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Abstract: This paper examines the statistical properties and the quality of the speed through water
(STW) measurement based on data extracted from almost 200 container ships of Maersk Line’s fleet
for 3 years of operation. The analysis uses high-frequency sensor data along with additional data
sources derived from external providers. The interest of the study has its background in the accuracy
of STW measurement as the most important parameter in the assessment of a ship’s performance
analysis. The paper contains a thorough analysis of the measurements assumed to be related with
the STW error, along with a descriptive decomposition of the main variables by sea region including
sea state, vessel class, vessel IMO number and manufacturer of the speed-log installed in each ship.
The paper suggests a semi-empirical method using a threshold to identify potential error in a ship’s
STW measurement. The study revealed that the sea region is the most influential factor for the STW
accuracy and that 26% of the ships of the dataset’s fleet warrant further investigation.

Keywords: regression analysis; speed through water; sensor readings; measurement error; sea
currents

1. Introduction
1.1. Background

The shipping industry has a strong wish to reduce the environmental effects of their
operations and become sustainable. In addition to this, strict regulations on notably carbon
emissions make it necessary for shipping companies to closely monitor and evaluate the
performance of both the single ship and the entire fleet daily. Increasing use of on-board
sensors and improved speed-power performance models have led to a significant increase
in the fuel efficiency. The central parameter in this context is the measured speed with which
a ship advances. Thus, the necessary power to achieve a given speed is approximately
proportional to the speed cubed [1–3]. Consequently, it is clear that any uncertainty or
error in the measured speed can have a detrimental effect on the outcome of speed-power
performance models.

At sea, the speed of an advancing ship is measured either relative to the seabed
(speed over ground—SOG) or relative to the surrounding water flowing past the hull
(speed through water—STW). Both speed types apply in modern navigation systems [4].
However, for all models addressing problems related to speed-power performance, STW
is the measurement that enters the models; obviously noting that the two measurements
(STW and SOG) are related through the speed of sea current. Typically, maritime speed
logging devices use one of the following measurement principles to obtain the STW: water
pressure, electromagnetic induction, or the transmission of low frequency radio waves [5].
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The latter refers to as the Doppler velocity log (DVL), which is the speed-log used by the
ships dealt with in this paper, and used by the majority of today’s merchant ships.

DVLs are installed along the centerline of the hull at a dry accessible location in
the bow of the ship, where the flow is as undisturbed as possible and contains few air
bubbles. It is evident that DVL sensors measure in a highly fluctuating environment [6].
The flow around a ship is affected by eddies, currents, waves, stratified current layers
etc. Furthermore, the sensor itself moves relative to the water due to ship motions [7].
Accurate measurement of ship speed is therefore difficult, notwithstanding STW is the
most important parameter for performance analysis. The calculation of the STW accuracy
has been a challenging task for the experts of the shipping industry ever since the launch
of the first DVL sensor used for underwater navigation [7–17].

Seafarers, marine engineers, and land-based performance analysts recognize that
there is error involved in the STW measurement greater than the values indicated by the
respective DVL manufacturers. Likewise, there are claims of observed constant offset in the
STW measurements [18]. Reported examples from daily operations include also sudden
jumps and drifts in the STW signal with measurements constantly decreasing/increasing
for relatively long periods (hours), despite a maintained constant speed as secured by crew.
Such incidents, apart from bringing mistrust to the crew navigating the ship, they also shift
the outcome of any dynamic voyage planning and they finally cause headaches to perfor-
mance analysts. However, the above-mentioned testimonies will remain unsupported if
they are not properly investigated and documented. Individual cases are not enough to
hold assumptions and generalize for a larger extent.

1.2. Objective and Scientific Contribution of Study

Although all the above-mentioned studies enhanced the literature of Doppler log-
ging devices, there has never been an attempt to quantify the deriving error using real
sensor data from a large fleet consisting of ships with different characteristics. This pa-
per constitutes an initial attempt to quantify the error affecting the STW measurement
using high-frequency data from approximately 200 container ships sailing for 3 years.
As such, it is an account from a large container shipping company with the aim to make a
systematic analysis of different sets of operational and environmental data collected and
stored in-company and obtained from third parties. The overall objective of the paper is to
contribute towards a better understanding of the responsible causes suspect to degrade the
STW measurement.

1.3. Problem Formulation

Understanding a ship’s SOG and STW accurately joins with a range of daily opera-
tional challenges on-board the ships and on-shore for any shipping company. One of the
main objectives of most shipping companies is to model the current performance of their
ships and forecast what will happen in the very near or distant future. For instance, looking
at the short-term voyage planning model which provides advice for the crew, an internal
company study indicates that the average speed prediction profile to arrive on time in all
operational conditions should be less than 1.0 kn RMSE (Root Mean Square Error) for the
crew to trust the advice. This leads to several interesting research questions, like:

1. What parameters and external conditions seem to be the most influential on the STW
measurements accuracy?

2. How often and where are these parameters and conditions observed?
3. Assuming a given advice quality requirement (threshold), how sensitive are the

answers to the above questions?

In this study, three speed signals have been used for the purpose of answering these
questions. The first is the STW, referred to by Uw, the second is the SOG, given as Ug,
and the third is the speed of the surface currents projected on the ship’s true heading,
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defined by Uc. Those three signals have a theoretical relationship which constitutes the
foundations of this study.

Ub
w = Ub

g −Ub
c (1)

Equation (1) assumes that the STW equals the SOG subtracted by the speed of the
currents. Two reference frames are used to represent the motion of the ship: the North-East-
Down (NED) coordinate frame {n} is the inertial frame used to describe the pose of the
ship; the body-fixed coordinate frame {b} is the non-inertial frame fixed to the ship used
to describe linear and angular velocities. Theoretically, knowing the true SOG and the true
speed of the currents, the true STW could easily be calculated with precision. However,
those signals are only provided through sensor measurements or predictions (see Figure 1)
which consequently means that there is error involved.

Figure 1. Locations where the three speed signals of interest derive from. Red is used to indicate ship sensors and blue
for predictions.

Assuming an additive measurement error we obtain the following observed variables:

UGPS = Ub
g + εg (2)

UDVL = Ub
w + εw (3)

UCOP = Ub
c + (εc + εψ) (4)

It is assumed that each measured signal is mutually independent and affected by zero
mean white Gaussian noise with variance σ2

g i.e., εg ∼ N (0, σ2
g), σ2

w i.e., εw ∼ N (0, σ2
w), σ2

c

i.e., εc ∼ N (0, σ2
c ) and σ2

ψ i.e., εψ ∼ N (0, σ2
ψ). ψ refers to ship’s compass true heading and

is furthered analyzed in Section 2.1.

2. Fundamentals and Methodology
2.1. Theoretical Background of Position and Speed Signals

At this point, it is imperative to analyze each error term of Equations (2)–(4). Starting
from Equation (2) the GPS gets the data from a GNSS (Global Navigation Satellite Sys-
tem) receiver providing synchronous measurements of ship position (Nlat, Elon) and SOG
(UGPS). Most of the manufacturers of the GPS installed on company-owned ships, claim
that the position accuracy accounts for σp < 2.5 m . Only a few of them indicate the SOG
accuracy. In one datasheet the SOG accuracy was registered for σg < 0.13 kn.

