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Summary

In this project it was attempted to find desirable trajectories for sit-down motions
performed while wearing an exoskeleton and find a controller to stabilize these

trajectories.
Due to a late change in experimental setup and unforeseen challenges in data processing
and calculations this was unsuccessful. None the less the results are presented along with

possible steps to improve on the experiment.
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4.3 Illustration of Poincaré - Bendixson Criterion.Reprinted under Creative

Commons License[55] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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1
Introduction

1.1 Motivation

”At bottom, robotics is about us. It is the discipline of emulating our lives, of
wondering how we work.” - Rod Grupen [16]

”Exoskeletons”[from Greek exō, meaning out, outside [29] and skeleton, an artificial ex-
ternal supporting structure[30]] has been a staple of science fiction for almost a hundred
years. The likely first conception of a exoskeleton was by Nicholas Yagn [65] seen in
figure 1.1 this was an entirely passive skeleton in that it only used the energy of motion
stored in springs to ease locomotion. To the knowledge of the author this exoskeleton was
never implemented in practice, but this shows through the use of exoskeletons have been
part of the human consciousness for a long time.



Introduction 1.1. MOTIVATION

Figure 1.1: Early concept of an exoskeleton to augment walking, running and jumping

From this early beginning there have been taken great strides in the development
of exoskeletons and they are no longer just science fiction. Especially in hardware the
technology is proceeding at a great pace, but in the control systems they often rely on
non-sophisticated methods. Usually the exoskeletons are controlled through state-control,
impedance control or electromyographical (EMG) control, these methods have been shown
to be usable in applications(this will be discussed further in the literature review in chap-
ter 3) .

What will be attempted in here is making an exoskeleton move more like a human.This
is done considering the nature and limitations our bodies have and using the method of
Virtual Holonomic Constraints(VHC) and orbital stabilization of underactuated systems.
A further benefit is that if one can manage to control a fully actuated exoskeleton(ui ̸=
0 ∀ i = 1 . . . n) by only applying control action on all but one of the joints(n − 1),
then that actuator may be redundant and can be removed reducing weight and most likely
cost of the exoskeleton. Both of these are critical objectives for the mass adoption of these
types of devices

2



2
Scope

2.1 Tasks
1. Perform a study on theory of underactuated systems and assisting exoskeleton tech-

nologies.

2. Investigate desirable characteristics of sit-down motions

3. Develop a control system for a human-exoskeleton system

4. Test the developed control system on a given exoskeleton setup.

5. Discuss further steps and improvements

2.2 Structure
First a literature review will be presented. Furthermore general theory will be reviewed, the
results of the experiments will be shown and analysed before discussion and concluding
remarks.
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3
Literature Review

3.1 Assistive robots/exoskeletons
As mentioned in chapter 1 the earliest attempts in exoskeletons known to the author was
by Nicholas Yagn in the late 19-th century.

3.1.1 GE Hardiman
In more modern times starting with General Electrics ”Hardiman I” worked on from 1965-
1971[26]. This was an active exoskeleton that was powered by hydraulics and it had 30-
degrees of freedom (DOF). The prototype weighed around 680 kg and as can be seen in
figure 3.1 it was very bulky. These problems meant that it was never fully implemented,
but lead to advances in power supplies and human-machine interfaces[6].

Figure 3.1: Hardiman I prototype, GENERAL ELECTRIC CO SCHENECTADY NY SPE-
CIALTY MATERIALS HANDLING PRODUCTS OPERATION, Public domain, via Wikimedia
Commons[12]



Literature Review Mihajlo Pupin Institute, exoskeletons

3.1.2 Mihajlo Pupin Institute, exoskeletons

A family of exoskeletons trace their origins to Mihajlo Pupin Institute in the late sixties
early seventies. A short presentation of the will follow below

”Kinematic Walker”

In 1969 researchers at Mihajlo Pupin Institute in Belgrade developed the ”kinematic walker”.
This exoskeleton was pneumatically powered and had 6 DoF(3 on each leg) where the
knee and hip joints were actuated and the ankle joints was passive and only actuated in
the ”sagittal plane” [The vertical plane dividing the body in two symmetrical halves] .
This exoskeleton was not very sophisticated, but in tests on healthy subjects imitating a
limp state and only contributing in stability they were able to provide a shuffling gait[62,
p. 321]. This exoskeleton was the first successful active exoskeleton developed [61].

”Partial” active exoskeleton

In 1970 the researchers further developed an active pneumatic exoskeleton. This model
had three active DoF per leg and an additional actuated DoF for stabilizing by moving
the body in the coronal plane [62, p. 321-322]. This exoskeleton was controlled by an
electronic function generator. During trials fully paraplegic[paraplegia:partial or complete
paralysis of the lower half of the body with involvement of both legs that is usually due to
injury or disease of the spinal cord in the thoracic or lumbar region[31]] patients were able
two walk when supported by a person on each side or using a rolling support structure.
These limitations was due to instability from not being able to actuate the torso.

”Complete” exoskeleton

In the following year(1971) the problems with the ”partial” active skeleton was resolved
by adding a corset which allowed the torso to be actuated in bot the frontal and sagittal
plane. This stabilisation allowed paraplegic patients to walk with crutches.

There was also added force feedback from the soles in the feet, where three force
transducers were measuring the ground reaction force. The control system compensated
and kept these forces inside a predetermined range further contributing in stabilising the
system[62, p. 323-324]. This exoskeleton was pneumatically powered. It was later con-
cluded that pneumatically driving the exoskeletons was not practical and the researchers
moved on to electrical powered drives [62, p. 321-326]. This exoskeleton was realized and
tested at Belgrade Orthopedic Clinic in 1972[61].

”Complete electrical” exoskeleton

Moving away from pneumatically powered exoskeletons to electrical ones were done in
1973 [62, p. 325-326] this was mainly due to practical concerns. These early efforts be-
came a starting point for many other medical exoskeletons and lead to the development of
Zero-Moment Point method[61] which has found great purchase on the field of humanoid
robotics.

6
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3.1.3 Modular active orthosis - ”Active Suit”

The ”active suit” was worked on between 1974-1978 [62, p. 326-330] and was made to
help a wide range of patents with varying degrees of dysthrophy[any of various bodily
disorders, characterized by wasting of tissues[10]]. These users have problems(of differing
levels) with walking normally even without any challenging elevation or terrain. This is
because of weakness in some neuro-muscular systems like hips and knees. The ”active
suit” provides aid to the hip and knee joints to aid in the movement by using servomotors
at these joints. The system was powered by a nickel-cadmium battery which weighed
about 2 kilograms. This battery provided enough energy for 45 minutes of walking on
level ground or climbing up the stairs to the third floor 2-3 times

The apparatus was controlled by the user through switches. For walking gaits there
were three choices level ground, up stairs and down stairs. The motion is initiated by a
stop-start switch, after initiation the user can control the motions pace, stride and direction
by additional button commands.

The developers of the exoskeleton reported good results and further expanded upon
the technology in 1980. This model improved on the control system, lightened the weight
of the power supply and added an additional actuator at each knee.

3.1.4 Hybrid Assistive Limb - HAL

The Hybrid Assistive Limb(HAL) is a hybrid exoskeleton meaning that it is designed with
multiple applications ind mind, like medical assistive device, heavy work load assistance
among others[46]. The exoskeletons are made by the Japanese company Cyberdyne, lead
by Yoshiyuki Sankai the principle lead of the development of the HAL-system. The de-
velopment of the first version of the HAL began in 1992, in figure 3.2 HAL-5 type-B and
in 2017 the Medical HAL(lower limb exoskeleton) received approval from the U.S. Food
and Drug Administration(FDA)[37].

HAL utilizes a control system in two parts, analogous to the human body it has a
voluntary and autonomous part.The voluntary system measures bioelectrical signals from
the user and uses these signals to amplify the joint torque of the user. Myoelectric and
other bioelectrical signals are measured just before the muscle contracts and can then be
used to measure a users intention to move, stop or swing the leg . This means that the
HAL’s voluntary control system can be used to augment healthy persons, but also patients
with some lower limb handicaps, but obviously not in the case of significant injuries on
the spinal column[56].

When the intent of the user is detected the control system attempts to achieve joint an-
gles that corresponds to reference trajectories that are pre-recorded from a healthy person.
These trajectories are separated into two gait phases, swing phase and support phase[67].

In the autonomous control system of the HAL exoskeleton reaction forces, shifts in the
centre of gravity and joint angles are used to estimate the the intent of the user in order
to support that movement[46]. For instance when a user shifts their weight from one leg
to another that is an indication that they intend to take a step. This allowed a patient with
partial paralysis on the left leg to walk only being able to limp with the aid of a cane in
both hands before.

7
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Figure 3.2: HAL-5 (Type-B) Reprinted by permission from Springer Nature Customer Service Cen-
tre GmbH: Springer, Berlin, Heidelberg, Robotics Research. Springer Tracts in Advanced Robotics,
vol 66. [46], Copyright © 2014, Springer-Verlag Berlin Heidelberg

3.1.5 Berkeley Lower Extremity Exoskeleton (BLEEX)
In contrast to the previous mentioned exoskeletons Berkeley Lower Extremity Exoskeleton
is not a medical exoskeleton, but a device to augment the strength of healthy persons. It is
intended to carry it’s own weight and a payload [70]. It has 7-degrees of freedom on each
leg. 3 DOF at the hip, one DOF at the knee and 3 DOF at the hip. . It is fully actuated
in the sagittal plane, meaning at one DOF at the hip, knee and ankle and one additional
actuator at the hip(see figure 3.4). The exoskeleton allowed the users to move a payload
of 75 kg at a walking speed of up to 1.3 m/s.

3.1.6 RoboKnee
The researchers behind the RoboKnee shows that one can enhance human performance
without a complex design. It is a 1-DoF knee exoskeleton which augments the users
strength and endurance. A linear series elastic actuator provided additional torque around
the knee to aid the user [40] see figure 3.5.

A user was able to do one-legged knee bends with an additional weight of 60 kg with-
out becoming tired having only to be able to do it 2-3 times without assistance.

3.1.7 ATALANTE
As shown in the early days of exoskeletons a challenge was achieving hands-free sta-
ble walking for paraplegics (section 3.1.2) the ATALANTE-exoskeleton made by Wander-

8
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Figure 3.3: Concept sketch of Berkeley Lower Extremity Exoskeleton. When proper control action
is used it cancels the weight of the payload from the user and eases the movement. © 2006 IEEE

Figure 3.4: Degrees of freedom and actuators of the Berkeley Lower Extremity Skeleton [69]©
2006 IEEE

9



Literature Review FB-AXO

Figure 3.5: RoboKnee design showing knee brace and Series Elastic Actuator, The joint position
and velocity are deduced based on the actuator stroke and linear velocity, measured with a linear
encoder. Not shown are the Velcro straps and the lower connection piece[40] © 2004 IEEE

craft was the first exoskeleton to achieve dynamic hands-free walking for these patients
[17][The ATALANTE along with REX from Rex Bionics [43] are the only known ex-
oskeletons to manage this that are currently on the market[33, p. 123]]. The former au-
thors achieve a robust feedback controller for this objective through virtual constraints,
optimization and supervised machine learning. Further work mentioned is control algo-
rithms that can deal with uncertainties in the model and sit-to-stand and stand-to-sit the
former of which is addressed in [33].

The aforementioned authors develop control to achieve sit to stand motion(STS) for
the ATALANTE. Interestingly they achieve this for a the full 3D lower-limb exoskeleton
and not just in the sagittal plane. The utility of this is for instance a wheelchair bound
patient being able to start from sitting in the wheelchair and transition into walking , this
is essential because this can make the user self-dependent(if the exoskeleton can be put on
in a sitting position).

