
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Michael Moen Allport, Jonas Sandberg

Q-PRM - A QoS Aware Resource
Manager for Colocated Services

Masteroppgave i Datateknologi
Veileder: Björn Gottschall
Medveileder: Rajiv Nishtala
Juli 2021

M
as
te
ro
pp

ga
ve

Michael Moen Allport, Jonas Sandberg

Q-PRM - A QoS Aware Resource
Manager for Colocated Services

Masteroppgave i Datateknologi
Veileder: Björn Gottschall
Medveileder: Rajiv Nishtala
Juli 2021

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Problem Statement

A typical latency-critical service is based on client-server interaction, in which the
client will send a certain request and the server side application will have to re-
spond within a given time frame. This time frame is typically referred to as the
Quality of Service (QoS) target. Normally, it is necessary to sacrifice server effi-
ciency in order to meet such QoS targets, e.g. by reserving an entire server for
a latency-critical service even when this means under-utilizing the server. Recent
research has explored the idea of colocating such services with additional work-
loads to increase server utilization, which translates to higher energy and cost
efficiency. The question is how to maximize the throughput of additional work,
while at the same time ensuring that the QoS target is met as a main priority.

The class of software that has been developed to solve this problem at the
single-server level is known as resource managers. Most resource managers de-
pend on some collection of system performance metrics in order to function, but
more recently some (e.g. Octopus-Man, PARTIES) have been developed which in-
stead directly use the measured QoS, known as QoS-aware resource managers.
Our goal is to evaluate the effectiveness of the QoS-aware approach compared
to the traditional metrics-based approach. In order to do this, we should do the
following:

1. Choose at least one benchmark from the CloudSuite benchmark suite as our
latency-critical service.

a. Set up the benchmark on a multi-node server. The client and server
parts of the benchmark should be isolated from one another by running
on separate CPU nodes.

b. Run the benchmark, see how the QoS varies with the RPS/load, and
determine the QoS target of the service.

c. To improve our understanding of its behavior, collect additional per-
formance statistics, such as CPU, memory and power usage.

2. Choose a best-effort task. Colocate it with the latency-critical task, and ob-
serve the impact on the QoS.

3. Set up the Intel Platform Resource Manager.

a. See whether the resource manager is able to improve QoS/throughput.
b. Figure out how the resource manager works.

3

4 Sandberg, Allport: Q-PRM

4. Implement a QoS-aware resource manager.

a. Modify the CloudSuite benchmark so that the client transmits the meas-
ured QoS to the resource manager.

b. Modify the Intel Platform Resource Manager to make it QoS-aware.
c. Implement one or more QoS-based controller algorithms.

5. Evaluate the QoS-aware PRM against the standard PRM.

Abstract

The growth of cloud-computing has lead to a large number of latency-sensitive
workloads being hosted in the cloud. These workloads are often user-facing, which
makes conventional power-saving techniques hard to fully utilize without adverse
impact on the user’s experience. Resource managers attempt to alleviate this prob-
lem by using real-time metrics in order to control workload resources. By balan-
cing resource requirements of different workloads, we might be able to leverage
those measurements to meet latency requirements. In this thesis we improve upon
a conventional resource manager, the Intel Platform Resource Manager, by mak-
ing it aware of workload latency. Our approach yielded a 92.4% QoS guarantee,
compared to 37.8% for the unmodified Platform Resource Manager.

5

Sammendrag

Veksten innenfor bruk av skytjenester har ført til at tjenester som er følsomme for
forsinkelser i større grad bor i skyen. Disse tjenestene er ofte rettet mot brukere,
et faktum som gjør konsvensjonelle energibesparingsmetoder krevende å utnytte
uten å forverre sluttbrukerens opplevelse. Ressurskontrollere prøver å lette på
dette problemet ved å ta sanntidsmålinger av tjenestenes ressursbruk. Disse målin-
gene kan brukes til å balansere ressursbruk mellom tjenester for å møte minim-
umskravene for forsinkelse. I denne oppgaven forbedrer vi en eksisterenede, kon-
vensjonell ressurskontroller, Intel Platform Resource Manager, ved å gjøre den
bevisst på tjenestens forsinkelse. Våre endringer førte til en 92.4% QoS garanti,
sammenlignet med 37.8% for den umodifiserte ressurskontrolleren.

7

Preface

This thesis has been written during Spring 2021 in order to fulfill the require-
ments for our Master of Technology degree at NTNU Gløshaugen. The field was
completely unknown to us before starting this thesis, and was at times both over-
whelming and challenging. It is for this reason we wish to especially thank our
supervisors, Björn Gottschall and Rajiv Nishtala, who helped steer us in the right
direction and give sound advice. We are very grateful for their patience and time
during the entire process.

Michael Moen Allport & Jonas Sandberg — July 2021

9

Contents

Problem Statement . 3
Abstract . 5
Sammendrag . 7
Preface . 9
Contents . 11
Figures . 13
Tables . 15
1 Introduction . 1
2 Background . 5

2.1 Fundamental Concepts . 5
2.1.1 Quality of Service . 5
2.1.2 Tail Latency . 5
2.1.3 Latency-Critical Workloads . 5
2.1.4 Best-Effort Workloads . 6
2.1.5 Load Testing . 6
2.1.6 QoS Target . 7

2.2 Resource Managers . 8
2.2.1 QoS-Awareness . 8

2.3 Memcached . 9
3 Related Work . 11

3.1 Heracles . 11
3.2 Octopus-Man . 11
3.3 PARTIES . 12

4 Design and Implementation . 13
4.1 Intel Platform Resource Manager . 13

4.1.1 Overview . 13
4.1.2 Control Mechanisms . 14
4.1.3 Runtime Explanation . 15

4.2 QoS-Aware Platform Resource Manager 15
4.2.1 The Optimization Problem . 17
4.2.2 QoS-Aware Controllers . 17

5 Experimental Setup and Methodology . 21
5.1 Server Platform . 21
5.2 Overview . 21

11

12 Sandberg, Allport: Q-PRM

5.3 Data Collection . 23
5.4 Workloads . 24

5.4.1 Memcached . 24
5.4.2 SPEC CPU®2017 . 25

5.5 Intel PRM Profiling . 25
5.6 Evaluation Metrics . 26

6 Evaluation . 27
6.1 QoS Target and Max Load . 27
6.2 Resource Manager Evaluation . 28

6.2.1 Benchmark Configurations . 28
6.2.2 Results . 30

7 Discussion . 35
7.1 Initial Observations . 35

7.1.1 CPU Quota vs. Cache Allocation 36
7.2 Evaluation . 38

7.2.1 Intel PRM . 38
7.2.2 Q-PRM . 40

7.3 Analysis . 42
7.3.1 QoS vs. Throughput . 42
7.3.2 What Is the Significance of Our Results? 42

7.4 Future Work . 44
8 Conclusion . 45
Bibliography . 47

Figures

1.1 Real-world load patterns measured over a period of a week, from
Microsoft Bing [7] . 2

2.1 The average, 90th, 95th and 99th percentile latencies measured for
Memcached . 6

4.1 Overview of the unmodified Intel PRM The "Profiling" module is ran
first, generating the initial thresholds. The "Controller" module is
running continously during the lifetime of the workloads, detecting
contention, controlling resources and updating the thresholds. . . . 16

5.1 Overview of the Experimental Setup 23

6.1 Measured QoS vs. constant throughput load (k RPS) for Memcached 28
6.2 Dynamic load curve (RPS in thousands) 29
6.3 QoS guarantee for each benchmark. Values forNAMD and fotonik3d

respectively are shown on the left, while their average is shown on
the right. The boxes indicate the interquartile range, the whiskers
indicate min and max values, and the center line indicates the me-
dian. 31

6.4 QoS tardiness for each benchmark. Values for NAMD and fotonik3d

respectively are shown on the left, while their average is shown on
the right. The boxes indicate the interquartile range, the whiskers
indicate min and max values and the center line indicates the median. 31

6.5 Instructions retired for each benchmark, normalized to the No RM

w/ BE benchmark. Values for NAMD and fotonik3d respectively are
shown on the left, while their average is shown on the right. 32

6.6 QoS Guarantee over Instructions retired 34

7.1 No RM: Load (RPS) and QoS over a 10 minute bechmark (QoS tar-
get indicated by red line). This shows how Memcached responds
to a dynamic load in the absence of resource contention. 36

7.2 From the PRM benchmark using NAMD: the QoS and unfulfilled
requests of Memcached, and the CPU quota of NAMD, over time . . 37

13

14 Sandberg, Allport: Q-PRM

7.3 Memcached’s QoS over time for three different benchmarks. The
blue line shows the baseline, where there is no best-effort workload
to interfere with Memcached. The orange line shows the impact of
fotonik3d with 1% CPU quota and unrestricted cache access. The
green line shows the impact of fotonik3d with 1% CPU quota and
2 cache ways. 38

7.4 From the PRM benchmark using fotonik3d: QoS for Memcached
and CPU quota for fotonik3d over time. The PRM is not able to
detect QoS violations in time. 39

7.5 From the PRM w/ CAT benchmark using fotonik3d: QoS for Mem-
cached, and CPU quota and LLC resource level for fotonik3d. Cache
contention is never detected, and consequently the LLC level is in-
creased monotonically. 40

7.6 Comparison of the proportional benchmarks using fotonik3d. Pro-
portional v2 in orange, and Proportional in blue 41

Tables

5.1 Platform specification . 22
5.2 Memcached benchmark configuration 24

6.1 Benchmark configurations . 29

15

Chapter 1

Introduction

Cloud computing has in recent years seen mass-adoption by much of the IT-industry,
and has fundamentally altered the way companies interact with digital technolo-
gies. In the past, accessing digital services required a big initial investment in
server and network infrastructure, as well as long-term costs like service tech-
nicians and maintenance staff [1]. Furthermore, scaling server infrastructure re-
quire more trained personell, and time [2]. Cloud providers often offer "pay-on-
demand" models that allow businesses to keep their costs proportional to their
web traffic or storage used. Cloud providers themselves benefit from economies of
scale, leveraging the fact that warehouse-scale-computers (WSCs) can efficiently
service multiple customers and workloads simultaneously. Furthermore, access to
a greater number of servers also yield more parallellization options - a root server
might delegate smaller subtasks to thousands of servers concurrently [3]. This
flexibility and ease of scale have resulted in a 62% annual increase in cloud traffic
from 2010 to 2016 [4].

