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ABSTRACT

Offshore structures are prone to damage caused by ice-
induced vibrations. It is presently unknown to what extent dif-
ferent ice conditions change the properties of the structure, such
as natural frequency, damping ratio, and mode shape. Under-
standing the dynamic interaction between ice and structures are
important for the operational ability of offshore structures. In
this study, the covariance-driven stochastic subspace identifica-
tion algorithm (SSI-cov) is introduced to identify modal parame-
ters of a scale-model structure during ice-structure interactions.
In order to reduce the number of user interactions and inherent
bias to the identified modal parameters, we therefore introduce
an automated parameter identification approach. First, SSI-cov
is used to obtain poles that describe the information: damping
ratio, mode shape, etc. After that, a stable criterion is used to
pick up stable poles. Finally, Hierarchical clustering is used
to cluster poles to identify the natural frequency. The proposed
method is able to reduce the many user-intervenes and enables
efficient automatic parameter identification. The results show
that Hierarchical clustering can render more successful identi-
fications than the slack value-based method among different ice
speeds. The results also show changes in the system frequencies
for different ice conditions.

Keywords: Ice-structure interaction, SSI-cov, Automated
parameter identification, Hierarchical clustering.

NOMENCLATURE
µ continuous time eigenvalue.
λ eigenvalue.
φ eigenvector.
f frequency.
ξ damping coefficient.
ϕ mode shape.
ω frequency in radian.
σ normalized standard deviation.
S f variance of frequency.
Sξ variance of damping.
SMAC variance of MAC.

INTRODUCTION
The action of drifting ice may induce vibrations in offshore

structures, posing a threat to the structural integrity. It is impor-
tant to understand the system characteristics during ice-structure
interaction for the operational ability of offshore structures. The
presence of ice surrounding a structure may alter the system
properties, such as natural frequencies, damping ratios, and mode
shapes. Identifying the modal parameters under different ice con-
ditions may therefore give insight into how the ice actions affect
modal properties, and in turn provide uncertainty bounds to each
parameter. Nord et al. further showed that for some ambient
interaction types it was difficult to identify the system proper-
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ties, and showed that there is a need for a controlled environment
assessment of when to expect a successful modal parameter iden-
tification [1].

In order to avoid bias from the analyst to the identified pa-
rameters, the system identification should ideally be performed
without too many user interactions. Unfortunately, traditional
methods involve many user interactions, which results in large
computational cost [2] and bias to the results. Therefore, it is
necessary to develop an analysis method for automatic modal
parameters identification.

In what follows, it is assumed that for a limited time win-
dow of ice-structure interaction, the process can be described by
a linear time-invariant system. To obtain the structural proper-
ties, a covariance-driven stochastic subspace identification (SSI)
algorithm is applied to estimate modal parameters. All identi-
fied modal parameters are afflicted with statistical uncertainty
because of the finite number of data samples, undefined mea-
surement noises, non-stationary excitation, etc. [3]. Hence, a
covariance-driven SSI (SSI-cov) algorithm was proposed to esti-
mate the frequencies, damping ratios and their uncertainties [4].

After SSI-cov analysis, poles at different system orders are
obtained. A pole is considered stable if the deviances in fre-
quency, damping and normalized standard deviation of the fre-
quency fulfill the predefined stability criterion. After that, a sta-
bilization diagram is constructed by stable poles via taking fre-
quency as abscissa and system order as ordinate [5]. Physical
modes should then show up as vertical lines in the diagram.

To date, there are many suggested methods to automatically
determine the modal parameters. Magalhaes et al. applied hierar-
chical clustering to identify the modes successfully based on the
data from concrete arch bridge [6]. Verboven et al. [7] and Van-
landuit et al. [8] employed fuzzy C-means clustering to classify
the modes into two categories (physical and spurious). Reynders
et al. introduced how to use hierarchical clustering to identify the
physical modes based on single-mode validation criteria [2]. It
does not require any user-specified parameter values. The valida-
tion example shows the hierarchical clustering has better robust-
ness to identify modal parameters than the traditional identifica-
tion approach. Inspired by this research, hierarchical clustering
is used to identify the parameters of the ice-structure interaction
model.