3.1.8 FB-AXO
The FB-AXO suit is a full body(FB) exoskeleton comprised of an upper body(UB) and
lower body(LB) module. In total there are 27 DoF, where 10 are active and 17 are passive
respectively. Most relevant for this project is the lower body module. LB-AXO has 12-
DoF where 4 are active and 8 are passive(6 on each leg) . It is primarily actuated at the hip
and knee joints in the sagittal plane[8]. For control of the exoskeletons at least some of
the models use Impedance-based force tracking control in the task space and Disturbance
observer based dynamic load torque compensator in the joint space[27] The AXO-LB and
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its predecessor1[1] the EXO-legs[60] are not intended for use by paraplegics and other
users with severe injuries, but rather to enhance the movement of elderly persons to allow
them to have an improved life in older age.

3.1.9 LegX (SuitX)

The LegX is a lower-body passive exoskeleton with two different operating modes, spring
assist and locked mode [39]. When in the spring assist mode the exoskeleton stores the
energy during the sit down motion and releases the energy when standing up. The level of
support can be chosen between a high and a low level.

In Locked mode the exoskeleton supports a ”floating” seated/squatting position.

Being a passive exoskeleton it does not have any motors, and therefore no encoders to
supply the joint angles of the exoskeleton-user system. This means that one must use other
means to obtain these measurements. This will be further discussed in Chapters 5 and 6.

3.1.10 Anthropomorphic and Non-anthropomorphic exoskeletons

It might seem obvious that exoskeletons should be ”anthropomorphic”[... comes from
the Late Latin word anthropomorphus, which itself traces to a Greek term birthed from the
roots anthrōp- (meaning ”human being”) and -morphos (-morphous).[28], morphous: hav-
ing (such) a form] meaning that the joints and links of the robot is close to the placement
of the humans joints and limbs. Most exoskeletons are anthropomorphic to some degree,
but this is not a hard constraint as shown in [3]. The authors relaxed these constraints and
saw a improvement in dynamical performance compared to a similar anthropomorphic de-
sign(see figure 3.6) and this also made it possible to optimize the position of the masses
on the exoskeleton, like moving the actuators closer to the torso.

1predecessor, in that both exoskeletons are part of the Active Assisted Living Program(AAL) [2]

11
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Figure 3.6: Two exoskeletons from [3] with the same actuators. (a) is the non-anthropomorphic
design and (b) is an anthropomorphic design. Copyright © 2014, IEEE

3.2 Underactuated systems and Orbital Stabilization
Human motions like walking, sitting and rising motions are periodic and we are therefore
interested stabilizing these motions orbitally or make a system without these oscillations
oscillate in a similar way. Another concern is that humanoids are either weakly actuated
or may have no actuation in some of the joints. This means that the old methods of orbital
stabilization (OB) are not sufficient. In [51] the authors present a clear method of orbital
stabilization of these system through Virtual Holonomic constraints.

In [32] extract desirable characteristics of humans from real human actors and use
the methods of [51] to impose these virtual constraint onto a human robot model based
anthropomorphic data. In [38] they use the method on a model of the robot Mahru III

In this thesis it was attempted to adapt these results to a exoskeleton designed for
human use.

12
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4.1 Holonomic constraints
Constraints gi, that can be written on the form:

gi(r1, . . . , rk, t) = 0 i = 1, . . . , l (4.1)

are holonomic and nonholonomic otherwise [54].

4.2 Generalized Coordinates
If one considers a system of k particles with mass mi and positions given by r⃗1 . . . r⃗k in
a thee dimensional Cartesian coordinate system (see figure 4.1). If this system is uncon-
strained it has 3k degrees of freedom. The dynamics of each particle is then easily defined
by Newton’s second law:

d

dt
(mv) = f (4.2)

where m is the particle mass, v particle velocity and f is the sum of external forces acting
on the particle. In our robotics applications mass is constant and one gets the familiar
ma = f, a = d

dtv. On the other hand if the system is constrained in some way, one can
no longer just consider the external forces, but must also account for the constraint forces
that are needed to enforce the constraints. The benefit is that if the system is subjected to l
holonomic constraints on the form of (4.1) the system may be described by n independent
coordinates q1, . . . qn where n = 3k − l.

The position of the each particle, i, can then be written as:

r⃗i(t) = r⃗i(q1, . . . , qn, t) (4.3)

These n coordinates are the systems generalized coordinates q = [q1, . . . , qn] ∈ Rn. For
n-link robot manipulator the joint variables form a set of generalized coordinates.



Basic Theory 4.3. EULER-LAGRANGE EQUATION

(r1,m1)

(r2,m2)

. . . (rk,mk)

Figure 4.1: Unconstrained system of k particles with 3k degrees of freedom

4.3 Euler-Lagrange Equation
The Euler-Lagrange equation is a popular method to derive the dynamics of a system
along with the Newton-Euler formulation. Euler-Lagrange equation can be derived by
D’Alembert’s principle, but these details are omitted for brevity; see for instance [54,
p. 248-250]. The Lagrangian is defined as:

L(q, q̇) := K(q, q̇)− P(q) (4.4)

Where K is the kinetic energy of the system and P the potential energy. The kinetic energy
is given by:

K :=
1

2
q̇T

[
n∑

i=1

(
miJvi(q)

TJvi
+ Jωi

Ri(q)IiRi(q)
TJωi

)
]
q̇ =

1

2
q̇TD(q)q̇ (4.5)

where D is the n× n symmetric, positive definite inertia matrix, mi is the i-th link mass,
Jvi

is the i-th link velocity jacobian, Jωi
is the i-th link angular velocity jacobian, Ri is

the rotation matrix from the world frame to the i-th body frame and Ii is the inertia tensor
of the i-th link.

The potential energy is only dependent only on the generalized coordinates:

P =

n∑

i=1

mig
T rci (4.6)

,
where mi is the mass of the i-th link and rci it’s centre of mass and g is the vector

of gravity in the inertial frame. It is important to note that if there is any elasticity in the
joints of the robots then one must account for this in the potential energy. The Lagrangian
equation is then defined by:

14
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d

dt

(
∂L(q, q̇)
∂q̇k

)
− ∂L(q, q̇

∂qk
= τk k = 1, . . . , n (4.7)

This equation can be rewritten as:

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ (4.8)

Where in the Coriolis matrix C each element is defined by:

ckj =

n∑

i=1

1

2

[
∂dkj
∂qj

+
∂dki
∂qj

− ∂dij
∂qk

]
(4.9)

and the gravity vector G(q) = [g1(q), . . . gn(q)]
T and τk is the generalized force at joint

k. When we consider the actuator dynamics (4.8) becomes:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u (4.10)

Where M(q) = D(q) + J(q) here J(q) represent the different inertias present in the
actuators and is diagonal, B(q) is an n × m matrix of full rank, u ∈ Rm is the required
actuator torque and the control input to the system.

Since the matrix M has the same properties as D(positive definite) it is invertible and
one can express the acceleration q̈, by:

q̈ =M(q)−1 [B(q)u− C(q, q̇)q̇ −G(q)] (4.11)

To write the system on standard form given by:

ẋ = f(x) + g(x)u (4.12)

we define x1 := q and x2 := q̇ and thus x = [x1, x2]
T this leads to:

ẋ1 = x2

ẋ2 =M(x1)
−1 [B(x1)u− C(x1, x2)x2 −G(x1)]

(4.13)

By inspection:

f(x) =

[
x2

M(x1)
−1 (−C(x1, x2)x2 −G(x1))

]

and,

g(x) =

[
0

M(x1)
−1B(x1)

]
(4.14)
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4.4 Fully Actuated and Underactuated systems

Underactuated mechanical systems are systems where the number of actuators are fewer
than the degrees of freedom. A system on the form of (4.10) is fully actuated when
rank(B(q)) = m = n, otherwise it is underactuated by degree n − m. If the system
is fully actuated(rank(B(q)) = n) then it is invertible and the input u can be expressed
as:

u = B(q)−1 [M(q)aq + C(q, q̇)q̇ +G(q)] (4.15)

This type of control action is called inverse dynamics control [54, p. 295]. Inserting this
into (4.11) we have:

q̈ =M(q)−1
(
B(q)B(q)−1 [M(q)aq + C(q, q̇)q̇ +G(q)]− C(q, q̇)q̇ −G(q)

)

=M(q)−1 (M(q)aq + C(q, q̇)q̇ +G(q)− C(q, q̇)q̇ −G(q))

= aq

(4.16)

Where aq = q̈ is the input acceleration vector. The system in (4.13) now reduces to a
double integrator:

ẍ1 = x2

ẍ2 = aq
(4.17)

The whole system can now be viewed as an inner-loop/outer-loop architecture illustrated
in 4.2 where the inner loop calculates the inƒput u to the robot based on joint positions and
velocities, and the outer loop output aq . A simple choice for the outer loop is for instance:

aq = q̈d(t)−K1e(t)−K2ė(t) (4.18)

Where qd is the desired trajectory, e = q − qd, ė = d
dte. K1 and K2 are diagonal gain

matrices.

Trajectory planner Outer Loop Controller Inner Loop Controller Robot
qd aq u q

Linearized System

Figure 4.2: Inner-loop/outer-loop structure

The inner loop is now a linearized system. Which is easily controlled.
If the system in (4.10) is underactuated however(rank(B(q) = m < n) there exists

no such direct feedback linerization as in (4.15). To linearize underactuated systems one
can use the methoth of partial feedback linearization [53] 1.

1Other control objectives will be further discussed later in the text
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4.5 Periodic systems and their properties
Many natural systems are periodic examples include planetary motions, bipedal walking
and most relevant for this project rising and sitting motions one might also want to induce
periodic solutions of other systems. A system has a periodic solution x(t) with period
T > 0 if2:

x(t) = x(t+ T ), ∀t ≤ 0, (4.19)

A periodic solution on the phase portrait is a closed trajectory and may be referred to as
alternatively a periodic orbit or a closed orbit[21, p. 54-55].

4.5.1 Existence
When we consider second order autonomous/time-invariant3 systems:

ẋ = f(x), x ∈ Rn (4.20)

f(x) is a continuously differentiable function. A condition for (4.20) having a periodic
solution is the Poincaré-Bendixson Criterion.

Lemma 4.5.1 (Poincaré-Bendixson Criterion[21]). Consider the system (4.20) and let M
be a closed bounded subset of the plane such that

• M contains no equilibrium points, or contains only one equilibrium points such
that the Jacobian matrix ∂f

∂x at this point has eigenvalues with positive real parts.
(Hence, the equilibrium point is unstable focus or unstable node.)

• Every trajectory starting in M stays in M for all future time.

Then, M contains a periodic orbit of (4.20).

To illustrate the use of the Criterion(lemma 4.5.1) suppose that the equilibrium point
P of figure 4.3 has the required properties then all trajectories in the vicinity of it will be
moving away from the equilibrium point. We can then choose the closed bounded region
M as the shaded area R. If we consider a simple closed curve V (x) = c where V (x) ∈
C1. Where C1 is the class of functions that are differentiable and whose derivatives are
continuous. The vector field f(x) points inward at x on the curve V (x) if the inner product
of the field and the gradient of the curve is negative:

f(x) · ∇V (x) < 0. (4.21)

conversely the vector field points outward if:

f(x) · ∇V (x) > 0. (4.22)

2Trivial solutions x(t) = c ∀t > 0 fit the definition (4.19) these solutions correspond to equilibrium points
and will be referred to as trivial periodic solutions, otherwise it can be assumed that periodic solutions refer to
nontrivial ones.

3Meaning no explicit dependence on time, t. In contrast to ẋ = f(x, t)
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Trajectories can only leave the set M = R if the vector field points out of the set at the
boundaries. So if f(x) · ∇v(x) < 0 in the shaded area and f(x) · ∇V (x) > 0 in the
non-shaded area between P and R, then trajectories stay inside of R. Thus the there must
be at least one periodic trajectory C in R. If this periodic trajectory is isolated it is called
a Limit Cycle.

