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Abstract

Currently, no classical clustering algorithm is efficient on its own. The predefined

number of clusters required for their operation does not consistently produce satis-

factory segmentation results. They exhibit cluster instability, are vulnerable to the

local optimum trap, and are sensitive to noise and imaging artefacts. Most contribu-

tions designed to overcome these drawbacks incorporate prior knowledge such as

cluster label information and statistic measures that demand minimal labelled training

data. Although these approaches improve the segmentation accuracy, they tend to

diminish the advantages of clustering algorithms over the supervised learning

methods. This study proposes a shift from the use of a predefined number of clusters

to a clustering tree-based method for performance enhancement of classical cluster-

ing algorithms. The proposed method is a three-stage algorithm. It begins with the

extraction of low-level features from a clustering tree. Clustering trees are sets of

labelled clusters of an image at multiple clustering resolutions. The second stage

extracts high-level features by coupling the clustering tree to a single-layer

feedforward neural network. The third stage is the classification stage, where the

basic model of a neural network extracts the tumour from a high-level feature map.

Because neither of the neural networks requires training, the proposed method is

both fully unsupervised and fully automated and retains all its advantages over super-

vised methods. A performance evaluation using FLAIR MRI images of brain tumour

patients from the BRATS2015 and BRATS2020 databases demonstrates significant

performance enhancement over four classical clustering algorithms and two of the

four proposed techniques were comparable to deep learning methods.
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1 | INTRODUCTION

Brain tumour is a neurological disease which manifest as the growth of abnormal structures within or close to the brain (Alibolandi et al., 2018).

Recent reports shows that brain cancer is a significant burden on regional, national and global health-care systems (Patel et al., 2019). Gliomas,

the common type of brain tumours, are classified by the world health organization (WHO) from grades 1 to 4 according to the tumour's growth

potential and aggressiveness (Louis et al., 2021). Grades 1, 2 are the low grade gliomas (LGG), while grades 3, 4 are the high grade gliomas (HGG).

Magnetic resonance imaging (MRI) is widely used in diagnosis and follow-up examinations to classify a tumour and determine its shape, location

and spatial extent (Lu et al., 2020). This information assist physicians to predict a patient survival and optimize treatment plan (Zarei Mahmoodabadi

et al., 2013). The most attractive feature of MRI is the generation, from the same subject, of multispectral images which can be combined for accu-

rate characterization and classification of brain tumour. Figure 1a–d are T1-weighted (T1-w), T1-weighted contrast-enhanced (T1c), T2-weighted

(T2-w) and fluid attenuation inversion recovery (FLAIR) images, respectively (Menze et al., 2014). Although each MRI sequence provide complimen-

tary information about the tumour and healthy brain structures, the contribution from the FLAIR sequence stands out from other sequences. The

FLAIR signal enhances the visualization of tumour infiltration by suppressing the signals of water molecules so that the radiologist can conveniently

distinguish the hyperintense tumour in the white matter region from the cerebrospinal fluid (CSF) in the ventricle (Regnery et al., 2019). The FLAIR

sequence is the preferred imaging modality in radiotherapy planning to determine target volume for patient with HGG and to determine tumour

extent and volume during surgery in LGG which generally do not reveal contrast enhancement (Edjlali et al., 2019; Soltaninejad et al., 2017).

Since routine brain tumour diagnosis for a single patient requires several hundreds of MRI slices, manual segmentation is cumbersome, prone

to fatigue-induced errors with high intra-reader and inter-reader variability (Despotovi�c et al., 2015). Furthermore, results from manual segmenta-

tion are not always reproducible and the segmentation accuracy is dependent on the radiologist experience. Therefore, automatic segmentation

methods that incorporates general pathological information about tumours is necessary to facilitate image interpretation and improve diagnostic

accuracy (Pereira et al., 2016). Contributions on automatic segmentation of brain tumour can be divided into four categories; threshold-based,

region-based, model-based and pixel classification techniques (Gordillo et al., 2013). Threshold-based methods extract the tumour by comparing

the intensity of the tumour region with one or more intensity thresholds (Li et al., 2016). In region-based techniques, the tumour is extracted by

merging neighbourhood pixels with homogeneity properties based on predefined similarity criteria (Wong, 2005). Model-based methods extract

the tumour region by using information built from a model of the brain structures that incorporates prior knowledge such as shape, location and

orientation (Korez et al., 2015). This study will focus on clustering-based method of pixel classification techniques for the segmentation of brain

F IGURE 1 Four MRI sequence images from a patient (a) T1-weighted, (b) T1c-weighted, (c) T2-weighted, and (d) FLAIR
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tumours. Readers who are interested in broader coverage of brain tumour segmentation can refer to Tiwari et al. (2020), Nazar et al. (2020), Kaur

and Rani (2016), Işın et al. (2016), Wadhwa et al. (2019) and Nalepa et al. (2019).

1.1 | Outline of article

This article is organized as follows. Section 2 describes pixel classification techniques for the segmentation of brain tumour and highlights its

drawbacks. Section 3 reviews some current contributions for enhancing the performance of clustering techniques. In Section 4, we propose a

new approach to the segmentation of brain tumours in MRI images. Experiments to evaluate the proposed method and its results are describe in

Section 5. Discussion is in Section 6. Section 7 concludes this article.

2 | PIXEL CLASSIFICATION TECHNIQUES

Pixel classification methods assume that pixels that describe the tumour region and other regions of the brain belong to a finite number of classes.

Therefore, the pixels are analysed and grouped based on specific classification schemes (Gordillo et al., 2013). Two categories of pixel classifica-

tion techniques are the supervised and unsupervised methods. Neural networks and clustering are the popular supervised and unsupervised pixel

classification methods, respectively (Salem et al., 2009). Clustering is the process of grouping pixels into classes based on the minimization of an

objective function. Since the past decade, deep neural networks are gaining wide popularity among researchers because of their outstanding per-

formance in image segmentation. The convolutional neural network (CNN) is a type of deep neural network that is widely used for brain analysis.

The UNet (Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2017) are two popular CNN-based deep neural networks for brain tumour

segmentation. Both techniques apply encoding to extract contextual information from the input features and decoding to keep track of pixel loca-

tions in the encoding path. The decoding process in UNet is facilitated via skip connections, whereby the entire feature map in the encoder are

transferred to the decoder whereas in SegNet only the pooling indices from the encoder are transferred to the decoder. For this reason, the

SegNet uses less memory than UNet during training. There are two main challenges to achieve accurate segmentation with deep neural networks.

First, the complex structure of both the CNN and the brain regions result in long training time and difficulty in the discrimination between tumour

and none tumour regions. Second, government regulation on the protection of privacy limits the quantity and by extension the quality of medical

data researchers can access for training a model. To reduce the training and computation time, recent contributions such as Badrinarayanan et al.

(2017) include an attention mechanism in the CNN architecture to processes only relevant image regions rather than the whole brain. Other con-

tributions propose the generative adversarial network (GAN) (Xue et al., 2018) as a component of the CNN for synthetic data generation to aug-

ment the limited availability of training data.

Other examples of techniques that incorporate neural networks is the contribution by (Lu et al., 2020) that applies batch normalization to

fine-tune and improve the robustness of AlexNet (Krizhevsky et al., 2012), a pretrained deep convolutional neural network. Thereafter, several

layers of the network are replaced by an extreme learning machine classifier (Ding et al., 2015), a training algorithm for single hidden layer

feedforward neural network optimized using chaotic bat algorithm (Gandomi & Yang, 2014). Another neural network-based technique (Zhang

et al., 2018) apply synthetic minority oversampling technique to balance the dataset. Pathological features extracted using wavelet packet Tsallis

entropy were classified by extreme learning machine trained using Jaya algorithm. Below, we provide detailed description of clustering

algorithms.

