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Abstract: Considerable efforts have been made in recent years to identify an optimal treatment
method for the removal of antibiotics from wastewaters. A series of supramolecular organic-inorganic
magnetic composites containing Zn-modified MgAl LDHs and Cu-phthalocyanine as photosensi-
tizers were prepared with the aim of removing β-lactam antibiotics from aqueous solutions. The
characterization of these materials confirmed the anchorage of Cu-phthalocyanine onto the edges
of the LDH lamellae, with a negligible part inserted in the interlayer space. The removal of the
β-lactam antibiotics occurred via concerted adsorption and photocatalytic degradation. The efficiency
of the composites depended on (i) the LDH: magnetic nanoparticle (MP) ratio, which was strongly
correlated with the textural properties of the catalysts, and (ii) the phthalocyanine loading in the final
composite. The maximum efficiency was achieved with a removal of ~93% of the antibiotics after 2 h
of reaction.

Keywords: layered double hydroxides; magnetic nanoparticles; phthalocyanines; antibiotics removal

1. Introduction

Antibiotics are by far the most successful class of drugs used to fight against bacterial
infections and, therefore, they are extensively used in both the human and veterinary
medicine. They are produced by both microorganisms and synthetic or semi-synthetic
routes, where, regardless of the pathway, the building of the complex chemical structures
generates pollutant residues [1]. Furthermore, their excretion after their use and the disposal
of unused medicinal compounds are additional sources of pollution. Some antibiotics, such
as penicillin, can be easily degraded, while others, such as fluoroquinolones or tetracyclines,
are considerably more persistent. Accordingly, these predominate for a longer time in the
environment and accumulate in higher concentrations [1]. Thus, their potential role in
promoting the development of a high level of resistance to human and animal pathogens
enhances the concern about their presence in the environment.

Considerable efforts have been made in recent years to identify an optimal treatment
method for the removal of antibiotics from wastewaters. With this aim, advanced oxidation
processes (AOP) emerged as a more promising tool compared to traditional routes, such
as adsorption on activated carbon, air stripping, or reverse osmosis [2]. Indeed, many of
these techniques only transfer pollutants from one phase to another, without complete
destruction up to mineralization. Biological treatment is not toxic to organic cultures, but it
has some limitations [3]. The most important is related to its applicability to wastewaters
containing biodegradable compounds.
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Among the various advanced oxidation processes, photocatalysis has emerged as
a promising technology for wastewater treatment in general, and antibiotic removal in
particular [4–6]. The main advantages of the process are the possibility of the simultaneous
removal of antibiotics and antibiotic-resistant bacteria, the lack of mass-transfer limitations
under operational environmental conditions, and the price, the commercially availability,
the non-toxicity and the photochemical stability of the catalyst [7].

Recent research focused on organic photocatalysts mimicking natural supramolec-
ular systems, in which the triplet states of the excited organic molecule can participate
in electron-transfer processes in a manner that is quite similar to semiconductors [8,9].
Metallophthalocyanines (Pcs) can act as electron donors upon a photochemical excitation
in the visible region [10–12]. However, the use of bare (metallo)phthalocyanines is limited
due to the recovery and stability problems [13]. Therefore, their immobilization represents
a viable alternative through which to solve this. TiO2 immobilized phthalocyanines [14] or
mechanical mixtures of metallophthalocyanines and zeolites [13] have already been found
to be effective for the photocatalytic degradation of organic compounds. The encapsulation
of these complexes in porous supports led to an increase in activity compared with the free
complex, as a result of two factors: (i) the concentration of substrates around the active
sites, and (ii) protection against degradation [15].

The encapsulation of metallo-phthalocyanines inside layered double hydroxides
(LDHs) is another suggested solution to create hybrid organic–inorganic supramolec-
ular systems [16]. In complement to their adsorptive and oxidation catalytic properties,
LDHs were utilized in photocatalysis under both UV and Vis light irradiation [17,18]. These
studies demonstrated that the immobilization of macrocyclic complexes may enhance their
catalytic behavior for environmental pollution control under Vis irradiation, as well as
the use of anionic phthalocyanines (sulfonated phthalocyanines) as charge-neutralizing
anions [16,19–24]. However, conventional catalyst-separation methods, such as filtration or
centrifugation, are not always suitable for nanoparticles due to the incomplete separation
they produce. To solve this practical problem, magnetic nanoparticles (MNPs) were con-
sidered as alternative catalytic supports due to their properties, such as high surface areas
and chemical stability, non-swelling properties in organic solvents [25], easy recovery by
an external magnet, reusability [26], regular shapes, uniform size, low cost of production,
non-toxicity, and biocompatibility [27].