Figure 4.3: Illustration of Poincaré - Bendixson Criterion.Reprinted under Creative Commons
License[55]

4.5.2 Orbital stability
The definitions of Orbital stability in this text is based on [48], [50] and [21, p 331].

Definition 4.5.1 (Orbital Stability). Let x∗(t) be the solution of (4.20) such that x∗ =
x∗(t, x∗0) and x∗(t) = x∗(t+ T ),∀t, T > 0 meaning that x∗(t) is a periodic solution. Let
Ox∗ ⊂ Rn be the orbit of x∗(t) meaning:

Ox∗ = {ζ ∈ Rn : ζ = x∗(t), t ∈ [0, T ]} (4.23)

and the minimum distance from x to a point in the set M is defined as:

dist(x,M) inf
y∈M

∥x− y∥ (4.24)

Then x∗(t) is orbitally stable if for any ϵ > 0 ∃δ > 0 such that:

if ∥x(0)− x∗0∥ < δ, then dist(x(t),Ox∗) < ϵ ∀t ≥ 0 (4.25)

if this holds and additionally:

lim
t→+∞

dist(x(t),Ox∗) = 0 (4.26)

Then it is asymptotically orbitally stable
finally it is orbitally exponentially stable if it is orbitally stable and there exist c1, c2 >

0 and one can chose δ > 0 such that:

if dist(x0,Ox∗) < δ then dist(x(t),Ox∗) ≤ c1 · dist(x0,Ox∗)e−c2(t−to),∀t ≥ t0
(4.27)
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4.5.3 Moving Poincaré sections
If one considers the matrix form of (4.7):

d

dt

(
∂L(q, q̇)
∂q̇

)
− ∂L(q, q̇

∂q
) = B(q)u (4.28)

where q, q̇ ∈ Rn are the generalized coordinates and their velocities. u ∈ Rm are the
control inputs and B(q) has full rank. To determine stability of periodic orbits we can
introduce moving Poincaré sections

Definition 4.5.2 (Moving Poincaré sections[50][24][49] ). Let q∗(t) ∀ t ∈ [0, T ] be
a solution of (4.28) with the control input u∗(t) ∈ C1([0, T ]), and initial conditions
q∗(0) = q∗0 , q̇

∗(0) = q̇∗0 , such that (|q̇∗(t)|2 + q̈∗(t)) > 0 ∀t ∈ [0, T ]. The corresponding
trajectory´s orbit:

Oq∗ =
{[ q

q̇

]
∈ R2n : q = q∗(τ), q̇ = q̇∗(τ), τ ∈ [0, T ]

}
, (4.29)

and the tubular neighborhood, the set of all points no further than some ϵ > 0 from O∗:

Oϵ(q
∗) =

[ q
q̇

]
: min
τ∈[0,T ]

∥[q − q∗(τ); q̇ − q̇∗(τ)]∥ ≤ ϵ (4.30)

A Moving Poincaré Section is a family if (2n − 1)-dimensional C1-smooth surfaces
S(t), t ∈ [0, T ] associated with q∗(t), if:

1. Surfaces S(·) are locally disjoint meaning ∃ϵ > 0 : S(τ1) ∩ S(τ2) ∩ O∗
ϵ =

∅,∀τ1, τ2, τ1 ̸= τ2.

2. Each of the surfaces S(·) locally intersects the orbit only at one point, meaning
∃ϵ > 0 : S(τ) ∩ {

[
q∗(t)
q̇∗(t)

]
, |t− τ | < ϵ} ∩ Oϵ(q

∗) =
{[

q∗(τ)
q̇∗(τ)

]}
∀τ ∈ [0, T ].

3. The surfaces S(·). are smoothly parametrized by time, meaning ∃fs(q, q̇, t) ∈
C1(Rn,Rn,R) and ϵ > 0 : S(t) ∩ Oϵ(q

∗) = {
[ q
q̇

]
∈ R2n : fs(q, q̇, t) = 0} ∩

Oϵ(q
∗) .

4. The surfaces S(·) are transversal to the orbit (4.29), meaning ∀t ∈ [0, T ]:


∂fs
∂q

∣∣∣∣ q=q∗(t)
q̇=q̇∗(t)



T

q̇∗(t) +


∂fs
∂q̈

∣∣∣∣ q=q∗(t)
q̇=q̇∗(t)



T

q̈∗(t) ̸= 0.
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Figure 4.4: Moving Poincaré section for periodic trajectory x∗(t). Reprinted from Annual Reviews
in Control Vol.32, Issue 2, A.S. Shiriaev, L.B. Freidovich, I.R. Manchester , Can we make a robot
ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical
systems, Pages 200-211, Copyright ©(2008), with permission from Elsevier

4.5.4 Transverse Coordinates
Definition 4.5.3 (Transverse coordinates[49]). Given a moving Poincaré section as in defi-
nition 4.5.2, the state coordinates can be locally transformed into

[ q
q̇

]
7→

[
θ
x⊥

]
. θ(t) ∈ R1

parameterizes position on the trajectory in Rn × Rn. x⊥(t) ∈ R2n−1 defines location
on the surface S(t). x⊥ is known as the vector of transverse coordinates and belongs to
the tangent space TS(t)[50] of the moving Poincaré sections as shown in figure 4.4. The
dynamics of x⊥ is known as the transverse dynamics.

If one linearizes the transverse dynamics as in definition 4.5.3 along the solution
q∗(t), t ∈ [0, T ] this brings about a linear time-varying control system defined for t ∈
[0, T ] and is of dimension 2n. The subsystem x⊥ as defined in 4.5.3 are called a trans-
verse linearization, discussed further in 4.6.4.

4.6 Virtual Holonomic constraints (VHC)
Definition 4.6.1 (Virtual holonomic constraints). Given a controlled Lagrangian system
like (4.28), suppose there exist a solution q∗ and a control input u∗ (and not physical
constraints) that imposes the following geometric relations:

q1 = ϕ1(θ), q2 = ϕ2(θ), . . . , qn = ϕn(θ) (4.31)

between the generalized coordinates and a new variable θ ∈ R. The functions ϕi(θ) are
smooth(C2) functions. Then the relations (4.31) are called virtual holonomic constraints.

The scalar variable θ is alternatively know as the motion generator(MG) and ϕi as the
synchronization functions. There are many choices for θ, but most often one will choose
the coordinate at the passive joint when dealing with underactuated systems.

The idea of Virtual holonomic constraints approach is to find some relation between
the degrees of freedom or a desired relation and then impose that relation on the system
with control action.
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4.6.1 Reduced dynamics
Assume that the conditions of 4.6.1 are valid on the orbit of the solution q∗, see (4.29). If
the control input u∗ achieves holding the relations (4.31) invariant we can rewrite (4.10)
by utilising:

q(t) = Φ(θ∗(t)), q̇(t) = Φ′(θ∗)θ̇∗(t) and q̈(t) = Φ′(θ∗(t))θ̈∗(t)+Φ′′(θ∗(t))θ̇∗(t)2

Where

q(t) = [q1(t), q2(t), . . . , qn(t)]
T

q̇(t) =
d

dt
q(t) = [q̇1(t), q̇2(t), . . . , q̇n(t)]

T

q̈(t) =
d2

dt2
q(t) = [q̈1(t), q̈2(t), . . . , q̈n(t)]

T

(4.32)

, and

Φ(θ) := [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ]
T

Φ′(θ) =
∂

∂θ
Φ(θ) = [ϕ′1(θ), ϕ

′
2(θ), . . . , ϕ

′
n(θ]

T

Φ′′(θ) =
∂2

∂θ2
[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ]

T = [ϕ′′1(θ), ϕ
′′
2(θ), . . . , ϕ

′′
n(θ]

T

(4.33)

This leads to:

M(Φ(θ∗))
[
Φ′(θ∗)θ̈∗ +Φ′′(θ∗)θ̇∗

2
]
+ C(Φ(θ∗),Φ′(θ∗))θ̇∗ · Φ′(θ∗)θ̇∗

+G(Φ(θ∗)) = B(Φ(θ∗))u∗
(4.34)

This can be manipulated by introducing

B(q)⊥ ∈ R(n−m)×n such that B(q)⊥B(q) = 0 (4.35)

a matrix that defines the nonactuated coordinates such that[32]:

B⊥(Φ(θ∗))

[
M(Φ(θ∗))

[
Φ′(θ∗)θ̈∗ +Φ′′(θ∗)θ̇∗

2
]

+ C(Φ(θ∗),Φ′(θ∗))θ̇∗ · Φ′(θ∗)θ̇∗ +G(Φ(θ∗))

]

= B⊥(Φ(θ∗))B(Φ(θ∗))u∗ = 0

(4.36)

One can then rearrange (4.36) into a set of second order differential equations [52]:

αi(θ
∗)θ̈∗ + βi(θ

∗)θ̇∗
2
+ γi(θ

∗) = 0 i = 1, . . . , n−m. (4.37)

(4.37) is known as the reduced dynamics Where α(·), β(·) and γ(·) are smooth functions
defined as:

α(θ∗) = B⊥(Φ(θ∗))M(Φ(θ∗))Φ′(θ∗),

β(θ∗) = B⊥(Φ(θ∗)) [C(Φ(θ∗),Φ′(θ∗))Φ′(θ∗) +M(Φ(θ∗))Φ′′(θ∗)] ,

γ(θ∗) = B⊥(Φ(θ∗))G(Φ(θ∗)).

(4.38)
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When the degree of underactuation is one this reduces to a scalar second order differential
equation:

α(θ∗)θ̈∗ + β(θ∗)θ̇∗
2
+ γ(θ∗) = 0 (4.39)

The whole motion will now be parameterized by the variable θ∗. Meaning that we now
can study the full system (4.10) by solving (4.37) and keeping the relations of (4.31) in
mind. [32]

Theorem 4.6.1 (Integral of motion of reduced dynamics [51],[50],[32]). Suppose that
α(θ) ̸= 0 along the solution (θ∗(t), θ̇∗(t)) with initial conditions θ∗(0) = θ0, θ̇

∗(0) = θ̇0.
Then there exist a integral function I along the solution. The integral of motion of the
reduced dynamics (4.39) is:

I(θ∗(t), θ̇∗(t), θ0, θ̇0) = θ̇∗
2 − ψ(θ∗, θ0)

[
θ̇20 −

∫ θ∗

θ0

ψ(s, θ0)
2γ(s)

α(s)
ds

]
(4.40)

with
ψ(θ0, θ1) = e−2

∫ θ1
θ0

β(τ)
α(τ)

dτ (4.41)

This integral function preserves its zero value along (θ∗, θ̇∗) even if (θ∗, θ̇∗) are un-
bounded.

Proof. See B.2

Theorem 4.6.2 ([51]). With some constants x and y, the time derivative of the function
I(θ, θ̇, x, y) as defined in 4.6.1 calculated along the solution (θ(t), θ̇(t)) of the system:

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) =W (4.42)

can be found as

d

dt
I(θ, θ̇, x, y) = θ̇

{
2

α(θ)
W − 2β(θ)

α(θ)
I(θ, θ̇, x, y)

}
(4.43)

Proof. See B.3

4.6.2 Periodic Solution
The goal is to find a feedback controller that achieves invariance of the VHC(4.31) and
Orbital Asymptotic stability of a T-periodic solution of (4.37)

θ∗(t) = θ∗(t+ T ) ∀t (4.44)

4.6.3 Partial Feedback Linearization
Given the virtual holonomic constraints (4.31), we can introduce (n + 1) excessive coor-
dinates

y1 = q1 − ϕ1(θ), . . . , yn = qn − ϕn(θ) (4.45)
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for the original system(n-DoF). Since they are excessive we can choose one of the co-
ordinates and express it as a function of the others and thus exclude it. So we are left
with

y =



y1
...

yn−1


 and θ. (4.46)

The last(arbitrarily chosen) equality in (4.45) can be expressed as

qn = ϕn(θ) + h(y1, . . . , yn−1, θ) (4.47)

Where h(·) is a smooth(C2) scalar function and h(·) ≡ 0 on q∗(t)

q̇ =



q̇1
...
q̇n


 =




ẏ1 + ϕ′1(θ)θ̇
ẏ2 + ϕ′2(θ)θ̇

...