2.1 | Classical clustering algorithms

Four popular image clustering techniques are expectation maximization (EM) (Dempster et al., 1977), fuzzy c-means (FCM) (Bezdek et al., 1984),

k-means (KM) (MacQueen et al., 1967) and Otsu-based multilevel thresholds (OTSU) (Huang et al., 2011; Merzban & Elbayoumi, 2019;

Otsu, 1979). In this article, the four algorithms (in their original formulation) are referred to as classical clustering algorithms. Their implementation

can be generalized into a four-step process: initialization, partitioning, updating, and iteration until convergence. The design and operational char-

acteristics of the EM, FCM, KM and OTSU algorithms limit their performance in several applications. The cluster centres, which are selected ran-

domly at the initialization stage, induce cluster instability. Cluster stability is the capability of a clustering algorithm to generate an identical

partition of the data irrespective of the order in which the patterns are presented to the algorithm (Fahad et al., 2014). The consequences of clus-

ter instability are inaccurate and inconsistent segmentation results (Limwattanapibool & Arch-int, 2017; Yao et al., 2013). The design of these

algorithms does not incorporate spatial modelling, which considers the strong correlation among neighbouring pixels in MRI images. Therefore,

they are sensitive to noise and intensity inhomogeneity (Zhang et al., 2019). Because these algorithms operate with unlabelled data, their optimal

performance is dependent on overcoming the challenges encountered in the tuning of operational parameters. Presently, there is no widely
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accepted automatic method for computing the number of clusters that optimizes the output of clustering algorithms. Present approaches to

selecting a predefined number of clusters can be considered heuristic because they are based on user experience determined from prior knowl-

edge of algorithm output (Bittmann & Gelbard, 2007). This encourages manual segmentation over automation because it compels the user to

manually evaluate and repeat the entire segmentation operation if the output result is not satisfactory. Although the objective function incorpo-

rated into these algorithms is formulated to guarantee convergence to a local optimum, there is no guarantee that the convergence result will be

accurate. This is because the algorithms can be trapped in a local optimum (Aggarwal & Singh, 2019; Qin et al., 2016).

The strong parametric assumption of the EM algorithm is not the best option in all applications as it may not represent the different charac-

teristics of images that are observed in real-life scenarios (Bouguila et al., 2004). For example, in clinical environments, magnitude MRI images are

widely used for diagnosing diseases. The pixels in magnitude MRI images follow the Rician distribution rather than the Gaussian distribution

(which is assumed in the formulation of the EM algorithm) (Scrucca, 2021). In brain MRI images, normal tissues can be distinguished from each

other and from tumours because they can be described by pixels within different bands of intensity levels. The intensity bandwidth that distin-

guishes the different tissues and tumours varies with the acquisition techniques, MRI systems, and image quality attributes. Hence, it is challeng-

ing to select a ‘number of clusters’ that will produce accurate and consistent segmentation results across slices in an MRI volume data and across

different datasets. These drawbacks will be illustrated using BRATS2015 database images that are displayed in Figure 2. These images can be con-

sidered as the prototype of different characteristics of images in a clinical setting. The images in the first column (Figure 2a, e, i, and m) are FLAIR

MRI images of patients with brain tumour disease. In a typical FLAIR MRI slice, the ventricle and grey matter structures are hypointense because

they can be described by darker pixels. The white matter and tumours are described by brighter pixels although the tumour is hyperintense rela-

tive to the white matter. This prior knowledge of intensity bands associated with different brain structures will motivate a data scientist to set

K¼3 as the predefined number of clusters while using a classical clustering algorithm for segmentation. The data scientist anticipates that the

algorithm will generate three clusters. One of the clusters will represent the ventricles and grey matter region, and the other two clusters will rep-

resent the white matter region and the tumour. The images in the second, third, and fourth columns of Figure 2 are the outputs of the k-means

algorithm using predefined numbers of clusters, k¼3, k¼4 and k¼5, respectively. Figure 2f will satisfy the expectation of the data scientist

because the tumour was extracted accurately. The other images in the second column (Figure 2b, Figure 2j, and Figure 2n) will not do so because

the tumour was not isolated from normal structures. In the third and fourth columns, where k¼4 and k¼5, respectively, a few pixels shifted to

different clusters. For example, pixels that belonged to the tumour region in previous columns were assigned to different clusters in their present

column. Based on this illustration, it is evident that a particular predefined number of clusters may not always produce accurate and consistent

segmentation results across different slices and across different datasets.

2.2 | Artificial neural network

Artificial neural network (ANN) models how the human brain learns to recognize real-world objects (Bahra & Wiese, 2019). The ANN is one of

several soft computing techniques in conjunction with, for example, support vector machine and genetic algorithm that can solve nonlinear prob-

lems, that cannot be described by a mathematical model (Zhang et al., 2018). Figure 3a shows the basic model of an artificial neural network. It is

denoted as BMNN throughout this article. It consists of the inputs X1, X2, � � �, Xnf g to a neuron q and the corresponding weighted connections

W1, W2, � � �, Wnf g between the n inputs and neuron. When each input Xi is propagated through the connections, its value is adjusted by the value

of the connecting weight Wi. At the neuron, the information is processed by applying a transformation function f to the weighted sum of the

inputs:

Y¼ f bþ
Xn
i

WiXi

 !
� f Rð Þ, ð1Þ

where b is a bias weight, R¼ bþPn
i WiXi

� �
is the input to the neuron, and Y is the output of the neuron. The activation function can be regarded

as an electronic switch between the input to a neuron at a specific layer and its output to a neuron in another layer. The neuron is activated when

the input R to the neuron is above a specified threshold. Otherwise, the neuron is considered to be deactivated.

Several activation functions are used in ANN. They include the binary step function, sigmoid function, and rectified linear unit. In this article,

we have defined the binary step function f i, jð Þ as a function that activates a neuron located at i, jð Þ in a 2D grid of dimension M�N only if the

input R to the neuron satisfies specified threshold criteria:

f R i, jð Þð Þ¼ eq i, jð Þ, τ1 ≤R i, jð Þ≤ τ2,
0, Otherwise

�
, ð2Þ
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where τ1 ≤R i, jð Þ≤ τ2ð Þ is the specified threshold criteria. eq i, jð Þ is the transformed output from the activation function, which is sent to the next

layer of neurons located at (i,j) in another 2D grid of identical dimension M�N. The binary step function is unique for its simplicity and is consid-

ered the best option for executing unsupervised binary classification tasks. For supervised ANN, where backpropagation is required, the step

function will be ineffective because its gradient is zero. The sigmoid function and the rectified linear unit are effective for an ANN that learns in a

supervised manner. This is because they generally are differentiable, a prerequisite for the implementation of backpropagation.

Another basic ANN model is the single layer feedforward neural network. It is shown in Figure 3b and denoted as SLFN throughout this arti-

cle. There is a neuron in the input layer, n neurons in the hidden layer, and a neuron in the output layer. For notational convenience, we denote

the input and output neurons as X and Y, respectively. Each of the n branches that constitute the SLFN is equivalent to an input branch of the

BMNN shown in Figure 3a. Therefore, the output from each activation function in the SLFN can be computed using the expression in Equation 1.

