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ABSTRACT 1t is generally noticed that increasing the number of convolutional layers in generic image
classification procedures proves to be detrimental to model performance in terms of validation accuracy and
loss. Apart from vanilla CNNs, we have state-of-the-art (SOTA) architectures such as ResNet50 (and its
variants) which show that through the use of skip-connections, higher performance metrics are attainable
through deeper architectures. However, most evaluative metrics converge on a log scale as we go deeper
with diminishing gradient of the metrics’ curves. Given these two contrasting speculations, in this paper,
we implement various vanilla and SOTA CNNss for the diagnosis of one of the most common forms of breast
cancer - invasive ductal carcinoma (IDC) - to examine and understand the feasibility of implementation of
SOTA CNNs through transferred weights when juxtaposed with vanilla CNNs (and LeNet-5) of varying
configurations in terms of their performance metrics and other parameters. In this paper, we solve the
dual-objective of studying behavioural aspects of avant-garde CNN models (more specifically, VGG16,
VGG19, ResNet50, ResNet50V2, MobileNetV2, and DenseNet121) and proper diagnosis of IDC through
intermediate neural activations to critically evaluate and theorize the performance of different models.
We notice that among all the models, only VGG16, VGG19, LeNet-5 and a selected vanilla CNN through

an optimization procedure were the ones to attain the best metrics, shared amongst them.

INDEX TERMS CNN, breast cancer, transfer learning, invasive ductal carcinoma.

I. INTRODUCTION

Deep Convolutional Neural Networks (CNNs) have inter-
esting properties pertaining to the scalability of their fea-
ture capturing abilities. Generally, the depth of the deep
CNN is decided by the number of features, and both are
directly proportional to one another. With the natural ten-
dency of capturing features of all different levels, i.e., low,
medium, and high [1], CNNs have been put to great use for
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various applications [2], [2]-[6], inclusive of medical appli-
cations [2], [7], [8]-[12], [128]. One significant and relevant
dataset to our discussion in this paper, the ImageNet [13],
is a dataset which is used in the annually hosted ImageNet
Very Large Scale Visual Recognition Challenge (ILSVRC)
for both, object detection (correct localization of all objects
present in an image) and object recognition (accurate iden-
tification of existence of objects in an image). The Ima-
geNet is considered a standard benchmark for all SOTA
models of object detection [14]-[17] and recognition. In this
paper, we employ the techniques of transfer learning [18],
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[18], [20], [21] for transferred inference of IDC. There are
many categorizations of transfer learning as given by [20]
such as instance-based, mapping-based, network-based and
adversarial-based. Our implementation of transferred weights
is a network-based approach where SOTA networks are pre-
trained on ImageNet over a plethora of images. We re-use
these pre-trained architectures barring the last few layers (and
thus fine-tune the transferred model based upon our applica-
tion) and compare those with fully, in-house trained vanilla
CNN s to see how transferred learning affects model perfor-
mance in the specific case of the detection of IDC for progno-
sis. Fig. 1 describes how we use ImageNet pretrained SOTA
models for transfer learning of feature extraction facilitative
weights.

Generally, when deep networks converge, their accuracy,
loss and other performance metrics also saturate. However,
as observed [22]—-[24], the level of this asymptotic saturation
degrades when architectures’ layers are increased. This phe-
nomenon is not observed in ResNet [22] due to the utilization
of skip-connections between layers. We investigate this phe-
nomenon further in our implementations of vanilla CNNs in
Section V and see which parameters affect this degradation
most and through which adjustments in specific parame-
ters it can be minimized. Many researchers work on such
comparative studies on datasets such as the CIFAR10 [25],
MNIST [26], etc. with the problem that working on these
datasets only helps us understand model performance and
not how they might perform on real-world application-based
datasets. Keeping that in mind, we perform our experiments
on clinical medical data to achieve a two-fold objective of
understanding the dynamics and feasibility of transfer learn-
ing for several CNN models along with the creation of reliable
models for the prediction of IDC.

Breast cancer (BCa) encompasses several diseases and
involves the uncontrolled division of cells in the breast tissue.
Around 80% of the cases of BCa are identified as IDC [27]
and is also referred to as infiltrating ductal carcinoma since
the terms invasive and infiltrating refer to the cancerous cells
breaking out of their origin ducts or glands to invade new
spaces or new breast tissue. Less common types of IDC are
medullary ductal carcinoma (MDCa), mucinous ductal carci-
noma (MDCb), tabular ductal carcinoma (TDC) and papillary
carcinoma (PC). MDCa comprises only 3-5% of all BCa
cases and is visible through X-ray imaging or mammograms.
MDCb, also called colloid carcinoma, is the condition where
cancerous cells secrete mucous (the inner surface lining of
organs of the digestive tract, liver, lungs, etc. is made up of
mucous) which surrounds the BCa cells. The mucin asso-
ciates with these cells and eventually they form a tumour.
However, the prognosis of pure MDCb is better than other
forms of IDC.

TDC comprises 2% of the IDC cases and has an excellent
prognosis as compared to other cases of IDC. The tumour
formed by TDC appear tube-like when studied under a micro-
scope. PC accounts for 0.5% of the total IDC cases [28] the
cells in the PC condition appear finger-like (papillary, made
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FIGURE 1. We make use of network-based transfer learning by using a
portion of a fully trained CNN on the ImageNet dataset [13]. This portion
comprises only the convolutional layers while the fully-connected dense
layers are learnt in-house. Two vectors of 128 units are sequentially
connected in the transferred model with a binary output layer at the
right-most side.

of papules) projections and is more prominently observed
in postmenopausal women over the age of 60. The cases
of MDCa, MDCb, TDC and PC are viewed as histological
classification of the more general IDC - only a quarter of all
cases of IDC are histologically categorized based on the BCa
cell shape, size and arrangement. IDC is also categorized into
four major molecular subtypes: luminal A (HER2-/HR+),
Iuminal B (HER2+/HR+), HR2-enriched (HR/HER2+), and
basal-like (HR-/HER?2-). Clinical approximations for molec-
ular subtyping or categorizing types of BCa are often not
crisp, a major reason being that there is noticed an overlap
between different molecular subtypes [27], [29].

It has been found that the use of the more recent deep CNN’s
has been better than using traditional approaches, mainly
those which involve the extraction of handcrafted features
from the images over which machine learning models like
random forest are applied (this is also discussed in [47]).
Neural networks have been found to perform better not only
in computer vision tasks but also in other applications like
speech recognition, reinforcement learning, and generative
modelling. When many samples are present, for a pathologist,
it is a time-consuming and difficult task to check for IDC
for all the samples, which is where using deep CNNs gives
a significant advantage in that it can generalize the features
better owing to large amounts of data and also save time by
providing instantaneous predictions.

We enlist our contribution in this paper as follows —

« We implement avant-garde CNNs namely VGGI6,
VGG19, ResNet50, ResNet50V2, MobileNetV2, and
DenseNet121. Along with these, we implement various
traditional CNNs and LeNet-5 [26] and vary many dif-
ferent parameters to gather results and choose one best
architecture among them.

o We critically analyse the performance of all the mod-
els and study their nature of predictions in the context
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of the influence of transfer learning for inference, and
additionally, the influence of tune-able parameters in
traditional CNNs on their performance metrics.

o Through this process, display the important parameter-
izations to use along with the extent of feasibility of
transfer learning while creating a model for effective
diagnosis of IDC through classification.

The rest of the paper is organized as follows — Section II
(Related Work) describes the related work which is divided
into three different techniques used majorly for the detection
of BCa, Section III (Methodology and Materials) we describe
the nature of the data and the techniques used in this paper
such as CNNs (and their architectures), transfer learning, etc.,
Section IV (Evaluation Strategy) in which we define briefly
all the metrics used for the evaluation of performance of all
the models and also how we choose the best traditional CNN
model for further considerations, Section V (Results) con-
tains all the results in terms of the performance metrics, neural
activations of intermediate chosen traditional CNN models,
etc. In Section VI (Discussion) we analyse performance of
each model with each metric and understand the effect of
transferred weights for inference, and finally in Section VII
(Concluding Remarks and Future Directions) we conclude
the paper’s findings and lay out the basis of work that can
be done in this domain in the future.