ϕ′n(θ)θ̇ +∇h ·
[
ẏ

θ̇

]




=

([
In−1 0(n−1)×1

∇h

]
+
[
0n×(n−1) Φ′(θ)

]) [
ẏ

θ̇

]

= L(y, θ)

[
ẏ

θ̇

]

(4.48)

where In−1 is the (n − 1) × (n − 1)-identity matrix, 0a×b is the a × b-zero matrix,
∇h =

[
∂h
∂y1

, . . . , ∂h
∂yn−1

, ∂h∂θ

]
, and Φ′(θ) as in (4.33).

q̈ =



q̈1
...
q̈n


 =




ÿ1 + ϕ′′1(θ)θ̇
2 + ϕ′1(θ)θ̈

ÿ2 + ϕ′′2(θ)θ̇
2 + ϕ′1(θ)θ̈

...

ϕ′′n(θ)θ̇
2 + ϕ′n(θ)θ̈ +

d
dt

(
∇h ·

[
ẏ

θ̇

])




= L(y, θ)

[
ÿ

θ̈

]
+

[
0(n−1)×1

1

] [
ẏT θ̇

]
∇2h

[
ẏ

θ̇

]
+Φ′′(θ)θ̇2

= L(y, θ)

[
ÿ

θ̈

]
+N(y, θ, ẏ, θ̇)

(4.49)

Where ∇2h is the Hessian of the function h(y1, y2, . . . , yn−1, θ). This transformation can
now be used to rewrite the (4.11) in terms of the new coordinates

L(y, θ)

[
ÿ

θ̈

]
+N(y, θ, ẏ, θ̇) =M(y, θ)−1

[
B(y, θ)u− C(θ, θ̇, y, ẏ)L(y, θ)

[
ẏ

θ̇

]
−G(y, θ)

]

(4.50)
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Suppose that L(y, θ) is nonsingular in a vicinity of the orbit Oθ∗ of a solution θ∗(t) then
we can rewrite (4.50) as
[
ÿ

θ̈

]
= L(y, θ)−1

{
M(y, θ)−1

[
B(y, θ)u− C(y, θ, ẏ, θ̇)L(y, θ)

[
ẏ

θ̇

]
−G(y, θ)

]
−N(y, θ, ẏ, θ̇)

}

(4.51)

Looking at the (n− 1) subsystem ÿ

ÿ = K(y, θ)u+R(y, θ, ẏ, θ̇) (4.52)

where

K(y, θ) :=

[
In−1

0(n−1)×1

]T
L(y, θ)−1M(y, θ)−1B(y, θ) (4.53)

and

R(y, θ, ẏ, θ̇) =

[
In−1

0(n−1)×1

]T
L(y, θ)−1

{
M(y, θ)−1

[
− C(y, θ, ẏ, θ̇)L(y, θ)

[
ẏ

θ̇

]

−G(y, θ)

]
−N(y, θ, ẏ, θ̇)

}

(4.54)

From here on out we will assume that the degree of underactuation is one(m = n−1))
If we introduce a feedback transformation on the form:

u = K(y, θ)−1[v −R(y, θ, ẏ, θ̇)] (4.55)

then (4.52) is reduced to

ÿ =K(y, θ)
{
K(y, θ)−1[v −R(y, θ, ẏ, θ̇)]

}
+R(y, θ, ẏ, θ̇)

=v
(4.56)

Where v ∈ R(n− 1) is a new control input that will be discussed later. When it comes to
the dynamics of θ we use B⊥ ∈ R1×n as defined in (4.35) and multiply it by (4.50)

B⊥(y, θ)

{
M(y, θ)

[
L(y, θ)

[
ÿ

θ̈

]
+N(y, θ, ẏ, θ̇)

]}

= B⊥(y, θ)

{[
B(y, θ)u− C(θ, θ̇, y, ẏ)L(y, θ)

[
ẏ

θ̇

]
−G(y, θ)

]}

⇒ B⊥(y, θ)

{
M(y, θ)

[
L(y, θ)

[
ÿ

θ̈

]
+N(y, θ, ẏ, θ̇)

]
+ C(θ, θ̇, y, ẏ)L(y, θ)

[
ẏ

θ̇

]
+G(y, θ)

}

= B⊥(y, θ)B(y, θ)u = 0

(4.57)
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and use Hadamard’s lemma(A.2.1) when y = ẏ = ÿ = 0(n−1)×1 and eliminate ÿ by
using (4.56) we rediscover the α− β − γ-equation of the reduced dynamics:

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = gy(y, θ, ẏ, θ̇, θ̈)y + gẏ(y, θ, ẏ, θ̇, θ̈)ẏ

+ gv(y, θ, ẏ, θ̇, θ̈)v

ÿ = v

(4.58)

gy(·), gẏ(·), gv(·), are all smooth functions of the requisite dimensions.

4.6.4 Transverse linearization
A natural choice of transverse coordinates are

x⊥ =



I(θ, θ̇, θ∗0 , θ̇

∗
0)

y
ẏ


 ∈ R2n−1 (4.59)

Where I is as defined in 4.6.1. These transverse coordinates represent a deviation from the
orbit of θ∗ because if a at any point in the vicinity x⊥ = 0 then that point belongs to Oθ∗

and if not then magnitude of x⊥ is equal to the Euclidean distance to the orbit from that
point [38].

4.6.5 Augmented system
Based on:[51] By using Theorem 4.6.2 we can introduce

d

dt
I(θ, θ̇, θ∗0 , θ̇

∗
0) =

2θ̇

α(θ)

{
[g̃y(·)y + g̃ẏ(·)ẏ + g̃v(·)v]− β(θ)I(θ, θ̇, θ∗0 , θ̇

∗
0)
}

ÿ = v

(4.60)

where

g̃y = gy(0, θ
∗(t), 0, θ̇∗(t), θ̈∗(t))

g̃ẏ = gẏ(0, θ
∗(t), 0, θ̇∗(t), θ̈∗(t))

g̃v = gv(0, θ
∗(t), 0, θ̇∗(t), θ̈∗(t))

(4.61)

The linear control system of (4.60) along with the definition of x⊥ as in (4.59) gives us on
state-space form:

ẋ⊥ = A(t)x⊥ + b(t)v (4.62)

Where A(t) ∈ R(2n−1)×(2n−1) and b(t) ∈ R(2n−1)×(n−1) are defined as:

A(t+ T ) = A(t) =




a11(t) a12(t) a13(t)
0(n−1)×1 0(n−1)×(n−1) In−1

0(n−1)×1 0(n−1)×(n−1) 0(n−1)×(n−1)




b(t+ T ) = b(t) =




b1(t)
0(n−1)×(n−1)

In−1




(4.63)
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Where

a11(t) = −2θ̇∗(t)β(θ∗(t))
α(θ∗(t))

, a12(t) =
2θ̇∗(t)g̃y(·)
α(θ∗(t))

,

a13(t) =
2θ̇∗(t)g̃ẏ(·)
α(θ∗(t))

b1(t) =
2θ̇∗(t)g̃v(·)
α(θ∗(t))

(4.64)

4.7 Stabilizing linear systems
For a general linear system

ẋ(t) = A(t)x(t) + b(t)u(t) ∀t ∈ [t0, T ]

y(t) = C(t)x(t)
(4.65)

Where the state vector x(t) ∈ Rn, input vector u(t) ∈ Rm, A(t) ∈ Rn×n, b(t) ∈ Rn×m

and C(t) ∈ Rp×n .

Definition 4.7.1 (Exponential Stability[21]). The equilibrium point x = 0 of (4.65) is
exponentially stable if there exits positive constants c, k and λ such that

∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0),∀∥x(t0)∥ < c (4.66)

and globally exponentially stable if (4.66) for any initial state x(t0)

If A(t) = A, meaning constant and the conditions of Definition 4.7.1 holds then A is
called a Hurwitz matrix and Re[λi] < 0∀i where λi, are the eigenvalues of A.

Theorem 4.7.1 (Controllability [7]). The n-dimensional pair (A(t), b(t) is controllable at
time t0 if and only if there exists t1 > t0 such that

Wc(t0, t1) =

∫ t1

t0

Φ(t1, τ)b(τ)b(τ)
TΦ(t1, τ)

T dτ (4.67)

and Wc ∈ Rn×n is nonsingular Where Φ(t, τ) is the state transition matrix of ẋ =
A(t)x(t) as defined in A.3.2.

Proof. See B.4

4.7.1 State Feedback Control
Based on:[57][5] If the controllability conditions of theorem 4.7.1 are met for (4.65)
we can introduce the control input

u(t) = K(t)x(t) (4.68)

K(t) is chosen such that (A+ bK) is a stable matrix. This leads to the closed loop system

ẋ = [A(t)− b(t)K(t)]x(t) (4.69)

The equilibrium x(t) = 0 is exponentially stable. The existence of such a matrix(K) is
guaranteed if (A, b) are controllable( or stabilizable)[18]
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4.7.2 Linear-quadratic Regulator
To find the optimal control input (4.68) one minimizes a quadratic cost function J

J(x(t0), u(t), t0, t1) =

∫ t1

t0

[
x(t)T q(t)x(t) + u(t)TR(t)u(t)

]
dt+ x(t1)

TSx(t1)

(4.70)
Q(t) is the weight of deviation of the state x(t) from the origin, R(t) is the weight on the
use of control action and S(t) is the weight on the final state. Where Q ∈ Rn×n = QT ⪰
0(Symmetric positive-semidefinite), R ∈ Rm×m = RT ≻ 0(Symmetric positive-definite)
and S ∈ Rn×n = ST ⪰ 0.

The optimal control is then

u∗(t) = −R(t)−1P (t)x(t) (4.71)

Where P (t) = PT (t) is the solution of the Riccati differential equation(RDE)[20].

−Ṗ (t) = AT (t)P (t)+P (t)A(t)−P (t)B(t)R−1(t)BT (t)P (t)+Q(t) and P (t1) = S
(4.72)

4.8 Periodic Riccati differential equation
4

To stabilize the origin of the augmented system (4.62) corresponding to the nominal
behaviour i.e

I = 0

y = 0 → qi = ϕi(θ
∗) i = 1, . . . , n− 1

ẏ = 0 → q̇i = ϕ′i(θ
∗)θ̇∗ i = 1, . . . , n− 1

(4.73)

one finds the LQR-gain matrix K(t) by solving the matrix Riccatti differential equation
with Periodic coefficients(PRDE) (4.75) with (4.74).

P (t) = P (t+ T ) and P (t) = P (t)T for all t ∈ [0, T ] (4.74)

and

Ṗ (t)+A(t)TP (T )+P (t)A(t)+Q(t) = P (t)b(t)R(t)−1b(t)TP (t) ∀t ∈ [0, T ]. (4.75)

Where Q and R are constant weights on the state and control input respectively, A(t) and
B(t) are as defined in (4.63). This equation can then be solved numerically as shown in
[51]. This leads to the expression for K in (4.76)

K(t) = −R−1b(t)TP (t) (4.76)

4This section is largely taken from the TTK4550 - Engineering Cybernetics, Specialization Project, which is
appended to the text.
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This K(t) minimizes the quadratic cost function:

J =

∫ ∞

0

[
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

]
dt (4.77)

wrt. u(t) on solutions of the periodic system:

ẋ(t) = A(t)x(t) + b(t)u(t), x(0) = x0 (4.78)

(4.77) and (4.78) as presented in [13]

4.8.1 Preliminaries

Theorem 4.8.1 ([59]). First consider the state transition matrix as defined in Definition
A.3.2. If A(t) is T -periodic then the monodromy matrix corresponding to A(t) is

ΨA(t0) = ΦA(t0 + T, t0) (4.79)

and the eigenvalues of ΨA(t0) are called the characteristic multipliers of A(t)[59][13].

Definition 4.8.1 (Reachable). A characteristic multiplier λ of A(t) is said to be unreach-
able if ΨT

A(0)x = λx, x ̸= 0 imply that b(t)TΦT
A(0, t) = 0 almost everywhere for

t ∈ [0, T ]. Conversely if λ of A(t) is not unreachable than it it is reachable.