Progressing to Equation (3) regarding DVL accuracy, numerous DVL manufacturers
provide diversified information. Once calibrated the DVL measurements may approach an
accuracy of 0.1% [19], but a series of factors influence the result. Many DVL manufacturers
claim that the accuracy is related to speed intensity followed by the below boundaries.

UDVL < 10 kn σw = 0.1 kn

10 kn ≤ UDVL < 25 kn σw = 0.16 kn

25 kn ≤ UDVL < 50 kn σw = 0.32 kn

Below are the factors influencing the DVL measurements, according to [6]:
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• Water Clarity. The STW measurements depend on acoustic reflection from solid
particles in the water such as microorganisms or suspended dirt. In extremely clear
water the quantity of scatters may be insufficient for adequate signal return.

• Aeration. Aerated water under the transducer may reflect sound energy which could
erroneously be interpreted as sea bottom returns. Sailing in heavy weather may be the
source of this effect and so could non-laminar flow around the transducer. By placing
the transducer near the bow the effect of non-laminar flow is reduced considerably.

• Ship’s trim and list. Changes in the trim (affects fore/aft speed) and list (affects
transverse speed) of the ship will affect the measured speed. (e.g., 5◦ trim change
foresees 0.4% speed change [6]).

• Current profile. STW is measured relative to a water layer beneath the ship (>3 m).
Sailing in strong tides and currents, the direction and magnitude of the surface
current can be different from the measured layer, which may lead to errors in the
measured speed.

• Eddy currents. Sailing in eddies in boundaries of ocean currents where the flow can
be opposite or normal to the direction of the primary current may affect the speed
measurement.

• Sea state. Following seas result in a variable change in the ship’s speed. This produces
a fluctuation in the measured speed.

• Fouling of sensor. Fouling affects the sensor in the same way as the rest of the wetted
surface of the ship.

Lastly, Equation (4) assumes that UCOP is subject to two error terms, εc and εψ. The first
is a combination of prediction error from the grid provided by the external weather provider
along with the error from the bi-linear interpolation to match the ship’s location to that
grid. According to CMEMS (Copernicus Monitoring Environment Marine Service) [20]
σc = 0.37 kn. The latter is the error deriving from the projection of the sea currents speed
vector Un

c = [Ux, Uy, 0]T ∈ R3 to the ship’s true heading measurements ψm. ψm is a mea-
surement provided by the gyrocompass installed on the ship. Observation at sea indicates
that 0.25◦ is the error in many typical gyrocompass installations [21]. Consequently, in-
voking the gyrocompass error into the projection formula, it derives that σψ = 0.001 kn.
To sum up, the measurements have been identified with error characteristics as stated in
Table 1. The present study is trying to showcase how far or close to reality the error values
of Table 1 are.

Table 1. Estimated accuracy (1σ) of motion and weather signals, according to manufacturers or
weather providers’ documentation [19–21].

Signal Accuracy [σ]

Nlat, Elon 2.5 [m]
UGPS 0.13 [kn]
UDVL 0.16 [kn]
UCOP 0.37 [kn]

2.2. Error Identification in STW Measurement

It is imperative to develop a detailed explanation of how to check potential error in
the STW measurement. Based on Equations (1)–(4) we obtain:

Udev = UGPS −UDVL

= UCOP (5)

Equation (5) indicates that there is a speed deviation which we can easily calculate
by subtracting the measured STW (UDVL) from SOG (UGPS) and it must be equal to the
projected speed of the currents (UCOP). According to [22], the range of magnitude of global
currents, span from 0.01 kn to 7.78 kn. However, currents generally diminish in intensity
with increasing depth, so the higher end of the magnitude range refers to shallow water
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currents close to shore. According to [23] a characteristic sea surface speed is 0.1 kn to
0.97 kn. More specifically, in 98% of the bins, the mean surface current did not exceed
0.97 kn. After illustrating the GPS coordinates registered from 190 container ships during
3 years of operation in Figure 2, it is evident that liner shipping is following specific seaways
unlike bulk and crude oil carriers. In Figure 3 there is an illustration from [22] depicting the
global surface currents magnitude during northern hemisphere winter. When comparing
the last two figures, it is indisputable that most of the ships’ seaways are along one of the
streams. Considering the above, in this research study we have assumed that a container
ship sailing in steady state is unlikely to confront (from any direction) a surface current

speed magnitude Un
c =

√
U2

x + U2
y greater than 2.0 kn, which is the value of the defined

threshold referred to in Section 1.3.

Figure 2. Visualization of Nlat and Elon coordinate pairs from all ships included in the main dataset for 3 years of operation.

Focusing down to a single ship level, the same 2.0 kn threshold can be used to identify
if the STW and SOG measurements are experiencing significant errors. The procedure is
the following:

1. Acquire STW measurements, SOG measurements and high resolution (both spatial
and temporal) sea currents reanalysis outputs obtained by a weather provider.

2. Create a scatterplot of SOG vs. STW and inspect the correlation of the two vectors.
They are expected to be highly correlated.

3. Create the speed deviation feature Udev which is a product of subtracting STW from
SOG like Equation (5), plot a histogram and a boxplot to check the distribution of
Udev and calculate the percentage of |Udev| > 2 kn.

4. Plot the histogram and boxplot of UCOP to check its distribution and identify the
statistical characteristics of the sea currents magnitude of the regions where the ship
has sailed. Plot the ship seaways on a map to verify if the UCOP values reflect the
characteristics of the sea region.

5. Compare Udev and UCOP distributions. When the Udev boxplot of one ship’s median is
close to 0, the inter-quantile range (IQR) is narrow enough to span from −1 to 1 knot,
and the whiskers span between −2 and 2 knots, and finally the UCOP distribution
conveys the same story then it is indicative that the DVL measurements can be trusted.
Anything outside these boundaries is questionable and requires further investigation
by location.
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At this point, it should be noted that the particular threshold value of 2 kn is a decision
made by the authors. The investigations made in relation to the strength of average sea
current, indicate that the 2 kn threshold is a reasonable choice/decision. It is expected
that the outcome of the analysis to some degree depends on the precise value of the
threshold and, as such, there is incentive for making a sensitivity study to comprehensively
investigate the influence of the threshold value on the outcome and findings. However,
this exercise is beyond the scope of the present paper and is left as a work for the future.

Figure 3. Global surface currents magnitude during northern hemisphere winter by [22].

3. Data
3.1. Sources

As already introduced, data has been collected from many different sources; both
internally (within the company) and externally (open-source as well as paid services).
Below are the descriptions of each available data source that has been meticulously merged
to end up in the final dataset.

3.1.1. CAMS Data

This study is conducted on sensor data from Maersk’s fleet deriving from a system
called CAMS (Control Alarm Monitoring System). Thus, CAMS is the source of the main
dataset and it includes sensor readings from each ship. CAMS contains 10-min sampled
data from all distributed sensors along the ships, and is sent to shore continuously as often
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as there is satellite connection available on-board each ship. There are around 300 variables
available in CAMS but only a subset of these are a priori assumed to affect the STW
sensor readings and thus included in this study. In CAMS, each ship is identified by its
unique IMO number, and Table 2 illustrates the chosen features for each of the downloaded
IMO numbers.

Table 2. Sampling frequency, acquisition range and units of CAMS data.