Il. RELATED WORK

Machine learning and deep learning approaches have been
vastly employed to solve various medical problems [30]-[37].
More specific use-cases are gene selection and classification
and diagnosis of cancer [38], [39], prediction of COVD-19
[40], [41], or detection of BCa through spider-inspired opti-
mization [42]. Machine learning and deep learning methods
are used even in non-medical fields [43]-[46]. We divide
this section into three broadly employed approaches for the
detection of BCa, namely WSI segmentation-based, Region
of Interest (ROI) based, and unsupervised deep learning-
based approaches.

A. WSI-BASED SEGMENTATION APPROACHES

Mostly, deep learning-based computer vision methods
applied for the detection of BCa/IDC (also referred to as dig-
ital pathology) involve whole slide images (WSI) [47]-[49].
Cruz-Roa et al. [47] segmented the WSIs into various mini-
regions, similar to what we do in this paper, and com-
pared the performance of deep learning workflows with
SOTA handcrafted feature methods namely Gray Histogram
(GH) [50] Fuzzy Color Histogram (FCH) [51], HSV Color
Histogram (HSVCH) [52], RGB (red, green, blue) His-
togram (RGBH) [51], Haralick features [53], Graph-based
features [53], MPEG7 Edge Histogram (M7Edge) [54],
Local Binary Partition Histogram [55] and JPEG Coeffi-
cient Histogram [52]. They employed a very small, sim-
plistic CNN architecture with two convolutional layers and
a final fully connected dense layer. It was noticed that the
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CNN performed best based on balanced accuracy (BAC) and
Fl-score (71.8% and 84.2%) which was an improvement
of 6% and 4% respectively over the next best handcrafted
feature. Wang et al. 2016 used patch-based processing of the
WSIs for detection of metastatic BCa through SOTA deep
CNNs namely GooglLeNet [56], AlexNet [57], VGG16 [58],
and FaceNet [59] and it was found that GoogLeNet and
VGG16 attained maximum patch-based performance. Post
classification, a tumour existence probability heatmap was
generated which was used for computations of slide-based
classification and lesion-based detection probabilities. Two
interesting aspects of the work in [49] were the enrichment of
the training set through inclusion of extra lymph node image
data so as to help the models not misclassify such regions as
BCa, and that to reduce computational costs, the WSIs were
segmented by a threshold method that involved conversion
of the image channels from RGB to HSV and application of
Otsu’s algorithm [60], and combination of the H and S mask
images to get the final masks.

Janowczyk and Madabhushi [48] made use of deep learn-
ing approaches for seven different digital pathology tasks; one
of these tasks was the correct segmentation of IDC from WSIs
of breast tissue. The WSIs were divided into many different
mini-patches (similar to our approach), but were resized to
32 x 32 and rotated for oversampling and tending to the
problem of class imbalance. Using AlexNet with dropout and
downsizing the patches, their model achieved an F1-score of
75.7% with a BAC of 84.23%, outperforming results obtained
by [47] who considered patches of size 50 x 50. However,
it was realised in [48] that using dropout did not improve
results on the test set.

Exploring the depth-wise separable convolution method-
ology in CNNs, Alghodhaifi er al. [61] compared the per-
formance of a standard CNN against a depth-wise separable
CNN for the diagnosis of IDC through 50 x 50 patches
extracted from a total of 162 WSIs. Depth-wise separable
CNNs work by applying convolution to each separate channel
(in this case, there are only three channels: red, green and
blue) and then combine the resulting output channels through
pointwise convolution. It was noticed in [61] that the standard
CNN performed marginally better in terms of specificity,
F1-score, and accuracy, however the precision and sensitiv-
ity scores for both models were nearly same. Interestingly,
they found that application of Gaussian noise to both the
models had contrasting effects: the accuracy of the depth-
wise separable CNN diminished by more than half (85.9%
vs. 33.4%) while the standard CNN still held similar accuracy
(87.1% vs. 77.4%). Using network-based transfer learning
principles, Celik et al. [62] used two pre-trained SOTA CNN5s
that are included in the implementations of this paper namely
DenseNet161 [63] and ResNet50 for the detection of IDC
over patches of WSIs. They employed one-cycle policy [64]
in which a tiny learning rate is chosen initially for training
which is incremented after every mini-batch. This increment
occurs until a proper learning rate along with the exploding
loss value are reckoned. The main drawback of [62] is that
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they do not mention on which images or dataset the models
were pre-trained on. This can be very crucial in the intel-
ligibility of the model’s outputs and behaviour. Moreover,
we notice that in the literature there is seldom any work on
comparison-based analysis of the performance of numerous
SOTA CNNs which make use of transfer learning in the field
of detection of BCa.

B. REGION OF INTEREST (ROI)-BASED APPROACHES
Subclinical diagnosis of BCa on whole images of full-field
digital mammography (FDDM) through the use of deep
learning techniques is a challenging task since the region
of interest (ROI, where the BCa can be detected) is very
small in comparison to the dimensions of the original FDDM
image. To curb this issue, Shen et al. [65] pretrained a fully
convolutional classifier on local patch-based WSIs embedded
with annotations to incorporate ROI information. This pre-
trained classifier’s weights were leveraged to initialize train-
ing of the same classifier on whole FDDM images to improve
detection of BCa without the need of ROI annotations.
They employed two different classifier SOTA CNN network
designs which are also used in our paper namely VGG16 [58]
and ResNet [22]. Dundar et al. [66] distinguished Usual
Ductal Hyperplasia (UDH) from atypical ductal hyperpla-
sia (ADH) and ductal carcinoma in situ (DCIS) over WSIs
(manually identified ROIs) through multiple instance learn-
ing by making use of the large margin principle [67], [68].

Tackling the issues of automatic localization of ROIs for
BCa from WSIs and classification of five different diagnostic
varieties of ductal proliferations, Gecer et al. [69] used Fully
Convolutional Networks (FCN) [70] for semantic segmenta-
tion of the WSIs to obtain ROIs from four different levels
of magnifications. They showed that many redundant fea-
tures are eliminated as the features are extracted from lower
to higher magnifications. A deeper FCN was used for the
classification of WSIs from five different diagnostic ductal
proliferations namely non-proliferative changes, proliferative
changes, IDC, ADH and DCIS. The morale behind usage of a
deeper CNN for this task was to extract more features per WSI
owing to visually similar proliferations. The performance
of their model on the quin-classification task was not satis-
factory (achieving an accuracy of 39.04%), so, in their last
contribution they showed the fusion of the ROI and classifier
outputs for WSI-level diagnosis helped improving accuracy.
In more traditional mannerisms of extraction of features from
digital mammography imaging, Yengec Tasdemir et al. [71]
detected abnormal areas in a mammography by features
extracted by Histogram of Oriented Gradients (HOG) [72]
and Haralick features [73] to detect ROIs for presence of
BCa. The mammography was segmented into smaller ROIs
of size 73 x 68 and then converted into a two dimensional
Discrete Wavelet Transform (2D-DWT) for multi-resolution
decomposition of the ROIs [74]. On this 2D-DWT, Haralick
and HOG features were extracted which was followed by a
feature selection stage before classification by random forest,
support vector machine (SVM) and AdaBoost.
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C. UNSUPERVISED DEEP LEARNING-BASED APPROACHES
More recently, researchers have looked into unsupervised
methods of deep learning for the detection of BCa and com-
ponents of histopathology tissue [75]-[79]. [75] made use
of FusionNet [80], a form of a Convolutional Autoencoder
(CAE), that made use of very long skip connections between
the encoder and decoder subnets to generate images - similar
to those done by generative models in machine learning [81].
As done predominantly elsewhere, they used patches of WSIs
for detection of IDC by only training the encoder network
of the FusionNet and running a softmax classifier to obtain
binary outputs. Autoencoders are used for pre-training deep
learning models but are also very useful for mapping high
dimensional data into a latent space, thus acting as a powerful
feature extractor. This feature extraction property is exploited
by CAEs for image retrieval tasks. When we consider tab-
ular data for BCa risk prediction, Belciug et al. [82] com-
pared the performance of supervised and unsupervised deep
learning approaches namely Multilayer Perceptron (MLP),
Radial Basis Function (RBF) and Probabilistic Neural Net-
works (PNN) as supervised networks and Kohonen’s self-
organizing map (SOM) [83] as the unsupervised network.
The SOM performed equally well as its supervised counter-
parts and outperformed PNN by a 5% difference of testing
accuracy. It was noticed that the p-value between the average
portions of correct classifications (through the z-test) was
higher than the significant value (where p > 0.05) for RBF
and SOM, indicating no significant statistical difference in
their positive classifications. The p-value was lower than the
significant value (p < 0.05) for SOM vs. MLP and SOM vs.
PNN meaning that significant statistical difference did exist
for their positive classifications. This concluded that unsu-
pervised deep learning methods performed similar to their
supervised counterparts in neural networks. Self-supervised
approaches have also been employed as done by Xu et al. [79]
through the use of stacked sparse autoencoders (SSAE)
for automatic detection of nuclei in breast histopathology.
The SSAE framework outperformed other techniques such
as Expectation Maximization (EM) [84], Blue Ratio (BR)
thresholding [85], and Colour Deconvolution (CD) [86] in
both qualitative and quantitative terms.