However, server utilization remains low even in large-scale operations - serv-
ers mostly operate between 10-50% CPU utilization [5]. This is far from ideal,
because servers are not energy proportional, i.e. consumption of energy is not pro-
portional to the actual work being done [6]. In fact, an idling server uses 50% of
it’s peak power usage. There are two reasons why WSCs fall victim of low util-
ization: One is by design - that in case another WSC experiences an unplanned
outage, it’s imperative to have enough capacity to handle the incoming load. An-
other reason is to have enough capacity to serve the natural fluctuation in usage,
usually corresponding to diurnal cycles.

A seemingly reasonable way to solve this problem might be to use power-
saving techniques when the server load is low. Mobile devices have been applying
these kinds of techniques successfully for about a decade [5]. The load pattern of
mobile devices typically results in long idling periods, followed by smaller periods
of high load when the device is being used, which lends itself perfectly for entering
low-power states when idle.

There are a few reasons why it might be hard to enter low-power states on
select servers during low-load periods. A common practice for large services is to

1

2 Sandberg, Allport: Q-PRM

distribute the load evenly across several hundred servers. Not only is computation
distributed, but also data. Having several databases on different servers removes a
potential bottleneck in having a large, central database. Furthermore, distributing
the data increases the pace of recovery in case of an outage. The most efficient
low-power states entail turning off parts of the memory, rendering the techniques
mentioned above less effective. Transitioning between low-power and high-power
states also incur latency penalties, impacting service response time. Thus, there
are significant advantages to having all servers available, even at low loads.

Figure 1.1: Real-world load patterns measured over a period of a week, from
Microsoft Bing [7]

One possible way to solve the efficiency problems outlined earlier is colocating
services. By colocating different services on the same physical node and sharing
resources, we might be able to utilize idle time.

As we will expand upon later, user-facing and latency-critical services are com-
mon workloads in datacenters. Colocating these types of services is especially chal-
lenging, because of intererence — performance degradation due to contention of
shared resources [8]. Interference is often unpredictable and the exact mechan-
isms are not trivial to measure.

Software that attempts to manage colocated services are called resource man-
agers, and is what we will showcase in this thesis. By using real-time latency meas-
urements from services, QoS-aware resource managers distribute resources to the
different services. Due to abrupt unplanned outages or diurnal patterns, the load
can rapidly change, and resource managers should ideally be able to quickly re-
spond to changes in latency.

For this thesis, we wanted to investigate the following research questions:

1. Is the QoS-aware approach more effective than the conventional approach
to resource management?

Chapter 1: Introduction 3

2. What is the cost associated with implementing a QoS-aware resource man-
ager?

In order to do this, we modified the Intel Platform Resource Manager to make
it QoS-aware. Hence we present Q-PRM, which builds upon the control mechan-
isms of the Intel PRM, but uses the QoS (the measured real-time tail latency of
the service) instead of platform metrics. We modified an existing load generator
for the latency-critical service Memcached in order to create a system capable of
monitoring latency in real-time, and fed it to our resource manager. The latency is
passed to a controller algorithm, which makes latency-guided decisions on where
to allocate resources. We implement and compare four such controllers. By modi-
fying the resource manager, we achieved up to 92.4% QoS guarantee, compared
to 37.8% for the unmodified Platform Resource Manager. At the same time, we
were able to utilize idle CPU time for additional work, such as molecular dynamics
simulations.

Initially, we planned to set up a second latency-critical service in addition to
Memcached. We wanted to demonstrate that our approach is able to generalize
to other services. Because of the challenge of finding a load generator-service
combination that would work with our system, we did not have the time in the
end.1 As a compromise, we prioritized setting up a second, more realistic best-
effort workload (see Section 5.4.2).

The thesis is structured accordingly: Chapter 2 establishes key concepts within
the field, as well as explaining the different control mechanisms used. Chapter 3
gives us an overview over the related work, and Chapter 4 showcases the design
of the original resource manager, as well as our modifications and controllers.
Chapter 5 outlines our experimental setup, and details our data collection the
metrics we used. Chapter 6 presents our results, and Chapter 7 discusses and
evaluates those results as well as their implications. Finally, Chapter 8 concludes
our thesis.

1Our setup required a load generator that could use a dynamic load curve, as well as continuously
report the real-time tail latency. Although there are a few general-purpose load generators that are
capable of this (such as wrk2), additional tailoring to our system was necessary.

Chapter 2

Background

2.1 Fundamental Concepts

2.1.1 Quality of Service

In computer networking and telephony, quality of service (QoS) is a term used to
describe the overall performance of a service. Depending on the particular con-
text, this could refer to specific measurements such as the latency, throughput or
availability of a service. In this thesis, QoS specifically refers to the 99th per-
centile tail latency of a service.

2.1.2 Tail Latency

Tail latency is the small pecentage of requests that take the longest to respond
relative to the bulk of requests — that is, the tail end of the response time dis-
tribution. Typically, one would look at the 95th or 99th percentile of requests. In
order to calculate the 99th percentile latency, one would record the time it takes
to answer to a request, sort the requests by latency, discard the worst 1% of re-
sponse times, and then look at the largest remaining value. In other words, this is
the worst response time of the 99% fastest requests. From our own runs we meas-
ured that the requests in the 99th percentile were approximately 4 times slower
than the average response time, as shown in Figure 2.1.

2.1.3 Latency-Critical Workloads

Latency-critical (LC) workloads (or services) are typically interactive, user-facing
services. Their defining feature is that they are latency-sensitive, meaning that they
are subject to strict QoS requirements, possibly on the micro- or millisecond level.
Internet applications such as email, web search or social media are common ex-
amples. Many such services make use of other, lower-level services like Mem-
cached [9], creating chains of LC workloads that all need to be served in time.
These workloads are also quite bursty in nature, due to the unpredictability of
requests arriving [7, 10].

5

6 Sandberg, Allport: Q-PRM

Figure 2.1: The average, 90th, 95th and 99th percentile latencies measured for
Memcached

2.1.4 Best-Effort Workloads

Best-effort (BE) workloads (also known as batch workloads) are workloads which,
in contrast to latency-critical workloads, are not latency-sensitive. Typical examples
could be large-scale number crunching, like generating pay-rolls and reports, main-
tenance jobs like cleaning up databases and creating backups, or running scientific
simulations. In principle, any non-interactive task, such as an operating system
background process, could be considered to be best-effort, but the term usually
refers to compute-intensive, disk-bound workloads. For the experiments in this
work, we use NAMD, which simulates molecular dynamics, and fotonik3d, which
calculates transmission coefficients of photons.

2.1.5 Load Testing

Load The load on a latency-critical service is the rate of incoming requests that
it receives, measured in requests per second (RPS). It is a measure of the amount
of work the service needs to do per unit time. Most services are able to process
requests with some degree of parallelism, but this depends on the nature of the
service. This could be multi-node parallelism, in the case of distributed services, or
multi threaded parallelism for single-node services. We only consider single-node
services in this thesis.

The higher the load, the more requests the service needs to process in a period
of time. This means that the service requires more computing resoures, such as
CPU time and memory bandwidth. Also, because it takes more time to process

Chapter 2: Background 7

each request on average, the latency will be higher. If the resources available to a
service are insufficient to handle the load, the service may start dropping requests.
At some point, the load is too high for the service to handle even when all of the
system resources are at its disposal. We refer to this as the critical point of the
service.

Load Testing Load testing is the process of putting a service under a load and
measuring the latency of its responses. A load generator is used to simulate an ar-
tificial load, by generating requests and sending them to the service. The requests
are generated from a probability distribution so that a desired RPS is achieved,
which could be either constant or dynamic (varying over time).

The purpose of load testing is to determine the QoS that a service is able to
provide under a given load. Normally, this is done when there is no interference
from other tasks on the server, in order to determine the baseline performance of
the service itself. By gradually increasing the load and measuring the QoS, one
can graph the QoS against the load.

According to Delimitrou et al. in their work on PARTIES [11], the QoS of a
latency-critical service will start rapidly increasing at some point when the load is
too high. This point is called the max load, and is found by load testing the service
without interference and finding the knee of the QoS-load curve. To be clear, the
max load refers to the highest load that the service can handle before the QoS
starts deteriorating rapidly, specifically in the absence of interference.

Although load testing is normally performed without interference, in this thesis
we also benchmark the service while it is under interference from best-effort jobs.
In this case, the service has an effective max load that is lower than the baseline
max load.

2.1.6 QoS Target

The QoS target is the level of QoS that a latency-critical service should be able
to provide. Since the QoS is the tail latency of the service, the target is an upper
bound on the tail latency. If the tail latency exceeds the target at some point in
time, we say that there is a QoS violation. On the other hand, as long as the tail
latency is lower than the target, we say that the QoS target is met.

In production systems, such as when deploying a latency-critical service to a
cloud hosting provider, the QoS target could be specified by the customer or an
administrator. In this case the QoS target is determined by external requirements,
such as the expectations of its users. On the other hand, the QoS target can also
be defined in terms of the max load of the service on a given platform. This is the
convention in the existing academic work on resource managers, such as PARTIES.
Hence, we define the QoS target by the average QoS provided by the service at its
max load under no interference.

The QoS target is an essential parameter to the Q-PRM, our QoS-aware re-
source manager. It is the only piece of information that it needs to know that is

8 Sandberg, Allport: Q-PRM

specific to each latency-critical task. Also, our evaluation metrics are defined in
terms of the QoS target. Section 6.1 describes how we find the QoS target exper-
imentally.

2.2 Resource Managers

A resource manager (RM) is a program that runs on a server and decides how to
divide some set of hardware resources between a set of tasks. In this work, we
refer to the set of tasks as the workload configuration.1 The workload configura-
tion designates each task as either a latency-critical (LC) or best-effort (BE) task.
There may be other processes running on the operating system, but these are not
managed. A task typically refers to a container instance, and therefore includes
all of the processes within that container.