Condition Type Frequency Range Unit

Loading Draught Aft 0.001 Hz 0–30 [m]
Draught Fore 0.001 Hz 0–30 [m]

Operational

GPS Timestamp 0.001 Hz 14/12/2016–22/02/2020 [UTC datetime]
Latitude 0.001 Hz −90–90 [◦]

Longitude 0.001 Hz −180–180 [◦]
Shaft speed 0.001 Hz −300–300 [rpm]
ME Power 0.001 Hz 0–100,000 [kW]

Longitudinal STW 0.001 Hz −10–50 [kn]
GPS SOG 0.001 Hz −10–50 [kn]

True heading 0.001 Hz 0–360 [◦]
Course over ground 0.001 Hz 0–360 [◦]

Roll 0.001 Hz −90–90 [◦]
Pitch 0.001 Hz −90–90 [◦]

Water Depth (Under Keel) 0.001 Hz 0–11,000 [m]

Weather

True Wind Speed 0.001 Hz 0–50 [m/s]
True wind direction 0.001 Hz 0–360 [◦]
Relative wind speed 0.001 Hz 0–50 [m/s]

Relative wind direction 0.001 Hz 0–360 [◦]
Sea temperature 0.001 Hz −50–100 [◦C]

3.1.2. AIS Data

The AIS is an automatic tracking system that uses transceivers on ships and is used by
vessel traffic services (VTS). AIS information supplements marine radar, which continues
to be the primary method of collision avoidance for water transport. It is confirmed that
AIS is using a different set of sensors than the CAMS dataset. This means that all available
measurements are comparable with the adequate CAMS measurements. The company
does not collect this data, but an external provider does, and it is where the data was
sourced from. The AIS dataset is used for comparison and correction purposes mainly due
to faulty GPS locations registered on the CAMS dataset. Table 3 show the selected features
from the AIS dataset.

Table 3. Sampling frequency, acquisition range and units of AIS data.

Condition Type Frequency Range Unit

Loading Draught Avg uneven 0–30 [m]

Operational

AIS Timestamp uneven 01/10/2017–10/03/2020 [UTC datetime]
AIS SOG uneven −10–50 [kn]
Latitude uneven −90–90 [◦]

Longitude uneven −180–180 [◦]
True heading uneven 0–360 [◦]

Course over ground uneven 0–360 [◦]

3.1.3. IHO Seas Data

There is a report from IHO (International Hydrographic Organization) called “Limits of
oceans and seas in digitized, machine readable form" [24] which includes the boundaries of 148
oceans and seas. The given positions were typed into a spreadsheet and were completed to
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a right ordered polygon by hand using Google Earth. This dataset is the digitized version
of the printed “Limits of Oceans and Seas" [25]. The dataset is structured by the columns as
described in Table 4 and will help classify the STW accuracy issue into regional categories.
In Figure 4 one can see the borders of each sea as reference.

Table 4. Sampling frequency, range and units of IHO seas data.

Condition Type Frequency Range Unit

Sea info
Sea name 1 name/sea 148 seas worldwide. [-]
Geometry 1 polygon/sea 148 unique geopolygons [-]

Area 1/polygon 0.16–7512.32 [km2 ∗ 102]

Figure 4. The IHO seas regions of the world.

3.1.4. General-Info Data

Following the same classification principle, particular information for each ship of the
dataset is provided through an internal company source. For instance, the vessel class and
the DVL manufacturers info are some of the features out of a range of valuable categorical
variables that has helped classify the data and identify if they relate to the STW accuracy.
The classification dataset named from now on the ’general-info’, is shown in Table 5.

Table 5. Sampling frequency, range and units of general-info data.

Type Frequency Range Unit

Vessel name 1/ship 224 ship names [-]
Vessel IMO No 1/ship 224 unique numbers [-]

Vessel class 1/ship 32 ships classes [-]
Vessel flag 1/ship 6 flags [-]

DVL manufacturer 1/ship 6 manufacturers [-]
DVL model 1/ship 28 unique models [-]

3.1.5. Hull and DVL Cleaning Events

According to [26] sensor fouling has proved to be one the more influencing factors on
the quality of the DVL measurements. Based on this assumption the hull and DVL cleaning
events of each ship over time has been included in the study. Especially the timestamps
where the cleaning and re-calibration of the DVL take place are expected to be significant
and might reveal high correlation with Udev. Table 6 describes the dataset for each ship.
The length of the table depends on the amount of cleaning events registered for each ship.
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Table 6. Sampling frequency, range and units of cleaning events data.

Type Frequency Range Unit

Event name total number of events/ship 8 unique events [-]
Event location total number of events/ship 21 unique locations [-]

Event timestamp total number of events/ship 20/12/1979–26/02/2020 [UTC datetime]

3.1.6. MET Ocean Data

MET ocean data is sourced from external providers. In this study, MET ocean data
includes information about sea current and waves, and in either case data is collected with
credit to the E.U. Copernicus Marine Service Information. Specifically, sea current was
obtained from CMEMS [27] while wave data relies on ERA5 [28]. ERA5 is a reanalysis
database that provides hourly updates of wave spectra in grid points spaced by 0.5◦ latitude
and longitude degrees. Table 7 presents the features downloaded and later bi-linearly
interpolated using the method described in [29].

Table 7. Temporal and spatial resolution, acquisition range and units of weather data. * Sig.wave height refers to the
significant height of combined wind waves and swell. ** SMOC refers to Surface and Merged Ocean Currents.

Type Temp. Res. Spat. Res. Range Unit

ER
A

5

ERA5 Timestamp - - 01/01/1979–present [UTC datetime]
Sig.wave height * hourly mean 0.5◦ × 0.5◦ 0–20 [m]

Mean wave period hourly mean 0.5◦ × 0.5◦ 0–100 [s]
Mean wave direction hourly mean 0.5◦ × 0.5◦ 0–360 [◦]

C
M

EM
S CMEMS Timestamp - - 01/01/1992–present [UTC datetime]

SMOC utotal ** hourly mean 0.083◦ × 0.083◦ −20–20 [kn]
SMOC vtotal ** hourly mean 0.083◦ × 0.083◦ −20–20 [kn]

The sea current velocity vector measurements, combined with the true heading of the
ship as given by compass ψm, one can find the projected speed of the currents on the ship’s
body-fixed reference frame UCOP.

3.2. Data Processing

This section describes the preprocessing of the data. Although this task is an asyn-
chronous process, below is an ordered description of the steps that ended up to the main
(final) dataset.

3.2.1. Filtering and Merging

Focus is exclusively on the actual sailing operations. Thus, many of the other parts
of shipping operations are filtered out; this includes quay stays, anchoring, maneuvering,
maintenance (dock stays), etc. In practice, this was simply done by including data only
if the forward speed is above 5 knots, although important information such as cleaning
events and dock stays were kept track of. In total, the dataset was reduced to 40% of the
original dataset.

Since CAMS is the main dataset, the rest of the data sources are merged to this. Figure 5
illustrates the merging of the rest of the data sources to the CAMS dataset. In cases where
there were no exact timestamp match, a tolerance level of a few seconds is given, depending
on the importance of the related merged features. For cleaning events, the merging led
to a new feature counting the number of days since the last occurrence of each of those
events. In cases where the frequency of the merged dataset was lower than that of the main
dataset, the merging resulted in missing data which needed to be imputed. Depending on
each feature’s physical properties, the replacement of the missing data has been handled
adequately as described in the next subsection.
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Figure 5. An illustration of the merging procedure of the data sources.

