimates which
will be relatively short owing to the curvature of the tolerance bounds, thus reflecting the
uncertainty associated with such extrapolation.

In addition, the approach using the curved tolerance bounds based on Equation (14)
and Figure 2, rather than the true curved tolerance bounds based on Equation (12) through
(14), will in most cases suffice for practical purposes, i.e., the designer can obtain the
parameters from Figure 2 rather than having to carry out cumbersome and elaborate
calculations according to Equations (12) and (13).

The limit of extrapolation of fatigue data in the standards is given, because the simpli-
fied straight characteristic curve would become non-conservative beyond the limit. But
sometimes longer lifetimes need to be estimated and absolutely no indication is given in
the standards on how these lifetimes should be obtained. Calculating the lifetimes from
basic theory as described here in Equations (12)–(14) is cumbersome and not widely known.
Having now a simple procedure to predict long time fatigue performance beyond the
extrapolations allowed by the current design standards is very beneficial.

The new method also allows for using small data sets and shorter test times for
predicting performance at long lifetimes. The characteristic curves based on a few data give
lower lifetimes than characteristic curves based on more tests and longer test times, but at
least a proper estimate can be made. Possibly the estimate is good enough for a particular
design. Otherwise it also allows for evaluating whether it is beneficial to perform further
and expensive long-term testing for obtaining better estimates of the lifetimes.

It should be noted that the approach presented here for fatigue curves under cyclic
loading can also be applied to stress rupture curves under sustained loading simply by
replacing the log of number of cycles to failure with the log of time to failure.

The results can be applied to S–N curves and ε–N curves for other materials than
composites, as well as to any other relationship where one variable is linearly dependent
on another. The reference to composites is merely by coincidence. A very good, completely
different example is soil strength as a function of depth within a soil layer in a stratified
soil deposit.

5. Conclusions

S–N curves need to be measured for engineering materials that are not as well charac-
terized as widely used metals. A versatile, simple and accurate method has been presented
for calculating characteristic curves for fatigue S–N curves or other experimental results
with one variable dependent on another, independent variable. The basis is a statistical
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method for the estimation of characteristic values of uncertain variables, founded on the
theory for tolerance bounds of random variables. This statistical method has been extended
to produce tolerance bounds for dependent variables. The method has been applied in
conjunction with regression analysis results to establish estimates of characteristic values
for the fatigue life of general materials, such as composites or adhesive joints for use in
design. The method takes into account that the fatigue life (the dependent variable) is a
function of the applied stress amplitude (the independent variable).

A general statistical method existed before and is correct, but is not very user-friendly
for dependent variables. By introducing the simplification of requiring uniformly dis-
tributed test data over a finite logS interval, a mathematically fairly simple solution has
been found. Fatigue test programs are often designed such that test data roughly come
in this way. Based on this simplification, the method has been used to create a set of nine
easy-to-use charts corresponding to nine commonly encountered combinations of survival
probability (for definition of characteristic fatigue life) and confidence level (for estimation).
The curves in these charts may be used for the simplified estimation of characteristic S–N
curves for use in design. A numerical example based on a real dataset has been presented
and shows that very accurate results are achieved, even if the assumption of uniformly
distributed test data over a finite logS interval is not quite fulfilled. The curves in the charts
may be well represented by hyperbolic functions. Analytical expressions for the coefficients
in these functions have been derived and are presented.

The method allows the structural engineer to estimate fatigue lifetimes beyond the
range given in the existing standards and literature based on limited sets of data. The
method is relatively simple. It allows for evaluating the benefits of more and expensive
long-term testing vs. required estimated lifetimes.

The methodology can be applied to statistical analysis also of other types of data than
fatigue life, for example data for time to rupture (creep rupture) of composite laminates or
polymers subjected to sustained loading—time to rupture (or rather its logarithm) is then
the dependent variable whereas the sustained load (or its logarithm) is the independent
variable. Results of the methodology under the idealized assumptions about the test data
were used as the basis for calibrating requirements for linear characteristic fatigue curves
on log-log scale in the DNV standard for composite components, DNV-OS-C501 [2].
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