This study proposes a workflow of modal parameters iden-
tification which is made up of three parts: data preprocessing,
SSI-cov analysis and physical mode identification. This anal-
ysis procedure could identify modal parameters with few users
intervenes and achieve a better performance of parameters iden-
tification than the slack value-based identification method. The
main contributions are shown as follows: 1) several validation
experiments are carried out to choose proper parameters for the
selection of stable poles in order to improve the accuracy of iden-
tified frequencies; 2) Hierarchical clustering is compared with
slack value-based identification approach to estimate the param-

eters of ice-structure interaction model.
The rest of this paper is structured as follows: the next

section describes the procedure on modal parameters identifica-
tion, including data preprocessing, SSI-cov analysis, and physi-
cal mode identification. Case study compares two cases regard-
ing optimal parameters selection and makes a comparison be-
tween the slack value and hierarchical clustering. Discussion and
Conclusion are given finally.

Modal parameters identification procedure
This section introduces the main procedure of mode anal-

ysis. As shown in Fig. 1, The procedure includes three parts:
data preprocessing, SSI-cov analysis, physical mode identifica-
tion. Data preprocessing is to process the collected sensor data.
Next, the processed data is analyzed by SSI-cov algorithm. Fi-
nally, physical modes could be clustered by the proposed algo-
rithm.

Ice-structure interaction model testing
The ice-structure interaction model tests were carried out in

the Hamburg Ship Model Basin’s (HSVA) large ice model basin
1. The setup consists of a flexible foundation with adjustable
mass and stiffness to mimic certain dynamic characteristics of
the structure and a rigid model. The flexible foundation was de-
signed to have one or two natural frequencies in ice drift direction
(21.36 and 29.53 rad/s). A cylindrical model (red) with a 500
mm diameter was used for the tests considered for the presented
study. This model was equipped with tactile sensors to monitor
local ice loads. Additionally, global loads were recorded by a
6-component load scale connecting the compliant basis and the
model, and lasers and accelerometers monitored the ice-induced
vibrations of the structure in x- and y-direction (loading direc-
tion and perpendicular in-plane motion). The setup is described
in detail in [9]. The setup was instrumented by three Triax ac-
celerometers to measure the structural response over different ice
velocities as shown in Fig. 1. The data was obtained under dif-
ferent structural and ice related properties. These include the
SDOF (one natural frequency) and MDOF (two natural frequen-
cies) setup, both tested in two different ice thicknesses with con-
stant compressive strength, and in two different ice types: stan-
dard model ice, and an alternative model ice type developed for
crushing failure. Hence, eight ice-structure property combina-
tions have been investigated. The full data set is described by
Stange et al. [9]. Run 32010 investigated in the presented anal-
ysis was conducted in 41 mm thick standard model ice. HSVA’s
standard model ice is frozen from a 0.7% sodium chloride so-
lution using a spraying technique which creates a fine grained
fresh water ice top layer. Subsequently, the ice grows in the nat-
ural way with primarily columnar structure. During growth, air

1https://www.hsva.de/
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FIGURE 1: The procedure of automated modal parameters identification.

is embedded into the growing ice sheet to adjust its density, in-
crease its brittleness, and give the ice a white appearance. When
the target thickness has been reached, cooling is switched off,
and heat is released into the ice tank room. Consequently, the ice
is weakened until the target strength is reached. Detailed infor-
mation on HSVA’s standard model ice, as well as the alternative
ice type mentioned above, is given by Ziemer et al. [10].
All eight test runs contain several different ice drift speeds from 4
to 150 mm/s. Therefore, for test data analysis the measurements
are subdivided into segments with constant velocity first. Sec-
ond, segments are grouped for different ice failure types (inter-
mittent crushing (IC), frequency lock-in (FLI), continuous crush-
ing (CC)). The ice failure types strongly affect the dynamic re-
sponse of the structure: In IC, the ice load is sawtooth-shaped
with irregular loading periods which are much longer than the
natural periods of the structure. The model, therefore, follows
the ice load in a quasi-static manner. IC occurs at low ice speed.
When the speed increases, the interaction changes to FLI. This
failure mode is characterized by quasi-synchronized local ice
failures that cause large oscillation amplitudes in a frequency
close to the natural frequency of the structure. As the ice drift
speed increases further, the failure mode changes to CC and cre-
ates an irregular, broadband excitation. After subdividing the
data, it is resampled with 100Hz. Finally, a high pass filter whose
cutoff is 0.2 HZ is used to remove the noise from the data. The

processed data is used as the input of SSI-cov algorithm.