β-Lactam antibiotics, such as amoxicillin (AMO), ampicillin (AMP), penicillin G (PEG),
penicillin V (PEV), and cloxacillin (CLX), have antimicrobial properties through the pres-
ence of a β-lactam ring. These drugs are widely used in medicinal treatments and a high
content of their metabolites ends in waste waters, which leads to several negative effects.
Therefore, their removal from the environment is imperative, and various procedures in-
volving UV irradiation [28], radiolysis [29], ozonolysis [30], Fenton- and photo-Fenton pro-
cesses [28,31], photocatalysis with semiconductors [7,32–35], or a combination of these [36]
have already been reported. Among these, techniques involving solar light as a source of
irradiation in the photodegradation of β-lactam antibiotics are the most appropriate.

In this respect, it was already reported that AMO, AMP, PEV, PEG, or CLX can be
degraded under visible irradiation by ZnS nanoparticles as photocatalysts. In a large
domain of concentrations (0.5–1000 mg L−1), the rate of degradation increased as the
stability of the antibiotic molecules decreased [37]. ZnO nanoparticles and ZnO/polyaniline
core-shell nanocomposite also degraded ampicillin under sunlight irradiation [38], while
photocatalytic membranes composed of hybrid polylactic acid (PLA)/TiO2 nanofibers
deposited on fiberglass supports exhibited a high rate of degradation of AMP, which was
virtually eliminated in the first 30 min of the process. Furthermore, metallic nanoparticles
(Ag-NPs) were used in the photocatalytic degradation of AMP under natural sunlight
irradiation with an efficiency of 96.5% [39].

However, to the best of our knowledge, MPc-LDH-MNP organic–inorganic supramolec-
ular hybrid systems have not yet been investigated as photocatalysts for the removal of
β-lactam antibiotics. Therefore, this study reports the preparation of such materials, along
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with their characterization and catalytic behavior, for the photodegradation of β-lactam
antibiotics under visible light. Each component in the system contributes to the photo-
catalysts’ efficiency in the removal of antibiotics: LDH serves as a support for Pc, and is
also responsible for the adsorption of the antibiotics from the environment; Pc serves as
photosensitizer, and the MNPs make possible the rapid extraction of the composite from
the reaction environment.

2. Results and Discussion

The coding of the catalysts based on their preparation conditions is presented in
Table 1.

Table 1. The preparation details for the catalysts prepared using different LDH:MNP ratios and from
different MNP precursors.

Sample Precursor Conditions

P1 FeCl2 + Fe(NO3)3 LDH:Fe3O4 = 1:3 (10 min ageing)
P2 FeCl2 + Fe(NO3)3 LDH:Fe3O4 = 1:3 (30 min ageing)
P3 FeCl2 + Fe(NO3)3 LDH:Fe3O4 = 3:1 (60 min ageing)
P4 FeCl2 + Fe(NO3)3 LDH:Fe3O4 = 3:2 (60 min ageing)
P5 FeCl2 + Fe(NO3)3 LDH:Fe3O4 = 1:1 (60 min ageing)
P6 FeCl2 + Fe(NO3)3 LDH:Fe3O4 = 1:2 (60 min ageing)
P7 FeSO4 + FeCl3 (2:1 mol) LDH:Fe3O4 = 3:1 (60 min ageing)
P8 FeSO4 + FeCl3 (1:2 mol) LDH:Fe3O4 = 3:1 (60 min ageing)

2.1. Characterization
2.1.1. X-ray Diffraction (XRD)

As previously reported [40], the X-ray diffractogram of the bare LDH shows (Figure 1a),
at low angles, narrow and intense diffraction lines and, at high diffraction angles, wide
and less intense lines characteristic of the LDH materials [41]. In addition to these lines,
additional lines corresponding to the zincite phase (ZnO) appeared, as minor impurities,
in the 2 theta range 31–38◦ [40]. The reconstruction by memory effect occurred with the
preservation of the lines of the stable ZnO phase (ICDD 005-0664).
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Figure 1. X-ray diffractograms corresponding to (a) as-prepared and rehydrated LDH after deposition
of CuPc and (b) P1–P8 catalysts.