Definition 4.8.2 (Stabilizable). The system (4.65) is said to be stabilizable if all charac-
teristic multipliers |λ| ≥ 0 are reachable

Definition 4.8.3 (Observability). A characteristic multiplier λ of A(t) is said to be unob-
servable if ΨT

A(0)x = λx, x ̸= 0 imply that C(t)TΦT
A(0, t) = 0 almost everywhere for

t ∈ [0, T ]. Conversely if λ of A(t) is not unobservable than it it is observable.

Definition 4.8.4 (Detectability). The system (4.65) is said to be detectable if all charac-
teristic multipliers |λ| ≥ 0 are observable

Definition 4.8.5 (Stabilizing solution). A solution P (t) is called a stabilizing solution if
A(t)− b(t)b(t)TP (t)is stable.

Theorem 4.8.2 (Existence[59]). The periodic Riccati differential equation (4.75) has a
unique T-periodic stabilizing solution P (t) = P (t)T ⪰ 0 if an only if the pair (A(t), b(t)
is stabilizable and the pair (A(t), C(t)) is detectable

Theorem 4.8.3 (Existence [13]). The periodic Riccati differential equation (4.75) has
a unique T-periodic stabilizing solution P (t) = P (t)T ⪰ 0 if the pair (A(t), b(t) is
stabilizable and the pair (A(t), Q(t)

1
2 is detectable, where (Q(t)

1
2 )TQ(t)

1
2 = Q(t)

There are numerous methods for solving the PRDE(4.75)(and it is also an area of active
research)like the periodic generator method[66], multishot methods[59], but here we will
consider the approaches in [14][15]
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4.8.2 Solving the periodic differential Riccati equation
Consider the differential Riccati equation

R(P, t) = 0, ∀t ≥ 0, (4.80)

Where R(P, t) is defined as

R(P, t) =
d

dt
P (t)+A(t)TP (t)+P (t)A(t)−P (t)Bt)R(t)−1B(t)TP (t)+Q(t) (4.81)

A(t), Q(t), P (t) ∈ Rn×n, B(t) ∈ Rn×m, R(t) ∈ Rm×m all these matrices are continous
and T -periodic matrix-functions with T > 0, Q(t), R(t) ≻ 0 ∀t ≥ 0.

Proposition 4.8.1 (Maximal solution of (4.81)[14][15]). Suppose that A, B, Q, and R
are continuous T -periodic matrix-functions, the pair (A,B) is stabilizable and Q(t) ≻ 0,
R(t) ≻ 0, ∀ t ∈ [0, T ]. Then, there exists a T -periodic stabilising solution P+ of (4.81).
Moreover, any T -periodic solution P of the Riccati inequality

R(P, t) ≥ 0 ∀t ∈ [0, T ], (4.82)

satisfies the inequality
P (t) ≤ P+(t) ∀t ∈ [0, T ]. (4.83)

The Schur complement5transforms (4.82) into a linear matrix inequality(LMI) [14]

L(P, t) ≥ 0, ∀t ∈ [0, T ], (4.84)

where

L(P, t) =
[

d
dtP (t) +A(t)TP (t) + P (t)A(t) +Q(t) P (t)B(t)

B(t)TP (t) R(t)

]
(4.85)

(4.83) means that the problem of finding this periodic matrix function now is a optimisation
problem by using the performance index

F(P ) =

∫ T

0

tr(P (t))dt (4.86)

where tr(A(t)) =
∑n

i=1 aii(t) for any A(t) ∈ Rn×n. (4.86). Minimizing the perfor-
mance index with the inequality (4.85) is an infinite dimensional problem. To find an
finite approximation of a stabilizing solution one introduces a T-periodic trigonometric
symmetric matrix polynomial P̂ ∈ Rn×n

P̂ =

M∑

k=−M

eikωtFk(P ) (4.87)

5Schur complement of M[42] :(M/P ) = S − RP−1Q, where the nonsingular P is the leading submatrix

of M =

[
P Q
R S

]
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Where i is the imaginary unit, ω = 2π
T , F0(P )

T = F0(P ) ∈ Rn×n, Fk(P )
T = Fk(P ) ∈

Cn×n Let PM be the vector space of all matrix polynomials P̂ of degree ≤M .
To transform infinite optimization problem into a finite one we consider a sampled

version of (4.85)

L(P, tj) ≥ 0, tj = (j − 1)
T

N
, j = 1, . . . , N (4.88)

Thus, we have the Semi-definite programming(SDP) problem:

min
P̂ (tj)∈PM

−F(P̂ )

s.t.

L(P̂ , tj) ≥ 0 j = 1, . . . , N

−dIn ≤ P̂ (tj) ≤ dIn j = 1, . . . , N

(4.89)

Where d is a constant, chosen sufficiently large, In is the n× n identity matrix
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5
Experiment

5.1 Hypothesis
Hypothesis 1 (H1). There exists functions ϕi(θ) and a scalar θ such that the degrees of
freedom,qi of the human-exoskeleton system are parameterized for i = 1 . . . 4.

5.2 Experimental Setup

5.2.1 Original Plan
Being very relevant for medical exoskeletons the Lower Body AXO suit mentioned in
section 3.1.8 was chosen for the experiments. Controllers for walking exists for this ex-
oskeleton, but no controllers for STS-motions exists1. The LB-AXO(Shown in Figure 5.1)
being a active exoskeleton with encoders the measurement of the joint angles should have
been available. However due to software limitations it was not possible in the allotted
time(this became clear during the first of two days spent at the University of Gävle where
the experiment were to be performed) to improve the code and take the measurement series
needed for the project. The choice was then made to use another exoskeleton.

5.2.2 Revised plan
The alternative exoskeleton chosen was the LegX passive exoskeleton3.1.9 this being a
passive exoskeleton, means that the joint angles were not readily available and another way
of obtaining these measurements was found. Using Inertial measurements units(IMU). It
is important to note that the change of experimental setup also changes the end state of
the project. If the LB-AXO suit was used then it would be possible to develop a controller
and test it on the exoskeleton rig, the Leg-X being a passive exoskeleton precludes this
possibility. Thus this project becomes a theoretical exercise in how one would improve

1To the knowledge of the author



Experiment Revised plan

Figure 5.1: LB-AXO
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the movements by introducing actuators/or how a person can try to produce torques in his
own body for optimal movements.

5.3 Inertial Sensors
To find trajectories to be improved a test person(measurements of which can be found
in table 5.1) wore 4 inertial measurement units(MTw) containing 3D linear accelerome-
ters, 3D-rate gyroscopes, 3D-magnetometers and a barometer[63]. The placement of the
sensors on the test person and the orientation of the sensor frames is shown in Figure 5.2.

The test person performed sitting and rising motions in several different configurations,
without wearing the exoskeleton, with the exoskeleton
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Figure 5.2: The world(G) and sensor(Si) frames on the test person. The MTw calculates the ori-
entation between the sensor-fixed coordinate system, and an earth-fixed coordinate system, G. By
default G is defined as: X positive when pointing to the local magnetic North. Y according to the
right handed coordinates(West). Z positive when pointing up [63]

Variable Value Unit
Height 1,90 m
Height with shoes 1,92 cm
Weight 110 kg

Table 5.1: Test person measurements

Due to the limited amount of available sensors and the assumed symmetry of the move-
ment(as in [38]) The sensors were placed on the right side of the body, except the sensor
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Sensor placement h0 h1 Unit
Medial Lower leg(Shin) 0,33 0,375 m
Medial thigh 0,64 0,685 m
Posterior back(Lower back ) 1,22 1,265 m
Lateral Upper arm 1,33 1,375 m

Table 5.2: Sensor heights, where h0 us the height from the floor to the lowest part of the sensor and
h1 is the height from the floor to the top of the sensor

Parameter Lower Legs Upper legs Torso Arms
Length(m) l1 = 0.546 l2 = 0.481 l3 = 0.893 l4 = 0.841
Mass(kg) m1 = 12.54 m2 = 31.152 m3 = 55.44 m4 = 10.868
Distance to CoMx r1 = 0.362 r2 = 0.267 r3 = 1.320 r4 = 0.354
Limb a1x = l1 a2x = l2 a3x = l3 a4x = l4
dimensions a1y = 0.12 a2y = 0.1867 a3y = 0.19 a4y = 0.09
(m) a1z = 0.12 a2z = 0.1867 a3z = 0.36 a4z = 0.09

Table 5.3: Estimated masses, based on percentages of body weight for each limb of the male subject
in [11].Estimated centers of mass, based on Large male aviator in [41] scaled up to the height of the
test person. Since the trunk, lower leg and arm are made up of more than one segment the combined
center of mass was calculated by R⃗ = 1

M

∑n
1 mir⃗i found in [9]

on the torso which was placed on the lower back due to the nature of the exoskeleton har-
ness. Since the foot doesn’t move in STS-motions there was not placed a sensor there. If
more sensors were available then a sensor on the foot, left side forearms and even the head
would be interesting to validate the assumptions that the foot doesn’t move, that the left
and right side move in unison and that the head moves in line with the torso.

5.3.1 Synchronization functions

After the data is gathered there is attempted to find a polynomial of degree n = 3 such
that the degrees of freedom can be expressed as a function by one of the other ones. The
degree of n = 3 has been shown to be sufficient in [32] and [38].

q1(θ) = ϕ1(θ) = k11 + k12θ + k13θ
2 + k14θ

3

q2(θ) = ϕ2(θ) = θ

q3(θ) = ϕ3(θ) = k31 + k32θ + k33θ
2 + k34θ

3

q4(θ) = ϕ4(θ) = k41 +K42θ + k43θ
2 + k44θ

3

(5.1)
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Where 


q1
q2
q3
q4


 =




qShank
qThigh
qBack
qArm


 (5.2)

With the coefficients(kij) of ϕi(θ) found one can find trajectories by solving

ẋ1 = x2

ẋ2 =
1

α(kij , x1)

[
−β(kij , x1)x22 − γ(kij , x1)

] (5.3)

Where x1 = q2 and α(θ), β(θ), γ(θ) as defined in (4.39). Here q2 is used as an
example, because it seemed the most promising degree of freedom, any of the others can
be chosen with varying degrees of suitability and calculations required. Choosing the
passive coordinate often is the least complex from a calculation standpoint.
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6
Analysis

6.1 Results

For a degree of freedom to be used as a motion generator, θ it must be monotonic(Either
entirely non-increasing or non-decreasing) in time to uniquely define the functions ϕi(θ).

Since the joint angles is not directly available it was attempted use the Euler angles
instead. If one looks at Figure 6.1 and 6.2 the Thigh sensor seems to be the best candi-
date. Indeed if one looks at Figure 6.3and 6.4 it looks very promising, but it is not entirely
monotonic. The question remains; whether the parts that are not monotonic are due to the
motion artifacts, disturbance of the sensor, or are an inherent part of the subjects biome-
chanics. If one again looks at Figure 6.3 and 6.4 we again can see the ”Jump” at t ≈ 1.25,
these recordings are entirely independent and the fact that this appears in both sets of data
implies that it part of some ”real” part of the movement. If it was due to sensor movement
one would expect to find it at ”random” time moment. In contrast if we look at Figure 6.3
around t ≈ 2.25 we see a ”dip” that only appears on this Figure and not Figure 6.4

Since the unprocessed data is not monotonic it, can’t be used as a motion generator.
Any attempt of doing this led to promising values for the knee angle, q2 ≈∈ [0.4, 1.7]
congruent with the values in [38] and phase portraits with the periodic orbits, but when
substituting back to get for instance the ankle angle (q1) this lead to values larger than π.

If instead filtering with a Gaussian filter as shown in Figure 6.5 one recovers a mono-
tonic function, but the found coefficients found led to computational stiff equations that
couldn’t be solved even with Matlab’s solvers for stiff ODEs[35]. To be successful in find-
ing the good motion generator further research on methods to process the data is required.
Since the trajectories to be controlled were not found, then a controller using the method
of VHC cannot be found. To summarize it was not possible to confirm the hypothesis 1 at
this time, but with further work this would probably be possible.