Each activation function is fed to another transformation function g so that the output Y of the SLFN is

F IGURE 2 The first column, (a), (e), (i), and (m) are typical examples of FLAIR MRI images in a clinical setting. The second, third, and fourth
columns are clusters extracted from corresponding images in the first column using k-means clustering algorithm with predefined numbers of
clusters k = 3, k = 4, and k = 5, respectively
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Y¼ g f biþWiXið Þð Þ� g f Rið Þð Þ: ð3Þ

2.3 | Clustering trees and scale-space multi-resolution analysis

Let S i, jð Þ¼ s 1, 1ð Þ, s 1, 2ð Þ, � � �, s M, Nð Þf g, where s i, jð Þ�ℝ2 represent the pixel intensity attributes of an image of dimensions M�N. Further-

more, let us generate K duplicate copies of S. Each duplicate copy of S is assigned an index k¼ 1, 2, � � �, Kf g, where k is the number of clusters in

which Sk will be partitioned. Now, let a classical clustering algorithm perform the labelling operation, which partitions each Sk into k clusters. Each

cluster in Sk is represented by the matrix Ck
p i, jð Þ, where 1≤p≤ k

Ck
p i, jð Þ¼ p if s i, jð Þand s i

0
, j

0� �
belong to same cluster, and i, jð Þ≠ i

0
, j

0� �
,

0 Otherwise:

 
ð4Þ

To clarify the above statement, the first duplicate image S1 is partitioned into a cluster C1 ¼ C1
1 i, jð Þ

n o
. That is, the entire image is regarded

as a cluster. The second duplicate image S2 is partitioned into two clusters C2 ¼ C2
1 i, jð Þ, C2

2 i, jð Þ
n o

, the third duplicate is partitioned into three

clusters C3 ¼ C3
1 i, jð Þ, C3

2 i, jð Þ, C3
3 i, jð Þ

n o
, and the kth duplicate image Sk is partitioned into k clusters Ck ¼ C1

1 i, jð Þ, C2
2 i, jð Þ, � � �, Ck

k i, jð Þ
n o

. The set

of labelled clusters C¼ C1, C2, � � �, Ckf g of an image at multiple clustering resolutions is referred to as clustering tree (Zappia & Oshlack, 2018).

Throughout this article, clustering tree and clustering resolution are denoted as (CLTT) and κ, respectively. Each clustering resolution is a set of

images derived from clustering at a predefined number of clusters 1≤ k≤Kf g. A clustering tree at clustering resolutions κ¼4 is shown in

Figure 4a.

Clustering trees are conceptually similar to scale-space multi-resolution analysis. Scale-space multi-resolution analysis is a simultaneous repre-

sentation of data at multiple scales (Lindeberg, 2007). Similarly, clustering tree is the simultaneous representation of clustered data at different

clustering resolutions. A scale-space can reveal the constituent structures in a specified data at different scales. Clustering trees can provide

insight into the heterogeneity of an image by revealing how pixels alter clusters with increasing clustering resolution (Von Luxburg, 2010). It is

unfeasible to determine a priori the appropriate scales for describing structures within an image. Scale space theory is a reasonable approach to

overcoming this limitation by describing structures at all scales to capture scale variations. It is challenging to determine a priori the number of

clusters that describe the different characteristics of medical images in a clinical setting. Similar to scale space, clustering trees is a reasonable

approach to overcoming this limitation because it considers clustering at all feasible clustering resolutions to capture more information on the

constituent structures within the image. Because scale-space multi-resolution analysis considers all the feasible scales, it efficiently represents

images at different levels of details (Xu et al., 2018). Because clustering trees consider all feasible clustering resolution, its efficiency is derived by

identifying the structural information at different levels of segmentation accuracy (Jeub et al., 2018). Images generated at different clustering

F IGURE 3 Schematic for implementing (a) basic model of an artificial neural network and (b) single-layer feedforward neural network
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resolutions potentially contain valuable local information, which can weaken the effect of noisy pixels. This enables it to extract different struc-

tures within the image accurately.

Notwithstanding the aforementioned similarities, clustering trees has two advantages over scale-space multi-resolution analysis. Unlike scale-

space, the implementation of clustering trees does not require a kernel. Therefore, the edges and shape features are preserved in the images. In

addition, there is no risk of either blurring or the introduction of extraneous features into the image. Furthermore, unlike scale-space multi-

resolution analysis, the original image can be recovered accurately from the individual clusters in the clustering tree. Scale-space multi-resolution

analysis has been applied to solve many image processing tasks such as noise removal (Pal et al., 2017), image matching (Lindeberg, 2015), and

segmentation (Panigrahi et al., 2019; Zhuang et al., 2019). Applications using clustering trees are limited to tools for cluster analysis and cluster

stability (Zappia & Oshlack, 2018). To our knowledge, there is presently no contribution describing clustering trees derived from the classical clus-

tering algorithms, for image segmentation. We consider that researchers have not exhaustively explored the potential of clustering trees. There-

fore, this article proposes a shift from a clustering technique based on a predefined number of clusters to a clustering tree-based segmentation

method.

3 | RELATED WORK

Semi-supervised clustering is the popular technique for enhancing the performance of clustering algorithms. Semi-supervised methods utilize rela-

tively marginal amounts of labelled data compared to the large volumes of unlabelled data utilized in supervised learning methods. The labelled

data are used to simultaneously introduce a few attributes of supervised learning, tune algorithm parameters and minimize the drawbacks of the

clustering algorithms. An example of semi-supervised clustering-based segmentation is the contribution by Portela et al. (2014). The operation of

the algorithm begins with the random selection of relatively few brain MRI slices from several unlabelled MRI volume data. Thereafter, k-means

clustering is applied to the selected data to generate clusters of regions-of-interest. The borders of the clustered regions-of-interest are refined

and labelled by trained physicians. This is followed by the computation of statistical measures from the labelled regions-of-interest. The labelled

information and statistical information are combined to form the initial parameters of a Gaussian mixture model-based clustering algorithm for

segmenting a test image. Another semi-supervised clustering method was proposed by Saha et al. (2016). This method assumes that class labels

are specified for 10% of the image data points, and the segmentation problem is posed as a multiobjective optimization problem based on internal

and external cluster validity indices. The regions-of-interest were extracted using AMOSA, a simulated annealing-based multiobjective optimiza-

tion technique proposed by Bandyopadhyay et al. (2008). Other examples of semi-supervised clustering-based methods include the contributions

by Portela et al. (2014), Yang et al. (2020) and Wu and Zhang (2021). Although this approach enhances segmentation, quantifying the relatively

marginal amount of labelled data is highly subjective. The quantification of labelled data may be dependent on the accuracy level of the algorithm,

F IGURE 4 (a) A clustering tree clustering at resolution κ¼4 and (b) schematic of the implementation of a clustering tree at clustering
resolution κ¼ n
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and the risk of diminishing the advantages of fully unsupervised clustering over the supervised methods will be high. Furthermore, the generation

of a reasonable amount of labelled data incurs additional cost because it requires hiring physicians with different levels of clinical experience.

Another technique for the enhancement of clustering algorithm is the incorporation of Markov random field (MRF) model within a two-stage

clustering process. The first stage applied the fuzzy c-means algorithm for initial segmentation. In the second stage, the Markov random field

models the local interactions between neighbouring pixels within the anatomical structures of a medical image where most pixels belong to an

identical class as their neighbouring pixels. The output from the fuzzy algorithm and Markov random field model are cast within a Bayesian frame-

work, and the segmented image is derived by maximizing the a posteriori probability of the segmentation given the image data. A contribution in

this category, (Siyal & Yu, 2005) applies the classical fuzzy clustering to refine the grey level information in the original image and its associated

multi-scale decomposition. Thereafter, the spatial constraints between neighbouring pixels in the image is modelled as a potential function in the

Markov random field to reduce noise and enhance image quality. Another contribution (Saladi & Amutha Prabha, 2018) applies a modified fuzzy

algorithm to estimate an initial segmentation parameters which are further applied to a Markov random field-based post processing. The contribu-

tion by Jafri et al. (2017) employs the expectation maximization algorithm to estimate hidden markov random field model of an image which also

serves on the initial segmentation which is further refined using simple processing techniques. The incorporation of the MRF model improves the

segmentation accuracy of clustering-based techniques by overcoming the sensitivity to noise and intensity inhomogeneity. However, Markov ran-

dom field modelling is computationally intensive. Furthermore, the selection of optimal parameters for controlling the spatial interactions involves

trade-off. For example, the segmented image becomes smooth with the loss of important structural information when the parameters of the spa-

tial interactions are more than the optimal value. Moreover, the algorithm can be vulnerable to noise and intensity inhomogeneity when the

selected parameters are less than optimal.