IIl. METHODOLOGY AND MATERIALS

In this section, we describe the data used for our experiments
and the preprocessing techniques applied on them to bring
them into suitable form. Further, we briefly explain the archi-
tecture of the models used in our experiments and finally
we present a formal explanation of network-based transfer
learning employed in our approach.

A. DATASET

We make use of 162 WSIs collected by [47] and [48] scanned
at 40x magnification. For our experiments, as mentioned
earlier, instead of taking the WSIs, we use a sliding window
technique and extract 277,524 patches having dimensions
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50 x 50 characterized by a binary attribute to determine the
existence of IDC. The binary class distribution is given by
Table 1. We use a 9:1 train-test split ratio.

TABLE 1. IDC presence distribution in extracted patch specimens.

IDC presence (class 1) IDC absence (class 0)

78.786x10° 198.738x10°

After an initial screening of these patches, we noticed that
a presence of IDC was attributed by darker shades of pink,
i.e. tending to be purple. To understand this better, we plot
a flattened colour histogram over three channels for normal
and IDC patches as shown by Fig. 2. The x-axis contains the
bin count (we take 256 bins) and y-axis depicts the number
of pixels. Since each component (RGB, for red, green, and
blue) represented has intensities varying €[0, 255], suitably,
we take 256 bins to account for each intensity count. It is
noticed from Fig. 2 that for normal cases, the R and B
component are divergent; further apart, as opposed to IDC
cases where R and B components almost converge to overlap.
The shift is observed more in the R component which, in IDC,
is pushed back to the native region of the B component. This
is because R component has lower intensities for IDC WSI
regions as opposed to normal WSI regions.

B. IMAGE AUGMENTATION

Deep learning models require abundance of data to train
properly. Usually, image datasets of such scales are too space-
intensive to maintain or transport for different applications.
Image augmentation is a technique applied to the base dataset
for the diversification of input images in terms of count and
quality [87], [88]. This is achieved through various ways
such as whitening transforms [89], rotations, shifts, shearing,
zooming, rescaling, etc. The augmentation parameters we
used in our implementations are given by Table 2. Rescaling
is applied by multiplying data points with the given argument
on the images after all other transformations are applied.
Shear range represents the shear intensity which is the shear
angle in counter-clockwise direction in degrees. Zoom range
is the upper limit for a range used to sample random values
lying within to zoom the image. Horizontal flip randomly
flips the images horizontally. Only rescaling is applied to the
testing set.

TABLE 2. Image augmentation parameter settings.

Shear Zoom

Rescale Horizontal flip
range range
Training 1
st / 255 0.2 0.2 v
Testing 1
set / 255 ) B X

C. CNN AND ACTIVATIONS
In this subsection we give a brief overview of the working of a
CNN and how we use different CNNs in the implementation.
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CNN:gs, introduced by [26], have proven to be the backbone
of modern deep computer vision technologies such as face
detection [90], [91], action recognition [92], [93], scene
labelling [94], etc. The convolution operation, most popularly
used in signal processing, between two functions p(#) and g(¢)
can be defined as p (f) x g (1) £ ffooop (g —1)dr.

This operation is performed on pixel values by various
convolutional layers to extract features through the use of 2D
matrices known as kernels or filters. This convolution step
preserves the spatial relationships and representations in the
image. The number of parameters are reduced approximately
by 75% in the next step of max-pooling which only extracts
the maximum counts of convolved values in a fixed sliding
window. After a series of combinations of convolutional and
max-pooling layers, finally, a flattened vector is obtained
which is fed into an Artificial Neural Network (ANN) acting
as a feed-forward network which learns to output the correct
classes. This step is usually called the full connection (FC).
Fig. 3 pictorially depicts the methodology used for detecting
IDC in patches of a WSI. As seen from Fig. 3, we extract
the intermediate activations of different convolutional and
max-pooling layers to better understand the features detected
by subsequent layers for the interpretation of how inputs are
transformed. Due to existence of three channels, we visualize
these activations channel-wise — independently — and plot
the inputs decomposed into the different learned filters of
the layers. Further, generation of class activation maps can
be done through Global Average Pooling (GAP) [95] which
obtains the spatial average of the feature map of all units
of the convolutional layer at the end whose weighted sum
is taken for the final activation maps (see Appendix D).
Application of class activations is not feasible in this setup
as we automatically classify 50 x 50 regions of a WSI which
results in seeming like a low resolution class activation map.
Further, we discuss the transfer learning methodology used in
our implementations.

D. WEIGHT TRANSFER
Deep learning frameworks require a lot of data to train
effectively. Hence, fetching sufficient data can sometimes
be a tedious prospect. This problem is largely solved in the
literature and in real world applications through the use of
readily available weights to initialize or kick-start the training
of any CNN. The features learned by successive layers in a
CNN for any task may be generalizable for use in a different
task. We use nomenclatures used by [96] and [97].

Let there be a domain D given by D = {X, P (X)} where
X is the feature space and P(X) is the marginal probability
distribution, having X = {x{,x2,...,x,} € X. The data
space of any task T is represented by X with P(X) denoting
the marginal probability distribution of a particular learning
sample. Task T is given by T = {Y, f (x)} where Y is the
label space containing the targets and f(x) being the target
probability function which may be written as a conditional
probability f (x) = P(y|x). Over the course of training,
parameters of f(x) are adjusted to optimize and minimize
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FIGURE 3. Patches of 50 x 50 are extracted from the WSI (left) and each patch is independently fed into the CNN (middle) to get the classification output
(right). We also find the intermediate neural activations of different convolutional and max-pooling layers (lower-middle).

distances between outputs of predictive function f(x) and
P(X). The predictive function f(x) comprises tuples (x;, y;)
where x; € X,y; € Y. Finally, before being able to define
transfer learning, we take two instances a and s.

Transfer learning may be defined as follows — if we are
given a learning task T, having domain D,, we can use a
source domain D, with a well defined T;. Through latent
knowledge transfer from Dy and T;, an attempt at improving
the predictive function f, (.) is made (which is a component of
learning task T,) where D, # D or T, # T;. If we denote
the sizes of domains D, and Dy by n, and ng respectively,
then, we may say that usually ny > n,. For the learning
task of training all successive convolutional layers in any
SOTA CNN used in our implementation (except LeNet-5),
we make use of a source domain of ImageNet by using
network-based transfer learning to use weights of pre-trained
models. We do this by freezing the parameter learning process
of the convolutional part of the networks and learning only
parameters of the fully connected (FC) layers. This process
has been shown in Fig. 1.