3.2.2. Outlier and Missing Data Replacement

Most of the missing values of the main dataset derived either from CAMS or from the
merging process. In Figure 6 one can see the missing data matrix for the most significant
features of the main dataset. It starts on 01-01-2017 and ends on 22-02-2020 and it sums up
to 190 ships and ≈7 million rows.

Figure 6. Missing data matrix for the principal features of the main dataset.

It is illustrated in Figure 6 that from the 7,333,490 rows of the dataset, the GPS coor-
dinates Nlat and Elon have several missing values (15%) after validating and correcting
the measurements with AIS data. For other parameters (return to the nomenclature for
notation), the following can be noted: ψm has 14% missing values due to malfunction of
the compass on some ships, θm has 97%, φm has 81%, χm has 71%, Udev has 0.5% missing
values deriving from random iterations of UDVL missing values, and finally UCOP has
(25%) missing values deriving from Nlat, Elon and ψm. Here, it should be noted that the
features, with missing values-percentages higher than >70%, have been dropped entirely
from the main dataset.

Each feature of the main dataset has been meticulously checked for outliers. This
includes obvious outliers based on physical constraints, drop-outs, spikes and finally
repeated values indicating frozen signals. The methodology followed on identifying
outliers was based on the work by Dalheim and Steen [30].
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After identifying missing values and outliers followed a careful replacement process.
In fact, the replacement has been one of the most tedious tasks of this study, because the
replaced values had to be validated for all ships. Even a small mistake might lead to wrong
conclusions on the analysis and the modeling section. For instance, when latitude and
longitude outliers were identified in CAMS, they were replaced with their AIS substitute,
since it has been internally investigated that the AIS system uses a dedicated GNSS antenna
separate from the one that the ship uses for the GPS coordinates. However, there were cases
that even the substituted values did not comply with the validation constraints. In these
cases, it was decided to linear interpolate instead of creating an additional filter where the
location would be estimated based on a physical model.

3.2.3. Main (Final) Dataset

Table 8 describes all the main features of interest that constitute the main dataset. This
dataset has been used for the analysis and modeling part. Some features had to be dropped
from the main dataset after the merging, either because of the high number of missing
values, or because they were assumed to be less significant for the purpose of this study.
Please note that the sampling frequency of ships on the main dataset is uneven, since the
maneuvering state has been completely dropped.

Table 8. Type, symbol, short description, value range and units for final dataset. For longer description, refer to the table
at Nomenclature.

Type Symbol Short Description Range Unit

Time ti Timestamp 14/12/2016–22/02/2020 [UTC datetime]

M
ot

io
n

Nlat Latitude −50–61 [◦]
Elon Longitude −180–180 [◦]
ψm True heading 0–360 [◦]

UDVL STW 0–29 [kn]
UGPS SOG 5–28 [kn]
Udev Speed deviation −10–10 [kn]

UCOP See currents speed −6–6 [kn]
Davg Draught Avg 1–29 [m]

Engine Erpm ME Shaft rotations 30–101 [rpm]
Epow ME Power 0–65,574 [kW]

En
vi

ro
nm

en
ta

l Stemp Sea temperature 1–49 [◦C]
Sdepth Water Depth (Under Keel) 0–8086 [m]
Hsw Significant wave height 0–13 [m]
dsw Mean wave direction 0–360 [◦]
Urw Relative wind speed 0–50 [m/s]
drw Relative wind direction 0–360 [◦]

C
la

ss
ifi

er
s Sname Sea name based on region Categorical [-]

Msl DVL manufacturers Categorical [-]
Vclass Vessel class Categorical [-]
Vimo Unique ImoNo per vessel Categorical [-]

C
le

an
in

g
Ev

en
ts Cbov Days since birth of vessel 46–7935 [days]

Cddp Days since last dry docking (painting) 0–5000 [days]
Cdd f b Days since last dry docking (full blast) 0–5000 [days]
Cpp Days since last propeller polishing 0–5000 [days]
Chc Days since last hull cleaning (locally) 0–5000 [days]
Cla Days since last DVL adjustment 0–5000 [days]

4. Analysis and Modeling

In this section, the main dataset has been analyzed, attempting to answer the research
questions. The section starts with the Udev and UCOP decompositions over the whole fleet
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(Sections 4.1 and 4.2) and proceeds with a regression analysis of the main features of interest
versus Udev.

4.1. Udev Decomposition

In Section 2.2 we assumed that a container ship sailing in open waters is unlikely to
confront a surface current speed Un

c greater than 2 kn. Hence the threshold of 2 kn is used to
identify potential errors of the STW and SOG measurements. It is otherwise expected that
UDVL and UGPS are linearly correlated. The scatterplot in Figure 7 depicts the correlation of
the two features deriving from the whole fleet. The red-colored dots indicate those indices
that are outside the speed deviation boundary of 2 knots (|Udev| > 2 kn). At first glance
there seems to be many faulty indices (red dots) in the CAMS dataset. However, when
looking at the bivariate kernel density estimate (KDE) plotted on top of the scatterlot, it is
evident that the issue is not that severe, since most of the points are concentrated within
five contour levels below 2.0 kn within the gray area.

Figure 7. KDE plot on top of correlation scatterplot of UGPS versus UDVL from 190 container ships.

Checking on the percentage of points distributed among the 2 kn boundary, on Table 9
one can see that only 2.47% out of ≈7 million points are considered to be either DVL or
GPS failure. Even small fractions of DVL failure can contribute to huge costs, especially for
companies operating hundreds of ships.

Table 9. Speed deviation Udev above and below 2 kn boundary.

|Udev| < 2 kn |Udev| > 2 kn total

count 7,152,295 181,195 7,333,490
percentage% 97.53% 2.47% 100%

However, given that 2.47% out of ≈7 million measurements is experiencing faulty
DVL and GPS measurements, one can decompose Table 9 by vessel class and by DVL
manufacturer and inspect how much above or below this general percentage boundary
each category is sitting. Tables 10 and 11 reports the outcome of this analysis for DVL
manufacturer and vessel class.
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Table 10. Speed deviation Udev above 2 kn boundary decomposed by DVL manufacturer installed
on the 190 ships of this study. Gray background occurs when |Udev| > 2 kn percentage column is
greater than 2.47%.

Manufacturers
|Udev| > 2 kn

Total
count perc %

NaN 52,000 2.67% 1,947,949
M.1 33,878 1.81% 1,871,659
M.2 32,254 2.43% 1,325,151
M.3 13,450 1.85% 727,145
M.4 11,068 1.79% 618,358
M.5 32,946 5.36% 614,225
M.6 5599 2.44% 229,003

For anonymity, the brand names of the DVL manufacturers have been changed into
index numbers. The only DVL manufacturer that is far above the 2.47% boundary layer is
M.5. Later, it has been confirmed that this is not a proof of a manufacturer of low accuracy,
but this indication is caused by a few ships with miscalibrated or malfunctioning sensors
at some period of time.

Table 11. Speed deviation Udev above 2 knots boundary decomposed by vessel class. Gray back-
ground shows up when |Udev| > 2 kn percentage column is greater than 2.47% and it gets darker
while it increases.