The particular set of managed resources varies, depending on the resource
manager design and the capabilites of the server. These could be, for example:

• CPU cores
• CPU frequency
• Cache ways
• Memory bandwidth
• Disk bandwidth
• Network bandwidth

Usually, the CPU resource is managed either as the number of cores, or the fraction
of CPU time allocated to tasks.

The resource manager has to find a partitioning of the resources that satisfies
the QoS target of each latency-critical task, and maximizes the total throughput
of the best-effort tasks. This decision must be based on some collection of metrics
that are measured continuously and characterize the current behavior of the sys-
tem. For example, performance statistics such as the CPU usage or cache miss ratio
could be used. The problem is to determine whether the latency-critical tasks have
the resources they need to meet their QoS targets. This is complicated by the fact
that different LC tasks require different amounts and types of resources. Addition-
ally, the resource requirements depend on the intensity of the load experienced
by the LC task.

2.2.1 QoS-Awareness

While conventional resource managers use performance metrics in order to gauge
resource contention between services, this is a proxy for what we are actually
interested in — the QoS of the latency-critical service. Coupled with the growth
of cloud services, there has been an increasing amount of research done on QoS-
aware Resource Managers, the specifics of which we will outline in Chapter 3. QoS-
aware resource managers, generally, are aware of the QoS Target of the latency-

1This is the terminology used by the Intel Platform Resource Manager.

Chapter 2: Background 9

critical applications, as well as their real-time latency. Some resource managers
use other metrics in addition to the latency in order to allocate resources.

2.3 Memcached

For our experiments, we use Memcached [12] to function as a latency-critical ser-
vice. Memcached is a widely used, open-source memory object caching system. It
is used by large web platforms such as Facebook [9] and Twitter [13] to reduce
key-value access times. By caching database objects in memory as a hash table,
the average time to access them is reduced. Not only does one avoid slower disk
accesses, but also the overhead of database processing. Memcached is not an es-
pecially compute-intensive application . To service a request, it has to do a hash
table lookup and either store or retrieve an object from memory. Hence, most of its
execution time is spent stalling for memory stores or loads. However, Memcached
is very sensitive to memory bandwidth interference in spite of this, because it
has to retrieve objects and respond to requests very quickly [11]. In other words,
while Memcached may not use the total memory bandwidth available, it is still
very sensitive to memory access delays, which could be caused by interference
from other running tasks.

Chapter 3

Related Work

There has been substantial work on developing QoS-aware resource managers in
recent years. Much of the older literature focuses on colocating a single LC work-
load with multiple BE workloads, while newer methods also open up the possibil-
ity for colocating several LC workloads. We will describe some of the approaches
and their respective papers next.

3.1 Heracles

Heracles [14] is a "dynamic controller" that combines a single latency-critical
workload with several best-effort workloads, giving and taking resources from BE
jobs by managing four hardware and software mechanisms. The authors pose that
interference only occurs when a resource is saturated. Thus, Heracles attempts to
decompose the resource optimization problem into smaller subproblems.

When the measured QoS is sufficiently under the QoS target, Heracles uses
gradient descent to find the minimum configuration of LLC occupancy and CPU
cores that satisfies the QoS target. Furthermore, it also incorporates CPU fre-
quency and network controllers.

3.2 Octopus-Man

Octopus-Man [15] is a QoS-aware resource manager for heterogenous multicore
server systems. It runs on a single server and monitors both hardware and OS
performance metrics, as well as the the QoS of its services. Based on this profile,
it then decides on a mapping of latency-critical and best-effort tasks to CPU cores
(so-called brawny and wimpy cores). When the load on LC services is low, the
QoS target can be met by using the more energy efficient wimpy cores for the
latency-critical services, and the more powerful brawny cores for the best-effort
jobs, which results in better energy efficiency. When the load is low, the wimpy
cores are sufficient to meet the QoS target. When the load is high, the Octopus-
Man instead uses brawny cores to meet the LC QoS target, while wimpy cores are

11

12 Sandberg, Allport: Q-PRM

used for best-effort jobs.
Octopus-Man has two different algorithms for its mapper. The PID version

samples QoS at a fixed interval and stores it in a buffer, then determines a core
allocation by computing a function of the current, net total and derivative error
(difference between the latency and the QoS target). The output of the function
is linearly scaled and mapped to the set of core configurations. The function has
3 parameters that are tuned per application using the root locus method. Also,
they measure average latency vs. RPS per application, and use linear regression
to predict QoS as a function of a core allocation. The PID mapper is not service-
agnostic, since it needs to profile each service to tune the PID controller.

The second algorithm utilizes a state machine in order to model Octupus-
Man’s task mapper. Each state represents a configuration of brawny and wimpy
cores. The transition to another state is predicated on QoS measurements trigger-
ing certain conditions. If the QoS measurements are below a certain threshold,
which is derived from the QoS target, the state machine either increases the
amount of wimpy cores or migrates the tasks to brawny cores. The inverse op-
eration takes place if the QoS measurements are above, or is likely to violate QoS
targets in the immediate future.

3.3 PARTIES

PARTIES [11] is a QoS-aware resource manager capable of managing multiple
colocated latency-critical services. PARTIES introduces the concept of fungibility,
i.e. that resources can be traded between services. By trading resources, as well as
adjusting resources that affect the whole system, the PARTIES-approach attempts
to find the minimal resource usage that satifies all QoS targets. Those resources
can then be reclaimed for best-effort jobs. PARTIES finds the optimal configuration
experimentally, by measuring the QoS before and after any resource changes.

Like the Q-PRM, it has to be provided with the QoS target of each latency-
critical service. Additionally, it needs to know the network bandwidth require-
ments of each service. Otherwise, it is service-agnostic and does not use any em-
pirically tuned parameters.

Chapter 4

Design and Implementation

The Intel Platform Resource Manager (PRM) is an open source, non-QoS-aware
resource manager. It uses hardware performance counters and OS statistics to col-
lect information about the resource usage of the latency-critical workload, monit-
oring CPU utilization, memory bandwidth, and a large number of cache metrics.
The Intel PRM is capable of managing a colocation consisting of multiple LC and
BE workloads. However, it only regulates the BE workloads directly. These are
regulated together as a group, so that each individual workload receives an equal
share of the total best-effort resource allocation.

4.1 Intel Platform Resource Manager

4.1.1 Overview

The Intel PRM consists of two executable parts. In addition to the main runtime,
which is responsible for resource monitoring and regulation, there is the offline
Analyzer, which is used to build a set of resource thresholds from previously col-
lected metrics.

The PRM is deployed in a three-step process. The first step is a profiling run,
during which regulation is disabled and the PRM collects a set of metrics as the
latency-critical workload runs without best-effort workloads. In the second step,
the Analyzer generates the thresholds based on the recorded max usage of every
resource. During normal operation, the best-effort workloads are colocated along
with the latency-critical workload, regulation is enabled, and the PRM uses the
threshold profile to detect resource contention.

The PRM uses the following main concepts:

• Each workload runs in a separate Docker container.
• Only the BE workloads are regulated. The LC workloads are unrestricted.
• There are two managed resources: the CPU quota, and the last-level cache

(LLC) occupancy. Each of them has a global resource level, which is shared
between the BE workloads.

13

14 Sandberg, Allport: Q-PRM

• The Monitor continuously collects the global cache metrics, as well as each
workload container’s CPU utilization. It is responsible for detecting resource
contention based on the generated thresholds.
• The Controller implements the logic that regulates the resources. There is

only one implementation, the NaiveController:

◦ If CPU cycle contention is detected, the CPU quota level is set to zero.
If contention has not been detected for 14 seconds, the level is incre-
mented by one.
◦ If LLC contention is detected, the LLC level is set to zero. If contention

has not been detected for 2 minutes, the level is incremented by one.

4.1.2 Control Mechanisms

The Intel PRM controls two resources — the CPU quota and the last-level cache
(LLC) occupancy. Every job, whether LC or BE, will be isolated into Docker con-
tainers, which allow these jobs to be resource throttled and monitored. We will
go into the details of the control mechanisms next.

Docker

Docker is a type of virtualization software that wraps an application in a container
— where one isolates an application’s dependencies, storage, memory, I/O and
much more. Docker containers are used throughout the PRM in order to isolate the
indiviudal latency-critical and best-effort tasks. By interfacing with Linux cgroups,
containers can be continuously monitored for performance metrics.

CPU Quota

Using Linux cgroups, the Intel PRM controls the CPU quota, which is an upper
bound on how much CPU time a given process gets. Since the PRM only regulates
best-effort jobs, the CPU quota is only ever set for these jobs.

Intel CAT

On the LLC-side, the Platform Resource Manager uses Intel Cache Monitoring
Technology (CMT) to monitor cache metrics, and Intel Cache Allocation Techno-
logy (CAT) to control cache occupancy [16]. In PARTIES, the authors state that
LLC-occupancy indirectly controls the memory bandwidth, because cache hit rate
is highly correlated with memory bandwidth [11].

Resource Levels

The magnitude of the CPU quota and LLC adjustments are fixed, meaning that
every adjustment increase and decrease the respective resources by the same
value. The Intel PRM also holds internal states of the current resource level for

Chapter 4: Design and Implementation 15

both the CPU quota and the cache. These resource levels are represented as in-
tegers from 0 to 20, and the PRM then maps that level to a concrete CPU quota
value and LLC cache ways.

The CPU resource level determines the discrete CPU quota value by using
Linux’ cgroups. The maximum allowable discrete CPU quota value is either dis-
covered during the preliminary profiling or recorded during run-time of the PRM.
If no contention is discovered at this threshold, the best-effort job is allowed as
much CPU time as it needs.

The LLC resource level determines the number of cache ways that are allocated
to the best-effort task, while the latency-critical tasks are always allowed to use the
entire cache. Level 0 corresponds to 2 cache ways, while the max level corresponds
to the entire cache and depends on the associativity of the server’s last-level cache.
Because our server is equipped with a 20-way L3 cache (see Section 5.1), the max
level corresponds to 18 cache ways on our system.1

4.1.3 Runtime Explanation

In its initial state, the Intel PRM strips best-effort jobs of all resources, letting the
latency-critical job work unrestricted. The LLC- and CPU-regulation run on dif-
ferent threads. The CPU quota regulation is very simple - it checks if the current
CPU utilization, latency-critical and best-effort, is higher than the recorded CPU
utilization for the LC job. On the LLC-side, the controlling mechanisms are more
complicated. During run-time, the PRM builds up a history of cache-related met-
rics, recording the metrics of the LC-application as a function of CPU utilization.
The goal is to detect potential resource contention of the LLC, recording cache
metrics at different CPU utilization levels.