IV. EVALUATION STRATEGY
In this section we enlist descriptions of all the terminologies
associated with our evaluation strategy for all the models. For
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a binary classification task, we have cases of true positivity
(TP), true negativity (TN), false positivity (FP), and false
negativity (FN). TP indicates a correctly classified positive,
i.e. in our case, a correctly classified case of IDC. Similarly,
TN indicates a correctly classified negative, FP a falsely clas-
sified positive and FN a falsely classified negative. Based on
these four terms, we define precision, sensitivity (or recall),
specificity, Fl-score and balanced accuracy. These metrics
are widely used in the literature for classification tasks. Preci-
sion P is the ratio of TP to all the labels predicted as positive
and is given by (1),

TP

P= (TP + FP) M

P helps answering to what extent the model correctly clas-
sifies positive cases. Further, sensitivity S, (or recall) is the
ratio of TP to the number of positives in reality, given by (2),

TP

~ (TP + FN) @

n

S, gives the measure of how many correct predictions
of positive cases were made out of total positive cases.
Specificity S, can be seen as an opposite of S, because it
gives the measure of correctly labelled negatives (TN) out
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of the total population of the real distribution of negatives.
Mathematically,
TN
Sp = —-—
(TN + FP)
F1-score F takes a combination of P and S, which presents

the harmonic mean between these two variables. It is given
by (4) as,

3

_28,P
C (Sut+P)

In this paper, we use two different types of accuracy met-
rics: regular accuracy (RAC) and balanced accuracy (BAC).
RAC will be used when we describe the test set validation
accuracy of different models. However, once a confusion
matrix of classifications is generated for all the models,
we will calculate a BAC that will better represent model
performance. BAC is required when there is a high class
imbalance and can be mathematically expressed for binary
classification tasks as,

“

[ P, __IN ]
TP+FP FN+IN
BAC — LTT¥ >2< +TN) 5)
While, RAC can be mathematically expressed by (6) as,
TP + TN
RAC = (TP +1IN) (6)

(TP + FP+ FN + TN)

Finally, we use the Matthews’ Correlation Coefficient
(MCC) [98] for in-depth analysis of each model. MCC (also
known as the phi coefficient) lies in the range € [—1, 1] where
—1 and 1 respectively mean total disagreement between
observation and prediction, and perfect prediction. A value of
0 indicates that the model is as efficient as a random classifier.
Most importantly, it is a balanced metric, meaning that class
imbalance does not perturb the ease of its interpretation.
Mathematically,

(TP x TN) — (FP x FN)

J(TP + FP)(IN + FN)(IN + FP)(IP + FN)
@)

A binary cross entropy loss (BCE) is calculated for the
training of all the models. This BCE loss is taken into consid-
eration when we calculate an optimization function (that we
describe in this section later) and also by the neural net itself
for the adjustment of weights and biases. BCE is expressed
mathematically as,

MCC =

1 n
H) ==~ yilog(p () + (1 =y log (1 = p ()
i=1

®)

In (8), the distribution of data labels is given by y making
p(y;) the model’s prediction on data label i. True data distri-
bution is represented by v with n being the total number of
samples. Given (8), we are now able to tract an optimization
function used to select the best trained-from-scratch tradi-
tional CNN. In our experiments, we train fifteen CNNs by

30876

changing various parameters such as number of layers, neu-
rons, regularizations, etc. that we shall describe in Section V
more. As mentioned earlier, to determine how feasible trans-
fer learning is in our application, we must compare it to some
baselines, and hence we use vanilla CNNs for this compar-
ison. Selection of a ‘best” CNN can be tricky due to three
metrics that all play a pivotal role in describing performance,
namely, validation accuracy (or RAC), validation BCE loss,
and training time. Here, validation refers to the calculation of
metrics on the validation or test set (we use validation set and
test set interchangeably in this paper, although their meanings
in detail are not exactly same). Ideally, it is desirable to
maximize RAC, minimize BCE loss and minimize training
time, as we do in (9). Given a classifier model My, with
parameters 6; and implementation information ¢;, we denote
aset C = {M91;</7| s Mgz;m, ey M9i§<ﬂi’ ey M915;<ﬂ15} that
contains all the traditional CNN models used for experimen-
tation. The implementation information ¢; can be thought of
as an m-tuple where m is the number of hyper-parameters
(and other architectural information) that we vary over all
our experiments. The cardinality and elements of this m-tuple
will be clearly shown in Section V. Now, mathematically, the
optimization function O (Mg,.,) is given by (9), if we denote
max(x) and min(x) by ¥ (x) and w(x) respectively,
O (M9i§<ﬂi)

L ) o

w ('L' (M@,;(p,)) + w (HMGI_;%_ (v))

In (9), a(-) denotes the validation RAC, t(-) denotes the
training time, and H, Mg,.,,, (v) denotes the BCE loss for given
model Mg,.,,. The objective is to maximize O (Mg,,,) given
by argmaxy,., (O (Mg;,)). This procedure yields us a sin-
gle model My,.,, that we regard as the ‘best’ vanilla CNN
to be compared with other SOTA implementations. Hence,
maximizing O (Mgl.;(pl.) transforms (9) as,

14 (“ (M9i;<pi))
o (v (My) + o (Huy, )
VMg,.p. € C (10)

O (My,y;) = argmax
——
Mo;; i

’

It is important to note that we had to normalize values
of the function (Mgi;(pi) because of the huge difference in
the scale of the values yielded by (Mgi;(pi) as compared to
o (Mg,;y,) and Hy,,. (v) — the latter two being restricted in
the range € [0, 1]. Typically, t (Mg,.; (p,.) yields values of units
of seconds (s) which, due to hardware-related limitations, can
never lie in [0, 1]. Thus, we apply a normalized t (Mgi;(pi) in
our final optimization function, this function being denoted
as N (1: (Mgi;(pl.)),

O (Meiilﬂi) =argmax w (Ol (MGH(PX))
—\w (N(T (Mﬁi;(pl-))) +a)(HM9iifﬂi (V))

My, 0i
VMg;.p. € C (11)
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TABLE 3. Original pool of SOTA models to be implemented for IDC
detection. Models having suitable minimum input dimensions (denoted
by ticks) were used for experiments.

SOTA CNN Minimum input size (50%50)

Xception [100]
VGG16 [58]
VGG19 [58]

ResNet50 [22]

ResNet50V2 [101]
InceptionV3 [102]
MobileNetV2 [103]
DenseNet121 [63]
NASNetMobile [104]
NASNetLarge [104]

X XSS XSKSKSSLSKLX

The normalization function N (x) is defined by (12) as,
xi — w(X)
¥ (X) — o(X)

Using (8) and (12) in (11), we get,
We remark that the range of O (Mg,.,,) varies between
[0, 00).

NX) = Ve X = f{x1, ..., %) (12)

V. RESULTS AND DISCUSSION
In this section, we look at the implementation details of all
the fifteen vanilla and SOTA+LeNet-5 CNNs and results
achieved by them.! As discussed in Section IV, we also
calculate important metrics such as precision P, sensitivity
Sy, specificity S, Fl-score ', RAC and BAC. Moreover,
through selection of the best vanilla CNN (further denoted
as Cpesr) using optimization function Q (Mgl.;w) we compare
performance of transferred inference of SOTA models against
Cpest+LeNet-5 and also inspect the intermediate neural acti-
vations of the latter two models. Further, we remark that only
select SOTA models (out of a pool of all models shown in
Table 3) were implementable due to the limitation of certain
models having a fixed minimum input dimension size. Since
our patches were of dimensions 50 x 50, all SOTA models
(as we had originally planned) could not be implemented.
The fifteen traditional CNN models My, are character-
ized by implementation information 6; which is given by an
m-tuple,

6; ={CL,AL,L1,L2, BN, DO, FD, KS, PS, S, LVBCEL,
MVA, TT}
where m = 13. Descriptions of each of these elements in the

13-tuple are given in Table 4. The number of neurons in each
AL is taken to be 128. Tuples such as (128, 64, 32) in FD

I'The experiments were performed on a 64-bit workstation with 4 GB
RAM having an Intel i5-4460 @ 3.20 GHz processor on Windows 10 Home
OS. Python 3 was used as the programming language for experimentation.

VOLUME 10, 2022

TABLE 4. Description of abbreviations used in Table 5.