Vessel Class
|Udev| > 2 kn

Total
count perc %

C.7 21,047 1.56% 1,346,739
C.26 24,727 1.98% 1,251,124
C.15 14,075 1.72% 816,046
C.9 7955 1.45% 548,497

C.16 19,651 3.51% 559,411
C.12 13,174 3.26% 404,647
C.10 12,024 3.55% 338,794
C.11 5293 1.85% 285,827
C.14 13,087 4.97% 263,230
C.24 2162 1.17% 184,113
C.27 943 0.52% 180,521
C.3 1784 1.10% 161,798
C.2 6500 4.72% 137,575
C.4 6834 5.16% 132,552

C.17 2300 1.96% 117,575
C.13 10,557 9.20% 114,694
C.21 1487 1.79% 83,068
C.5 991 1.43% 69,454

C.23 4641 6.61% 70,161
C.18 1468 2.33% 62,934
C.6 1145 1.93% 59,429

C.22 818 1.74% 46,884
C.1 499 1.22% 40,939

C.20 559 2.02% 27,618
C.25 55 0.47% 11,745
C.19 2705 20.19% 13,401
C.8 4714 100.00% 4714

As seen in Table 11, there are a few vessel classes in which the percentage is greater
than 2.47% and these classes have been investigated thoroughly. Boxplots are used to
illustrate the ship level, as illustrated in Figure 8.
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Figure 8. Boxplot of Udev by vessel class Vclass and IMO number Vimo.
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It is evident that most of the ships’ IQRs span among ±1 kn. Some IQRs are narrower
than others, which indicate that there is a stronger correlation between SOG and STW.
Strong correlation implies either minimal signals error or that the ships sail in areas with
very small or no ocean current. The latter is not likely, since ships from almost all vessel
classes sail in at least one sea region where the sea currents happen to be stronger than
average. Focusing on the vessel classes categorization, it seems that ships under the same
class record similar performance. For instance, the boxplots from class C.16 (gray boxplots)
look wider than those from class C.7 (yellow boxplots) meaning that the IQRs of C.7
imply stronger correlation between SOG and STW than those of C.16. Some boxplots from
C.7 are shifted to the left, which means that the mean value is negative which implies
that the ship is mostly confronted with head currents, where when it is shifted to the
right, the mean value is positive, and it implies that the ship is mostly enjoying following
currents. The whiskers of C.7 do not exceed ±2 kn where those of C.16 do that in some
cases. Additionally, the outliers (which constitute only the 0.7% of the data) of C.7 are more
condensed than those of C.16 where one can see a few scattered cases to the right. Adding
class C.26 into the comparison (orange boxplots) the IQRs there indicate that the correlation
is similar to that of C.16 but the whiskers imply that the variance of the distribution is
similar to that of C.7. In a few words, one can say that C.7’s measurements seem more
trustworthy than those of C.26 which in turn seem more trustworthy than those of C.16
and so on.

Diving a bit deeper and splitting the boxplots using an additional dimension as on
the tables earlier, say the DVL manufacturers, one can see the resemblance or differences.
Figure 9 depicts the additional split. For instance, when focusing on class C.15, one can
clearly see that each ship wears one of the two different DVL manufacturers (NAN refers
to missing values). There is a slight difference in the IQR between the two sets of boxplots.
Those of M.1 are a bit narrower than the others. Also, all whiskers of M.1 are within the
±2 kn boundary where some of the others span beyond it.

To combine the table information of the boundary percentage of 2.47% with the box-
plots, it can be appreciated from Figure 10 in which ships the boundary percentage is
exceeded (after the dashed-black-line). Getting back to the C.7–C.16 class example from
above, when one checks the percentage of Udev which goes beyond 2 kn in Figure 10, the ad-
vantage of C.7 over C.16 class is evident. C.7 ships never exceed the general percentage
boundary of 2.47%. On the other hand, there are several C.16 class ships that exceed the
percentage boundary layer. This is because some whiskers of C.16 class boxplots of Figure 8
span beyond the ±2 kn boundary limit. Same goes with class C.26 where only one ship
exceeds the boundary percentage.

Another categorical feature of the main dataset that is interesting to investigate is the
sea region. Due to space limitations, Table 12 shows only the seas where the percentage
of |Udev| > 2 kn column was above the 2.47% boundary. It is evident from the percentage
column that most of the seas with the highest scores refer to either narrow passages or
shallow water regions.
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Figure 9. Boxplot of Udev by vessel class Vclass, DVL manufacturer Msl and imoNo Vimo.
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Figure 10. Barplot of Udev boundary percentage by vessel class Vclass and IMO number Vimo.
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Table 12. Speed deviation Udev above 2 kn boundary decomposed by sea name where the ships have
been sailing. Only those seas where the percentage column is greater than 2.47% have been included.
Gray background gets darker when the percentage column of |Udev| > 2 kn increases.

Sea Region
|Udev| > 2 kn

Total
count perc %

North Atlantic Ocean 30,656 3.35% 913,938
Indian Ocean 29,353 3.50% 839,133
Arabian Sea 9223 2.56% 360,849
North Sea 6103 4.21% 145,058

English Channel 14,413 17.01% 84,719
Japan Sea 1764 3.17% 55,680

Alboran Sea 2783 5.61% 49,586
Gulf of Mexico 2040 6.01% 33,947

Andaman or Burma
Sea 1740 6.25% 27,835

Philippine Sea 2710 13.86% 19,548
Gulf of St. Lawrence 843 5.21% 16,179

Ionian Sea 281 3.18% 8840
Strait of Gibraltar 1925 26.20% 7346
Singapore Strait 586 8.81% 6648

Coral Sea 766 12.55% 6104
Rio de La Plata 133 3.66% 3633

Tasman Sea 468 14.41% 3247
Java Sea 236 14.33% 1647

Arafura Sea 150 12.08% 1242
Gulf of Thailand 45 3.66% 1228
Great Australian

Bight 104 25.18% 413

Bass Strait 35 14.17% 247

By depicting the seas on the map, the above statement gets even clearer. Figure 11
highlights the sea regions with high percentage boundary in gray scale, same as in Table 12.
The greatest amounts are occupied by North Atlantic Ocean, Indian Ocean and Arabian
sea but as seen by the color scale, these are the least alarming regions. The percentage is
increasing when ships have sailed around Oceania, Philippines, Singapore and in short
passages where sea currents are known to be stronger than the rest of the world, such as
the English Channel and the Strait of Gibraltar.

Figure 11. The IHO seas regions of the world. The regions are gray when the percentage column of
|Udev| > 2 kn is greater than 2.47% and it gets darker when it increases.
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4.2. UCOP Decomposition

According to (5), Udev and UCOP should be equal. In case there is any deviation
between them, it should be due to a mix of measurement and prediction error from GPS,
DVL, compass and sea currents. Checking on the percentage of points distributed among
the 2 kn boundary for UCOP, on Table 13 it is realized that only 0.63% out of ≈7 million
points from ships sailing across the global seas has experienced a stronger current than
2 kn on its bow.

Table 13. Sea currents predicted speed UCOP above and below 2 kn boundary.

|UCOP| < 2 kn |UCOP| > 2 kn Total

count 7,287,465 46,025 7,333,490
percentage% 99.37% 0.63% 100%

The percentage compared to the one from Udev is significantly smaller. This means
that the predicted sea currents deriving from the external provider, deviate from the ones
calculated by the measured GPS and DVL resulting in Udev. The above statement implies
that it is either (i) the external provider that is underestimating the truth about the surface
sea currents magnitude, (ii) the signal errors provided by the manufacturers of GPS, DVL
and gyrocompass sensors are a lot higher than what they disclose, or (iii) there is a deeper
layer of sea currents predictions UCOPd which resembles more with Udev than with UCOP.
In other words, case (iii) assumes that the DVL sensor measures the STW by viewing the
speed of the currents on a deeper layer rather than the surface. If at some regions the
deeper layer differs in magnitude and direction from the surface layer, then case (iii) is the
most reasonable explanation. The inference of this is that it could be relevant to make an
investigation where depth is considered to be a third dimension on the global sea currents.
Although this exercise is left for the future, some initial investigations have been made [31].