Analysis 6.1. RESULTS
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Figure 6.1: Euler Angles when the exoskeleton is not worn during the sitting motion.
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Figure 6.2: Euler Angles when the exoskeleton is worn, but turned off during the sitting motion.
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Figure 6.3: The pitch angle at the Thigh from the IMU sensors, without exoskeleton. Notice in
particular the motion artifacts and the jump at t ≈ 1.5s

6.2 Sources of error

6.2.1 Movement of sensor

The MTw Awinda kit normally contains a set of specialized Velcro straps to minimize
sensor movement and skin motion artefacts. These straps were missing from the set used
and made it necessary to improvise the fastening of the sensors. Strong rubber bands and
double-sided tape were used to improvise, but most likely the solution was not optimal as
we can see motion artifacts in 6.4.

6.2.2 Time length of movement

The sit-down motions are longer than natural motions for a subject of the test persons
age(≈ 3 − 4 seconds) compared to the results reported in [38](≈ 0.5 seconds). This
was necessary due to the fastening of the sensors, but also for safety when using the Leg-
X because the exoskeleton changed the balance point of the user, requiring them to be
careful at the end of the motion as to not tip over. Had more time with the exoskeleton
been available then it is expected that the time needed to perform the movement world
decrease

6.2.3 Number of sensors

At the time of the experiment only 4 IMUs(inertial measurement unit) were available so
the choice of sensor placement was limited. The MTw Awinda system supports up to 20
MTw sensors and if more were available, then for instance the foot would be a location to
have another sensor. It was assumed that since the foot is not moving during Stand-to-sit
motions then it would not be necessary, but during data visualization and manipulation this
would have made a lot of the process easier.
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Figure 6.4: The pitch angle at the thigh from the IMU sensors, when the exoskeleton is worn and
assistance is turned off. Notice in particular the motion artifacts and the jump at t ≈ 1.5s which is
very similar to the case when the exoskeleton is worn
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Figure 6.5: The data of Figure 6.4 smoothed with a Gaussian filter. This is monotonic, but one can’t
guarantee that this if fully representative of the movement itself.

6.2.4 World frame orientation

The direction of magnetic North was not measured at the time of the experiments, meaning
that the orientation of the World frame x-axis was not known. This means that one can not
use this frame to find the orientation directly.

6.2.5 Magnetic Distortion

Xsens Awinda Mtw uses a Kalman filter[44][63] specifically named XKF3hm(Xsens Kalman
Filter 3 DOF for Human Motion 6) to combine 3D inertial data and 3d magnetometer data
to find the orientation of the sensor in regards to the world frame G. In particular it uses
the magnetometer data in the beginning of recording data to get the heading. Therefore
the results are sensitive to magnetic disturbances in the area. Areas with a magnetic norm
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Analysis 6.3. POTENTIAL IMPROVEMENTS

variation within ±0.2. It is therefore advisable to check the magnetic norm of the envi-
ronment, but this was not done at the time of the experiment leading to uncertainty in the
results. By visual inspection no obvious sources of magnetic disturbances where found.

6.3 Potential improvements

6.3.1 World frame orientation

Magnetic North should be measured at the start of the experiment and all test series should
be aligned with this as the x-axis. This would align the world frame with the body frame.
This would ease visualization and calculation efforts.

If the experiments were to be done anew then magnetic north should be measured
beforehand and the test person should be lined up facing in that direction for all test series.

6.3.2 Object orientation frame

As shown in figure 5.2 the sensor frames(S) z-axis does not align with the world frame(G)
z-axis to simplify the calculations the output data could be expressed in the orientation
between a known Object Frame(O) and World Frame(G) rather than between S-frame and
G by applying the following relation

RGO = RGS (ROS)
T (6.1)

where

ROS = Ry(θ) =




cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)



∣∣∣∣∣
θ=−π

2

=



0 0 −1
0 1 0
1 0 0


 (6.2)

It should be note that this is an example orientation change. In this experiment one would
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Figure 6.6: Relation between Sensor frame(S) and Object frame(O)
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Analysis Using more sophisticated software

need different rotation matrix for almost all of the sensors, given that only the thigh and
shank frames are aligned.

6.3.3 Using more sophisticated software
For this experiment the free software Mt Manager[64] made by Xsens was used, it is def-
initely adequate, but more sophisticated paid software exists. From the same developer
we have the MVN systems, MVN Animate used for motion capture for 3D animation
and MVN Analyze for Human motion analysis/biomechanics and related fields[34]. This
software requires the users to input the dimensions of the subject beforehand and each
sensor has an ID corresponding to a particular body subject, but this along with calibration
and built in biomechanical model means that the readings are immune to magnetic distor-
tion and the system can output the joint angles of the body segment(limbs) directly [47].
The movement can also be viewed with a humanoid avatar greatly helping in movement
classification after the fact.

6.3.4 Methods of obtaining joint angles by way of IMUs
The use of IMUs for measuring joint angles is a area of keen research interest, and new
research has been published on the field during the work on this thesis like [68] and [4].
The use of IMUs for biomechanical analysis is of popular because it avoids many common
problems associated with other ways of measuring joint angles. Optical methods require
proper lighting conditions, optical markers , a proper camera setup and requires the test
person to be stationary(for walking, a treadmill is needed)[22][68]. Magnetic resonance
systems based imaging methods [19] requires a clinical setup which limits utility in many
situations.

Using IMUs avoids these problems, but introduces other challenges like calibration
and when taking measurements over longer time periods, sensor drift. There have been
developed for handling these problems as:

Self-Aligned Method of IMU-Based 3-DoF Lower-Limb Joint Angle Estimation [68]
presents a method to obtain the lower leg joint angles of a subject without the need of cali-
bration beforehand. They achieve good accuracy compared to other methods and does not
necessitate calibration. Different methods of calibration are compared in [23].

OpenSense: An open-source toolbox for inertial-measurement-unit-based Open Ac-
cess measurement of lower extremity kinematics over long durations [4] Developed
a toolkit for improving the accuracy of IMUs over longer time periods(more than a minute)
avoiding drift. The results were validated by optical methods. The methods still requires
calibration.
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7
Conclusion

“Quaternions came from Hamilton after his really good work had been done,
and though beautifully ingenious, have been an unmixed evil to those who
have touched them in any way.” - Lord Kelvin[58]

This thesis aimed to find control strategies for exoskeletons for humans use. If one
were to look back at the tasks set forth in 2.1 the most central objectives were:

1. Develop a control system for a human-exoskeleton system

2. Test the developed control system on a given exoskeleton setup.

Based on a results and analysis it cannot be concluded on such an optimal control input.
The lack of results indicate that more work must be done. It also shows the challenges in
adapting results on a given setup as in [32] and [38] to a new setup, especially when having
to rely on sensors and technology that was unknown to the writer at time of the experiment.
It also shows the difficulty when used to work with regular joint angles and then trying to
visualize and work with motions in 3D-space represented by Euler-angles or Quaternions.

7.1 Future work and continuation

7.1.1 Original Setup

If the original experimental setup(Lower Body AXO) was to be used again it is expected
that one would need some more time to be familiarized with the exoskeleton and the code
base. The exoskeleton is fully functional, but new code would have to be written to access
the joint angles. The exoskeleton itself has all the functionality and connections to access
the angles in practice. It should be noted that this particular exoskeleton was bolted to a
treadmill, but this is a trivial concern.



Conclusion Revised plan

7.1.2 Revised plan
If using the revised plan further research into methods of using IMUs for body kinematics
is required, some improvements are already mentioned in 6.3. Further more it must be
investigated if the anomalies are a property of the movement or one of the error sources.

7.1.3 Continuation
For either setup the next step is to design a controller to stabilize the trajectories found
through the virtual holonomic constraints.

If such a controller is found then for the Lower Body AXO it can then by tested with a
user operating it.

If one were to proceed with the Leg-X suit, then it is not realistic to validate in this way,
but one could see if the calculated necessary torques at knee, hip and arms are realistic for
a human to be able to produce. Not only in magnitude, but in change of torque in time.
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A
Theorems, definitions and lemmas

A.1 Theorems
Theorem A.1.1 (Newton-Leibniz Formula[45]1). Let f(x) be a function defined on some
compact interval [a, b] in R1

F (b)− F (a) =

∫ b

a

f(x)dx a ≤ x ≤ b (A.1)

A.2 Lemmas
Lemma A.2.1 (Hadamard’s Lemma[36]). Any smooth function f in a starlike neighbor-
hood of a point z is representable in the form

f(x) = f(z) +

n∑

i=1

(x1 − zi)gi(x), (A.2)

where gi are smooth functions.

A.3 Definitions
Definition A.3.1 (Fundamental matrix). Consider

ẋ = A(t)x(t). (A.3)

Where A(t) ∈ Rn×n with continuous function of t as its entries. Then for every initial
state xi(t0) there exist a unique solution xi(t), for i = 1, 2, . . . , n. If one arranges these n
solutions as X = [x1x2 . . . xn] ∈ Rn×n because every xi satifies (A.3) we have

Ẋ = A(t)X(t) (A.4)
1Also known as the The Fundamental Theorem of Calculus
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if X(t0) is nonsingular then X(t) is called the fundamental matrix of (A.3)

Definition A.3.2 (State transition Matrix [7]). Let X(t) be any fundamental matrix of
(A.3) Then

Φ(t, t0) := X(t)X−1(t0) (A.5)

is called the state transition matrix of (A.3). The state transition matrix is also the unique
solution of

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (A.6)

with the initial condition Φ(t0, t0) = I
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B
Proofs

B.1 Proof of A.2.1
Hadamard’s Lemma[36]. Consider the function

φ(t) = f(x+ (x− z)t)

Where φ(0) = f(x) and φ(1) = f(x), by the Newton-Leibniz Formula Theorem A.1.1

φ(1)− φ(0) =

∫ 1

0

dφ

dt
dt =

∫ 1

0

n∑

i=1

∂f

∂xi
(z + (xi − zi)t)(xi − zi)dt

=

n∑

i=1

(xi − zi)

∫ 1

0

∂f

∂xi
(z + (xi − zi)t)dt

Since the functions

gi =

∫ 1

0

∂f

∂xi
(z + (xi − zi)t)dt

are smooth, this concludes the proof

B.2 Proof of 4.6.1
Based on [51]

Proof. Consider the system

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (B.1)

if one introduces a variable Y := θ̇2 then

dY

dt
=

d

dt

(
θ̇2(t)

)
= 2θ̇θ̈ (B.2)
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and by the chain rule
dY

dt
=
dY

dθ

dθ

dt
=
dY

dθ
θ̇. (B.3)

thus along a solution of (B.1) this identity holds:

θ̈ =
1

2

dY

dθ
(B.4)

and one can rewrite (B.1) as

α(θ)
1

2

dY

dθ
+ β(θ)Y + γ(θ) = 0 (B.5)

This new differential is linear with θ as the new independent variable. Let α(θ) ̸= 0 along
a solution (θ∗(t), θ̇∗(t)) Then one can rewrite (B.5) as

d

dθ
Y +

2β(θ)

α(θ)
+

2γ(θ)

α(θ)
= 0 (B.6)

This equation has the general solution

Y (θ) = ψ(θ0, θ)Y (θ0)− ψ(θ0, θ)

∫ θ

θ0

ψ(s, θ0)
2γ(s)

α(s)
ds (B.7)

Where ψ(·) is as defined in (4.41). (B.7) means that

I(θ, θ̇, θ0, θ̇0) = θ̇(t)2 − Y (θ(t)) (B.8)

and along the solution (θ∗(t), θ̇∗(t))

I(θ∗, θ̇∗, θ0, θ̇0) = θ̇∗(t)2 − Y (θ(t)∗) ≡ 0 (B.9)

1

B.3 Proof of 4.6.2
Based on [51]

Proof. By the chain-rule:
d

dt
I =

∂I

∂θ
θ̇ +

∂I

∂θ̇
θ̈ (B.10)

Where I(θ, θ̇, θ0, θ̇0) as defined in B.8.