Combinations of multiple clustering techniques have been explored to enhance clustering algorithm. A four-stage algorithm proposed by

Zhang et al. (2019) begins with denoising the original image using a wiener filter, followed by morphological operations to significantly eliminate

structures outside the brain regions. The preliminary segmentation is generated by combining k-means clustering algorithm with Gaussian kernel-

based fuzzy C-means algorithm in the third stage. The final segmentation is derived after combining another round of morphological operation

with median filtering. The contribution by Shanker and Bhattacharya (2019) derive the initial cluster center using the classical k-means clustering,

The initial segmentation was obtained by combining k-means and fuzzy clustering followed by the application of hierarchical centroid-based

descriptor to extract the abnormal brain tissue. Hybrid methods combines attributes from the different clustering methods, however, the tech-

nique will still suffer from the trap of local minima and instability associated with the classical clustering algorithms.

Automatic determination of the predefined number of clusters have been explored in hybrid techniques to improve the performance of clus-

tering algorithms. In Kaur and Sharma (2017), the original image is preprocessed to remove noise and enhance image quality, followed by histo-

gram analysis which determines the appropriate number of clusters before k-means clustering for segmentation. In Pei et al. (2017), the number

of clusters is automatically determined using the elbow rule (Mazurek & Mazurek, 2013) whereas a similar contribution (Ganesh et al., 2017) com-

bines adaptive k-means and fuzzy c-means algorithms. The robustness of this approach is limited to images acquired from a specific scanner as

the image features can easily be incorporated into the algorithm. More robust features need to be incorporated into the algorithm for images

acquired from different scanners.

3.1 | Motivation and scope of study

Considering reports in the literature, the goal of this study is to enhance the performance of classical clustering-based segmentation methods and

retain all its advantages over the supervised methods. To attain this goal, we introduce the concept of clustering tree to replace the predefined

number of clusters required in the classical clustering techniques. A clustering tree provides additional information in the spatial domain. This can

render the algorithm robust to images with different levels of contrast, the local optimum traps, tumour heterogeneity, noise and imaging artefact.

The proposed method will incorporate human intelligence by coupling the clustering tree to an artificial neural network which incorporates prior

knowledge on pathology based on intensity bandwidth, geometric shape, size and boundary.

4 | PROPOSED CLUSTERING TREE-BASED SEGMENTATION

The proposed method is designed to extract brain tumour in MRI data of glioma patients. It is assumed that the MRI data satisfy the following

criteria:

1. In the absence of tumour, the constituent anatomic structures can be classified broadly into three classes: white matter, grey matter, and

ventricles.
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2. In the presence of tumour, the constituent anatomic structures can be classified broadly into four classes: tumour, white matter, grey matter,

and ventricles.

3. The tumour (which is the abnormal structure) within the slice is hyperintense relative to the normal structures.

4. The MRI data possess sufficient quality attributes to distinguish between tumours and normal structures.

The first and second criteria underscores the principles underlying the design of clustering algorithms. Clustering algorithms are designed for

datasets that contain structures. The third criteria implies that clustering algorithms can be effective in brain MRI only if the abnormal tissue

exhibits attributes that distinguish it from the normal structures. The reasoning here is that if the cluster centres are arranged in ascending order,

the maximum cluster centre at each clustering resolution should capture the different intensity and geometric attributes of the tumour. The fourth

criterion is a statement that the performance of a computer-aided segmentation system should be comparable to the human visual system.

The flow chart in Figure 5a shows that the proposed segmentation method begins with the extraction of low-level features (denoted as LLFE)

from the test image, followed by the extraction of high level features (denoted HLFE) and the classification (denoted as CLFN) of the high level

features. Figure 5b shows that the low-level features extracted at the LLFE stage are implemented using the clustering tree CLTT. A schematic

for implementing a clustering tree at the clustering resolution κ¼n is displayed in Figure 4b. Figure 5b also shows that the extraction of high level

features at the second stage HLFE is implemented using the single layer feedforward neural network SLNN (see Figure 3b) and that the classifica-

tion HLFE of the image into tumour and healthy tissues is implemented using the basic model of an artificial neural network BMNN (see

Figure 3a). The three successive stages of the implementation process are described in detail using the flow chart in Figure 5c.

F IGURE 5 Three flow charts that explain the three successive stages in the implementation of the proposed clustering tree-based
segmentation method. In each of the flow charts, the verification unit links the output unit with the input unit (a) low-level feature extraction
LLFE, followed by high-level feature extraction HLFE and classification CLFN. (b) a clustering tree CLTT is coupled to a single-layer feedforward
neural network SLFN, and the output of the SLFN is coupled to a basic model neural network BMNN. (c) Detailed algorithm flow chart
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4.1 | Low-level feature extraction (LLFE)

The test image (denoted TIM) in Figure 6a is the input to a clustering algorithm that generates a clustering tree CLTT shown in Figure 4b,

Figure 5b, c, at a clustering resolution of κ¼9. Each image in Figure 6b–j is a duplicate copy of TIM with sets of labels Ck ¼ Ck
p i, jð Þ

n o
. The index

F IGURE 6 Low-level feature images generated from the clustering tree at clustering resolution κ¼9. The hyperintense pixels (in red)
describe the likely locations of the tumour. The red pixels gradually shrink in size as the predefined number of clusters increases

10 of 28 OSADEBEY ET AL.
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of each duplicated image varies from p¼1 to p¼9. Feature pooling (denoted as pk in Figure 4b) is executed on each clustered duplicate copy of

TIM. The feature pooling extracts only the cluster ep̂k i, jð Þ in each Ck ¼ Ck
p i, jð Þ

n o
with the maximum label index:

ep̂k i, jð Þ¼ argmax
p

Ck
p i, jð Þ

n o
: ð5Þ

The red clusters in Figure 6b–j are those with the maximum label index and are the regions-of-interest. The global threshold (denoted as tk in

Figure 4b), set at k, converts each pooled cluster ep̂k i, jð Þ into a binary image Qk:

Qk i, jð Þ¼ 1, ep̂k i, jð Þ¼ k,

0, Otherwise

�
ð6Þ

The binary images (denoted as Qk in Figure 4b) of the pooled low-level features, which are the output of the LLFE stage, are displayed in

Figure 7.

F IGURE 7 The pooled feature image extracted from the low-level feature image. For each clustered duplicate of the original image, the
algorithm extracts the cluster with the maximum label index.
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4.2 | High-level feature extraction (HLFE)

The output from the LLFE stage is a feature space of dimensions M�N�κ. To ensure that the algorithm of the proposed method is computation-

ally efficient, we follow the recommendation by Übeyli (2008). Accordingly, in a two-step process, we extracted only the relevant features from

the feature map. First, beginning from κ¼2, we compute the sum of absolute difference Dk, an approximation of similarity score between succes-

sive feature maps:

Dk ¼
X
i

X
j

kQk�Qk�1kκk¼2: ð7Þ

The reasoning behind this step is that Dk will have low magnitude where the successive objects have similar characteristics and more likely to

contain tumour region. Otherwise Dk will have high magnitude for dissimilar objects of which one is likely to contain non-tumour region. Thus,

we select only feature maps Qk i, jð Þ where Dk <80 for further processing. Second, we exploit the general characteristics of medical image pat-

terns, which are either circular symmetric or appear as small objects with a variety of geometric patterns (Meyer-Baese & Schmid, 2014).

Images from the LLFE stage comprise objects called connected components and background pixels. Let eqak i, jð Þ, where 1≤ a≤neq denote the

neq connected components in Qk i, jð Þ. We regard each eqak i, jð Þ as a neuron. It is the input signal Xeqak i, jð Þ to a single layer feedforward neural net-

work (SLFN) (shown in Figure 3b). This input signal is connected to five neurons q1, q2, q3, q4, q5f g in the hidden layer. The weights

w1, w2, w3, w4, w5f g that connect the input signal with each neuron in the hidden layer correspond to five geometric features. The features are

based on size, shape, and boundary to reflect the general characteristics of medical image patterns (Görgel et al., 2015). The five geometric fea-

tures as defined in Mingqiang et al. (2008) are described below:

1. Area

The area r1 measures the size of the object:

r1 ¼
Xnc
i¼1

eqak i, jð Þ, ð8Þ

where nc is the number of bright pixels.