Placing the distributions of Udev and UCOP side-by-side in Figure 12, one can see the
difference between them.

Figure 12. Distribution histograms of Udev and UCOP for 190 container ships.

Both are symmetrical distributions with similar mean and median, and different
variance. Enhanced with the boxplots of Figure 13 it is easy to distinguish a few points.
First, the UCOP distribution perfectly coincide with the claims from [23,32] which is a
confirmation that the sea currents affecting the ships of that study match with the generic
global statistics of surface currents. Secondly, there are a lot of outliers on the Udev dis-
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tribution that are not present in UCOP. From equation (5), and based on Table 1 and the
above distributions, it is assumed that the error of Udev is greater than that of UCOP which
means that εw and εg is greater than εψ and εc despite what the manufacturers and weather
providers claim. Given that εg is low because of the high accuracy of the GPS receiver [33],
the highest difference is assumed to be derived from the DVL error εw.

Figure 13. Distribution boxplots of Udev and UCOP for 190 container ships.

By using the same approach as with Udev, UCOP can be similarly decomposed by
category. The distribution by sea name is the most relevant, because sea currents ought
to be related to sea regions, as presumed by Figure 3. In Table 14 one can see what the
percentage is of UCOP that is above or below the initially defined 2 kn boundary.

Table 14. Sea surface currents speed projection on ship’s true heading UCOP above 2 kn boundary
decomposed by sea name where the ships have been sailing. Only those seas where the percentage
column is greater than 0.63% have been included. Gray background gets darker when the percentage
column of |UCOP| > 2 kn increases.

Sea Region
|UCOP| > 2 kn

Total
count perc %

North Atlantic Ocean 6001 0.66% 913,938
Indian Ocean 16,832 2.01% 839,133

South China Sea 7769 1.44% 539,339
Malacca Strait 2306 1.17% 196,523

North Sea 2385 1.64% 145,058
English Channel 2374 2.80% 84,719

Japan Sea 818 1.47% 55,680
Gulf of Mexico 595 1.75% 33,947
Philippine Sea 1068 5.46% 19,548

Skagerrak 265 1.49% 17,745
Strait of Gibraltar 51 0.69% 7346
Singapore Strait 135 2.03% 6648

Mozambique Channel 11 0.66% 1668
Java Sea 11 0.67% 1647

It is a positive indication to see that most of the sea regions from Table 12 that were
above the 2.47% boundary percentage are again apparent in Table 14 with the new UCOP
boundary percentage of 0.63%. However, there are a few exceptions such as the Strait
of Gibraltar, which in Table 12 conveys the impression that there are strong sea currents
in the region (26.20% of |Udev| > 2 kn), but when compared with UCOP of Table 14 the
percentage (0.69% of |UCOP| > 2 kn) does not validate the assumption. Figure 14 depicts
the Udev-UCOP differences of all sea names in a boxplot format.
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Figure 14. Barplots of Udev and UCOP by sea name Sname.
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Here, it is important to note that in regions with sea currents of high volatility such as
the English Channel, it is peculiar to see a few outliers indicating a negative correlation
between UCOP and Udev. This could be rationalized. The spatial resolution of the sea
currents data is a 0.083◦ × 0.083◦ grid which means that when pointing at the Channel’s
latitude (≈50◦) the grid is ≈1.5 km wide. Given the fact that UCOP is calculated by
spatially interpolating into the two-dimensions grid (1.5 km ×1.5 km) and later temporally
interpolating (because of the frequency mismatch of the sensors with the external weather
data) within whole hours, when the region is highly volatile in sea currents magnitude
and direction (similar to the English Channel [34]), the calculation might generate some
additional error and more outliers than usual. In Figure 15 there are two snapshot of the
English Channel’s surface sea currents speed, one 2 hours after the other. Comparing
the images, it is obvious that the magnitude and direction of the surface currents in the
region are exposed to large variations. Pinpointing the sea regions by color of intensity
in Figure 16 based on Table 14, one can see the differences and similarities of that with
Figure 11.

Figure 15. Snapshots of the English Channel sea currents Un
c with 2-h difference from one another,

by [35].

Figure 16. The IHO seas regions of the world. The regions are gray when the percentage column of
|UCOP| > 2 kn is greater than 0.63% and it gets darker when it increases.

The boxplots of UCOP by vessel class and IMO number have been plotted in Figure 17
to inspect and compare with Udev from Figure 8. By a first look at the UCOP boxplots, it
is clear that the IQRs are more condensed than those of Udev. Additionally, almost all
boxplots’ mean values are centered around 0 which is more likely than the shifted mean
values from the Udev boxplots because almost all ships of the dataset have sailed for a long
time window. There are a few exceptions though, such as the second ship from class C.21
with only a few iteration in the dataset. This ship’s boxplot is shifted to the left which
implies strong head sea currents for as long as the data was recorded. Comparing the same
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ship’s boxplot from Figure 8, the ship was indeed under strong head currents. The question
that rises again is which of the two is closer to what really happened.

Figure 17. Boxplot of UCOP by vessel class Vclass and IMO number Vimo.
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Lastly, in Figure 17 one can distinguish the vessel classes that sail under calm versus
strong sea currents. Class C.27 for instance, has mostly narrow boxplots compared to
others. Indeed, C.27 ships sail mostly in Baltic sea where the sea currents are milder. There
is one ship in C.27 in which the Udev boxplot’s mean does not match with the one from
UCOP. In particular, the Udev mean is shifted to the left implying head sea currents for its
entire journey. That ship’s data recordings span from 04/12/2018 to 22/02/2020 and in
Figure 18 there is the Udev and the UCOP for the whole journey. By comparing the two
maps, it is more likely that the bottom is closer to the truth, because the Baltic sea currents
look mild in the bottom map. On the contrary, in the upper map it seems like there is a
constant head current during the whole journey which is highly unlikely. The apparent
ship constitutes a proof that although |Udev| > 2 kn is below 2.47%, the error in STW is still
high. This means that the 2 kn boundary initially set as a threshold for this study is quite
sensitive in calm seas.

Figure 18. Full journey of a C.27 class ship from 04/12/2018 to 22/02/2020. Upper map shows a
density plot of Udev where on the bottom map, the same for UCOP.

4.3. Regression Analysis

Two different correlation analyses have been used: (i) the Pearson correlation and (ii)
the Spearman correlation. The first, evaluates the linear relationship, where the latter eval-
uates the monotonic relationship between two continuous features. A relationship is linear
when a change in one feature is associated with a proportional change in the other feature.
In a monotonic relationship, the features tend to change together, but not necessarily at a
constant rate [36]. Figure 19 illustrates the Pearson and Spearman correlation matrices for
the continuous features of the main dataset.
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Figure 19. Pearson and Spearman correlation matrices of the continuous features of the main dataset.