Covariance-driven stochastic subspace identification
algorithm

The linear time-invariant system is described by a discrete
time stat-space model

{
xk+1 = Axk +wk
yk =Cxk + vk

(1)

where wk and vk are the process and output noise, respectively.
In order to identify matrices A and C from which the modal fre-
quencies, damping and mode shapes can be obtained, the eigen-
values and eigenvectors of the system in Eqn.1 is calculated by
the following equations

{
(A−λiI)φi = 0
ϕi =Cφi

(2)

from which the µi, fi, and ξi can be obtained:

µi =
lnλi

T
, fi =

|µi|
2π

,ξi =−100
R(µi)

|µi|
(3)
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where T is the sampling period. SSI is a prevalent method to
estimate the matrices A and C. The algorithm uses the output
data to build a subspace matrix Hp+1,q ∈ R(p+1)r×qr0 . Therein, r
is the number of sensors, r0 is the number of reference sensors,
and p and q are the parameters chosen such that pr ≥ qr0 ≥ n,
where n is the model order. The subspace matrix Hp+1,q can
be truncated at a user-defined model order n via singular value
decomposition (SVD)

Hp+1,q =
[
U1 U0

][Σ1 0
0 Σ0

][
V T

1
V T

0

]
(4)

and

Op+1 =U1Σ
1/2
1 (5)

The C matrix can be directly extracted from the first block of r
rows of the observability matrix Op+1, while the A matrix can be
obtained from a least-squares solution of

O↑p+1A = O↓p+1 (6)

where O↑p+1 =


C

CA
...

CAp−1

,O↓p+1 =


C

CA
...

CAp


The principle of SSI-cov is to propagate the covariance of

the subspace matrix, ΣH , to the modal parameters through first-
order perturbations. The covariance of the modal parameters are
obtained as

cov(
[

fi
ξi

]
,

[
f j
ξ j

]
) =

[
J fi,A 01,rn
Jξi,A 01,rn

]
ΣAC

[
J fi,A 01,rn
Jξi,A 01,rn

]T

cov(
[
R(φi)
I(φi)

]
,

[
R(φ j)
I(φ j)

]
) =

[
R(Jφi,A,C)
I(Jφi,A,C)

]
ΣAC

[
R(Jφi,A,C)
I(Jφi,A,C)

]T
(7)

The detailed computational process can be referred to [4] After
SSI-cov analysis, the modal parameters are derived. Next, the
mode stability criterion is employed to pick stable poles. The se-
lected stable poles are further analyzed to obtain physical modes
in the following step.

Physical mode identification Once poles that are sta-
ble/unstable are identified, one must group poles with similar
modal characteristics. This is commonly performed in a stabi-
lization diagram, which shows the frequency of the poles on the
horizontal axis and the order of the system on the vertical axis. A

(a) Two accelerations

(b) Three accelerations

FIGURE 2: Mode frequency under the different number of struc-
tural response signals.

physical mode appears as a straight vertical line of poles, and the
line with the corresponding lowest frequency is the first eigen-
frequency, the column with the corresponding second lowest fre-
quency is the second natural frequency, and so on. Poles that are
not stacked on a vertical line are usually what is referred to as
spurious poles/modes, i.e. modes without physical interpretation.
Once one has determined which poles that should be counted as
part of one column, it is common to compute the average value
of these poles, from which we find the corresponding natural fre-
quency, damping and mode shape. The major challenge lies in
the process of choosing the poles that should be counted as part
of the column of poles (mode), due to the fact that some lie at
a slightly different frequency, have different damping values or
mode shape, and different corresponding uncertainties. There-
fore different techniques have emerged to handle the physical
mode selection, where clustering algorithms have been suggested
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TABLE 1: THE EXPERIMENT SETTINGS FOR ICE-STRUCTURE INTERACTION ANALYSIS.