Abbreviation Description

CL Convolutional layers or number of convolutional layers.
AL Artificial Neural Network layers or the number of AL
layers.
L1 L1 regularization
L2 L2 regularization
BN Batch normalization
DO Dropout
FD Features detected or the number of filters
KS Kernel sizes
PS Pooling sizes
S Stride of the CL
LVBCEL Least validation binary cross entropy loss
MVA Maximum validation accuracy
T Time taken

represent the number of filters being used in each successive
CL; this description follows for stride S as well. However,
tuples in KS represent the square root of the sizes of kernels
used in each successive CL. For example, a KS of (9, 3)
represents size of first kernel taken as 9 x 9 in the first CL and
3 x 3in the second. This description follows for pooling layer
sizes PS as well. LVBCEL and MVA are the result of mini-
mum loss and maximum accuracy encountered at any epoch.
Let there be vectors A = {A;,A>,A3,...,A15} and L =
{L1, Ly, L3, ..., Lis} which store the RAC or accuracy A; and
BCE loss L; for each epoch j € [1, 15]. Then, LVBCEL is
defined as w(L) and MVA as y/(4). We noticed that 15 epochs
for these vanilla CNNs were enough for proper convergence.
Lastly, TT has the SI unit of seconds (s) and is represented
by T(Mg;,,,,) in (13), as shown at the bottom of the next page.
We present results of vanilla CNNs in Table 5, in which we
find Cpegr through the maximum value of @ (Mj,, ). Descrip-
tions of L1, L2, BN and DO (which are the regularizations)
are given in Appendix A, Appendix B, and Appendix C.
In Table 5, a tick mark represents the use of the corresponding
regularization, and a cross represents that the regularization
was not used. These regularizations have been used randomly
(in regard to their position in the network) for all the models.

According to Table 5 and Fig. 4, CNN 11 can be regarded
as Cpey since it attains the highest value for optimization
function @, hence Cpeyy < My,,.q,,- The architecture of
Chest 1s visually represented in Fig 4. Additionally, for our
experiments, we remark that a batch size of 32 images was
used and the activation function for each FC layer was
taken to be rectified linear unit (reLU) [104], except the
last layer, which had sigmoid activation for vanilla CNN
experiments and softmax for SOTA models. To have a better
idea of number of parameters that each architecture learns
as opposed to other models, we specify the number of total
number of parameters along with the count of trainable and
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non-trainable parameters for each model. The number of
parameters is calculated at each CL and added up. If a CL
has n filters of size p x g with bias b and the number of
channels c, then the number of trainable parameters at this
CL can be calculated as (n X p X g X ¢) + b. In the case
of FC layers, the adjustable weight matrices along with the
biases are taken to be its parameters. We remark that for
all models except LeNet-5 and Cp,y, through network-based
transfer learning, only the FC layers’ parameters are learned
with all the CL parameters frozen. Through this dual nature of
experimentation it becomes possible to learn and understand
the feasibility of transfer learning in our application as a
comparison can be made between models that had transferred
weights against the models that did not. Table 5 describes the
composition of the FC layers of all the models.

We freeze certain layers (which have a certain number
of parameters) — these layers are pre-trained from ImageNet
data. In Table 7, the models which are pre-trained have non-
zero number of non-trainable parameters. We calculate a ratio
to understand the extent of the proportion of parameters that
we freeze. Metrics of training accuracy denoted as TrA,
testing accuracy as TgA, training loss as TRL and testing
loss as TgEL in Table 8 over 15 epochs for each model are
calculated.

From Table 8, we notice that transferred inference can
have a diminishing effect on TgA since the pre-trained
SOTA models of VGG16, VGG19, ResNet50, MobileNetV2,
DenseNet121 and ResNet50V2 attain a maximum TgA of
78.9%, 74.6%, 71.6%, 77.9%, 77.3% and 74.7% respectively
over 15 epochs. On the other hand, LeNet-5 and Cp,; attain
TgA maxima as high as 81.1% and 83.7% respectively. Even
with minimum TgL we have 0.433 and 0.367 for LeNet-5 and
Cpest Which are the lowest among all other models. These
are the first evidences that only training the FC component
for SOTA models keeping ImageNet weights for all con-
volutions is not a competent approach when compared to
training smaller CNNs from scratch. It may be possible to
have better performance with SOTA models by freezing less
number of parameters and let those be learned. However,
the biggest drawback in doing this is the computationally
intensive nature of such training-from-scratch procedures for
all SOTA models, making possession of advanced hardware
a necessity. The high number of parameters to be learned,
as seen in Table 7, for all SOTA models disallowed us to
test their efficacy with a F/T ratio of 0. Another striking
difference noticed in Table 8 is the general trend of TEA and
TgL for all models having F/T ratio > 0 vs. the improving
trend of LeNet-5 and Cp.s for these metrics. There is no

improvement TEA and TgL for pre-trained models indicating
that adjustment of weights and biases of the FC components
hardly makes any difference for the same features detected
by all lower convolutional operations. Due to frozen weights
and biases of all convolutions, there is no improvement or
change in the higher level features detected by the final layers.
Remarkably, it is possible that if LeNet-5 and Cp,s had been
trained for more epochs, their maximum TgA and minimum
TgL may have differed to be even better. To visualize the
higher level features detected by LeNet-5 and Cpeg, we plot
their intermediate neural activations for all convolutional lay-
ers given in Fig. 6 and Fig. 7 respectively.

It is evident from Fig. 6 and Fig. 7 that as we go deeper
with the convolutions, the features selected are more abstract
in nature. This aspect is more pronounced when activations of
max pooling layers are included as well. Further, we review
the confusion matrices obtained by all the models under our
observations and find the metrics given by (1), (2), (3), (4),
(5), and (7) as defined in Section IV. In Table 9, we denote
each model’s respective confusion matrix (CM) using the
following convention - TN < (0,0), FN <« (0, 1), FP <«
(1,0) and TP <« (1, 1), where we have the abscissa and
ordinate of the CM as (x, y).

Fig. 8 plots all the metrics given in Table 9 for each model
for better visual interpretation of the attained metrics. It is
noticed that VGG16 and VGG19 perform relatively better
than all other models when evaluated using said metrics. For
better understanding, however, we discuss the performance
of each model based on each metric in Section VI further.

V1. DISCUSSION

Detection of IDC, and hence BCa, is a problem that has
profound clinical importance for facilitating the development
of Al-driven techniques in modern day medical practices.
Faster and more accurate diagnoses may be possible with
augmented Al systems supervised by experts or clinicians,
making their job easier and less intensive. Detection of
IDC is an active area of research with numerous develop-
ments on different fronts for the diagnosis of BCa as we
saw in Section II. Of the techniques that employ CNNs,
many have used transferred inference on models such as the
VGG16, VGG19, ResNet50, etc. mainly based on ImageNet
weights [13], [106]-[111]. The brunt of the results of our
work are given by Table 5, Table 8 and Table 9. However,
Table 8 and Table 9 do not clearly give away any single model
being superior to the other. This is because, we discussed
in Section V how Table 8 portrays the trends of TEA and
TgL to have a higher gradient of improvement for models

v (a (Meii‘ﬂi))

O (Mp,,y,) = argmax

i=1

30878

- — o (Mo ;) ~o(2()) 1<
Mszo | @ | ey —amon | T\~ 2 vilog @ ) + (1 —yplog (1 —p ()

VMy,.,; € C (13)

VOLUME 10, 2022



G. M. Harshvardhan et al.: On Dynamics and Feasibility of Transferred Inference for Diagnosis of IDC

IEEE Access

TABLE 5. Implementation information ¢; (13-tuple) for each vanilla CNN Mg, o, and calculation of optimization function O tractable by (13) to find Cpeg;.