∂I

∂θ̇
= 2θ̇ and

∂I

∂θ
=

2γ(θ)

α(θ)
− 2β(θ)

α(θ)

[
I − θ̇2

]
(B.11)

1The proof for the case when α(θ) = 0 is not relevant for this thesis and is thus omitted.
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This means that

İ =

{
2γ(θ)

α(θ)
− 2β(θ)

α(θ)

[
I − θ̇2

]}
θ̇ + 2θ̇

{
W − β(θ)θ̇2 − γ(θ)

α(θ)

}

=
2θ̇

α(θ)
{W − β(θ)I}

(B.12)

B.4 Proof of 4.7.1
Proof. Wc(t0, t1)nonsingular ⇒ (A(t), b(t)) controllable:

x(t1) = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)b(τ)u(τ)dτ (B.13)

If we choose the input that will change the state of the system from x0 to x1 as

u(t) = −b(t)TΦ(t1, t)
TW−1

c (t0, t1)[Φ(t1, t0)x0 − x1] (B.14)

and substitute it into (B.13) gives us

x(t1) = Φ(t1, t0)x0

−
∫ t1

t0

Φ(t1, τ)b(τ)b(τ)
TΦ(t1, τ)

TW−1
c (t0, t1)[Φ(t1, t0)x0 − x1]dτ

= Φ(t1, t0)x0

−
[∫ t1

t0

Φ(t1, τ)b(τ)b(t)
TΦ(t1, t)

T dτ

]
W−1

c (t0, t1)[Φ(t1, t0)x0 − x1]

= Φ(t1, t0)x0 −Wc(t0, t1)W
−1
c (t0, t1)[Φ(t1, t0)x0 − x1] = x1

(B.15)

Thus if Wc is nonsingular then (A(t), b(t)) is controllable.

Proof. (A(t), b(t)) controllable ⇒ Wc(t0, t1) nonsingular: Suppose (4.65) is control-
lable at t0, but Wc is singular or, positive semidefinite, for all t1 > t0. Then there exist
0 ̸= v ∈ Rn such that@

vTWc(t0, t1)v =

∫ t1

t0

vTΦ(t1, τ)b(τ)b(τ)
TΦ(t1, τ)

T vdτ

=

∫ t1

t0

∥b(τ)TΦ(t1, τ)v∥2dτ = 0

Thus

vTΦ(t1, τ)b(τ) ≡ 0 or b(τ)TΦ(t1, τ)
T v ≡ 0 ∀τ ∈ [t0, t1] (B.16)
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Since (4.65) is controllable then there exists an input that transitions the system from
x0 = Φ(t0, t1)v at t0 to x1(t1) = 0, Inserting this into (B.15) and multiplying it with vT

yields

0 = vTΦ(t1, t0)Φ(t0, t1)v + vT
∫ t1

t0

Φ(t1, τ)b(τ)u(τ)dτ

= vT Iv +

∫ t1

t0

vTΦ(t1, τ)b(τ)u(τ)dτ

= ∥v∥2 +
∫ t1

t0

[
vTΦ(t1, τ)b(τ)

]
u(τ)dτ = ∥v∥2 ⇒ v = 0

(B.17)

Since we assumed that v ̸= 0 then we have a contradiction. This means that if (A(t), b(t))
controllable then Wc is nonsingular.
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Summary

It was attempted to control the motion of an inverted pendulum on a cart, this was not
achieved. The paper will discuss reasons why, improvements and further work.
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x = Coordinate of the cart on the world x-axis
θ = Angle between the cart body y-axis

and the pendulum
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θ̇ = dθ

dt , time derivative of θ
ẍ = d2x

dt2 , second time derivative of x
θ̈ = d2θ

dt2 , time derivative of θ
vi = Velocity of body i
m = Mass of pendulum
M = Mass of cart
∂
∂x = Partial derivative with regards to coordinate x
f = Force applied to cart
K = Total kinetic energy of system
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L = Lagrangian
ϕ(θ) = Motion generator/Synchronization function
αβγ-equation = αθ̈ + β(θ)θ̇2 + γ(θ) = 0
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Chapter 1
Introduction

1.1 Motivation

”Then you don’t remember a world without robots. There was a time when
humanity faced the universe alone and without a friend.”(Asimov, 2008)

Robots are and have been a big help in various different industries and situations. Formerly
relegated to industry and heavy machinery, now they are finding more and more places in
our daily lives, from food processing to exoskeletons. In scenarios where they are to be
used in aiding a human it is important to have in mind that they do not move like us. For
instance they may be heavy, be able to generate more torque at the joints or synchronize
their limbs in a different way. An important distinction between us is that a human may be
weakly actuated in some joints to such a degree that we may model them as underactuated.
Therefore it might be necessary to model the robot mimicking a human as underactuated
as well. This project will be a discussion on how to make a robot move to a human
specification.

When considering development of biomedical devices for use with humans and espe-
cially the elderly or people with disabilities it is important to consider that the device not
only is safe, but it feels safe for the user and if relevant for the person aiding the patient.
One way of achieving this is having sit-down movement slow down at the end or making
sure that the force action on another person is below a certain threshold.

As shown in Pchelkin et al. (2014) once a control system has been found for a system
it turns out that one really has found a control system for a family of different systems with
great robustness for uncertainties in parameters or the environment the robot is acting.

1.2 Scope

It became clear during work on the project that working with a system with n = 3 degrees
of freedom was to complicated to work with at this time.
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Therefore the project will be simplified to work with a cart-pendulum system rather
than a humanoid robot with more degrees of freedom. The plan is to further study this in
the master thesis project.

1.3 Tasks
1. Perform a study on theory of underactuated systems

2. Investigate desirable characteristics of sit-down motions

3. Simulate an underactuated system and find a controller which achieves the desired
motion

4. Discuss relevance for more degrees of freedom

1.4 Structure
First a literature review will be presented. Furthermore general theory will be reviewed,
the results of the simulation will be shown and analysed before discussion and concluding
remarks.



Chapter 2
Literature Review

2.1 Underactuated systems

Over the last decade and a half there has been developed methods of stabilizing underac-
tuated mechanical systems for a given orbit using Virtual holonomic constraints(VHC) for
instance in Shiriaev et al. (2005).

The method is powerful because it can be applied to various different mechanical sys-
tems as shown the previous mentioned paper, but also in more complicated systems as in
Mettin et al. (2008) and Pchelkin et al. (2014) Where they use this method to plan and
control more human-like movements of humanoid robots with n = 3 or more degrees of
freedom .
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2.2 Humanoid Robots

Figure 2.1: Hardiman I prototype, GENERAL ELECTRIC CO SCHENECTADY NY SPE-
CIALTY MATERIALS HANDLING PRODUCTS OPERATION, Public domain, via Wikimedia
Commons(Fick and Makinson, 2012)

Starting with General Electrics ”Hardiman I” worked on from 1965-1971(GE, 2016) shown
in figure 2.1 there has been attempts to construct devices/exoskeletons for use in human
rehabilitation or augmentation. There is increasing interest in developing these technolo-
gies and there has been great strides on the hardware front, but these devices often lack
sophisticated control methods or rely on supports like crutches(for instance Ekso Bionics
EksoNR(Ekso Bionics, 2021)). There has also been some research on hands-free/support
free walking as in (Harib et al., 2018). Here the authors specifically cite the need for con-
trol algorithms that addresses model uncertainties, a strength of orbital stabilization via
transverse linearization as will be attempted here.

A question that arises in control of humanoid robots is what characterises an optimal
movement of such a robot/device? For instance humans and other animals use their spring-
like muscle to conserve energy during walking or running(control of such a system is
achieved in (Mettin et al., 2009) in other situations there might be other goals like soft
landing or small forces(Normal forces, N or forces acting on other agents like people
aiding in rehabilitation of a patient or aiding the patient in the movement itself).



Chapter 3
Basic Theory

3.1 Underactuated systems

In general robot systems can be described by a Euler - Lagrange system like this:

M(q)




q̈1
q̈2
...
q̈n


+ C(q, q̇)




q̇1
q̇2
...
q̇n


+G(q) =




τ1
τ2
...
τn


 (3.1)

where q, q̇ ∈ Rn and τi is the generalized external forces.M is the inertia matrix, C is the
Coriolis and centrifugal generalized forces and G is the contribution of potential energy
due to gravity. When a system is underactuated one or more of these τi will be 0, meaning
we have no way of influencing that joint directly by control action.

3.2 System dynamics

If we consider a point mass m at distance l from a suspension point attached to a cart with
mass M . The rod is assumed mass-less. The acceleration due to gravity is g. The cart can
move on the horizontal and one can apply a force f to move it, see figure 3.1.
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Figure 3.1: A cart of mass M , with a point-mass, m. The pendulum makes an angle θ with the
vertical axis

The velocities of the cart and pendulum can be described as:

v21 = ẋ2 (3.2)

v22 =

(
d

dt
(x+ l · sin(θ))

)2

+

(
d

dt
(l · cos(θ))

)
= ẋ2 + 2ẋθ̇l · cos(θ) + l2θ̇2 (3.3)

Where v1 is the velocity of the cart and v2 the velocity of the point-mass. The kinetic
energy of the system of the system is:

K =
1

2
Mv21 +

1

2
mv22 =

1

2
(M +m)ẋ2 +mẋθ̇l · cos(θ) + 1

2
ml2θ̇2 (3.4)

The potential energy is:
P = mgh = mgl · cos(θ) (3.5)

The Lagrangian of the system is:

L = K − P =
1

2
(M +m)ẋ2 +mẋθ̇l · cos(θ) + 1

2
ml2θ̇2 −mgl · cos(θ) (3.6)

The Lagrangian equations are then:

d

dt

∂L
∂ẋ

− ∂L
∂x

= (M +m)ẍ+mθ̈l · cos(θ)−ml · sin(θ)θ̇2 = f (3.7)

d

dt

∂L
∂θ̇

− ∂L
∂θ

= mẍl · cos(θ) +ml2θ̈ −mgl · sin(θ) (3.8)

After some algebraic manipulation the final equations of motion are found in (3.9):

(m+M) · ẍ+ cos(θ) ·mθ̈l −ml · sin(θ)θ̇2 = f

cos(θ) · ẍ+ lθ̈ − g · sin(θ) = 0
(3.9)

In matrix form this can be re-written as:
[
(m+M) cos(θ) ·ml
cos(θ) l

] [
ẍ

θ̈

]
=

[
ml · sin(θ)θ̇2
g · sin(θ)

]
+

[
1
0

]
f (3.10)



By some manipulations this becomes:
[
ẍ

θ̈

]
= F (θ, θ̇) +G(θ) · f (3.11)

F (θ, θ̇) =
1

(m+M) · l − cos2(θ) ·ml

[
l −cos(θ) ·ml

−cos(θ) (m+M)

]
·
[
ml · sin(θ) · θ̇2
g · sin(θ)

]

=

[
f1
f2

]
(3.12)

G(θ) =
1

(m+M) · l − cos2(θ) ·ml

[
l

−cos(θ)

]
=

[
g1
g2

]
(3.13)

3.3 Motion Generator
It is desired that the angle θ is chosen as the motion generator. Such that a desired path θ∗

gives the motion of the entire system.
Let x = ϕ(θ∗) then the passive equation becomes:

cos(θ)
[
ϕ′(θ)θ̈ + ϕ′′(θ)θ̇2)

]
+ lθ̈ − g · sin(θ) =

[l + cos(θ)ϕ′(θ)] θ̈ + cos(θ)ϕ′′(θ)θ̇2 − g · sin(θ) = 0
(3.14)

This becomes the α− β − γ-equation for the problem

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (3.15)

ẋ = ϕ′(θ∗)θ̇∗ (3.16)

ẍ = ϕ′′(θ∗)θ̇∗
2
+ ϕ′(θ∗)θ̈∗ (3.17)