Test Model Ice type Ice speed Ice thickness Flexural strength

32010 9500MDOF Model ice 4-150mm/s 41mm 56kPa

(a) rb=100 (b) rb=150 (c) rb=200

FIGURE 3: The comparison of identified modes for different choices of blockrows.

(a) nb=10 (b) nb=20 (c) nb=30

FIGURE 4: The comparison of identified modes among different number of blocks.

as an efficient technique to determine the physical modes. One of
the popular methods is Hierarchical clustering [2, 11]. Hierarchi-
cal clustering is a recursive partitioning of a dataset into succes-
sively smaller clusters. The input is a weighted graph whose edge
weights represent pairwise similarities or dissimilarities between
data points. Hierarchical clustering is represented by a rooted
tree where each leaf represents a data point and each internal
node represents a cluster containing its descendant leaves. The
tree is constructed based on the distance information between
different data points [12]. It is suitable for the data set with arbi-
trary shapes and attributes of arbitrary type. And the hierarchical

relationship among clusters is easily detected, and relatively high
scalability in general [13].
Let Q = q1,q2, ...,qn be a set of objects. The dendrogram is con-
structed by the following steps [11]:

1) Compute the proximity matrix containing the distance be-
tween each pair of objects (qi,q j).

2) Group the objects into a hierarchical cluster tree using the
distance information.

3) Choose the cut off value to partition the hierarchical tree into
clusters.
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TABLE 2: The identified frequencies by slack value and hierarchical clustering based on the data in ’32010’ under the ice failures of IC,
FLI, and CC.

Data file Frequency Method

ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

32010

First
Slack value 70.80 14.86 20.25 29.76 21.02 21.07 30.71 21.06 21.19 21.27 21.57 21.38 21.50 21.38 21.61

Hierarchical 70.80 14.86 20.24 20.99 21.02 21.07 21.03 21.06 21.19 21.27 21.57 21.43 21.51 21.50 21.61

Second
Slack value 119.20 29.80 61.01 41.85 30.80 28.39 31.75 29.05 28.55 29.79 30.29 30.13 30.14 21.41 26.83

Hierarchical 120.38 29.80 24.90 29.76 30.80 28.38 31.32 29.17 28.55 29.79 30.30 30.08 30.14 25.96 26.83

Third
Slack value 122.92 36.88 80.66 70.58 42.01 31.30 31.79 29.22 31.61 42.57 59.68 61.41 59.33 25.94 30.39

Hierarchical 152.26 36.88 29.95 41.86 42.01 31.26 42.02 42.14 31.61 42.57 53.21 61.35 49.06 30.08 30.39

TABLE 3: The identified damping by slack value and hierarchical clustering based on the data in ’32010’ under the ice failures of IC,
FLI, and CC.

Data file Damping (%) Method

ice velocity (mm/s)

4 6 8 10 12 14 16 18 20 28 45 65 80 95 150

IC IC FLI FLI FLI FLI FLI FLI FLI FLI FLI CC CC CC CC

32010

First
Slack value NULL NULL 0.11 NULL 0.08 0.01 NULL 0.08 0.03 0.02 0.64 2.44 1.67 1.64 2.47

Hierarchical NULL NULL 0.13 0.05 0.08 0.01 0.08 0.08 0.03 0.02 0.64 2.35 1.73 1.51 2.47

Second
Slack value NULL 0.54 0.65 2.57 3.23 1.82 2.69 3.69 1.89 2.53 0.92 0.79 1.17 1.02 0.37

Hierarchical NULL 0.54 1.02 2.57 3.23 1.57 3.26 3.58 1.89 2.51 0.91 0.82 1.17 1.09 0.38

In this study, eigenfrequency difference and MAC are used
as distance measures in [14]. Its form is shown in Eq. (8)

d(k, l) = | fk− fl |+(1−MAC(φk,φl)) (8)

where fk is the eigenfrequency of mode k; MAC is computed by
Eq. (9)

MAC(φk,φl) =
|φ T

k φl |2

||φk||22||φl ||22
, ||φk||22, ||φl ||22 6= 0 (9)

where φk is the mode shape of mode k.
Through continuous iterations of evaluating the paired dis-

tance, the data points that are smaller than the cutoff value are
partitioned into the same cluster. Finally, hierarchical clustering
yields a set of similar mode sets from the cleared stabilization
diagram. After that, the identified physical modes are evaluated
and analyzed further based on natural frequencies and damping
ratios.