Regularizations

N L AL FD K
SNo € LI L2 BN DO S
1 2 4 X X X X (64,32) 9.3)
2 2 4 X X v (64.32) 9.3)
3 2 4 X X X (64,32) 9,3)
4 2 4 X X X v (64,32) 9,3)
5 2 2 X X X X (64.32) 9,3)
6 2 3 X X v (64,32) 9,3)
7 3 4 X X X (128,64,32) (2,1,1)
8 3 5 X v X X (1286432 (3.3,1)
9 4 4 v X X v (1281’2‘)"32’ (2,2,1,1)
o4 s vovoxoox UEEEaan
O I T T e P CEAR)
12 4 5 X X X X (64’362)’3 21 (3,2,1,1)
(128,64,32,
13 5 5 X X X X 32.16) (2,2,2,2,1)
(128,64,32,
14 5 6 X X X X 32.16) (2,2,1,1,1)
15 2 4 X X v (64,32) 9,3)

PS S LVBCEL MVA TT 0(Mg,, )
4,2) 11 0.3749 08363 860 0.608262
4,2) @0 0.4649 08044 491 07765751
4,2) @0 0.4209 08121 606 07215132
4,2) R 0.6893 07161 562 07761760
4,2) 2.2) 0.3867 08377 694 07017813
4,2) @0 0414 08158 696  0.6668834

QL) @2 0.5284 07743 568 06512934
QL) @LD 0.3817 0.827 768 0.6487683
(2’11)’1’ Q@111 0.5974 07161 696 05090629
(2’11)’1’ AR 0.5967 0.7161 694 05101602
(2,11),1, @211 0.3835 08319 471 0.8933879
(2’22)’2’ EARRY 0.3718 08338 768 06592225
(2121)2 @111 0.3829 08306 712 0.6859888
(21°21’)1° EARRRY) 0.3549 08401 674 07378224
4,2) @) 0.4649 08044 491 0.608262

Performance Evaluation of Vanilla CNNs
based on O (optimization function)

0.9 o)
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CNN sequence number

FIGURE 4. Performance of of Cp.g; as opposed to other vanilla CNNs
based on optimization function O (M"i;¢i) based on Table 5.

without transferred weights (LeNet-5 and Cp,y) along with
better TEA and TgL. However, in Table 9 (and thus in Fig. 8)
we notice that pre-trained models such as the VGG16 and
VGG19 perform comparably well, if not better, than LeNet-5
and Cpey in terms of P, S, F' and BAC. This observation is
noticed in [109] as well, where it was seen that pre-trained
networks trained on non-medical images surprisingly per-
formed comparable to those pre-trained on a medical image
domain. We discuss this effect in detail in Section VI (A), and
discuss a few other aspects in the following sub-sections.

A. ABSENCE OF NEGATIVE TRANSFER

The fact that there is no clear superior model when pre-
trained models are put against those trained from scratch in
our instance means that negative transfer [97] does not play
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TABLE 6. Composition of fc (al) layers for different implemented models.

Models AL/FC composition
VGG16 (4096, 4096, 2)
VGG19 (4096, 4096, 2)
ResNet50 (1000, 2)
MobileNet (1024, 2)
DenseNet121 (1024, 2)
ResNet50V2 (1000, 2)
LeNet-5 (120, 84, 10, 2)
Chest (128, 128, 128, 2)

a major role in the application of transferred inference for
detection of IDC when using datasets collected by [47], [48].
To define negative transfer formally, let us consider the
nomenclature used in Section III (D). Let there be predic-
tive learners f1(-) and f»(-) trained on D, and the latter on
(Ds + D,). Then, negative transfer is the condition where
f1() performs better than f>(-).The comparable performance
of both schemes of training is surprising in this case because
the source domain Dy is the ImageNet, which consists of
images very different to those of breast histopathology. One
of the reasons that negative transfer does not impact model
performance here could be the intra-class variability in IDC
datasets, as also discussed in [109]. Intra-class variability,
in other words, means a high variance between different 50
x 50 patches of the same class. To demonstrate this variance,
we show three different types of patches which belong to
the same class in Fig. 9. Transfer learning provides a case
for many different variations in the image to be detected.
However, it can be detrimental when task domain D, has very
specific features — which is not the case in IDC detection.
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128

Max Pool Max Pool

Max Pool

128

128
128

FIGURE 5. The NN-SVG [105] representation of C_best. The window size 50 x 50 diminishes as input progresses through the network. Full
connection (right) is made before getting an output at the last layer with one neuron. This output € [0, 1] denoting the probability of existence of
IDC.

FIGURE 6. Convolutional neural network activations for LetNet-5.

TABLE 7. Total number of parameters for each model and the distribution of trainable vs. non-trainable parameters for pre-trained models. F/T ratio is
the proportion of frozen (non-trainable) parameters to the total number of parameters.

Models Total # params Trainable # params Non-trainable # params F/T ratio
VGG16 33,605,442 18,890,754 14,714,688 0.437
VGG19 38,915,138 18,890,754 20,024,384 0.514
ResNet50 31,782,714 8,195,002 23,587,712 0.742
MobileNet 4,280,514 1,051,650 3,228,864 0.754
DenseNet121 8,089,144 1,051,650 7,037,504 0.869
ResNet50V2 31,759,802 8,195,002 23,564,800 0.741
LeNet-5 206,028 206,028 0 0
Chest 146,162 146,162 0 0

There are many intra-class and lesser inter-class variations,
making the effects of using transferred inference largely
neutral.

B. METRIC-BASED ANALYSIS

From Table 7 we noted that LeNet-5 and Cp,y performed
best in terms of RAC / TEA maxima being 81.1% and 83.7%
respectively. However, especially in medical domains, test-
ing accuracy alone should almost never be considered alone
— the reasons being how they can vary in their behaviour
when predicting positive or negative cases, as we shall see.
Further, at times, false negatives may be more important to
reduce.

In terms of precision P, from Fig. 8 it is noticeable that
VGG16 and VGG19 performed better than the rest. This
means that these two pre-trained models are better at correctly
predicting the positive IDC cases, i.e. having less number
of FP. However, the same does not apply to sensitivity S,
where the two trained-from-scratch models LeNet-5 and Cpes;
perform better than all other SOTA models, meaning that
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they are better at predicting the positive cases out of all the
positive cases in the test split of the dataset. In other words,
LeNet-5 and Cp,y have minimal number of FN. Again, this
does not hold for specificity S, which is same as S, but for
negative cases. VGG16 and VGG19 having top values for S,
means that they are better at predicting the negative cases
out of all the negative cases in the test split of the dataset.
Presenting a harmonic mean between P and S,, we have
Fl-score F which is attained best by the models VGG16,
LeNet-5 and Cpeg . In terms of balanced accuracy BAC, the
five models, VGG16, VGG19, DenseNet121, LeNet-5, and
Cpest perform equally well. Finally, when we look at the
Matthew’s Correlation Coefficient MCC, it is noticed that
LeNet-5 and Cp,y outperform other SOTA models. All these
results are summarized in Table 10.

From Table 10 it is evident that there is no single
superior model, however it becomes clear that ResNet50,
MobileNetV2, and ResNet50V?2 do not perform as well as the
other models, since they do not appear in the top performing
models list.
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TABLE 8. Train accuracy (TgA), test accuracy (TgA), train loss (TgL) and test loss (TgL) over 15 epochs for all models. The maximum and minimum in the
tea and tel sequences respectively are emphasized in bold.