If the utilization threshold is not breached for 3 consecutive measurements,
the CPU quota is increased. Consequently, if no LLC-contention is detected for 3
consecutive measurements, the BE-job gets an additional cache way. If the PRM
detects that an increase in the resource level will cause potential contention, it
holds the current resource level. If the utilization threshold is breached, or LLC-
contention is uncovered, the PRM strips the BE-job of access to that resource. It
does this by setting the CPU quota to a very small number, or setting the number
of available cache ways to 0. All best-effort jobs are treated as one resource entity
- meaning that if there are several best-effort jobs registered by the PRM, they are
all subject to the same resource level value, and get an equal share of allocated
resources.

4.2 QoS-Aware Platform Resource Manager

One of our main tasks for this project was to make the Intel Platform Resource
Manager QoS-aware. Although we made some rather fundamental changes to the

1If the --exclusive-cat option is enabled, each cache way is exclusively allocated to either the
LC or BE tasks.

16 Sandberg, Allport: Q-PRM

Figure 4.1: Overview of the unmodified Intel PRM
The "Profiling" module is ran first, generating the initial thresholds. The "Control-
ler" module is running continously during the lifetime of the workloads, detecting
contention, controlling resources and updating the thresholds.

source code of the PRM, most of the original structure is preserved. We refer to our
modified version of the PRM simply as the Q-PRM (QoS-aware Platform Resource
Manager).

The most important change introduced in the Q-PRM is that the QoS alone
is used to make allocation decisions, rather than the CPU utilization and other
metrics that are considered by the PRM. Consequently, there is no preliminary
profiling and no concept of thresholds in the Q-PRM. The profiling component of
the PRM is not used. Instead, the QoS target serves as a threshold for the QoS,
and this must be provided to the Q-PRM as a parameter.

In the original PRM, the controller logic was distributed between the main
threads, the CPU quota and LLC resource classes, and the NaiveController control-
ler. These components were connected by the concept of contention. We decided
to simplify this structure by gathering the functionality in the Controller class,
partly because our needs were simpler, and partly because the original structure
was needlessly complicated. For the Q-PRM, a controller algorithm (correspond-
ing to a Controller subclass) is specified from the command line. The controller
owns both of the CPU quota and LLC resources, and is provided with the QoS
measurement on every update. The QoS is read once per second from a file which
is also updated every second by the client of the latency-critical service (the load
generator, see Section 5.3). Each controller implementation then has to decide
how to set the best-effort resource levels, based on the QoS. Because we wanted
to keep the optimization problem simple, the controllers we implemented for this
thesis only regulate the CPU quota.

Chapter 4: Design and Implementation 17

4.2.1 The Optimization Problem

A simplified model of the optimization problem that we need to solve is that, at a
given point in time, for a given colocation of one latency-critical and one latency-
critical workload, the QoS is determined by the intensity of the load on the LC
service (the RPS), and the amount of resources that is available on the system
for the LC service to handle that load. Assuming there are no background tasks
running on the system other than the BE job, the amount of resources available
is determined by the interference from the BE job, which is a function of the CPU
quota it is allocated by the RM. Hence the QoS is a function of the current LC load,
which the RM has no control over, and the BE CPU quota. Our task is to find the
optimal level Q of CPU quota, meaning the highest level that we can give the BE
job without violating the QoS target, based on the measured QoS. Q is then only
a function of the current load on the LC service.

4.2.2 QoS-Aware Controllers

The following controllers base their regulation decisions on the QoS slack. We
define the slack as the relative error of the currently observed QoS with respect
to the QoS target:

Slack=
Target−QoS

Target

From this definition, it follows that when the slack is nonnegative, the QoS target is
met, meaning that the controller should consider allocating more CPU time to the
best-effort workload, depending on the amount of slack. Conversely, if the slack
is negative there is currently a QoS violation, and the controller should attempt
to recover by throttling the best-effort workload.

Step

The first controller we implemented was the Step controller. It was intended to be
similar to the PRM’s NaiveController, except that it uses the QoS and QoS target
instead of the CPU utilization and the CPU threshold. The controller only increases
or decreases the CPU quota by a single resource level at a time. Contrary to the
NaiveController, it does not throttle the quota to level 0 whenever CPU contention
is detected, but merely reduces the level by one step. For every 3 seconds that no
contention has been detected, the level is increased by one.

Proportional

This algorithm uses a linear function to determine the CPU quota given to best-
effort jobs. The change in CPU quota is proportional to the slack. In other words,
when the latency is either much higher or much lower than the threshold, this
controller increases and decreases the CPU quota more aggressively. The intuition

18 Sandberg, Allport: Q-PRM

behind this is rooted in the fact that we want to quickly recover from sudden load
increases or decreases.

Proportional v2

This controller is mostly identical to the one above, except for one key difference:
exponential mapping from resource level to CPU quota when the resource level
is low. Monitoring how the proportional controller reacts to changing load, we
noticed a behavior where at high loads we did not have enough resolution in our
CPU quota increase/decreases. Every discrete increase and decrease in resource
level is mapped to a constant change in the CPU quota, and this is not ideal at
high loads. The behavior we observed was highly oscillatory. Our solution was to
use an exponential mapping from resource level to CPU quota when the resource
level is low, in order to increase the resolution when the load is high. As we will
see in the results, this approach yielded us good results.

Basic

The Basic controller uses a ring buffer to store the 10 most recent QoS slack meas-
urements. From these measurements one of two running averages is computed,
using either the entire buffer or just the 3 most recent values. As long as no QoS
violation is detected, the controller waits 10 seconds before computing the aver-
age slack for this period. This average is then used to compute a loss function,
which is simply the absolute difference between the average measured slack and
0.2. The reasoning for this is that the controller should attempt to maintain a slack
of approximately 20% (a tardiness of 0.8), as a compromise to ensure that there
is some margin to prevent a sudden QoS violation. At each decision interval of 10
seconds, the controller checks if the loss has improved or worsened since the last
time it was computed. If the loss has increased (the slack has moved away from
20% in either direction), the direction of CPU quota regulation is reversed. If not,
the controller continues to increase or decrease the CPU quota resource level in
the same direction as before. In other words, whether the Basic controller contin-
ues to scale up or down the resource level of the best-effort workload depends on
whether or not there has been an improvement to the slack in the last 10 seconds.
On the other hand, the magnitude of the changes made to the quota level is de-
termined by the magnitude of the slack, similar to the Proportional controllers. If
there is a large amount of slack, greater steps are taken; if there is less than 25%
slack, only single steps are used, etc.

A violation is considered to occur whenever the 3-second average slack is less
than 5%. This average is computed once per second, as opposed to the 10-second
average. When a violation is detected, the quota is immediately reduced to level 0
and the controller goes into recovery mode. In recovery mode, the controller waits
until the 10-second average slack is at least 30% before making any changes to the
best-effort quota level. When the slack has recovered, the quota level is restored to
half of what is was when the violation happened. This mechanism was an attempt

Chapter 4: Design and Implementation 19

to recover more quickly from a QoS violation, to perform more best-effort work,
compared to the NaiveController controller of the PRM, which slowly recovers
from quota level 0 even when there may be sufficient slack to be less cautious.
As we will see in Chapter 7, this strategy works well when the violation is mainly
caused by best-effort interference. On the other hand, when the violation is mainly
caused by a high load on the latency-critical service, it often leads to repeated QoS
violations instead.

Chapter 5

Experimental Setup and
Methodology

5.1 Server Platform

We performed the evaluation of our resource manager on the NTNU IDUN com-
puting cluster [17], on an Intel Xeon E5-2695 server running CentOS 8. The server
has two CPU sockets, which correspond to two NUMA (non-uniform memory ac-
cess) nodes. In a NUMA system, the memory is shared between the nodes such
that is appears as a larger shared memory to the operating system. Each node has
its own memory controller and memory, but can acess the other node’s memory
through an interconnect incurring higher latencies. For our purposes, the advant-
age of this architecture is that we can achieve some degree of isolation between
the processes running on each node by constraining them to run on one node,
and to only use the local memory of that node. This allows us to simulate a client-
server setup where each node acts as a host machine with no need for two physical
hosts, which simplifies setting up and performing experiments. Table 5.1 lists the
specs of our server platform.

5.2 Overview

The aim of our experiments is to compare different resource management schemes
for a colocation consisting of a single latency-critical task and a single best-effort
task. That is, we run the Intel PRM resource manager along with one LC task and
one BE task, and evaluate its performance. Because the Intel PRM is designed
to manage its tasks as Docker containers, the LC and BE workloads each run in
their own containers. This also makes it easier to clean up after a benchmark, by
destroying the containers and then recreating them for the next run.

To characterize the baseline performance of the workload colocation, and to
evaluate the perfomance of our resource manager, we perform load testing of
the latency-critical service. Essentially, a load generator is ran on one of the CPU

21

22 Sandberg, Allport: Q-PRM

Table 5.1: Platform specification

Model Intel Xeon E5-2695 v4
OS CentOS 8.2.2004
Kernel Linux 4.18
Virtualization technology Docker Engine 20.10.2
Sockets 2
Cores/socket 18
Threads/core 1
Base/max turbo frequency 2.10 GHz / 3.30 GHz
Frequency driver ACPI (performance governor)
L1 inst/data cache 576 KiB / 576 KiB
L2 cache 4.5 MiB
L3 cache 45 MiB
Memory 128 GiB

nodes, which generates requests for the service running on the other node. Since
the load generator and service act as the client and the server, we refer to the
nodes on which they run as the client and server nodes respectively. We refer to
the lifetime of a single instance of the LC application and load generator as a
benchmarking run. When a run is complete, we stop all the components of the
system so that the next benchmark starts with a clean slate. The reasoning behind
this is that every new benchmark (most importantly the Memcached instances)
should be independent from the previous ones. In practice it is not possible to
make these experiments completely deterministic, because for every run there are
side-effects on the state of the operating system which are outside of our control.
Still, we make an effort to reduce the variability of our results.