2. Eccentricity

The eccentricity r2 describes the boundary of an object. It is the ratio of the major axis length z1 to the minor axis length z2 of an ellipse with

second moment equal to that of the region enclosed by the object.

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z21

z22

s
: ð9Þ

The eccentricity is also a measure of the circularity or ellipticity of an object. An eccentricity that tends to zero (one) indicates that the object

is circular (elliptical).

3. Solidity

The solidity r3 expresses the geometric shape of the object in terms of its degree of convexity:

r3 ¼ Ac

Hc
ð10Þ

where Ac is the area covered by the contour that describes the object and Hc is the convex hull area of the object. A solidity of one indicates that

the connected component has a convex shape.

4. Euler number

The Euler number r4 measures geometric shape as the relation between the number nh of contiguous parts and the number n
h
0 of holes in

the object:

r4 ¼ nh�n
h
0 : ð11Þ
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5. Minor axis length

The minor axis r5 is another boundary descriptor. It is the shortest line through the centre of an ellipse having an equivalent diameter as the

object.

According to Equation 2, the output Rl from each of the five neurons (denoted as ql in Figure 3b) in the hidden layer is

Rl ¼ blþWlXlð Þ¼WlXl ¼ rleqak i, jð Þ, ð12Þ

where the bias bl is assumed to be zero in the neural network and 1≤ l≤5. The activation function fl transforms the input to each neuron in the

hidden layer according to Equation 2:

f1 R1 i, jð Þð Þ¼ eqak i, jð Þ, 20≤R1 i, jð Þ≤3000,
0, Otherwise

 
ð13Þ

f2 R2 i, jð Þð Þ¼ eqak i, jð Þ, R2 i, jð Þ≥0:2,
0, Otherwise

 
ð14Þ

f3 R3 i, jð Þð Þ¼ eqak i, jð Þ, R3 i, jð Þ≥0:5,
0, Otherwise

 
ð15Þ

f4 R4 i, jð Þð Þ¼ eqak i, jð Þ, �40≤R4 i, jð Þ≤3,
0, Otherwise

 
ð16Þ

f5 R5 i, jð Þð Þ¼ eqak i, jð Þ, R5 i, jð Þ≥20,
0, Otherwise

 
ð17Þ

Each activation function fl is the equivalent of a spatial filter (see Figure 5c), which extracts and propagates only connected components with

geometric properties that best describe a brain tumour. The output from each fl are processed by another activation function g i, jð Þ, such that the

output of the SLFN is expressed according to Equation (3):

Y i, jð Þ¼ eqak i, jð Þ, 8 fl i, jð Þ¼eqak i, jð Þ,
0, Otherwise

 
ð18Þ

Equation (18) above implies that the activation function g i, jð Þ ensures that only connected components that satisfy all the five geometric fea-

tures are propagated. The neurons from the SLFN are propagated onto a 2D grid having row and column dimensions identical to those of the test

image. The pixel locations of the propagated neurons are identical to those of the neurons in their previous 2D grid. Figure 8 shows the output of

the SLFN after it processes each object in each binary image corresponding to the index of the duplicated copies of the original image. Theoreti-

cally, it can be considered that the SLFN retains the background pixels and converts all connected components that are outside the limit of geo-

metric features defined for brain tumours, into background pixels.

4.3 | Classification

The output from the HLFE stage is the input signal to the basic model of an artificial neural network BMNN shown in Figure 3a. Unlike the HLFE

stage, each pixel at the classification stage is regarded as both a neuron and a vector in an M�N�κ feature map. The value of each input signal

to the BMNN is equal to the pixel intensity level: zero or one. The connecting weights between each input signal and the neuron in the BMNN is

a constant value of one. The output Y from the BMNN is a 3D image computed according to Equation 1. The output from the BMNN is propa-

gated to a Fully Connected Layer. At the fully connected layer, each neuron is summed along the third dimension:

eY i, jð Þ¼
X9
k¼1

Y i, j, kð Þ: ð19Þ

The summation along the third dimension is followed by global threshold set at τ¼0 according to Equation (2), resulting in the binary image

shown in Figure 9a. The binary image is moved to the output unit of the system.
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4.4 | Output

There are two self-evaluation units within the output of the algorithm. In the first unit, the algorithm evaluates itself by processing the output of

the fully connected layer. The flow chart in Figure 9b describes how the self-evaluation is executed. The output from the fully connected layer

(denoted as SEG1) is regarded as the preliminary output of the algorithm. The function (denoted IND) identifies the indices of the bright pixels

contained in the tumour region described by SEG1. Thereafter, the function MEN utilizes the indices of the identified pixels to compute the mean

μo and standard deviation σo of the tumour region in the test image TIM. The function GTR sets a global threshold at To ¼ μo�σo, which is used

to produce a binary image (denoted BIM) from the test image TIM. The function DCE computes the Jaccard similarity score J TIM, SEG1ð Þ
between BIM and the preliminary segmented image SEG1:

J TIM, SEG1ð Þ¼ j IBIM\ ISEG1 j
j IBIM j [ j ISEG1 j : ð20Þ

The function GTD generates an image DCG that has row and column dimensions identical to those of the original image TIM. The image

DCG is one of two types depending on the threshold set for J BIM, SEG1ð Þ. If J BIM, SEG1ð Þ>0:3ð Þ, DCG has pixel values of only one, an indica-

tion of acceptance of the segmented image. Otherwise, DCG will have only zero pixel values thereby rejecting the segmented image. The function

FSG multiplies the preliminary output SEG1 with DCG to obtain the final output (denoted SEG) of the algorithm. The second self-evaluation unit

evaluates the output of the algorithm only when the first self-evaluation unit indicates an acceptance of the segmented image. This unit counts

the number NSEG of segmented tumours. If NSEG < 2ð Þ the algorithm finally accept the segmented image, for 2 <NSEG < 6ð Þ only the tumour with

maximum size is selected and the algorithm will output only zero pixels if NSEG > 6ð Þ.

F IGURE 8 High-level feature images extracted from the pooled low-level features. For each pooled low-level feature image, the high-level
features were extracted based on the shape, size, and boundary, which generally describe a brain tumour.
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The self-evaluation unit models the feedback on human behaviour (Panattil et al., 2021). Its design philosophy assumes that the tumour is

segmented correctly only if a binary image derived from the test image TIM using pixel information from SEG1 demonstrates a reasonable degree

of similarity with SEG1. The self-evaluation unit can be considered as a constrained form of feedback because its output does not result in the

reinforcement of the algorithm performance. The self-evaluation unit enables the algorithm to detect a poorly segmented image in real time and

reduce false positive detection of tumour caused by low image quality or violation of the criteria outlined at the beginning of this section. There is

risk of false positive detection when the slices violate the first and second criteria. For example, the inferior and superior slice images can be con-

sidered to belong to the two-tissue class rather than the required three-tissue class, particularly when tumour is absent on the slices.

5 | EXPERIMENTS AND RESULTS

The proposed segmentation methods are based on four classical clustering algorithms: k-means, expectation maximization, fuzzy c-means and

Otsu. The four proposed methods are referred to as k-means-based, expectation maximization-based, fuzzy c-means-based and Otsu-based

F IGURE 9 (a) At the fully connected layer, the preliminary segmented image is determined by summing pixels along the third dimension of
the high-level feature map, followed by global threshold. (b) Flow chart of self-evaluation unit in the output of the algorithm. (c) the segmented
tumour.
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clustering trees. These segmentation methods were implemented in the MATLAB computing environment. The MATLAB implementation code is

available on request from the website (https://www.ntnu.edu/web/colourlab/software).