The X-ray diffractograms corresponding to P1–P8 catalysts are presented in Figure 1b.
The magnetite phase was observed in almost all the samples and was most predominant
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for P1, P2, P5, and P6. Apart from LDH, Fe3O4 (ICDD 19-0629), and small impurities of
ZnO, no other phases or impurities were detected.

The network parameter “a” (Table 2), calculated as a = 2·d110, indicating the average
cation—cation distance in the layered network, showed a decrease in inter-layer space,
as an effect of the hydration associated with the elimination, by calcination, of the larger
carbonate anions that were larger, and the replacement of these by hydroxyl anions, which
are much smaller in size. The network parameter “c”, calculated as c = 3/2·(d003 + 2d006),
keeps the trend of IFS variation caused by an increase in the electrostatic forces between
the layers and the interlayer anions. According to the literature, the presence of heavy
interlayer molecular species led to a change in the electron density of the 00l harmonics,
i.e., organic anions [42], metal nanoparticles [43], or oxometalates [44]. Considering the “a”
and “c” parameters, we can conclude that the majority of phthalocyanine is anchored on
the edge of the hydroxide lamellae, while a smaller part is placed in the interplanar space.
The crystallite size, which in this case was an average of the entire composite, depended on
the LDH: MP ratio.

Table 2. Network parameters determined from the X-ray diffractograms for the bare MgZnAl LDH
and P1–P8 catalysts.

Sample a (Å) c (Å) IFS (Å) 1 I003/I006 I003/I110 D(Å) 2

LDH–MgZnAl 3.0717 22.8689 2.82 2.96 5.54 132
P1 3.0462 22.5822 2.73 1.00 0.67 111
P2 3.0557 22.6262 2.74 1.08 0.68 115
P3 3.0616 22.9058 2.84 2.21 4.89 96
P4 3.0539 22.8707 2.82 2.21 6.73 105
P5 3.0644 23.1147 2.90 1.95 4.56 79
P6 3.0663 23.5299 3.04 3.00 1.29 200
P7 3.0612 22.9415 2.85 2.17 3.98 97
P8 3.0589 22.8956 2.83 2.20 4.04 95

1 IFS represents the distance of the interplanar space (the values using Miyata’s reported sheet thickness of 4.8 Å [45]).
2 The crystallite size (obtained with the Debye–Scherrer equation) and determined from the FWHM value of the
reflection 003.

2.1.2. Diffuse Reflectance UV-Vis Spectroscopy (DR-UV-Vis)

The bare LDH showed a wide absorption band in the range of 240–380 nm, with
maxima at 348 and 359 nm corresponding to a zincite phase in the layered structure
(Figure 2a) [40]. The additional band at 212 nm corresponds to Mg(OH)2/MgO [40,46],
while those in the region 550–750 nm to the strong Q bands, assigned to the CuPc [47].
The DR-UV-Vis spectra of the phthalocyanine-LDH composites are presented in Figure 2b.
These disclose B-bands of CuPc (300–350 nm) [48] and magnetite 500 nm [49].

2.1.3. Diffuse-Reflectance Infrared Spectroscopy (DRIFT)

The intercalation of phthalocyanine was also confirmed by the DRIFT analysis
(Figure 3). Regarding the LDH (Figure 3a), the wide absorption band located in the
3700–3400 cm−1 range corresponds to the vibrations of the OH, ν(O–H) groups in the inter-
planar space, while the band at 3000 cm−1 was assigned to the hydrogen bonds between
the water and the carbonate anion [50]. The band at 1638–1650 cm−1 corresponded to
the vibrations of the water molecules in the layered structure, that in the range 1100 and
650 cm−1 to the vibrations of the CO3

2− groups, and those before 600 cm−1 to the Mg-O,
Zn-O and Al-O bonds. The infrared spectra also showed some bands associated with the
presence of LDH-anchored phthalocyanine [51] (Figure 3b), although their intensity was
very low. For example, the band at approximately 1650 cm−1 was be assigned to the C=N
bond, that at 1120 cm−1 to the S=O bond, and those at 730, 1033 and 1090 cm−1 to the
C-H bond.
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Figure 3. DRIFT spectra collected for (a) as-prepared and rehydrated LDH and (b) P1–P8 catalysts
and commercial CuPc tetrasulfate.