A high-level overview of our setup is shown in Figure ??. The server node
consists of the LC task, the BE task, and the Intel Platform Resource Manager. The
client node consists of the load generator and data collection scripts. The server
node represents the system under test. The reason we run our data collection
scripts and the load generator on the client node is so that it does not affect this
system.

One deviation from the above description is that we limit the server node to
9 CPU cores. Initially, we used all of the 18 cores on the node, as we do with
the client node. However, we discovered that one of the two main components of
Intel PRM requires a minimum level of CPU utilization from the LC application
to function at all, and on our system Memcached did not reach this level even
at the max load.1 As a result, we decided to downsize the server node, so that
the relative CPU utilization for Memcached would be higher. This was done by
allocating only 9 CPU cores to the LC, BE and RM programs running on the server
node, as well as by configuring the maximum CPU count to 9 in the PRM.

1Specifically the metrics subsystem of the PRM. We explain how this works in Chapter 4.

Chapter 5: Experimental Setup and Methodology 23

Figure 5.1: Overview of the Experimental Setup

5.3 Data Collection

In addition to the tail latency, our benchmarking script collects the CPU and memory
usage of the LC and BE tasks, the number of instructions retired by the BE task,
and the logging output from Intel PRM. This data is timestamped, which allows
us to analyze the behavior of the resource manager and its workload as it evolves
over time.

Tail Latency The load generator records the latency of each request and reports
the tail latency at a specified interval. For constant throughput runs, the reporting
interval is equal to the duration of the run. For dynamic throughput runs, the
interval is one second, and the tail latency is continuously written to a file. The
QoS-aware version of Intel PRM reads this file to get the tail latency.

CPU and Memory Stats We collect the CPU utilization and memory usage of
the LC and BE tasks by querying the Docker Engine API (v1.26). The API responds
once per second with the total resource usage of each container. Alternatively, the
same statistics could be collected by reading the sysfs files at the cgroup level of
each container.

Instructions Retired We use perf, a Linux performance analysis tool, to re-
cord the number of instructions retired by the processes in the best-effort task’s
cgroup. perf uses the hardware performance counters of the system to count cer-
tain events, in this case the instructions retired.

24 Sandberg, Allport: Q-PRM

Intel PRM Actions While running, the Intel PRM logs every resource allocation
action it takes. Specifically, it logs the CPU quota and LLC resource level changes
for every BE task along with a timestamp. We record the standard output of the
PRM to a file, which is then parsed for the relevant output into a CSV file.

5.4 Workloads

5.4.1 Memcached

We use Memcached as our latency-critical workload. Our setup for Memcached
is based on the CloudSuite benchmark suite [18], specifically the Data-Caching
benchmark, which consists of a server Docker image containing Memcached itself,
and a client image containing CloudSuite’s custom Memcached load generator.
The load generator image comes with a 300 MB Twitter dataset that needs to
be scaled up prior to running the benchmark. To make it possible to use a new
container for every benchmarking run, we pre-scaled the dataset by a factor of 30
and included it in the image. We also modified the load generator itself in order
to obtain precise timestamped output, and so that it would continuously write the
current 99th percentile latency to a file once per second.

Table 5.2 lists the configuration we used for Memcached and the load gener-
ator. These are mostly the default settings recommended by CloudSuite. The client
and the server are configured to use as many threads as there are CPU cores. The
server has a memory limit equal to the size of the local memory on the server
node.

Table 5.2: Memcached benchmark configuration

(a) Memcached

Version 1.4.24
Worker threads 9
Memory limit 64 GiB
Minimum object size 550 MiB

(b) Load generator

Worker threads 18
Connections 450
Arrival distribution Exponential
Dataset scaling factor 30

In our benchmarking setup, we distinguish between constant and dynamic
throughput runs. For our profiling runs, the load generator generates requests
at a constant RPS for duration of the run, and the latency distribution is only
reported as a total statistic at the end of the run. For the dynamic RPS runs, the
load generator uses a predefined sinusoidal load curve, and we collect the tail
latency once per second. We use the data collected from these runs to analyze the
behavior of the system over time.

A single run consists of a warmup stage followed by a main stage. For the
warmup stage, a Memcached container is run along with a load generator con-
tainer. The load generator then pre-loads the Memcached server with the dataset.
When this process is complete, the load generator is killed and the script imme-
diately proceeds to the main benchmarking stage. At this point the Intel PRM,

Chapter 5: Experimental Setup and Methodology 25

BE workload container and data collection scripts are started. Then the main load
generator is run in a new container, which performs the actual load testing bench-
mark using the specified load curve. By dividing the run into two stages, the idea
is that we only start collecting data after the warmup has completed.

5.4.2 SPEC CPU®2017

We initially used the stress testing tool stress-ng to simulate a best-effort work-
load, but eventually decided to use the SPEC CPU®2017 benchmark suite instead.
Specifically, we use the 549.fotonik3d_r and 508.namd_r benchmarks from the
SPECrate®2017 Floating Point suite. We refer to these simply as fotonik3d and
NAMD from here on. These two in particular were picked because we wanted to
compare two significantly different best-effort workloads. We expected fotonik3d

to be more memory intensive, and NAMD to be more compute intensive. Con-
sidering that Intel PRM regulates CPU and cache usage separately, we wanted to
see if, for example, it would be less effective at regulating fotonik3d when cache
allocation was disabled.

The SPECrate®2017 Floating Point suite is normally used to score the per-
formance of a computer in terms of throughput. Typically one would run one or
more copies of the same benchmark in parallel and compare the time used on
the system under test to the time used on a reference computer. The way we use
the suite here is non-standard, as our intention is not to benchmark the server
itself, but rather to simulate a somewhat realistic best-effort workload. Using
SPEC®CPU 2017 is preferable to load testers like stress-ng because the work-
load is more realistic. Furthermore, since these benchmarks are deterministic in
the sense that the same instructions are executed each time they are run, there
should be less variation between repeated identical runs.

Our setup involves running one of the above benchmarks in a container. We
only run one instance of one of these benchmarks at a time. We use a very simple
wrapper script as the entrypoint to the container. This script is used to restart the
given SPEC®CPU benchmark whenever it has finished executing, so that there is
always some best-effort work available for the duration of a benchmarking run.

5.5 Intel PRM Profiling

We run the Intel PRM with a set of thresholds that are generated following the
profiling procedure described in the README. Memcached is put under the same
dynamic load that is used in the main experiment (see Section 6.2.1), but exten-
ded to 30 minutes. The PRM runs in the background with the --collect-metrics
and --record flags, collecting the platform metrics and CPU utilization statistics.
The thresholds are then generated from the collected data by running the Ana-
lyzer.

For the actual benchmarks, we run the PRM with the --collect-metrics,

26 Sandberg, Allport: Q-PRM

--detect, --control and --enable-hold flags. We use the default sampling/de-
cision intervals for CPU utilization (2 seconds) and cache metrics (20 seconds).

It should be noted that the README is ambiguous about how the PRM should
actually be profiled and run, as well as about the meaning of the different com-
mand line options. Based on our understanding of the code, the preliminary pro-
filing run should only include the latency-critical workload, and no best-effort
workload. The threshold profile can then be used to detect resource contention,
presumably because the thresholds will be exceeded when the best-effort work-
load is added.

5.6 Evaluation Metrics

To evaluate the performance of each resource manager implementation, we con-
sider the QoS of the latency-critical task and the throughput of the best-effort task.
Because there is a tradeoff between the QoS and throughput, both aspects must
be taken into account in order to evaluate the resource manager.

Quality of Service We follow a convention established by the work on resource
managers such as Octopus-Man [15] and Twig [19], where the QoS is reported
using two distinct metrics. The QoS guarantee is the fraction of samples for which
the measured QoS is below the QoS target, or in other words the fraction of time
for which the QoS target was met. This is reported as a total statistic for each
benchmarking run. The QoS tardiness is the ratio of the measured QoS to the QoS
target, for each sample. A sample with a QoS tardiness above 1 corresponds to
a QoS violation. Whereas the guarantee only reflects whether or not there is a
violaton, the tardiness reflects the magnitude of the violation — a higher tardi-
ness means a more serious violation. We report the average QoS tardiness for a
benchmarking run.

Instructions Retired For the best-effort workload, we use the number of in-
structions retired as a measure of the amount of work done during the course
of a run. We normalize this to the instructions retired by the best-effort workload
when it runs alongside the latency-critical task, with no limit on its resource usage
imposed by the resource manager.

Chapter 6

Evaluation

6.1 QoS Target and Max Load

In order to determine the QoS target for Memcached, we have to determine its
max load under our setup. To find the max load, we follow the load testing pro-
cedure explained in Section 2.1.5. We run a series of benchmarks across a range
of RPS. Based on the definition of QoS target, the idea is to measure the baseline
performance of Memcached in the absence of resource contention. In other words,
when it has all of the resources of the server node at its disposal. Hence, we use
no best-effort task, and no resource manager, for these runs.

A single run is a 5 minute benchmark at a constant RPS. The RPS ranges from
from 450,000 to 530,000, incremented in steps of 2,500. The range of interest
was determined by trial and error in earlier, less extensive experiments. Because
the sampled QoS has a high amount of dispersion, it was sampled 25 times for
each RPS value. The resulting QoS vs. RPS graph is presented in Figure 6.1.

The mean QoS jumps from 4.76 ms at 500,000 RPS, to 20.4 ms at 502,500
RPS. We find that the max load is 500,000 RPS, which corresponds to a mean QoS
of 4.76 ms. Hence we set the QoS target to 4.76 ms.

27

28 Sandberg, Allport: Q-PRM

Figure 6.1: Measured QoS vs. constant throughput load (k RPS) for Memcached

6.2 Resource Manager Evaluation

6.2.1 Benchmark Configurations

This section describes the main part of our experiment, in which we compare
different implementations of the Intel PRM. The benchmark configurations we
use are explained in Table 6.1. Each benchmark configuration is repeated for 20
runs, from which we compute the average metrics. For every benchmark except
No RM, there are 20 runs for each of the best-effort tasks (fotonik3d and NAMD).
Every run uses the same 10 minute dynamic load curve, which is shown in in
Figure 6.2. The load is sinusoidal and ranges from 380,000 to 500,000 RPS.