5.1 | Sources and description of data

The proposed method was evaluated on 87 MRI volumes from the BRATS2015 dataset and 100 MRI volumes from the BRATS2020 dataset

(Menze et al., 2014). The BRATS is an annotated training dataset used for the brain tumour segmentation challenge organized by the International

Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). There are several reasons for which we adopt the

BRATS dataset for evaluating the proposed method. First, because the data were acquired from different clinical trial sites, it potentially contains

the different characteristics of MRI images that can be observed in a clinical setting. Second, it is the benchmark for evaluating most state-of-the-

art brain segmentation algorithms. Third, the dataset contains anonymised clinical data as well as the ground truth, which were annotated by a

trained expert. Fourth, the BRATS data had undergone significant preprocessing, for example skull stripping. This makes it amenable to

segmentation.

Each patient data has four MRI modalities (T1, T2, T1c and FLAIR), which are aligned to the same anatomical template. This characteristic

enables the exploitation of the advantages of multispectral data. However, we utilize only the FLAIR MRI sequence for evaluation because its

unique characteristics makes it suitable for highlighting tumour boundary, tumour classification, radiation planning, and treatment response

(Soltaninejad et al., 2017). Each MRI volume in both BRATS datasets have dimensions 240�240�155. We eliminated 29 and 35 most inferior

and superior slices, respectively, in each MRI volume because they do not contain any structure or have limited structural information. Thus, only

91 of the 155 slices are considered in each MRI volume. This gives a total of 7917 and 9100 slices from all the MRI volumes from both datasets

and we compute and analyse six physical characteristics of tumours across slices in their MRI volumes. They are area, circularity, perimeter, diame-

ter, number of tumours and location. The analysis shows that the interquartile range of the tumour sizes are from few pixels to less than 2500

pixels with median size close to 800 pixels and approximately 100 tumours larger than 2500 pixels are outliers (Figure 10a). The tumours generally

exhibit a circular shape because the interquartile range of tumour circularity is between 0 and 2 pixels with median of 0.5 pixels (Figure 10b). The

perimeters of most tumours are less than 300 pixels with median value less than 200 pixels (Figure 10c) while the maximum and median tumour

diameter are 60 pixels and 37 pixels, respectively (Figure 10d). Most slices contain either a single or double tumours (Figure 10e) with most

tumours located in the central region of the human head (Figure 10f).

5.2 | Preprocessing

Although images in the BRATS database had undergone significant preprocessing, there was scope for further preprocessing to maximize the out-

put of the segmentation process. Image quality of each slice extracted from the 3D volume data of a patient was evaluated, based on contrast

and noise quality factors, using the algorithms proposed by Osadebey et al. (2017) and Coupé et al. (2010), respectively. If the contrast quality fac-

tor was below 0:45, the contrast quality was enhanced by adapting the framework proposed in Sdiri et al. (2016) to the MRI images. The algo-

rithm proposed by Manj�on et al. (2015) was applied to reduce noise when the Rician noise level was higher than 5% of the maximum intensity in

the image. The images were evaluated for the presence of bias fields, and when necessary, were corrected for intensity inhomogeneity by using

the method proposed in Tustison et al. (2010).

5.3 | Experiments

There are three sessions of the performance evaluation. The first session utilize only a subset of the experiment data. Three slices from each

of the inferior (slice numbers 30, 40 and 50), central (slice numbers 78, 79 and 80), and superior (slice numbers 100, 110 and 120) sections of

the brain were extracted from each of the 87 MRI volume data. This amounted to a total of 783 slice images. The second session utilize all

the useful 91 slices in each 87 and 100 MRI volumes from the BRATS2015 (total of 7917) and BRATS2020 datsets (total of 9100), respec-

tively, to evaluate the four proposed clustering tree algorithms based on four criteria. They are overall segmentation performance, true nega-

tive detection, tumour size and tumour location. Tumour sizes were categorized as small (less than 700 pixels), medium (between 700 and

1400) and large (greater than 1400 pixels). Tumour locations are inferior (slice numbers 30–60), central (slice numbers 61–90) and superior

(slice numbers 91–120).

The third session evaluates the performance of UNet and SegNet deep learning techniques for comparison with the proposed method. Sixty

seven and 75 MRI volumes from the 87 and 100 MRI volumes in BRATS2015 and BRATS2020 datasets, respectively, was used for training and
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the remaining corresponding 20 and 25 MRI volumes were used for testing. The input image were preprocessed in same manner as we did in the

evaluation of the proposed method except that the data is normalized by subtracting each MRI volume with its mean and dividing it by its stan-

dard deviation. The input preprocessed image is of size 240 � 240 � 3, where the FLAIR image is replicated trice to match the three channels of

both networks. Both networks had an encoder-decoder depth of 3 where each block contains a 3 � 3 convolutional kernels with padding set to

give same size as the input image. At each training session, the mini-batch size, learning rate and gradient threshold was set to 80, 0.01 and

1, respectively. The network parameters were updated using stochastic gradient descent with momentum optimizer. Data augmentation was per-

formed to increase training data and improve model accuracy by rotating, flipping and shifting slices.

In each experiment, the segmented image Iseg was evaluated with reference to its corresponding ground truth Ig based on the Dice similarity

coefficient D (Pietka et al., 2010):

D¼ 2 j Iseg \ Ig j
j Iseg j þ j Ig j : ð21Þ

1
TUMOR

0

1000

2000

3000

4000

5000

6000

7000

8000

A
R

E
A

 O
F 

TU
M

O
R

1
TUMOR

0

1

2

3

4

5

6

7

8

C
IR

C
U

LA
R

IT
Y

 O
F 

TU
M

O
R

1
TUMOR

0

100

200

300

400

500

600

P
E

R
IM

E
TE

R
 O

F 
TU

M
O

R

1
TUMOR

0

10

20

30

40

50

60

70

80

90

100

D
IA

M
E

TE
R

 O
F 

TU
M

O
R

1
TUMOR

0

2

4

6

8

10

N
U

M
B

E
R

 O
F 

TU
M

O
R

1
TUMOR

30

40

50

60

70

80

90

100

110

120

S
LI

C
E

 N
U

M
B

E
R

 O
F 

TU
M

O
R

(a) (b)

(c) (d)

(e) (f)

F IGURE 10 Boxplot distribution of physical characteristics of tumours across slices in MRI volumes of glioma patients (a) area, (b) circularity,
(c) perimeter, (d) diameter, (e) number of tumours, and (f) location
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6 | RESULTS

Evaluation of each proposed clustering tree-based method and its corresponding classical clustering algorithm at clustering resolutions varying

from κ¼1 to κ¼20 at unit step intervals are presented in Figure 11a–d and Table 1. Comparative performance evaluation of the four proposed

clustering tree-based methods on 87 and 100 MRI volumes from BRATS2015 and BRATS2020 datasets at clustering resolutions varying from

κ¼1 to κ¼20 are presented in Tables 2 and 3, respectively. We combined the performance evaluation results on 187 MRI volumes from the two

BRATS datasets and present their statistics in Figure 12. The comparative performance evaluation results between the four proposed clustering-

tree based methods and the two deep neural network algorithms (UNet and SegNet) on 20 and 25 MRI volumes from the BRATS2015 and

BRATS2020 datasets are displayed Tables 4 and 5, respectively.

There is a common performance trend among the four proposed algorithms. As the clustering resolution increases, there is a corresponding

increase in the performance of each proposed clustering algorithm. However, this common performance trend attained saturation at different

clustering resolutions. Figure 11a shows that the performance of the expectation maximization-based clustering tree method attained a peak Dice

score of 0.72 at κ¼6. Figure 11b shows that the performance of the fuzzy c-means-based clustering tree method attained a peak Dice score of

0.84 at κ¼6. The performance of the k-means-based clustering tree method was saturated at κ¼6, when the Dice score was 0.88 (see

Figure 11c). Meanwhile, the performance of the Otsu-based clustering tree method was saturated at κ¼7, when the Dice score was 0.87 (see

Figure 11d).