Case study
This section mainly introduces two parts of the experiments.

The first part is to pick up the optimal parameters for SSI-cov
analysis. Next, hierarchical clustering is compared with a slack
value-based approach in [1] to examine the efficiency of the au-
tomated modal analysis.

Parameters selection
The SSI-cov algorithm involves user interaction to choose a

couple of parameters that need to be selected. For example, there
are three accelerometers to measure the acceleration of the struc-
ture. However, not all measured signals contribute to accurate
parameters identification. In addition, the number of blocks (nb)
of output data matrices, as well as the number of blockrows (rb),
have influences to some extent. Other parameters such as sam-
pling frequency, system orders, could affect the identified results,
which are not our main concern in this study. Their settings can
be referred to [1].

In order to select proper parameters for modal parameters
identification, Test 32010 is used as a case and its corresponding
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settings are shown in Table 1. The test had a stepwise increasing
ice speed, and therefore different regimes of ice-structure inter-
action would take place during the total time span. The data was
cut to begin when the ice speed reached 4 mm/s. Thereafter the
data was analyzed in time windows that each consisted of 2000
data points. The choice of data points was selected to have the
sufficient number of data points for the SSI-cov algorithm to ren-
der consistent results, and few enough data points for the inter-
action regime to significantly change. Next, tolerance deviances
to frequency, damping, and MAC-values, as well as the normal-
ized standard deviation of the frequency (σ̂ωi/ωi) are leveraged
to pick up stable poles. Based on [1], a pole at order n was con-
sidered stable if the deviances in frequency, damping ratio, and
normalized standard deviation of the frequency between a pole at
order n and n-1 were less than 0.01, 0.05 and 0.05, respectively,
and corresponding MAC-values exceeded 0.95. After that, S f ,
Sξ and SMAC are chosen to be 0.02, 0.3 and 0.5 respectively to
select eigenmodes. Figure. 2(a) and Figure. 2(b) show the iden-
tified modes under the case of different accelerations. Therein,
the black curve is the power spectrum whose peaks represent the
possible physical modes. The stable poles with variance are plot-
ted following their order. The formed straight lines represent the
identified frequencies by stable poles. In Fig. 2(b), the identi-
fied second and third frequencies are overlapped while Fig. 2(a)
presents a better identification result. Therefore, this study uses
two accelerations as input data for SSI-cov analysis.

Figure. 3(a), Figure. 3(b), and Figure. 3(c) display the iden-
tified eigenfrequencies and their estimated standard deviations in
the cases of ’rb = 100’, ’rb = 150’, ’rb = 200’ separately. When
rb equals to 150 or 200, there are more spurious modes that have
larger standard deviations, as shown in Fig. 3(b) and Fig. 3(c).
Compared with them, ’rb = 100’ could obtain more accurate re-
sults which are in line with the position of the peaks of the power
spectrum, as shown in Fig. 3(a). Hence, the study prefers 100
as blockrows. Figure. 4(a), Figure. 4(b), and Figure. 4(c) dis-
play the identified eigenfrequencies and their estimated standard
deviations in the cases of ’nb = 10’, ’nb = 20’, ’nb = 30’, sepa-
rately. Through the comparison among these three figures, it is
easy to find that ’nb = 20’ could obtain better results as frequency
(20) disappeared in other stability diagrams. For this reason, the
number of blocks is selected as 20 in this study.

Comparison between slack value and hierarchical
clustering

This section compares the slack value-based parameters
identification approach with hierarchical clustering. The data
whose ice velocities are 8 mm/s and 95mm/s in datafile ’32010’
is chosen as two cases to compare these two methods. The
benchmark values of the first two eigenfrequencies are 21.352
and 29.516 rad/s separately, which are estimated when the struc-
ture was moving in the open water [9]. Considering the uncertain

(a) Slack value

(b) Hierarchical clustering

FIGURE 5: The comparison of slack value and hierarchical clus-
tering when ice velocity is 8 mm/s.

factors, the benchmark values are expanded by 10% deviation to
an interval: [19.22, 23.49] for the first frequency, [26.56, 32.47]
for the second frequency. The cutoff and depth of the Hierarchi-
cal clustering algorithm are chosen as 0.1 and 5 separately based
on data characteristics.