Chapter 6: Evaluation 29

Table 6.1: Benchmark configurations

Resource Manager Benchmark Controller BE task Resources

–
No RM – – –
No RM w/ BE – NAMD/fotonik3d –

PRM
PRM Naive NAMD/fotonik3d CPU
PRM w/ CAT Naive NAMD/fotonik3d CPU, LLC

Q-PRM

Step Step NAMD/fotonik3d CPU
Proportional Proportional NAMD/fotonik3d CPU
Proportional v2 Proportional v2 NAMD/fotonik3d CPU
Basic Basic NAMD/fotonik3d CPU

Figure 6.2: Dynamic load curve (RPS in thousands)

Establishing a Baseline

As a starting point, we benchmark Memcached using no resource manager. This
establishes a baseline for what we can expect in terms of QoS and best-effort
throughput.

No RM This benchmark simply involves running and load testing Memcached by
itself, using no best-effort task. This results in a mean QoS guarantee of 99.2±1%.
Seeing as the following benchmarks introduce resource contention in the form of
a best-effort task, this is the highest QoS guarantee that could be achieved in the
following experiment by an ideal resource manager. The fact that the guarantee is
not 100% is explained by the fact that the load curve reaches the max load when
it peaks at 500,000 RPS. Although a 100 % guarantee is achieved for some runs,
there is a degree of variability between them.

No RM w/ BE We introduce a best-effort task to infere with Memcached. Be-
cause there is no resource manager, no limit is imposed on the resource usage of
the best-effort task. In other words, the LC and BE tasks contend for resources as
equals. Seeing as Memcached is under the same high load as before, the result is
unsurprising — the QoS guarantee is very low (0.08% for NAMD and 0.03% for
fotonik3d), and the number of instructions retired is high. The amount of instruc-
tions retired that we measure under these conditions represents the highest pos-

30 Sandberg, Allport: Q-PRM

sible best-effort throughput in this experiment. This is because when a resource
manager is introduced, it can only restrict the resource usage of the best-effort
task compared to this baseline. Hence, for the following benchmarks, we normal-
ize the instructions retired as fraction of these results, for NAMD and fotonik3d

respectively.

Comparing Resource Managers

This is the main part of our experiment, in which we compare the different con-
trollers of the Intel PRM and Q-PRM. We compare the unmodified PRM, which
uses the NaiveController controller, to the Step, Proportional, Proportional v2 and
Basic controllers of the Q-PRM. For the PRM, we use two different configura-
tions: the PRM benchmark where the PRM is run with the -disable-cat option,
and the PRM w/ CAT benchmark, which uses last-level cache allocation (CAT). This
comparison is interesting because our Q-PRM does not use cache allocation. We
wanted to see how important this mechanism is for the effectiveness of the PRM.
It also allows us to compare the PRM and Q-PRM in the case where they both only
regulate the CPU quota.

6.2.2 Results

Our results for each of the benchmark configurations are presented below. The
QoS guarantee and tardiness metrics are presented as box plots in Figure 6.3 and
Figure 6.4 respectively. Here, the median value is indicated by the center line of
the box, the box itself indicates the interquartile range, and the whiskers show
the minimum and maximum values. The metrics for NAMD and fotonik3d are
shown on the left, and their average is shown on the right. Figure 6.5 presents the
normalized number of instructions retired.

Overall, the Q-PRM performs much better in terms of QoS, while the PRM
achieves a higher best-effort throughput. There are only small differences between
the individual Q-PRM controllers, and between the PRM and PRM w/ CAT bench-
marks. On average, the Q-PRM controllers achieve a 90.0% guarantee, compared
a 37.3% guarantee for the PRM. On the other hand, the PRM manages to retire
4.37 times as many instructions as the Q-PRM.

The average tardiness is 0.84 for the Q-PRM and 1.29 for the PRM. In other
words, the average tail latency sample for the Q-PRM has a 16% slack with respect
to the QoS target, while the average sample for the PRM violates the QoS target
by 29 %. Figure 6.4 illustrates that, for the PRM, the tardiness is much more
dispersed around the median, compared to the Q-PRM.

Chapter 6: Evaluation 31

Figure 6.3: QoS guarantee for each benchmark. Values for NAMD and fotonik3d
respectively are shown on the left, while their average is shown on the right. The
boxes indicate the interquartile range, the whiskers indicate min and max values,
and the center line indicates the median.

Figure 6.4: QoS tardiness for each benchmark. Values for NAMD and fotonik3d
respectively are shown on the left, while their average is shown on the right. The
boxes indicate the interquartile range, the whiskers indicate min and max values
and the center line indicates the median.

32 Sandberg, Allport: Q-PRM

Figure 6.5: Instructions retired for each benchmark, normalized to the No RM
w/ BE benchmark. Values for NAMD and fotonik3d respectively are shown on the
left, while their average is shown on the right.

Chapter 6: Evaluation 33

Figure 6.6 illustrates the tradeoff between the QoS and throughput. Here, the
QoS guarantee and instructions retired are shown as a scatter plot, with each
benchmark indicated by a labeled dot. An imaginary, ideal resource manager
would lie in the upper right corner of the graph. However, this level of perform-
ance is most likely impossible to reach in practice. The upper bound on the per-
formance would have to be determined experimentally. The benchmarks cluster
into two distinct groups corresponding to the PRM and Q-PRM benchmarks. Still,
there are some notable deviations from the general trend, within each group. For
example, PRM w/ CAT outperforms PRM in terms of both QoS and throughput
when fotonik3d is used, while the opposite is true when NAMD is used. Further-
more, Proportional v2 manages to achieve a higher guarantee than Proportional

without doing any less best-effort work.
Overall, the PRM performs better when LLC regulation (CAT) is disabled. For

the Q-PRM, the best controllers overall are Step and Proportional v2, which man-
age to achieve an average QoS guarantee of 92.0% and 91.7% respectively.

34 Sandberg, Allport: Q-PRM

(a) fotonik3d

(b) NAMD

Figure 6.6: QoS Guarantee over Instructions retired

Chapter 7

Discussion

7.1 Initial Observations

Much of our initial time was spent experimenting with different benchmark con-
figurations and graphing the results over time. We wanted to understand how
Memcached behaves under a dynamic load, and how it reacts to resource conten-
tion. Furthermore, we wanted to observe how the PRM responds to a changing
load on the system, and the effects of its actions on the QoS. In order to under-
stand this behavior, it was important to plot the collected data over time.

Figure 7.1, from a single run of the No RM benchmark, illustrates how Mem-
cached responds to a dynamic load when there is no best-effort interference. The
QoS is roughly proportional to the RPS as long as the load stays within the range
that Memcached can handle.1 We can also see that the QoS is very unstable in a
short time frame, but that it really oscillates around a more stable average. The
QoS target is indicated by a red line in the following graphs.

Figure 7.2 is drawn from a single run of the PRM benchmark, using NAMD as
the best-effort workload. The figure shows the QoS of Memcached along with the
CPU quota of NAMD. The load generator also reports the number of unfulfilled
requests every second. These are the requests that have been sent by the client,
but have not yet been responded to. This statistic is not the same as the number of
dropped requests, which are the requests that are never responded to. Unsurpris-
ingly, we observe that the QoS is loosely correlated with the number of unfulfilled
requests. We expect to see this because, when the QoS is high relative to the RPS,
the rate of incoming responses will be lower than the rate of outgoing requests
(the load), and the queue of unfulfilled requests will grow. We see that when the
QoS drops suddenly, the queue is emptied very quickly.

1This relationship actually becomes nonlinear as the load approaches the max load. The QoS
grows exponentially above the max load.

35

36 Sandberg, Allport: Q-PRM

Figure 7.1: No RM: Load (RPS) and QoS over a 10 minute bechmark (QoS target
indicated by red line). This shows how Memcached responds to a dynamic load
in the absence of resource contention.

7.1.1 CPU Quota vs. Cache Allocation

Figure 7.2 also tells us that the CPU quota of the best-effort task is actually ef-
fective as a control mechanism, in the sense that it directly impacts Memcached’s
quality of service. We see that whenever the best-effort quota is throttled, the QoS
improves instantly. When it is increased again toward the end of the run, the QoS
target is immediately violated. The QoS is sensitive to even small adjustments to
the quota, e.g. when going from resource level 0 to level 1. On the other hand, we
don’t see the same pattern with LLC allocation. There is no obvious relationship
between the number of cache ways allocated to the best-effort task and the QoS
of the latency-critical service.

Another observation is that even when the PRM throttles and holds the quota
at level 0 (which corresponds to a CPU time of 1%) for an extended period, it
is not able to meet the QoS target. Partly, this is because the load is close to the
max load (even the No RM benchmark violates the target for some runs), but this
does not explain the entire difference. In general, we find that there is a significant
amount of contention between the latency-critical and best-effort workloads, even
when the best-effort task is limited to a minimum amount of execution time. This
is problematic because it means that the PRM is not able to scale the best-effort
workload over its full range (from no execution to unlimited execution). Since we
use such a high load for these experiments, the resource manager is not able to
uphold the QoS guarantee.

Our initial hypothesis to explain this behavior was that as long as the best-
effort task is allowed any amount of execution time, and its LLC occupancy is
unrestricted, it will contend for memory bandwidth with the latency-critical ser-
vice. Hence, we expected that the PRM should be able to manage the QoS at least

Chapter 7: Discussion 37

Figure 7.2: From the PRM benchmark using NAMD: the QoS and unfulfilled re-
quests of Memcached, and the CPU quota of NAMD, over time

by employing the LLC mechanism (as with the PRM w/ CAT benchmark). Surpris-
ingly, we found that even when both resources are minimized, the interference is
not eliminated. Presumably, the only way to completely eliminate the interference
would be to afford the best-effort task no execution time at all. However, the Intel
Platform Resource Manager uses a minimum CPU quota corresponding to 1% CPU
time, and we did not find the time to modify this for the Q-PRM (and repeat our
benchmarks).