2.1.4. Textural Properties

The surface areas of the P1–P8 catalysts (Table 2) varied in a rather narrow range, i.e.,
from 110 (P4) to 160 m2·g−1 (P5). The increase in the ageing time, which also meant an
increase in the MNP size, led to a decrease in the surface area (samples P1 and P2). The
decrease of the surface area compared to the parent LDH was due to the tendency to cluster-
ize in large conglomerates systems confirmed by TEM (see Supplementary Materials) [52].
All the samples presented a Type IV adsorption–desorption isotherm, characteristic of
mesoporous materials (Figure 4). However, depending on the LDH: MNP ratio and the
nature of MNP precursors, the variation in the pore size was larger (Table 3, Figure 4).
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Figure 4. Pore-size distribution (a) and adsorption–desorption isotherms (b) for the P1–P8 cata-
lysts.

2.2. Degradation of Antibiotics 
The experiments carried out in this study for the removal of antibiotics from water 

using the organic–inorganic magnetic composite photocatalysts indicated two parallel 
processes, namely, adsorption and photocatalytic degradation (Figures 5 and 6, respec-
tively).

Simple adsorption measurements (i.e., in the absence of photo-irradiation) indicated
a removal of ampicillin of 9–87%. Depending on the catalyst, the removal of the ampicil-
lin varied in the following order: P7 > P3 > P8 > P5 > P6 > P4 > P2~P1, i.e., in good con-
cordance with their textural properties (pore volume and interlayer diameter). Although 
P3 had the highest pore volume in the series, it presented some interlayer limitation dis-
favoring the adsorption of ampicillin. For mesoporous supports with larger pores (200–
700 nm), the loading of the adsorbed ampicillin does not depend on the pore size, and it 
was related only to the surface charge density (σ) of the sorbent surface [53]. For the 
LDHs, the ampicillin-related amoxicillin was found to adsorb predominantly by a 
chemisorption mechanism, following pseudo-second-order kinetics [54]. Indeed, as 
shown in Table 3, the interlayer distance did not influence the mass transfer or the access 
to the chemisorption sites.

The photo-irradiation of the system changed the order established by the adsorp-
tion. However, the photo-catalytic degradation could not be separated from the adsorp-
tion of the ampicillin and degraded fragments, and it was also dependent on the pho-
to-irradiation energy. Under the LED irradiation (the initial concentration of ampicillin in 
solution at t = 0), the maximum degradation was achieved for P7, with a removal of ~93% 
after 2 h of reaction. Overall, summarizing the effects of the adsorption and photocata-
lytic degradation, the removal decreased in the following order: P7 > P5 > P8~P3 > P6 > P4 
> P2 > P1 (Figure 5). The performances of these catalysts depended both on the 
LDH:MNP ratio (which was also associated with the amount of CuPc) and the textural
properties of the composite. 
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Table 3. Surface area, pore volume, and main pore size for LDH, rehydrated LDH, and
P1–P8 catalysts.

Sample Ss (BET) (m2·g−1) Pore Volume (cm3·g−1) Average Pore Size (Å)

LDH-MgZnAl 69 0.387 222
Rehydrated

LDH-MgZnAl 25 0.186 238

P1 129 0.277 72
P2 116 0.258 73
P3 137 0.858 34, 317
P4 111 0.392 34, 90, 231
P5 163 0.336 37, 63, 182
P6 148 0.230 36, 45
P7 124 0.628 ~200
P8 124 0.498 ~200

2.2. Degradation of Antibiotics

The experiments carried out in this study for the removal of antibiotics from water
using the organic–inorganic magnetic composite photocatalysts indicated two parallel pro-
cesses, namely, adsorption and photocatalytic degradation (Figures 5 and 6, respectively).

Simple adsorption measurements (i.e., in the absence of photo-irradiation) indicated a
removal of ampicillin of 9–87%. Depending on the catalyst, the removal of the ampicillin
varied in the following order: P7 > P3 > P8 > P5 > P6 > P4 > P2~P1, i.e., in good concordance
with their textural properties (pore volume and interlayer diameter). Although P3 had the
highest pore volume in the series, it presented some interlayer limitation disfavoring the
adsorption of ampicillin. For mesoporous supports with larger pores (200–700 nm), the
loading of the adsorbed ampicillin does not depend on the pore size, and it was related only
to the surface charge density (σ) of the sorbent surface [53]. For the LDHs, the ampicillin-
related amoxicillin was found to adsorb predominantly by a chemisorption mechanism,
following pseudo-second-order kinetics [54]. Indeed, as shown in Table 3, the interlayer
distance did not influence the mass transfer or the access to the chemisorption sites.