The focus of this study falls on the first three natural frequen-
cies that represent the most concerning modes. The ice velocities
range from 4-150 mm/s. The identified frequencies are shown in
Table. 2. The bold numbers represent the successful identifica-
tions of natural frequencies by two methods. For IC, the identi-
fied first frequencies by slack value and Hierarchical clustering
are 70.8, 14.86, separately for different ice speeds. Results show
that both methods fail to identify the first frequency. For FLI
and CC, the first two natural frequencies identified by Hierarchi-
cal clustering are around 21 rad/s and 29 rad/s among different
ice speeds. From this table, Hierarchical clustering renders more
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bold numbers than the slack value-based approach. Table. 3
shows the identified damping of the first two modes. ‘NULL’
means the corresponding damping can not be obtained due to
the failure of parameters identification. It can be seen that both
methods achieve similar results. For ‘FLI’, the damping of the
first mode is quite lower than that of the second mode, whereas it
is opposite for other cases. This trend probably results from the
increase of ice velocity.

Figure. 5(a) and Figure. 5(b) show the identified frequencies
by these two methods in the case of ice velocity being 8 mm/s.
Based on the referenced values of the first two natural frequen-
cies, it is easily found that hierarchical clustering can identify
these two frequencies correctly while slack value can not. As
shown in Fig. 5(a), some missing modes are supposed to be iden-
tified in the stabilization diagram. For example, at the position of
frequency 30 rad/s, there is supposed to be a mode that appears
on the peak of the power spectrum. Based on aforementioned
analyses, it is concluded that hierarchical clustering outperforms
the slack value-based approach as a whole.

Discussion
The section above introduced the Hierarchical clustering ap-

proach to identify the modal parameters of the structure when
encountering ice-structure interaction. As shown in Table. 2, it
often fails to identify the correct modal parameters for certain
cases like IC failure and FLI at low ice velocities. For IC fail-
ure, likely the ice-structure interaction system is too time-variant
and too nonlinear for the current method to identify the structural
parameters inherently hidden in the measured signals. This phe-
nomenon does probably depend on the severity of the ice-actions
compared to the mass and stiffness of the structure. However,
given that for a certain structure ice-actions are rare and opera-
tional parameters are to be extracted automatically as part of a
structural health monitoring system at daily or hourly intervals,
our results show that hierarchical clustering did have a better per-
formance of parameters identification than the traditional slack-
value method.

Another limitation lies in that input parameters impact re-
sults. For example, the change of nb and rb turns out to be differ-
ent identification results. In other words, the uncertainty of input
parameters would affect the accuracy of parameters identifica-
tion. For the convenience of analysis, in this study, the limited
numbers are compared based on previous research to obtain a
relatively accurate result.

Conclusion
This study introduced a Hierarchical clustering method to

automatically identify the parameters of the ice-structure inter-
action model. The proposed analysis workflow is shown in
Fig. 1, including data preprocessing, SSI-cov analysis, modal

parameters identification. In order to verify the superiority of
the proposed method, the slack value-based parameter identifi-
cation method is leveraged to make a comparison based on data
file 32010. First of all, parameters such as rb and nb are selected
based on contrast tests. Next, hierarchical clustering and slack
value are compared under the difference ice velocities from 4 -
150 mm/s. The results show hierarchical clustering outperforms
slack value in terms of the accuracy of parameters identification
for the ice failures of ‘FLI’ and ‘CC’.

Accurate parameter identification is pivotal to the opera-
tional ability of offshore structures. As the second limitation in
the Discussion, however, it is hard to obtain an accurate result
due to parameters uncertainty. Therefore, it is necessary to quan-
tify the uncertainty of input parameters from the perspective of
statistics to implement a more accurate estimation.
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