To investigate this we performed an experiment where we compared the ef-
fectiveness of minimizing the CPU quota alone, versus minimizing both the CPU
quota and LLC allocation. Figure 7.3 shows a comparison of the QoS for these con-
figurations. The blue line represents the baseline QoS when Memcached runs by
itself, while for the orange and green lines Memcached is colocated with fotonik3d.
The orange line shows the QoS when the CPU quota is fixed at the minimum level
for the duration of the run; the green line shows the QoS when both the CPU quota
and LLC levels are fixed to the minimum. We see that when the cache access of
fotonik3d is restricted to the minimum level (2 cache ways out of 20), the QoS
actually degrades. Sampling the QoS guarantee across 10 repeated runs for each
of these configurations, we get an average guarantee of 96.7% when only the CPU
quota is minimized, versus 69.5% when the LLC is minimized as well.

A possible explanation is that the best-effort task may not be able to fit its
working set in the last-level cache when it is limited to only 2 cache ways. This

38 Sandberg, Allport: Q-PRM

Figure 7.3: Memcached’s QoS over time for three different benchmarks. The blue
line shows the baseline, where there is no best-effort workload to interfere with
Memcached. The orange line shows the impact of fotonik3d with 1% CPU quota
and unrestricted cache access. The green line shows the impact of fotonik3d with
1% CPU quota and 2 cache ways.

could lead to a higher cache miss ratio and memory access rate for the best-effort
task, which would mean a higher level of memory bandwidth contention. If this
is the case, it shows that LLC allocation is less predictable than CPU quota as a
control mechanism, and may even work against its purpose. Compared to the CPU
quota, it may be more dependent upon the particular characteristics and behavior
of the best-effort workload.

7.2 Evaluation

In this section we evaluate the resource managers/controllers based our main
experimental results. We focus on what should be their two primary goals: when
the load is high, they should prevent a QoS violation by down-regulating the best-
effort workload; when the load is low, they should exploit the available headroom
by up-regulating the best-effort workload.

Overall, our results are similar for each of the best-effort workloads. The av-
erage guarantees for NAMD and fotonik3d are 63.2% and 64.0% respectively. We
had hoped that there would be more of a difference between their interference
patterns, but apparently there is not, at least for Memcached. fotonik3d does how-
ever seem slightly easier to manage in terms of interference.

7.2.1 Intel PRM

In Section 6.2.2 we found that the PRM achieves a very low QoS guarantee. There
are three main points that we want to make about its behavior:

• The PRM does not accurately detect CPU contention, and therefore responds
too late to QoS violations.
• LLC contention is never detected. However, this does not have a large impact

on the QoS.

Chapter 7: Discussion 39

Figure 7.4: From the PRM benchmark using fotonik3d: QoS for Memcached and
CPU quota for fotonik3d over time. The PRM is not able to detect QoS violations
in time.

• The NaiveController algorithm is simplistic, but is for the most part not to
blame for the PRM’s poor performance in this experiment.

The first point is illustrated by Figure 7.4, which show the QoS and CPU quota
from a PRM run with fotonik3d. We see that the PRM increases the quota even
after a violation occurs within the first minute. Only when the QoS reaches about
12 ms (approx. 2.5 tardiness), is the quota reduced. Now, of course the PRM is not
actually aware of the QoS violation taking place. Instead, it has to decide whether
there is CPU contention, and this is based only on the measured CPU utilization.
The PRM concept of contention acts as a proxy for the QoS violation, but these do
not necessarily correspond.

In general, we find that when the best-effort quota is increased, Memcached’s
CPU utilization slightly drops because there is more CPU time contention, and be-
cause its resource requirements are the same. Still, since the best-effort workload
is allowed more CPU time, the total CPU utilization of the workload colocation in-
creases. This total is what the PRM compares to the CPU threshold. Evidently the
PRM does respond to the CPU utilization, because the quota is scaled up around
the beginning and the end of the run. This is when the load on Memcached, and
in turn its CPU utilization, is the lowest. The problem is simply that the PRM’s
operating CPU threshold is too high.

Figure 7.5 shows the QoS, CPU quota and LLC resource levels from a PRM

w/ CAT run with fotonik3d. The PRM increases the LLC resource level by one at a
regular interval of 2 minutes. This period corresponds to the LLC decision interval
(20 seconds) times the LLC cycle threshold (6 cycles). The LLC level is never
down-regulated because cache contention is never detected by the PRM. Although
this could have been caused by an issue with our profiling method, it does not
significantly impact the QoS, as we discussed in the previous section. Comparing

40 Sandberg, Allport: Q-PRM

Figure 7.5: From the PRM w/ CAT benchmark using fotonik3d: QoS for Mem-
cached, and CPU quota and LLC resource level for fotonik3d. Cache contention is
never detected, and consequently the LLC level is increased monotonically.

Figures 7.4 and 7.5, the overall pattern is the same.
In general, the NaiveController controller is overly cautious about prioritizing

QoS over throughput. In earlier experiments we found that when the load is low,
and there is sufficient opportunity to perform best-effort work, the algorithm takes
too long to reach the optimal level of CPU quota. Under the conditions here, where
there is very little QoS slack, that works in favor of the PRM. At the same time,
the algorithm is too reckless. After the quota has been throttled, the controller
attempts to increase the quota level at the next decision interval. We see that this
leads to an immediate QoS violation in the aforementioned runs. This could have
been avoided by going into a cooldown period after contention has been detected.

7.2.2 Q-PRM

Proportional vs. Proportional v2

From Figure 7.6, we see that while both controllers exhibit oscillatory behavior,
Proportional v2 clearly oscillates to a lesser extent. This discrepancy is explained
by the fact thet Proportional v2 uses smaller CPU quota adjustments when the load
is low, in order to increase resolution. Examining the behavior from Time = 100
to Time = 200 in the figure, the difference is very clear. Proportional’s oscillary
amplitude is much higher, which leads it to frequently violating the QoS guaran-

Chapter 7: Discussion 41

Figure 7.6: Comparison of the proportional benchmarks using fotonik3d. Propor-
tional v2 in orange, and Proportional in blue

tee. Examining the start and the end of the time series, however, we see that they
largely behave in the same manner.

Holistic Evaluation

Evaluating our own controllers, while there are differences, it should be noted
that their overall results are quite similar. All of the controllers are able to perform
notably better than the PRM, and they all converge upon a relatively stable CPU
quota value.

There are some questions as to how much the nature of the load curve im-
pacts our results. Step, our algorithmically simplest controller, responds very well
to sinusoidal load curves due to only incrementing/decrementing the resource
level by one. However, if our curve was rapidly and abruptly changing the load
in a step-function manner, Step would be slow to converge and likely violate QoS
guarantees to a much larger degree when the load suddenly increases. In this
environment, would likely thrive, due to its awareness of not only if the QoS
guarantee is breached, but also the magnitude of the violation.

The ideal controller would be able to adapt to a wide variety of load patterns.
It would likely encapsulate some sort of latency history, in order to determine if the
load is smoothly increasing or decreasing, which in a real-world scenario would
correspond to diurnal patterns. In such a scenario, Step-like behavior would be

42 Sandberg, Allport: Q-PRM

very helpful. In case of rapid changes or load instability, it should err on the side
of the latency-critical jobs, exhibiting more -like behavior.

7.3 Analysis

7.3.1 QoS vs. Throughput

The first priority of the resource manager should be to ensure that the QoS target
is met. In other words, the QoS guarantee is more important than instructions
retired as an evaluation metric. A resouce manager that achieves a high through-
put by sacrificing the QoS guarantee is terrible. On the other hand, the maximum
guarantee is achieved by not doing any best-effort work at all.

We considered quantifying the relative importance of these metrics by coming
up with some sort of weighting scheme, but decided to do our evaluation qualit-
atively instead. One could argue that the QoS target is an absolute requirement
that must be met at all costs. In this sense, a 99% guarantee with a high through-
put is worse than a 100% guarantee with no work done. On the other hand, the
best-effort task may be considered essential in that it must be completed at some
point. The difference is that the best-effort task is not time sensitive, and is ideally
worked on when the load is low. Of course, if the guarantee is the same, a higher
throughput is preferable because it represents power savings. In the end, what we
are really interested in is a higher total energy efficiency, and the ultimate test of
a resource manager would be to compare the differences in power usage.

It should be noted that the load curve we use here is never lower than 76%
of the max load. For more than half of the runtime of a benchmark, the correct
decision is to completely throttle the best-effort CPU quota. This is perhaps more
intense than a typical real world scenario, where either one of the workloads
could be migrated to another cluster node. Such a migration would result in less
contention on each server, but a lower utilization and energy efficiency.

7.3.2 What Is the Significance of Our Results?

We have shown that we can achieve a higher QoS guarantee than the PRM by
using a QoS-aware approach. The main reason for this is that we are much more
accurate at detecting a QoS violation than the conventional, metrics-based ap-
proach. In one way, this is almost a trivial result, because while the PRM has to
estimate the QoS, the Q-PRM is provided with the answer. The Q-PRM has an
advantage because its algorithm is based on the QoS target, which defines our
evaluation metrics.

Our results show some degree of variation between individual runs. In other
words, the same run configuration does not always produce the same results.
There are many potential causes for this, and we have not investigated this in
depth. For example, variation could be caused by background jobs in the operating
system, interrupts, network traffic etc. We also suspect that there some inherent

Chapter 7: Discussion 43

flaws in the CloudSuite Memcached load generator. To mitigate this situation, we
took multiple samples for each benchmark, especially for the load testing bench-
mark to find the QoS target. However, for the dynamic benchmarks the sample
size may somewhat small.

The PRM may be capable of better performance under other conditions than
what we demonstrate here. In practice, the CPU utilization/quota system does all
of the meaningful work. The LLC resource was never down-regulated in our ex-
perimental runs. Even if it were, it is doubtful that it would be very effective as a
control mechanism. So, it is possible that we could do a different profiling, or use
longer lasting benchmarks. Maybe then the PRM is able to detect LLC contention
and throttle the LLC. Anyway, its main problem seems to be that it does not detect
CPU contention. The only profiling parameter for this is the CPU threshold. We
realized in the later part of this project that we could have manually set the CPU
threshold to a lower value. This would have improved the PRM’s performance sig-
nificantly, because it would then be able to detect QoS violations more accurately
and down-regulate the best-effort workload more quickly, leading to a higher QoS
guarantee. But the scientific value of such a result is questionable. We would be
artificially helping the PRM to do its job by tuning it to our specific workload and
the results we observed, instead of evaluating the system itself. The entire point
of using a resource manager in the first place is that is can be deployed to manage
an arbitrary workload without human intervention.