Catalysts 2022, 12, 1044 7 of 13
Catalysts 2022, 12, 1044 8 of 14

Figure 5. Removal of ampicillin from water solution using a blue LED (445–465 nm) as irradiation 
source. 

Moving to a solar simulator as an irradiation source (Figure 6) afforded a higher 
removal efficiency, which was correlated with the higher photocatalytic efficiency at-
tributed to the absorption of the light via the Q bands of the phthalocyanine. 

Figure 6. Removal of ampicillin from water solution using a solar simulator as irradiation source. 

The stability and reusability of catalysts are very important factors in the character-
ization of their efficiency and the limits of their applicability in real applications. Based 
on these considerations, the composite P7 demonstrated an enhanced efficiency. After 
three runs (the catalyst was magnetically removed from the reaction environment,
washed thoroughly with deionized water, and then dried at 120 °C for 4 h) the conver-
sion of the ampicillin was conserved at 98%. After each run, the DRIFT analysis con-
firmed no leaching of the phthalocyanine (Figure 7). 

0

10

20

30

40

50

60

70

80

90

100

R
em

ov
al

, %

 P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8

Lamp switched on

-10 0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

R
em

ov
al

, %

Reaction time, min

 P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8

Lamp switched on

Reaction time, min
− 10  0  10  20  30 4 0 5 0  60  70  80  90 10 0 11 0 120

Figure 5. Removal of ampicillin from water solution using a blue LED (445–465 nm) as
irradiation source.

Catalysts 2022, 12, 1044 8 of 14

Figure 5. Removal of ampicillin from water solution using a blue LED (445–465 nm) as irradiation 
source. 

Moving to a solar simulator as an irradiation source (Figure 6) afforded a higher 
removal efficiency, which was correlated with the higher photocatalytic efficiency at-
tributed to the absorption of the light via the Q bands of the phthalocyanine. 

Figure 6. Removal of ampicillin from water solution using a solar simulator as irradiation source. 

The stability and reusability of catalysts are very important factors in the character-
ization of their efficiency and the limits of their applicability in real applications. Based 
on these considerations, the composite P7 demonstrated an enhanced efficiency. After 
three runs (the catalyst was magnetically removed from the reaction environment,
washed thoroughly with deionized water, and then dried at 120 °C for 4 h) the conver-
sion of the ampicillin was conserved at 98%. After each run, the DRIFT analysis con-
firmed no leaching of the phthalocyanine (Figure 7). 

-10 0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

R
em

ov
al

, %

Reaction time, min

 P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8

Lamp switched on

0

10

20

30

40

50

60

70

80

90

100

R
em

ov
al

, %

 P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8

Lamp switched on

Reaction time, min
− 10  0  10  20 3 0  40  50  60 7 0 8 0  90  100 11 0 120

Figure 6. Removal of ampicillin from water solution using a solar simulator as irradiation source.

The photo-irradiation of the system changed the order established by the adsorption.
However, the photo-catalytic degradation could not be separated from the adsorption of
the ampicillin and degraded fragments, and it was also dependent on the photo-irradiation
energy. Under the LED irradiation (the initial concentration of ampicillin in solution at t = 0),
the maximum degradation was achieved for P7, with a removal of ~93% after 2 h of reaction.
Overall, summarizing the effects of the adsorption and photocatalytic degradation, the
removal decreased in the following order: P7 > P5 > P8~P3 > P6 > P4 > P2 > P1 (Figure 5).
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The performances of these catalysts depended both on the LDH:MNP ratio (which was
also associated with the amount of CuPc) and the textural properties of the composite.

Moving to a solar simulator as an irradiation source (Figure 6) afforded a higher
removal efficiency, which was correlated with the higher photocatalytic efficiency attributed
to the absorption of the light via the Q bands of the phthalocyanine.

The stability and reusability of catalysts are very important factors in the character-
ization of their efficiency and the limits of their applicability in real applications. Based
on these considerations, the composite P7 demonstrated an enhanced efficiency. After
three runs (the catalyst was magnetically removed from the reaction environment, washed
thoroughly with deionized water, and then dried at 120 ◦C for 4 h) the conversion of the
ampicillin was conserved at 98%. After each run, the DRIFT analysis confirmed no leaching
of the phthalocyanine (Figure 7).