As expected, UGPS and UDVL are highly correlated. Also, engine power Epow and
engine shaft rotations Erpm are highly correlated with both UGPS and UDVL. Next in
correlation intensity is the sea temperature Stemp with the latitude Nlat which is also
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reasonable because sea temperature is warmer around the equator. Then, there is the
feature that counts the number of days since the birth of the vessel Cbov correlating with
most of the cleaning events of the hull Cddp, Cdd f b, Cpp and Chc. This is also straightforward
since Cbov is a constantly-increasing-over-time feature along with the rest of the cleaning
features. Finally is the most unexpected low correlation pair, Udev with UCOP. This last
one in a perfect world without measurement error, should be 1 since both Udev and UCOP
represent the same value.

Figure 20 depicts the linear relationships of all continuous features versus Udev. On top
of each scatterplot of the multi-graph, both the Spearman and Pearson correlation coeffi-
cients are indicated as titles. Focusing on the blue lines that represent the slope of each
feature with Udev, only on the third scatterplot with UCOP is the line tilted, entailing linear
relationship. In this scatterplot, it is also peculiar to see the great number of points con-
centrated around UCOP = 0. This is an indication that even when the weather provider
reports neutral sea surface currents, the speed sensors convey a different story.

The association between Udev and other explanatory variables such as UGPS is expected
to be nonlinear. Due to complexity of the relationship between Udev and the rest of
explanatory variables and due to the non-homogeneity of the variance of Udev it has
been decided to run a GAMLSS (Generalized Additive Model for Location, Scale and
Shape) for each of the continuous features of the main dataset. The GAMLSS is a modern
distribution-based approach to (semiparametric) regression. A parametric distribution is
assumed for the response (target) variable (in our case Udev) but the parameters of this
distribution can vary according to explanatory variables using linear, nonlinear or smooth
functions [37]. Considering the GAMLSS model as:

Y ind∼ D(µ, σ, ν, τ)

η1 = g1(µ) = X1β1 + s11(x11) + . . . + s1J1(x1J1)

η2 = g2(σ) = X2β2 + s21(x21) + . . . + s2J2(x2J2) (6)

η3 = g3(ν) = X3β3 + s31(x31) + . . . + s3J3(x3J3)

η4 = g4(τ) = X4β4 + s41(x41) + . . . + s4J4(x4J4)

where Y = (y1, . . . , yn)T is the n length vector of the response variable, D(µ, σ, ν, τ) is a
four-parameter distribution, µ, σ, ν, τ are the distribution parameters which are all vectors
of length n, ηk is the predictor vector for k = 1, 2, 3, 4, gk(.) are known monotonic link
functions relating the distribution parameters to explanatory variables, Xk is a fixed known
design matrix of order n× j, βk is the coefficient vector, skj is a non-parametric smoothing
function applied to covariate xkj for j = 1, . . . , J [38]. Parameter µ defines the location
(mean), σ the scale (standard deviation) and finally ν, τ define the shape (skewness and
kurtosis) of the distribution.

In Figure 21 there is the multi-GAMLSS plot. In each sub-graph there is a continuous
feature acting as the explanatory variable enhanced with the additive term of cubic smooth-
ing splines with 5 effective degrees of freedom in all four parameters. Since only one
explanatory variable is used in the fit, centile estimates for the fitted distribution are also
plotted in each sub-graph, showing 0.4%, 2%, 10%, 25%, 50%, 75%, 90%, 98% and 99.6%
centiles. The gray shade in between each consecutive boundary represents the segments of
the distribution. For instance, 50% of the distribution falls within the darkest gray area.
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Figure 20. Linear correlation density scatterplot of Udev versus the rest of the continuous features of the main dataset.



J. Mar. Sci. Eng. 2021, 9, 465 28 of 34

Figure 21. GAMLSS multiplot of Udev versus the rest of the continuous features of the main dataset.
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From Figure 21 it is possible to conclude that the only interesting relationships among
the available features are Udev, UCOP and UGPS. Consequently, Figure 22 applies Udev and
UCOP as response variables and UGPS as explanatory variable in the GAMLSS model (6)
for top and bottom graphs, respectively. The expected behavior of the scatter points of
Udev and UCOP is a funnel-shaped plot, starting narrow and getting wider with increasing
UGPS. However, only by looking at the scatter points it is not clear how to distinguish the
shape of the funnel, if any, apart from the nonlinear relationship of Udev and UCOP with
UGPS. With the centiles included in the graphs, one can compare the distributions of Udev
and UCOP by location.

Figure 22. Centile curves using GAMLSS of Udev and UCOP over UGPS as explanatory variable for
the main dataset.

It is clear that both graphs’ medians (thick black middle line) follow the same pattern
over whole range of UGPS which indicate a matching pattern of sea current predictions
and speed measurements. However, in Udev there is a bigger fluctuation of the median
compared to the one from UCOP. Also, the centile areas are wider in Udev compared to
UCOP. This means that the σ of the Udev distribution is always higher than that of UCOP
within the whole range of UGPS. Consequently, one can assume that the speed sensors can
capture the stream of the currents with a higher intensity than expected. Or contrariwise,
one can assume that the external weather provider cannot capture the true intensity of the
sea currents and how it affects a ship’s hull.
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5. Summary and Conclusions

Acquiring high-accuracy speed through water (STW) measurements has been a hot
topic in maritime society for many years. STW is one of the most significant signals for
driving fuel consumption, costs and greenhouse gas emissions down. The transformation
of the physical quantity of water mass passing down the hull of a ship to a digital signal of
high accuracy is a complex procedure that ends up in measurements with error. However,
fusing a large volume of high-frequency data from engine and motion sensors to evaluate
and compare the STW measurements is a process towards the elimination of that error.
This study attempted to simplify the identification of a highly erroneous DVL sensor
based on data of Maersk Line’s fleet. The data originated from 190 container vessels, each
one equipped with a continuous monitoring system. Based on measurements from GPS
coordinates and compass true heading, wave data from ERA5 [28], sea regions data from
IHO seas [24] and sea currents data from E.U. Copernicus Marine Service Information [27]
they were merged into the main dataset, encompassing ≈ 7 million 10-min spaced rows to
be analyzed.

Essentially, the study focused on an analysis relying on two measures of the same
quantity being the sea current. The one measure Udev (Udev = UGPS −UDVL) was based
on ship data, while the other measure UCOP came as a numerical estimate (CMEMS, [27]).
According to the results of the analysis, 2.47% of the Udev distribution spans above 2 kn
with a standard deviation of 0.91 kn. On the contrary, only 0.63% of the UCOP distribution
was above 2 kn with a standard deviation of 0.56 kn. This indicates that Udev and UCOP
did not convey the same picture as expected. Given the defined threshold of 2 kn, one
can identify a ship with a highly erroneous DVL sensor by checking its Udev distribution
and measuring if the number of points above the threshold surpasses the fleet’s average
percentage boundary of 2.47%. According to the data, 26% of the ships of the fleet exceeds
the percentage boundary.