Each of the four proposed methods and their corresponding classical techniques demonstrate an equal level of performance at lower

clustering resolutions and at predefined number of clusters, respectively. The proposed expectation maximization-based clustering tree

method and its corresponding classical technique demonstrate an equal level of performance for the clustering resolution 1 ≤ κ ≤3ð Þ and
predefined number of clusters 1≤ k≤3ð Þ (see Figure 11a). A similar trend was exhibited by the proposed fuzzy c-means-based clustering tree

method and its corresponding classical technique for 1≤ κ ≤4ð Þ and 1≤ k≤4ð Þ (see Figure 11b). The proposed k-means-based clustering tree

method and its corresponding classical technique also exhibited a similar performance trend for 1≤ κ ≤3ð Þ and 1≤ k≤4ð ) (see Figure 11c). The pro-

posed Otsu-based clustering tree method and its corresponding classical technique also exhibited a similar performance trend for 1≤ κ ≤4ð Þ and
1≤ k≤4ð Þ (see Figure 11d). Beyond the region of equal performance trends, the performance of the classical technique reduces gradually,

whereas the performance of the proposed method increases up to a saturation point. The additional strength exhibited by the four proposed

methods over their corresponding classical techniques was anticipated owing to the additional and valuable information provided by the

clustering tree.

The comparative performance evaluation results from the first experiment shown in Figure 11e shows that the Otsu-based and k-means-

based clustering tree methods, with a mean Dice score of 0.87 and 0.88, respectively, demonstrates better performance over the other two pro-

posed algorithms. The fuzzy c-means-based clustering tree method comes next with a mean Dice score of 0.84. The expectation maximization-

based clustering tree method trailed behind other proposed techniques with a mean Dice score of 0.72. The fuzzy, k-means and Otsu techniques

recorded Dice scores of 0.84, 0.88 and 0.85, respectively. These Dice scores quantifies the robustness of the four proposed algorithms to images

with different quality variations. The standard deviation Dice score of 0.06 recorded by the k-means-based clustering tree method reveals it to be

the most robust of the four proposed algorithms. As anticipated, the proposed expectation maximization-based clustering tree method trailed

behind the other two proposed methods. This may be partly owing to the Gaussian assumption in the formulation of the EM algorithm whereas

the pixels in MRI images follow the Rician distribution.

In the second experiment that utilize all the experiment data, all the proposed methods achieved comparable median Dice scores on the over-

all performance criteria (Figure 12a). However, a closer look at the inter quartile range of the boxplot shows that the distribution of Dice score for

k-means and Otsu is concentrated within the high Dice score spectrum whereas the expectation maximization and fuzzy have Dice score distribu-

tion across all range of values of the Dice score (Tables 2 and 3). The k-means recorded most concentration of high Dice scores with low Dice

scores as outliers. The range of true negative detection for the proposed methods are from 0.60 to 0.9 with k-means demonstrating the best per-

formance followed by Otsu method (Figure 12b). All the proposed methods demonstrate remarkable segmentation performance for medium and

large sizes of tumours. However, for small tumours, the k-means technique achieved only an average performance whereas the expectation maxi-

mization and fuzzy perform poorly (Figure 12c). The k-means and Otsu demonstrate robust performance for tumours across different regions of

the brain. Expectation maximization and fuzzy clustering perform dismally at inferior region. Moreover, fuzzy perform poorly at central region of

the brain. On single, double and multiple tumours, all the proposed methods, except fuzzy, demonstrate same level of performance (Figure 12d).

Therefore, we can conclude that the fuzzy technique has poor true positive detection but very good true negative detection.

In the third experiment session, the performance of the proposed methods based on k-means and Otsu techniques can be said to be compa-

rable to UNet and SegNet deep learning techniques. The UNet algorithm had the best performance of 0.95 median Dice score based on the

BRATS2015 dataset. The UNet was closely followed by the SegNet with median Dice score of 0.93, Otsu recorded mean Dice score of O.91 and

k-means has mean Dice score of 0.90. The UNet and SegNet were also the best performing algorithms on the BRATS2020 dataset and were

closely followed by Otsu and k-means algorithms.
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F IGURE 11 (a) Average dice score-based comparative performance evaluation of the four classical clustering tree-based segmentation
methods for clustering resolutions varying from κ¼1 to κ¼20, and their corresponding classical clustering-based methods for predefined
numbers of clusters varying from k¼1 to k¼20 (a) expectation maximization, (b) fuzzy c-means, (c) k-means, (d) Otsu and (e) average dice score-
based comparative performance evaluation of the four clustering tree-based segmentation methods for clustering resolutions varying from κ¼1
to κ¼20
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7 | DISCUSSION

Although the classical clustering algorithms have highly attractive features, the attainment of a satisfactory level of performance is limited by the

presence of noise, tumour heterogeneity, and variation in quality attributes across images in clinical settings. There is presently no widely accept-

able objective approach to determining the number of clusters required to achieve optimal segmentation because most classical clustering tech-

niques exhibit cluster instability and are vulnerable to the traps of local minima. This study proposes a new approach to enhancing the

performance of the classical clustering algorithms. We describe below the characteristics of the proposed method that makes it effective for data

scientists and clinical practitioners such as radiologists, neurologists, and pathologists. Thereafter, potential applications of the proposed method,

its limitations, and future research direction are highlighted.

7.1 | Algorithm design and operational features

1. Enhanced performance over classical clustering methods

The performance evaluation results displayed in Figure 11 and Table 1 reveal that the proposed method enhances the performance of the

classical clustering-based segmentation methods. The mean Dice score recorded by the proposed k-means-based clustering tree, expectation

maximization-based clustering tree, fuzzy c-means-based, and Otsu-based clustering tree techniques are 0.88, 0.72, 0.84 and 0.85, respectively,

whereas those recorded by the corresponding classical clustering techniques are 0.79, 0.59, 0.73, and 0.68, respectively. The standard deviation

TABLE 1 Comparative performance evaluation of the four classical clustering and their corresponding clustering tree-based algorithms on a
subset of the experiment data

Algorithms
Classical clustering Clustering tree

Mean dice score Standard deviation dice score Mean dice score Standard deviation dice score

Expectation maximization 0.59 0.30 0.72 0.24

Fuzzy 0.73 0.28 0.84 0.15

k-means 0.79 0.24 0.88 0.06

Otsu 0.68 0.21 0.85 0.12

Note: The algorithms were evaluated on three slices from each of the inferior (slice numbers 30, 40 and 50), middle (slice numbers 78, 79 and 80), and

superior (slice numbers 100, 110 and 120) sections of 87 brain MRI volume data. This amounted to a total of 783 slice images.

TABLE 2 Comparative performance evaluation of the four clustering tree-based algorithms on 87 MRI volumes from the BraTs 2015 dataset

Algorithms
Dice score

Average Median Lower quartile Upper quartile

Expectation maximization 0.57 0.86 0.00 0.96

Fuzzy 0.56 0.88 0.00 1.00

k-means 0.80 0.90 0.72 1.00

Otsu 0.75 0.91 0.52 1.00

TABLE 3 Comparative performance evaluation of the four clustering tree-based algorithms on 100 MRI volumes from the BraTs 2020
dataset

Algorithms
Dice score

Average Median Lower quartile Upper quartile

Expectation maximization 0.62 0.83 0.41 1.00

Fuzzy 0.70 0.90 0.46 1.00

k-means 0.81 0.93 0.74 1.00

Otsu 0.83 0.89 0.61 1.00
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F IGURE 12 (a) Comparative performance evaluation of the four classical clustering tree-based segmentation methods at clustering
resolutions varying from κ¼1 to κ¼20. The algorithms were evaluated on all useful slices across 87 and 100 glioma patients MRI volumes in the
BraTs 2015 and 2020 datasets, respectively. Comparative performance evaluation of the four classical clustering tree-based segmentation
methods based on five tumour attributes (b) none-tumorous slices, (c) tumour sizes, (d) tumour locations, and (e) number of tumours, for
clustering resolutions varying from κ¼1 to κ¼20
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of the Dice scores recorded from the clustering tree techniques are 0.06, 0.24, 0.15 and 0.12, respectively, whereas those recorded by the

corresponding classical clustering methods are 0.24, 0.30, 0.28 and 0.21, respectively.