Catalysts 2022, 12, 1044 9 of 14

Figure 7. DRIFT spectra of fresh and spent P7 sample. 

Similar tests on the removal of amoxicillin under simulated solar-light irradiation 
(Figure 8) using selected composites confirmed the order of activity determined for the 
ampicillin. However, both the absorption part and the photocatalytic behavior showed
some differences. These were directly related to the structural features of these antibiotics
(Figure 8), which can affect both the adsorption of molecules and photocatalytic degra-
dation processes. Thus, the degradation of β-lactam antibiotics can follow two routes: 
hydroxylation and opening of the β-lactam ring [55]. The ratio between these routes is 
influenced by the structure of the antibiotic and the nature of the catalyst. For example,
hydroxylation can be enhanced for amoxicillin compared to ampicillin by the population 
and the strength of the hydroxyl groups able to activate the aromatic ring, making it
more susceptible to their attachment. However, the mechanism of the photo-degradation 
of β-lactam antibiotics is still under discussion. 

Figure 8. Example of removal of amoxicillin from water solution using a solar simulator as an ir-
radiation source. 

4000 3500 3000 2500 2000 1500 1000 500

Ab
so

rb
an

ce
, a

.u
.

Wavenumbers, cm−1

 P7 fresh
 P7 after 3d run

-10 0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

R
em

ov
al

, %

Reaction time, min

 P1
 P2
 P6
 P7

Lamp switched on

Figure 7. DRIFT spectra of fresh and spent P7 sample.

Similar tests on the removal of amoxicillin under simulated solar-light irradiation
(Figure 8) using selected composites confirmed the order of activity determined for the
ampicillin. However, both the absorption part and the photocatalytic behavior showed
some differences. These were directly related to the structural features of these antibiotics
(Figure 8), which can affect both the adsorption of molecules and photocatalytic degra-
dation processes. Thus, the degradation of β-lactam antibiotics can follow two routes:
hydroxylation and opening of the β-lactam ring [55]. The ratio between these routes is
influenced by the structure of the antibiotic and the nature of the catalyst. For example,
hydroxylation can be enhanced for amoxicillin compared to ampicillin by the population
and the strength of the hydroxyl groups able to activate the aromatic ring, making it more
susceptible to their attachment. However, the mechanism of the photo-degradation of
β-lactam antibiotics is still under discussion.

FTIR analysis of the amoxicillin solution in the presence of P7 sample at each reaction
time shows an increase in the amount of bonds involving oxygen (Figure 9a–c), which back
up both reaction pathways.
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3. Materials and Methods
3.1. Synthesis

The synthesis of LDH Mg0.375Zn0.375Al0.25 was carried out following a previously re-
ported procedure [40]. Therefore, two solutions (A and B), were mixed at an inlet flow of
1 cm3·min−1, at RT under stirring (600 rpm). Solution A of a concentration of 1.5M contained
the nitrate-like precursors of Mg, Zn, and Al in the molar ratio Mg/Zn/Al = 0.375/0.375/0.25.
The base solution contained 0.23 moles NaOH and 0.092 moles Na2CO3 at a concentration
of 1M in Na2CO3. Co-precipitation of these took place for 1.5 h at the pH of 10 ± 0.2
(continuously monitored by a pH-meter, pH315i), after which the resulted precipitate was
aged for 18 h, at 80 ◦C, in air atmosphere at the same stirring rate. The suspension was then
cooled at room temperature, filtered under vacuum, and washed with distilled water until
reaching a pH of 7. The precipitate was dried at 120 ◦C for 24 h in air atmosphere, resulting
in LDH-MgZnAl. The insertion of phthalocyanine into the structure of LDH started from
the calcination of LDH for 18 h at 460 ◦C (10 ◦C/min), followed by stirring of the resulting
mixed oxide with a solution of Co-phthalocyanine 3,4′,4′′,4′′′′-tetrasulfonic acid (0.1 M)
for 12 h, filtration of the composite phthalocyanine-LDH, washing of the precipitate, and
drying at 120 ◦C for 24 h in air. The amount of CuPc determined by elemental analysis was
~10 × 10−5 moles CuPc/g of LDH.