The main dataset upon which the whole study has been-based, encompasses categori-
cal features such as the DVL manufacturer, the sea region and the vessel class. The study
showed that the DVL manufacturer was not a feature as significant as initially expected.
On the other hand, vessel class proved to be an influential factor of DVL accuracy, mainly
because sister ships share the same characteristics in terms of hull and voyage seaways.
However, it was pinpointed that each ship should be examined separately and not as part
of a class nor as part of a potential defective DVL. Concerning sea regions, it has turned
out that some of them were fickler than others. Usually, the narrower and shallower seas
are the ones with the highest volatility regarding sea water currents. For those regions,
the STW measurements were prone to confront significant errors far from reality. Regions
with high volatility such as the English Channel also affected the correlation between Udev
and UCOP due to the low temporal and spatial resolution of the weather data. In fact, sea
region proved to be the most influential categorical feature on the STW accuracy.

The mean values of the boxplots from Udev distribution on some ships were either
positive or negative which implies head or following currents adequately. When this hap-
pens, one can assume that a ship is a subject of bad or good voyage planning. On the other
hand, checking at the UCOP distribution of the same ships revealed that the mean values
were close to zero as expected, due to the long time window of each ship. Consequently,
the study affirmed that any assumption should not be-based exclusively on SOG and STW
but it is recommended to incorporate the speed of the currents for confirmation.

The regression analysis showed that UCOP was the only continuous feature correlating
with Udev. Additionally, it was spotted that the local variance of Udev was always higher
than that of UCOP within the whole range of GPS speed. The above implies that DVLs
capture the stream of the currents with higher intensity than expected.

The availability of a monitoring tool able to determine the trustworthiness of the
measured STW could be very useful to enhance both on-board and on-shore voyage data
analytics. The correct knowledge of the STW is paramount for the assessment of the ship’s
resistance, which in turn is a determinant factor in assessing the expected fuel and overall
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energy consumption during a voyage. Therefore, by improving the reliability of the STW
measurement it will be possible to improve the assessment of the fuel/energy consumption.
Similarly, by analyzing the STW with the propulsion power it will be possible to assess the
increase in resistance, and this could lead to a more precise scheduling of hull/propeller
cleaning events.

Future Work

The built dataset will be a great asset for future research and development. The first
rational continuation of this study will be to create a model detecting wrong coordinate
pairs from the GPS signal and replacing them with the coordinate estimates of the nearest
true location. Consequently, this model will improve the weather data quality and sea
regions accuracy of the dataset. Additionally, this GPS filtering model can be placed on-
board before each ship’s CAMS data storage and correct the data in real time right before
the coordinates are registered into the system. The above validation model will save a great
number of resources from any fleet management team.

The present study has focused on exploring the marginal association between each
of the features of the main dataset and Udev. Although this exploratory approach did not
reveal any significant dependencies the interpretation can be challenging if confounding
factors are present. We therefore aim to supplement this analysis in future research with
more sophisticated analyses based on multiple regression techniques while adjusting for
error-in-variables and missing data.

An additional project that would enhance the outcome of this study would be an
experiment test application where a sonar STW sensor [39] would be installed for a long
period in one of the ships with tested good performing STW sensor, crossing multiple
volatile sea regions (such as English Channel, Malacca Strait, Bay of Biscay, Strait of
Gibraltar, Philippine sea, etc.). Then comparing Udev, UCOP with the new sonar-based
measurement (Udev−son), created by subtracting SOG (UGPS) from sonar STW (USON) such
that Udev−son = USON −UGPS, will affirm the two matching signals, revealing where the
truth lies upon.

Finally, an extension of the STW estimator built on [4] would be a great step forward.
Throughout that paper, it was shown that despite the few simplifying assumptions the
evaluation of the designed STW estimator on the full-scale data was positive and it showed
the feasibility of using a pure kinematic model to estimate a STW signal. Extending this
model to a nonlinear kinetic model by discarding the simplified assumptions will be an
interesting approach to drive the error further down.

Author Contributions: A.I.: Conceptualization, Methodology, Software, Investigation, Resources,
Data curation, Writing—original draft preparation, Writing—review and editing, Visualization,
Project administration, Funding acquisition; U.D.N.: Conceptualization, Methodology, Writing—
review and editing, Supervision, Project administration; K.K.H.: Conceptualization, Resources,
Writing—review and editing, Supervision, Project administration; J.D.: Conceptualization, Writing—
review and editing, Supervision, Project administration; R.G.: Conceptualization, Writing—review
and editing, Supervision, Project administration. All authors have read and agreed to the published
version of the manuscript.

Funding: The present work has been supported by “InnovationsFonden Danmark” with case number
8053-00231B and “Den Danske Maritime Fond” with case number 2018-060.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2021, 9, 465 32 of 34

Nomenclature

Symbol Description Unit

Si
gn

al
s

Ub
w Ship’s speed through water (STW) [kn]

Ub
g Ship’s speed over ground (SOG) [kn]

Ub
c Sea currents speed projection on ships’s true heading [kn]

Un
c Sea currents speed vector [Ux, Uy, 0]T [kn]

ψ Compass true heading [◦]
χ Course over ground [◦]
φ Roll [◦]
θ Pitch [◦]

M
ea

su
re

m
en

ts
/P

re
di

ct
io

ns

ti Timestamp of main dataset with frequency fi = 0.001 Hz [UTC datetime]
UDVL STW measurements (Ub

w + εw) [kn]
UGPS SOG measurements (Ub

g + εg) [kn]
UCOP Sea currents speed projection on ships’s true heading predictions (Ub

c + εc + εψ) [kn]
ψm Compass true heading measurements (ψ + εψ0 ) [◦]
χm Course over ground measurements (χ + εχ) [◦]
φm Roll inclinometer measurements (φ + εφ) [◦]
θm Pitch inclinometer measurements (θ + εθ) [◦]
Nlat GNSS antenna latitude coordinates measurements [◦]
Elon GNSS antenna longitude coordinates measurements [◦]
Urw Relative wind speed anemometer measurements [m/s]
drw Relative wind direction anemometer measurements [◦]
Sdepth Sea water depth doppler measurements [m]
Stemp Sea water temperature thermometer measurements [◦C]
Davg Average ship draught measurements [m]
Erpm Main engine shaft rotation measurements [rpm]
Epow Main engine power measurements [kW]
Hsw Significant height of combined wind waves and swell predictions [m]
dsw Mean wave direction predictions [◦]
Msl DVL manufacturers installed in the fleet [-]
Vclass Vessel class based on voyage and hull characteristics [-]
Vimo Unique IMO No per vessel [-]

C
om

pu
te

d

Udev Speed deviation (UGPS −UDVL) [kn]
Sname Sea name mapped by region polygon for every Elon,Nlat pair [-]
Cbov Days since birth of vessel [days]
Cddp Days since last dry docking (painting) [days]
Cdd f b Days since last dry docking (full blast) [days]
Cpp Days since last propeller polishing [days]
Chc Days since last hull cleaning (locally) [days]
Cla Days since last DVL adjustment [days]

Er
ro

r

εw STW measurement error [kn]
εg SOG measurement error [kn]
εc Sea currents speed prediction error [kn]
εψ0 Compass true heading measurement error [◦]
εψ Sea currents speed projection into compass true heading error [kn]
εχ Course over ground measurement error [kn]
εφ Inclinometer roll measurement error [kn]
εθ Inclinometer pitch measurement error [kn]

A
cc

ur
ac

y

σp GNSS antenna coordinates measurement accuracy [m]
σg SOG measurement accuracy [kn]
σw STW measurement accuracy. [kn]
σc Sea currents speed prediction accuracy [kn]
σψ Sea currents speed projection into compass true heading accuracy [kn]
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