Models Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TrL 04709 0.4384 0.4285 0.4233 04185 04146 0.4121 04097 0.4064 0.4048 0.4026  0.401 0.4006 0.3988 0.3966
TeL  0.4911 0.5015 0.5427 0.5197 0.5307 0.5135 0.4986  0.491 0.5332 0.4564 0.4657  0.464 0.5226 0.4687 04711
vaats TrA 07925  0.811 0.8163 0.8181 0.8192 0.8204 0.8226 0.8233 0.8225 0.8255 0.8253 0.8271 0.8268 0.8283 0.8292
TeA 07782 0.7693  0.7437  0.7575 0.7508 0.7593 0.7687 0.7718 0.7471 0.7892 0.7832 0.7848 0.7523 0.7806 0.7812
TrL  0.5264  0.487 04739 0.4646 0.4589 0.4544 0.4492 04473 0.4441 04402 04391 04369 04341 04323 0431
TeL  0.5179  0.5594  0.5518 0.5574 0.5584 0.5579 0.5658 0.5636 0.5518 0.5578 0.5474 0.5119 0.5507 0.5535 0.5447
vear TrA 07513 07793 0.7863 0.7918 0.7963 0.7987 0.8012 0.8019 0.8032 0.8059 0.8068 0.8082 0.8089 0.81 0.81
TeA  0.7467 07203 0.7304  0.729 0.7293 0.7323  0.7283  0.7299 0.7342 0.7314 0.7363 0.7563 0.7365  0.734 0.7385
TrL 04242 0366 0.3532 0.3473 0.3428 0.3404 03362 03358 0.3331 0.3306 0.3298 0.3272 0.3272 0.3256 0.3233
TsL 0.601 0.6029  0.615 0.5997 0.606 0.6258 0.6164  0.623 0.6182 0.6245 0.6365 0.6581 0.644  0.6503  0.6405
ResNews0 TrA  0.8261 0.8463  0.851 0.8539 0.8545 0.8556 0.8575 0.8586 0.8584 0.8604 0.8613 0.8619 0.8617 0.8629 0.8631
TeA 07161  0.7161 0.7161 0.7162 0.7161 0.7161 0.7161 0.7161 0.7161 0.7161 0.7161 0.7154 0.7161 0.7159 0.7161
TrL  0.5235 04763 0.4638 0459 04536 04516 0.4477 04457 04428 0.4449 0.4436 0.4406 0.4402 0.4388 0.4371
) TeL 0.497 04943 04941 04858 0.4841 04782 0.4835 0.4872 0.4952 04808  0.482 0.4924 04763  0.489 0.4835
MobileNetv2 TrA 07616 0.7831 0.7886 0.7915 0.7936 0.7952  0.797 0.7976 0.7992  0.7979 0.7983 0.8006 0.8001 0.801 0.8017
TeA 07615 0.7591  0.7593 0.769 0.7726  0.7786 0.7691 0.7633  0.757  0.777  0.776  0.7609 0.7792 0.7597 0.7701
TrL 04656 0.4268 0.4186 0.4157 04122 0411 0.409 04059 0.4044 0.4036 0.4043 0.4024 0.4007 0.3993 0.3988
TeL  0.4884 0.4807 0.4833 04826 04809 04823 0.4813 04846 0.4839 04875 0.4877 0.4886 0.4843 0.4801 0.4939
DenseNetI21 TrA 07944 08156 0.8193 0.8198 0.8229 0.8226 0.8227 0.8252 0.8261 0.8263 0.8255 0.8256 0.8265 0.8275 0.8281
TeA 07703 0.7664 0.7647 0.7667 0.7681 0.7678 0.77 0.7684 0.7692 0.7682 0.7686 0.7689 0.7704 0.7732  0.7696
TeL  0.4982 0.4495 0.4356 04282 0425 04217 04195 04193 04164 04135 04133 04112 04111 0.4107 0.4078
TegL  0.5259  0.5246  0.5145 0.5146  0.513  0.5167 0.5105 0.5109 0.5042 0.5065 0.5091 0.5083 0.5065 0.5036 0.5105
ResNet30v2 TrRA  0.7867 0.8084 0.8133 0.8166 0.8163 0.8187 0.8189 0.8199 0.8212 0.8217 0.8217 0.8232 0.8244  0.823  0.8247
TeA 0739 07321 0.7421 0.7428 0.7385 0.7373  0.7406 0.74 0.7448 0.7432  0.7394 0.7445 0.7426  0.7471  0.7406
TrL 04561 04222 04129 04143 04136 04144 0413 04102 04086 0.4086 0.4126 0.4136 0.4075 0.4065 0.4049
TeL  0.5746  0.5457 0.4418 0.4987 0.5988 0.5253 0.5609 0.4409 0.5404 0.4893 0.5079 0.5227 0.4331  0.461 0.4424
heNet:3 TrA 07971 08128 0.8169  0.818 0.8178 0.8177 0.8187 0.82 0.82 0.8205 0.8188 0.8184 0.8206 0.8218 0.8231
TeA  0.6947 0725 08106 0.7622 0.6751 0.7539 0.7219 0.7925 0.7347 0.7721 0.7715 0.7508 0.81 0.7942 0.8116
TeL  0.4021 0.3646 0.3527 0.3422  0.3346 033 03228 03195 03151 03129 03108 0.3088 0.3052 0.3024 0.3003
TegL 04715 0.3884 04171 0.4435 03679 04525 03849 03937 0417 04541 0.6891 0.4315 0.6012 0.8488 0.4929
Coest TrA  0.8223  0.8427 0.8491 0.8543 0.8585 0.8613 0.8655 0.8664 0.8686 0.8695 0.8701 0.8713  0.872 0.8735 0.8735
TeA  0.7901 0.835 0.8165 0.8009 0.8374 0.8027 0.8308 0.8228  0.811 0.8061 0.7857 0.8185 0.7956 0.7743  0.7929

C. THE CONUNDRUM OF IDC DETECTION ACCURACY

In machine learning applications, the validation set or test
set accuracy plays a major role in determining model perfor-
mance. However, such is not the case with clinical applica-
tions. Along with the accuracy, other metrics such as those
discussed in Section IV also play a major role. Some suggest
that MCC is the most informative single score for a binary
classifier through which a 2 x 2 confusion matrix can be
attained [112]. Nonetheless, there are works available in the
literature that compare attained accuracy to of those achieved
in the past [62], [106], [107]. The problem with this is that in
the case of detection of BCa, accuracy and other metrics are
highly dependent on the dataset. Many characteristics may
be attributed to a dataset such as the size, class balance ratio,
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intra-class variance, inter-class variance, sample dimensions,
etc. All these factors make comparing attained metrics to
those done in the past by other groups of researchers a futile
strategy. To the best of our knowledge, there are no other
works in literature that compare all the models used in this
implementation with the same dataset as comprehensively
as we have, taking into consideration all the different met-
rics that we use for evaluation (as discussed in Section I'V).
Hence, we do not provide a comparison-based analysis of our
work as opposed to other works done in the past. Enforc-
ing this ideology, we notice that the detection accuracy
attained by [47] and F1-score by [48] (the two sources of the
dataset that we use) are in agreement to what we achieved
in this paper. Hence, there may be researchers achieving test
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TABLE 9. Comparison of models based on P, Sy, Spp, F, BAC, MCC, and confusion matrix CM.

Model P Sn Sp F BAC MCC CM
VGG16 0.926514 0.580655 0.96186 0.713902 0.830621 0.598944 1‘5‘5(9) ?;2)32
VGGI19 0.906714 0.531587 0.9486517 0.6702317 0.7949843 0.5322836 17335579 7613‘35
14198 5676
ResNet50 0.7207767 0.5001321 0.8658373 0.5905168 0.7175887 0.399076 2200 5679
. 5845 4094

MobileNetV2 0.7418454 0.5880873 0.8858201 0.6560781 0.7679238 0.5039268

2034 15780
6706 5121
DenseNet121 0.8511232 0.5670077 0.9263469 0.6806049 0.7967249 0.5411612 173 14753
ResNet50V2 0.6687397 0.5444307 0.8556017 0.6002164 0.723446 0.4228135 ]25:1605 54246099
LeNet-5 0.8271354 0.6276002 0.9215844 0.7136834 0.8162798 0.5893997 ]16306027 63581677
17959 1915
Chest 0.6702627 0.7338799 0.8736197 0.7006302 0.7869528 0.5904638 2508 5281

accuracy as high as 95%, to which we argue that the dataset
in consideration plays a major role.

The aspects discussed in sub-sections VI (A), VI (B),
and VI (C) help us understand the dynamics and feasibility

30882

of transferred inference for the diagnosis of IDC. Transfer
learning only either has positive or no effect to the detection
of IDC as discussed in 6.1. In this paper, we notice that
on certain metrics, pre-trained models perform better than
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FIGURE 8. Multi-metric analysis of all models based on the performance
metrics defined in Section IV.

NORMAL

IDC

FIGURE 9. Intra-class variability in the dataset, eliminating the case of
negative transfer. (Left): Patch having a majority of white regions.
(Middle): Typical patch with different colour schemes for both the classes
(as seen in Fig. 2). (Right): Mixture of the colour schemes in the same
patch, making the detection process difficult.

TABLE 10. Summary of metric-based analysis.