The attachment of the magnetic particles (MPs) was achieved by mixing 100 mg of
modified LDH with Cu-phthalocyanine in 100 mL of water. After vigorous stirring for
10 min, the corresponding amounts of FeCl2 and Fe(NO3)3 were added, resulting in a
MP@CuPc@LDH-MgZnAl composite. The mixture was then heated at 70 ◦C in an oil bath
and treated, by a slow addition, with 7.5 mL of 5M NaOH. The resulting suspension was
then left to age for 60 min. Finally, the solid was magnetically removed, washed with water
by decantation, and dried at 70 ◦C for 12 h.

In order to verify the structural influence of the LDH: MNPs ratio and the nature of
the MNP precursors, a series of materials containing CuPc@LDH-MgZnAl were prepared
using a similar protocol (Table 1).

3.2. Characterization
3.2.1. Specific Surface Area (BET) and Pore-Size Measurements

The investigation of the textural characteristics was performed using the 77K nitrogen
adsorption–desorption isotherms collected using a Micromeritics ASAP2020 Surface Area
and Porosity Analyzer. The samples were outgassed under vacuum for 24 h at 120 ◦C.

3.2.2. X-ray Diffraction (XRD)

XRD data were collected at room temperature using a Shimadzu XRD-7000 apparatus
taking the monochromatic Cu Kα radiation (λ = 1.5406 Å, 40 kV, 40 mA), with a scanning
rate of 0.1 degrees per minute, in the range 2θ = 5–80 degrees.

The size of the crystallites was estimated using Sherrer’s equation:

D = k·λ/FWHM·sinθ (1)

where:

k = 0.9 (shape factor)
λ = wavelength of the X-ray radiation source (for Cu = 1.54 Å)
FWHM = full width at half height (in radians)
θ = maximum position (in radians)

3.2.3. Diffuse-Reflectance UV-Vis Spectroscopy (DR-UV-Vis)

The DR-UV-Vis spectra were collected under ambient conditions using Specord
250 equipment (Analytic Jena) with an integrating sphere as a measuring device in the
reflectance mode. MgO was used as reference material.



Catalysts 2022, 12, 1044 11 of 13

3.2.4. Diffuse-Reflectance Infrared Spectroscopy (DRIFT)

The infrared spectra were collected with a Brucker Tensor II device equipped with a
Harrick Praying Mantis Diffuse Reflection accessory. The final spectra averaged 128 scans
with a resolution of 4 cm−1. KBr was used as a reference.

3.3. Photocatalytic Tests

The irradiation was generated by a sunlight simulator using a Luzchem LZC-4b
source (LED 445–465 nm), or a Sciencetech SF150-A Small Collimated Beam Solar Simulator
(equipped with Air Mass AM1.5G Filter and Light-Tight Reaction Chamber). The evolution
of the photocatalyzed reaction was followed by means of a liquid chromatograph (HPLC)
equipped with Zorbax SB-C18 column (4.6 × 150 mm, 5 microns), mobile phase 25 mM
KH2PO4:ACN = 60:40, mobile phase flow 0.5 mL·min−1; analysis time 30 min; column
temperature 60 ◦C, DAD detection 204 nm). In a typical experiment, 15 mL of a prepared
0.015 M solution of antibiotic and 60 mg of catalyst were added into a quartz test tube. To
establish the absorption–desorption equilibrium; before turning on the lamp, the samples
were kept in the dark, under stirring, for 10 min.

4. Conclusions

A series of supramolecular organic–inorganic magnetic composites containing Zn-
modified MgAl-LDHs and Cu-phthalocyanine as photosensitizers were prepared with the
aim of removing β-lactam antibiotics from aqueous solutions. The resulting composites
were characterized using textural, spectral, and diffractometric techniques. These confirmed
the anchorage of Cu-phthalocyanine onto the edges of the LDH lamellae, without any
insertion in the interlayer space. The removal of these antibiotics occurred via concerted
adsorption and photocatalytic degradation. The efficiency of the composites depended
on (i) the LDH:MP ratio, which was strongly correlated with the textural properties of
the catalysts, and (ii) the phthalocyanine loading in the final composite. The maximum
efficiency was achieved for the P8 photocatalyst, with a removal of ~93% ampicillin after
2 h of reaction.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal12091044/s1, Figure S1: TEM image of fresh LDH;
Figure S2: TEM image of rehydrated LDH; Figure S3: TEM image of MNP@ rehydrated LDH.
Reference [52] is cited in the Supplementary Materials.
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