For a synchronization function a polynomial in θ of degree 3 is chosen

ϕ(θ) = k0 + k1θ + k2θ
2 + k3θ

3 (3.18)

ϕ′(θ) = k1 + 2k2θ + 3k3θ
2 (3.19)

ϕ′′(θ) = 2(k2 + 3k3θ) (3.20)

θ̈ =
g · sin(θ)− θ̇2cos(θ)ϕ′′(θ)

l + cos(θ) · ϕ′(θ) =
g · sin(θ)− θ̇2cos(θ) · 2(k2 + 3k3θ)

l + cos(θ) · (k1 + 2k2θ + 3k3θ2)
(3.21)

The system has an equilibrium at θe = 0, for it to have a center the linerization of the
αβγ-representation of the system(3.22).

z̈ +

[
d

dθ

γ(θ)

α(θ)

]
|θ=0 · z = 0 (3.22)



must also have a center at zero → γ(θ)
α(θ) |θ=0 = 0, β(θ)

α(θ) |θ=0 ̸= ±∞ and:

[
d

dθ

γ(θ)

α(θ)

]
|θ=0 > 0 → −g · cos(θ)

l + cos(θ)ϕ′(θ)
|θ=0 =

−g
l + k1

> 0

→ k∗1 < −l.
(3.23)

The total energy of the system written in the θ-parametrization is:

E(θ, θ̇) =

1

2
(m+M)θ̇2(k1 + 2k2θ + 3k3θ

2)2

+mlθ̇2(k1 + 2k2θ + 3k3θ
2) · cos(θ) + 1

2
ml2θ̇2 +mgl · cos(θ)

(3.24)

3.4 Transverse Linearization
Our goal is now to find a transverse linerarization with the form:

İ∗ = a11(t)I∗ + a12(t)y∗ + a13(t)ẏ∗ + b1(t)v∗
ÿ∗ = v

(3.25)

The origin of this linearized system can then be stabilized by v(t) = K(t)x⊥ as defined
in (3.39).

The functions of
[
θ, x, θ̇, ẋ

]
that define the three needed transverse coordinates for the

desired motion are:

x1⊥ = y = x− ϕ(θ)

x2⊥ = ẏ = ẋ− ϕ′(θ)θ̇

x3⊥ = I = θ̇2 − exp

{
−2

∫ θ

θ0

β(τ)

α(τ)
dτ

}[
(θ̇20)− exp

{
−2

∫ s

θ0

β(τ)

α(τ)
dτ

}
2γ(s)

α(s)
ds

]

(3.26)

Where α(s) = l + cos(s) · ϕ′(s),β(s) = cos(s) · ϕ′′(s) and γ(s) = −g · sin(s)
The linearization of the transverse dynamics are found by using the equations of mo-

tions(3.9) and write them in in new variables [θ, y] with the new control input v. With
y = x− ϕ(θ), the relation in (3.27)

ÿ = ẍ− ϕ′′(θ)θ̇2 − ϕ′(θ)θ̈ (3.27)

The next step is to find functions

gy(θ, θ̇, y, ẏ) (3.28)

gẏ(θ, θ̇, y, ẏ) (3.29)

gv(θ, θ̇, y, ẏ) (3.30)



such that:

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = gy(θ, θ̇, y, ẏ)y + gẏ(θ, θ̇, y, ẏ)ẏ + gv(θ, θ̇, y, ẏ)v

ÿ = v
(3.31)

From (3.27) we can insert the expression for ẍ into the passive dynamics (3.9) this
leads to:

[l + cos(θ)ϕ′(θ)] θ̈ + cos(θ)ϕ′′(θ)θ̇2 − g · sin(θ)
=α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = −cos(θ) · ÿ = gv(θ, θ̇, y, ẏ) · v

(3.32)

The system in (3.25) can now be written as:

d

dt



I
y
ẏ


 =



a11(t) a12(t) a13(t)

0 0 1
0 0 0





I
y
ẏ


+



b1(t)
0
1


 v = A(t)x⊥ +B(t)v (3.33)

in our case a12 = a13 = 0 and

a11(t) = −2θ̇∗(t) · β(θ∗(t))
α(θ∗(t))

= −2θ̇∗(t) · cos(θ∗(t)) · ϕ′′(θ∗(t))
l + cos(θ∗(t))ϕ′(θ∗(t))

b1(t) =
2θ̇∗(t) · gv(t)
α(θ∗(t))

= − 2θ̇∗(t) · cos(θ∗(t))
l + cos(θ∗(t))ϕ′(θ∗(t))

(3.34)

Using the equations of motions one must then find a feedback transformation v → f , the
feedback transformation can be found in (3.36).

Using the simplified dynamics in (3.12) and (3.13) along with (3.27) we have:

v = ÿ = f1(θ, θ̇) + g1(θ) · f − ϕ′′(θ)θ̇2 − ϕ′(θ) · (f2(θ, θ̇) + g2(θ) · f) (3.35)

and by algebraic manipulations:

f =
v − (f1(θ, θ̇)− f2(θ, θ̇) · ϕ′(θ)− ϕ′′(θ) · θ̇2

g1(θ)− ϕ′(θ)g2(θ)
(3.36)

3.5 Linear-Quadratic Regulator
To stabilize the origin of the augmented system (3.33) corresponding to the nominal be-
haviour i.e y = 0 → x = ϕ(θ), ẏ = 0 → ẋ = ϕ′(θ)θ̇ and I = 0, one finds the
LQR-gain matrix K(t) by solving the matrix Riccatti differential equation with Periodic
coefficients(PRDE) (3.38) with (3.37).

P (t) = P (t+ T ) and P (t) = P (t)T for all t ∈ [0, T ] (3.37)

and

Ṗ (t) +A(t)TP (T ) + P (t)A(t) +Q = P (t)B(t)R−1B(t)TP (t) ∀t ∈ [0, T ]. (3.38)



Where Q and R are constant weights on the state and control input respectively, A(t) and
B(t) are as defined in (3.33). This equation can then be solved numerically as shown in
(Shiriaev et al., 2005). This leads to the expression for K in (3.39)

K(t) = −R−1B(t)TP (t) (3.39)

This K(t) minimizes the quadratic cost function:

J =

∫ ∞

0

[
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

]
dt (3.40)

wrt. u(t) on solutions of the periodic system:

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0 (3.41)

(3.40) and (3.41) as presented in (Gusev et al., 2010)



Chapter 4
Experiment

For simplicity the mass of the cart M , the mass of the pendulum m and the length of the
rod l is set at 1.

Parameter Pendulum Cart
length(m) 1 -
Mass(kg) 1 1
Gravitational constant(m/s2) 9.81 -

Table 4.1: Experimental Parameters

The goal is to stabilize one of the orbits in phase plot seen in 4.1 As seen in figure 4.1
there clearly is a center at θ = θ̇ = 0.

The Pendulum on a cart system was simulated using MATLAB(MATLAB, 2020) with
the parameters found in table 4.1, with boundary conditions in table 4.2 an the coefficients
of the synchronization function in table 4.3.

Initial Conditions Pendulum(θ, θ̇) Cart(x, ẋ)
(0.6,-0.3) (0.2,-0.2)

End Conditions
(π2 ,0.5) -

Table 4.2: Boundary Conditions

The coefficients ki(table 4.3) were found using the initial conditions and the fact that
x0 = k0 + k1θ + k2θ

2 + k3θ
3, ẋ0 = k1θ̇ + 2k2θ̇θ + 3k3θ̇θ

2 and that the energy function
(3.24) is constant on the motion. The most promising trajectory is shown in figure 4.2
some other trajectories can be found in the appendix.

Was not able to find a solution to the PRDE(3.41) and hence not able to control the
feedback linearised system.
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Figure 4.1: Phase plot for the αβγ-system

Figure 4.2: The most promising solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the
force(f(θ(t))) applied to the cart to have that trajectory.



ki Value
k0 0.73468
k1 -1.5
k2 -0.5668
k3 2.63595

Table 4.3: Coefficients for the synchronization function ϕ(θ).





Chapter 5
Analysis

5.1 Results
As can be seen in figure 4.2 a promising trajectory was found, with this trajectory it seems
possible to stabilize the system at π

2 . However a solution to the PRDE was not found and
without that periodic LQR-gain K(t) the linear feedback system (3.33) wasn’t stabilized
at the origin. Solving the PRDE is a non-trivial task and further study on the subject is
required by the author.

5.2 Sources of error
It bears mentioning that Pplane(Harvey, 2018) which was used for drawing these phase
portraits has not been optimized for MATLAB R2020/b. There was several minor errors
during the drawing of these phase portraits.

The project has also shown the lack of robustness in using Simulink’s(Documentation,
2020) blocks for simulating such a complicated system. Simulink blocks provide perspec-
tive on the systems and makes it easier to do a modular approach where the system is built
piece by piece, but one spends a lot of time checking signals, dimensions of matrices and
so on.

5.3 Potential improvements
The challenge in Orbital Stabilization of underactuated systems comes not in the methods
itself because they are quite intuitive, but in finding good synchronization functions, ϕ(θ),
periodic trajectories,θ∗(t) for the system and solving the PRDE is also a challenge that
must be overcome.

It is also important to have some knowledge of the system to be stabilized. In hindsight
it seems obvious that stable oscillations around the horizontal is a challenge. Because if
one wants to have a constant angle of the pendulum near the horizontal, the cart must
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accelerate. But in that case the system will no longer be periodic in x. (Surov et al.,
2017) presents a novel approach not for handling or avoiding such singularities, but as an
opportunity to find new periodic trajectories.

The trajectories shown in figure 4.2 and the appendix avoided this singularity. It is
also possible to avoid these issues if α(θ) = 0 only where θ̇ also is zero Other minor
improvements is finding better tools for simulating systems and drawing phase portraits.
Mainly simulating directly in MATLAB and find another tool than pplane to draw the
phase portraits.



Chapter 6
Conclusion

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.(Beckett,
1983)

Looking back on the task enumerated in 1.3.There was a lot that wasn’t achieved. This
was disappointing, but a lot was learned and hopefully the things learned throughout the
semester will have time to mature before the master thesis project.

Although the simulations failed this is not an indictment of the methods itself. The
challenge for the engineer is to understand the model of the system in question, find pe-
riodic trajectories, good synchronization functions and then solving the PRDE. Once this
things are achieved they have powerful tools in their toolbox in the form of Orbital Stabi-
lization, Transverse linearization and feedback control.

6.1 Future work and continuation
For the masters thesis which will be about adjacent topics the work on this project has
shown the holes in the authors knowledge on the subject. So further research in the field
is required before one can take further steps. Thankfully it seems that the field has furtive
ground for research and a lot of different approaches are taken, both in specific systems
and in the development of more general approaches. So opportunities for learning are
plentiful.

Firstly familiarization with methods for solving PRDE is required, there has been a
lot of work on different ways of doing this, for instance in Gusev et al. (2016) and in
(Gusev et al., 2010) there is a evaluation of several different methods. The next step is to
expand this approach to a more general robotic system with more degrees of freedom(at
least n=3 or 4), a question to be asked in that regard is how many degrees of freedom are
necessary to describe the sit-down/rise motion of a human? This is investigated somewhat
in Pchelkin et al. (2014), but it could be relevant to investigate this further. It would also
be interesting to test the control method on existing technology for assisting rising/sitting
motion. Where control methods can be improved upon.
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Trajectories

Figure 6.1: A: A solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the force(f(θ(t)))
applied to the cart to have that trajectory.
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Figure 6.2: The most promising solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the
force(f(θ(t))) applied to the cart to have that trajectory.
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Figure 6.3: B: A solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the force(f(θ(t)))
applied to the cart to have that trajectory.
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Figure 6.4: C: A solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the force(f(θ(t)))
applied to the cart to have that trajectory.
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Figure 6.5: D: A solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the force(f(θ(t)))
applied to the cart to have that trajectory.
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Figure 6.6: E: A solution θ∗(t) with phase portrait, α(θ) plotted with θ̇∗(t) and the force(f(θ(t)))
applied to the cart to have that trajectory.
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