Metrics Top performing models
RAC LeNet-5, Cpest
P (precision) VGG16, VGG19
S, (sensitivity) LeNet-5, Cpegt
S, (specificity) VGG16, VGG19
F (Fl-score) VGGL16, LeNet-5, Cpese
VGG16, VGG19, DenseNet121,
LeNet-5, Cpese

BAC

MCC LeNet-5, Cpese

trained-from-scratch alternatives, and vice-versa (Table 10).
It may be possible for SOTA models to outperform trained-
from-scratch models when they are pre-trained on domains
closely resembling the data distribution being used for com-
parison, unlike here, as we use ImageNet pre-trained weights
for all SOTA models. However, one obvious advantage of
making use of transfer learning in this application is that a
lot of time and computation can be saved for training models
having a large number of parameters. Our work is different
from that done in the literature because we try to analyze
the applicability of transfer learning from a generic source
domain in the detection of IDC. To the best of our knowledge,
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there has been no direct comparison of the performance of
vanilla CNNs and larger pre-trained models from ImageNet
for the detection of IDC. Through this work, we hope to
inform the readers in the scenario where a choice is given
to them — whether to use vanilla, trained-from-scratch CNNs
or use an ImageNet pre-trained large CNN model.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS
In this paper, we explore the dynamics and feasibility of trans-
ferred inference for the detection of invasive ductal carcinoma
(IDC). We use pre-trained models namely VGG16, VGG19,
ResNet50, MobileNetV2, DenseNet121 and ResNet50V2
along with LeNet-5 and a custom CNN architecture Cpeg;
chosen by comparing various traditional small-scale CNNs
through maximization of an optimization function. For all
models except LeNet-5 and Cpes, transferred ImageNet
weights were used and we tested the efficacy of both non
pre-trained and pre-trained schemes on various metrics such
as precision, sensitivity, specificity, F1-score, balanced accu-
racy and Matthew’s correlation coefficient. We noticed that
although LeNet-5 and Cpes performed slightly better in
terms of testing accuracy, transferred inference did not have
a pronounced impact when all other metrics were taken
into account as a whole. The best results for metrics were
shared between largely VGG16, VGG19, LeNet-5 and Cpeg
(Table 10). Due to the significant difference between the
source domain of transferred weights (ImageNet) and the data
distribution of the dataset of IDC, pre-trained models may not
have been tested with their full potential. It may be possible
to do so by using pre-trained models trained on a similar
source distribution. To put these results into perspective, pre-
training large CNN models over a generic source domain such
as ImageNet does not provide a significant increase in vari-
ous aforementioned performance metrics when compared to
smaller, trained-from-scratch vanilla CNNs comprising only
a few layers. Given the higher complexity and time involved
in training larger models, it would almost be better to always
use a vanilla CNN rather than use large models pre-trained
on a generic source domain. Training models from scratch,
as time and computationally intensive as it may be, promises
to be a worthy alternative when proper source domains for
transfer of weights are not available.

Admittedly, it is a challenging feat to achieve clinician-
level accuracy for deep learning methods in the detection of
IDC due to high intra-class variance in the datasets. Future
directions for the detection of IDC may involve a mixture
of detection of breast cancer (BCa) through whole slide
images (WSI) using models trained to classify only patches
of the WSI, as done in [65]. Models such as Fast R-CNN [14],
Faster R-CNN [17], You Only Look Once (YOLO) [16], and
Single Shot Detection (SSD) [15] may be used to localize
the exact regions of the carcinoma in WSI. More empha-
sis may be given to tackle IDC detection using unsuper-
vised deep learning methods such as extraction of high level
features through restricted Boltzmann machines [44] and
deep Boltzmann machines [113], deep belief networks [114],
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autoencoders, and etc. to explore and open doors for more
open comparisons between the efficacy of different varieties
of techniques for IDC detection. Future work in detection
of IDC is very important when deep CNNs area concerned
because the large models, when trained from scratch, are
very slow to train given the sheer amount of data needed
to properly train neural networks to detect IDC. For this,
faster methods that use the deep CNN methodology must be
developed that can be trained faster and provide similar per-
formance benefits. Lastly, WSI-based patch dataset creators
may consider addition of two more classes, namely ‘sparse-
normal’, and ‘sparse-IDC’ to tackle with patches having a
majority of the regions empty (white) as seen in Fig. 9 (left) to
help CNN-based techniques better identify classes and reduce
the intra-class variance in IDC datasets.
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APPENDIX A

L1 & L2 NORMALIZATION

Regularizations, such as the L1 and L2 regulariza-
tion [115], [116] are used to decrease model complexity by
penalizing significantly larger weights and reducing them to
avoid overfitting. Given a loss function L(x,y) with input
vector x and model outputs y, we can define the model’s
predictions by a function f : x — y given as,

n
£ O =) wix) =wo+wixi +waxg 4wy (14)
i=0

In (14), w; denotes the weights where f(x;) takes n input
variables. Hence, L(x, y) can be given as,

n n n 2
Lex.y)=> (Gi—f@)=)_ (yi - Zw,x;') (15)
i=0

i=1 i=1

L1 regularization (sometimes also called as Lasso regular-
ization) introduces a regularization term to (15) with a reg-
ularization parameter X that determines the extent of penalty
applied on weights as shown in (16).

n

n 2 n
Lxy)=)_ (yi - Zwix;') +1) lwl o (16)
i=0 i=1

i=1

On the other hand, L2 regularization (also known as Ridge
regularization) is given by (17) as,

n

n 2 n
L(x,y)= Z (yi—Zwixf> —i—AZw? (17
i=0 i=1

i=1

These regularizations have been used widely in literature and
are a part of standard regularization mechanisms in place for
deep neural networks [117]-[122].
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FIGURE 10. (Left): A normal deep neural network. (Right): Dropout
applied on each layer (except the top-most layer). Image adapted
from [24].

APPENDIX B

BATCH NORMALIZATION

Batch normalization (also termed as batch norm) proposed
by loffe & Szegedy [123] speeds up convergence of a deep
neural network by normalizing each d dimensions in each
layer. Having two learnable parameters p and g, the technique
takes a mini-batch B of size k, B < {x1, _ }, and normalizes
each input x; into x; to be plugged into a linear transformation
to restore the representation power of the model.

xXi— Mg
,/V%+c

In (18), My is the mean of the values of the batch, Vg is the
variance and c is a constant added for stability. The mean and
the variance are defined by (19) and (20) respectively as,

A

X =

(18)

k
1
My = - l;x,- (19)
1 k
Vg = | D (i—Mg) (20)
i=1

In final transformation step, the learnable parameters p and ¢
are used as,

yi=pxi+q (21)

Batch normalization has been used in various applica-
tions [124]-[127].

APPENDIX C

DROPOUT

Dropout, proposed by Srivastava et al. [24] is another tech-
nique used in deep neural networks to reduce the extent of
overfitting. It does this by randomly ignoring a percentage of
units (or nodes) on the layer it is applied on. By ““ignoring™,
it is implied that these nodes are deactivated and do not
fire or propagate any values. The randomization is obtained
by sampling the Bernoulli distribution. Fig. 10 shows the
simplistic nature of dropout.
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APPENDIX D

CLASS ACTIVATION MAP (CAM)

For an input image J, we take the activation of unit p of the
last convolutional layer spatially located at (x, y) and denote
this activation by f,(x, ). Let G(x) be the GAP function and
hence when we plug f,(x, y) in G(x) we get,

Gy, ») =) frx.») =G, (22)
p

Taking weight wIC, for some class ¢ and unit p, the input to the
softmax S¢ is given by,

$¢=Y"wiG,
p

Thus, using (22) substituted in (23), we have the softmax class

score,
5C = Yo wh Y hwy)
P

X,y
=2 2 Wiy
Xy p

The prominence of activation at spatial vicinity of (x,y)
is characterized by a parameter B(c; x,y) which decom-
poses (24) as,

(23)

(24)

$°=) Blex.y) (25)
X,y
From (24) and (25) we infer that,
Blcix,y) =) wify(x,) (26)

p

The class prominence parameter defined in (26) allows to
have a visual region-wise representation for the predicted
class c.
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