It should be mentioned that in some of our earlier experiments, when a less in-
tensive load curve was used, and stress-ng was used as the best-effort workload,
the PRM did better than in our final results. These results were not included in
this thesis only because of the practical difficulty and time that would be needed
to reproduce our earlier setup. Hence these results will have to remain anecdotal.
In any case, the resource managers were compared in an identical scenario in the
final experiment.

Considerable effort was spent trying to set up the PRM so that it would per-
form at its best. The fact that it only works well in specific conditions could be
considered an advantage of QoS-aware resource management. The PRM is not the
most advanced conventional resource manager available, and others (e.g. Twig)
may be able to generalize better. However, QoS-aware resource managers may
need less profiling to work, seeing as they use the QoS directly and do not have to
rely on extensive offline profiling in order to be application-agnostic. If that is the
case, we would argue that our results demonstrate one of the main advantages to
the QoS-aware approach.

A major weakness of our work is that we were only able to evaluate our re-
source manager with a single latency-critical service. Our claim is that QoS-aware
resource managers require less sophistication, compared to conventional resource
managers, to adapt to different workload colocations. If we had tested the Q-PRM
for at least two different applications, this argument would have been stronger.
Furthermore, we could have included a variety of load curves in our final exper-
iment. Seeing as different controllers thrive under different circumstances, this

44 Sandberg, Allport: Q-PRM

would allow us to compare the resource managers and algorithms more gener-
ally.

Our results demonstrate that QoS-awareness allows for accurate detection of
QoS violations. Our setup is somewhat artificial, considering that the QoS is com-
municated to the resource manager using a custom client on the same host. How-
ever, it should be possible to implement QoS-awareness in a production system.
For example, the resource manager could estimate the QoS by timing the TCP
connections established on the server.

7.4 Future Work

A lot of improvements could have been made in order to make our controllers
perform better, as well as more capable of generalizing to other workload coloca-
tions. Future work could involve using more control mechanisms, for example
cache occupancy and CPU frequency. Futhermore, experiments should be expan-
ded to integrate different load patterns, in order to show that our system can
deal with sudden change in the load. It would also be interesting to use another
latency-critical service, in order to show that our approach is generalizable. Going
even further, being able to dynamically start new latency-critical and best-effort
tasks during runtime would be a boon to a practical implementation in the real
world.

Chapter 8

Conclusion

In conclusion, we have presented Q-PRM, a modified verison of the Intel Platform
resource Manager. We have shown that by using real-time QoS measurements, we
can for the most part uphold the QoS guarantee while still performing a decent
chunk of best-effort work. Our approach improved upon the existing framework in
the Intel Platform Resource manager, increasing the QoS guarantee from 37.8% to
92.4%. We have also discussed which metrics we can utilize to evaluate resource
managers, and the extent to which they are relevant. Lastly, we acknowledge that
our model and experimental setup is not without its flaws, and openly discuss
those shortcomings.

45

Bibliography

[1] K. Konstantinos, P. Mitropoulou, E. Filiopoulou, C. Michalakelis and M.
Nikolaidou, ‘Cloud computing and economic growth,’ Oct. 2015. DOI: 10.
1145/2801948.2802000.

[2] T. DeStefano, R. Kneller and J. Timmis, ‘Cloud computing and firm growth,’
University of Nottingham, GEP, Discussion Papers 2019-09, Sep. 2019.
[Online]. Available: https://ideas.repec.org/p/not/notgep/2019-
09.html.

[3] J. Dean and L. A. Barroso, ‘The tail at scale,’ Communications of the ACM,
vol. 56, pp. 74–80, 2013. [Online]. Available: http://cacm.acm.org/
magazines/2013/2/160173-the-tail-at-scale/fulltext.

[4] D. Byrne, C. Corrado and D. E. Sichel, ‘The rise of cloud computing: Mind-
ing your p´s, q´s and k´s,’ National Bureau of Economic Research, Working
Paper 25188, Oct. 2018. DOI: 10.3386/w25188. [Online]. Available: http:
//www.nber.org/papers/w25188.

[5] L. Barroso and U. Holzle, ‘The case for energy-proportional computing,’
Computer, vol. 40, pp. 33–37, Jan. 2008. DOI: 10.1109/MC.2007.443.

[6] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso and C. Kozyrakis, ‘Towards
energy proportionality for large-scale latency-critical workloads,’ in Pro-
ceedings of the 41th Annual International Symposium on Computer Architec-
ture, 2014.

[7] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala, V. Narasayya,
H. Herodotou, P. Tomita, A. Chen, J. Zhang and J. Wang, ‘Perfiso: Perform-
ance isolation for commercial latency-sensitive services,’ in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), Boston, MA: USENIX Asso-
ciation, Jul. 2018, pp. 519–532, ISBN: 978-1-939133-01-4. [Online]. Avail-
able: https : / / www . usenix . org / conference / atc18 / presentation /
iorgulescu.

[8] J. Zhao, H. Cui, J. Xue and X. Feng, ‘Predicting cross-core performance
interference on multicore processors with regression analysis,’ IEEE Trans-
actions on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1443–1456,
2016. DOI: 10.1109/TPDS.2015.2442983.

47

https://doi.org/10.1145/2801948.2802000
https://doi.org/10.1145/2801948.2802000
https://ideas.repec.org/p/not/notgep/2019-09.html
https://ideas.repec.org/p/not/notgep/2019-09.html
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://doi.org/10.3386/w25188
http://www.nber.org/papers/w25188
http://www.nber.org/papers/w25188
https://doi.org/10.1109/MC.2007.443
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://doi.org/10.1109/TPDS.2015.2442983

48 Sandberg, Allport: Q-PRM

[9] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R.
McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung and V. Ven-
kataramani, ‘Scaling memcache at facebook,’ in 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), Lombard, IL:
USENIX Association, Apr. 2013, pp. 385–398, ISBN: 978-1-931971-00-3.
[Online]. Available: https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/nishtala.

[10] H. Kasture, D. B. Bartolini, N. Beckmann and D. Sanchez, ‘Rubik: Fast
analytical power management for latency-critical systems,’ in 2015 48th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2015, pp. 598–610. DOI: 10.1145/2830772.2830797.

[11] S. Chen, C. Delimitrou and J. F. Martınez, ‘Parties: Qos-aware resource
partitioning for multiple interactive services,’ in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19, Providence, RI, USA: As-
sociation for Computing Machinery, 2019, pp. 107–120, ISBN: 9781450362405.
DOI: 10.1145/3297858.3304005. [Online]. Available: https://doi.org/
10.1145/3297858.3304005.

[12] B. Fitzpatrick, ‘Distributed caching with memcached,’ Linux J., vol. 2004,
no. 124, p. 5, Aug. 2004, ISSN: 1075-3583.

[13] J. Yang, Y. Yue and K. V. Rashmi, ‘A large scale analysis of hundreds of in-
memory cache clusters at twitter,’ in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), USENIX Association, Nov.
2020, pp. 191–208, ISBN: 978-1-939133-19-9. [Online]. Available: https:
//www.usenix.org/conference/osdi20/presentation/yang.

[14] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan and C. Kozyrakis, ‘Her-
acles: Improving resource efficiency at scale,’ in 2015 ACM/IEEE 42nd An-
nual International Symposium on Computer Architecture (ISCA), 2015, pp. 450–
462. DOI: 10.1145/2749469.2749475.

[15] V. Petrucci, M. Laurenzano, J. Doherty, Y. Zhang, D. Mossé, J. Mars and
L. Tang, ‘Octopus-man: Qos-driven task management for heterogeneous
multicores in warehouse-scale computers,’ Feb. 2015. DOI: 10.1109/HPCA.
2015.7056037.

[16] Intel, Intel cmt/cat, https://github.com/intel/intel-cmt-cat, 2021.

[17] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure, 2019. arXiv:
1912.05848 [cs.DC].

[18] E. PARSA. (2021). ‘CloudSuite: A Benchmark Suite for Cloud Services,’
[Online]. Available: https://www.cloudsuite.ch/ (visited on 09/06/2021).

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1145/2830772.2830797
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1109/HPCA.2015.7056037
https://doi.org/10.1109/HPCA.2015.7056037
https://github.com/intel/intel-cmt-cat
https://arxiv.org/abs/1912.05848
https://www.cloudsuite.ch/

Bibliography 49

[19] R. Nishtala, V. Petrucci, P. Carpenter and M. Sjalander, ‘Twig: Multi-agent
task management for colocated latency-critical cloud services,’ in 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
2020, pp. 167–179. DOI: 10.1109/HPCA47549.2020.00023.

https://doi.org/10.1109/HPCA47549.2020.00023

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Michael Moen Allport, Jonas Sandberg

Q-PRM - A QoS Aware Resource
Manager for Colocated Services

Masteroppgave i Datateknologi
Veileder: Björn Gottschall
Medveileder: Rajiv Nishtala
Juli 2021

M
as
te
ro
pp

ga
ve

	Problem Statement
	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Background
	Fundamental Concepts
	Quality of Service
	Tail Latency
	Latency-Critical Workloads
	Best-Effort Workloads
	Load Testing
	QoS Target

	Resource Managers
	QoS-Awareness

	Memcached

	Related Work
	Heracles
	Octopus-Man
	PARTIES

	Design and Implementation
	Intel Platform Resource Manager
	Overview
	Control Mechanisms
	Runtime Explanation

	QoS-Aware Platform Resource Manager
	The Optimization Problem
	QoS-Aware Controllers

	Experimental Setup and Methodology
	Server Platform
	Overview
	Data Collection
	Workloads
	Memcached
	SPEC CPU®2017

	Intel PRM Profiling
	Evaluation Metrics

	Evaluation
	QoS Target and Max Load
	Resource Manager Evaluation
	Benchmark Configurations
	Results

	Discussion
	Initial Observations
	CPU Quota vs. Cache Allocation

	Evaluation
	Intel PRM
	Q-PRM

	Analysis
	QoS vs. Throughput
	What Is the Significance of Our Results?

	Future Work

	Conclusion
	Bibliography