2. Incorporation of anatomical knowledge

The incorporation of anatomical knowledge into segmentation algorithms is highly desired for automation in expert systems (Gordillo

et al., 2013). The proposed method satisfies this design criterion by incorporating five separate spatial filters. The parameter for each filter is

tuned to extract five geometrical parameters: area, eccentricity, solidity, Euler number, and minor axis length. This approach discriminates

between healthy and abnormal anatomical structures effectively. Furthermore, the clustering tree concept in the proposed method exploits the

general knowledge on pathology based on intensity attributes, to maximize the segmentation outcome.

3. Guide to determine optimal number of clusters

The accuracy of the clustering-based segmentation method is strongly dependent on the proper incorporation of prior knowledge through

the selection of optimal segmentation parameters. Because there is no widely acceptable objective method to compute the parameters, heuristics

is presently the popular approach. This hinders accurate segmentation (Kwon et al., 2017). The results from this study can guide a data scientist

to determine the optimal number of clusters that can maximize segmentation outcomes. The plots in Figure 11a–d show that the predefined num-

ber of clusters that can maximize segmentation outcomes for the classical clustering algorithms are K¼3, K¼5, K¼4, and K¼4 for the expecta-

tion maximization, fuzzy c-means, k-means and Otsu-based methods, respectively. The plots in Figure 11e reveal that the clustering resolutions

κ¼4, κ¼5, κ¼6, and κ¼6 optimizes segmentation for the expectation maximization-based, fuzzy c-means-based, k-means-based and Otsu-

based clustering tree techniques, respectively. Similar to the contribution by Limwattanapibool and Arch-int (2017), the proposed method can

guide data scientists and clinical practitioners to accurately predict the predefined number of cluster that will maximize segmentation outcomes in

clustering-based expert systems.

4. Attractive features from clustering

Similar to scale space analysis, the concept of clustering trees provides more detailed information within and across anatomical structures in

brain MRI images. The multiple images associated with the clustering tree potentially provide spatial information and weaken the effect of noise

during the process for extracting tumour.

TABLE 4 Comparative performance evaluation of the four clustering tree-based algorithms and two CNN-based deep learning algorithms on
20 MRI volumes from the BraTs 2015 dataset

Algorithms
Dice score

Average Median Lower quartile Upper quartile

Expectation maximization 0.71 0.86 0.51 1.00

Fuzzy 0.81 0.88 0.63 1.00

k-means 0.84 0.90 0.72 1.00

Otsu 0.86 0.91 0.71 1.00

UNet-CNN 0.88 0.95 0.77 1.00

SegNet-CNN 0.87 0.93 0.75 1.00

TABLE 5 Comparative performance evaluation of the four clustering tree-based algorithms and two CNN-based deep learning algorithms on
25 MRI volumes from the BraTs 2020 dataset

Algorithms
Dice score

Average Median Lower quartile Upper quartile

Expectation maximization 0.73 0.82 0.60 1.00

Fuzzy 0.79 0.83 0.66 1.00

k-means 0.78 0.85 0.76 1.00

Otsu 0.80 0.90 0.74 1.00

U-net CNN 0.83 0.92 0.79 1.00

SegNet-CNN 0.81 0.93 0.73 1.00
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5. Softening of hard clustering algorithm

The hard clustering procedure in the classical k-means clustering makes it unsuitable for data with a significant level of vagueness. The con-

cept of clustering tree in the proposed method when applied to the classical k-means clustering softens its hard clustering procedure and thereby

enhances its performance.

6. Fully unsupervised and fully automated

Most contributions, particularly the semi-supervised learning techniques, are aimed at enhancing the performance of the classical clustering-

based methods of segmentation by using minimal labelled training data. This imparts it the advantages of both the supervised and unsupervised

techniques. This approach causes the enhanced algorithm to lose its simplicity and feature of minimal user interaction, rendering it unattractive to

clinicians. The proposed method is both fully unsupervised and fully automated. The clustering tree was coupled with an artificial neural network

that does not require backpropagation for learning with training data. The concept of clustering tree in the proposed method provides additional

information, which potentially serves a similar purpose as the use of minimal labelled training data, and ensures that the proposed method retains

the simplicity and feature of minimal user interaction of the classical clustering algorithms. At the high-level feature extraction stage, which was

implemented using a SLFN, the connected components from the output of the clustering tree were modelled as neurons. The weights connecting

the single neuron in the input layer and the five neurons in the hidden layer of the SLFN was modelled by the geometric features of the con-

nected components. We consider this as another approach to ensuring that the algorithm retains its feature of being fully unsupervised. Another

novel approach to ensuring a fully unsupervised operation is the classification stage. Herein, the pixels were regarded as input signal to a BMNN

and also as vectors in a 3D feature space. The weights connecting each input signal and the individual neuron in the BMNN is set to a constant

value of one.

7. Features of an expert system

A clustering tree-based method of segmentation display similar design features as tree-based methods of classification because it computes

an output based on several inputs. It has been demonstrated that tree-based classification methods demonstrate better performance over other

classification methods in the diagnosis and prediction of diseases and content-based image retrieval systems (Dimitrovski et al., 2016; Jha

et al., 2019).

The clustering tree (in the low-level feature extraction stage of the algorithm) is conceptually similar to the scale-space theory. There is a close

link between the scale space theory and biological vision. The clustering tree was coupled to an artificial neural network that models how humans

learn to recognize objects. The self-evaluation unit within the output of the algorithm, which provides feedback that enables the algorithm to eval-

uate itself, is equivalent to human reasoning. Thus, the proposed method can be considered to exhibit the features of an expert system.

8. Flexibility in design

In the proposed method, we utilize the basic model of a neural network that has only one hidden layer, with a fixed set of parameters for the

activation functions. However, depending on the application, the parameters of the activation functions and the number of hidden layers can be

varied. Increasing the number of hidden layers is equivalent to having multiple spatial filters in cascade. Thus, the design of the proposed method

provides the flexibility to optimize its performance for a variety of segmentation tasks.

9. Interpretability and transparency

The self-evaluation unit coupled with the clustering tree in the proposed method is an effective tool for data scientists and clinicians to visual-

ize and explore the different clustering resolutions. Thereby, it facilitates informed decisions such as the need for image quality enhancement and

tuning of the algorithm parameters. This design feature also renders the segmentation process transparent and convenient-to-use and its results

conveniently interpretable.

10. Resource for implementation of attention mechanism

Features extracted from images at the optimal number of cluster can be used to build a training set consisting of features relevant for classifi-

cation or segmentation task. The training set can serve as input to a CNN. This approach will eliminate the use of the entire grayscale image

thereby reducing training time as it allows the model to learn from only the relevant features. Therefore, the proposed method is potentially a use-

ful resource for the incorporation of attention mechanism into a CNN architecture.

11. The proposed method and extreme learning machine

The proposed method is related to extreme learning machine. The single layer feedforward neural network at the high level feature extraction

layer is basic component of an extreme learning machine. The main difference between the two algorithms is that an extreme learning machine

can be used to train single layer feedforward neural network.
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12. Comparative performance evaluation with deep neural networks

There is no doubt that the comparative performance evaluation results demonstrate the robustness of deep neural network in segmentation

tasks. However, it is important to note that our proposed method does not require training images while deep neural networks rely on example

images for learning to achieve acceptable segmentation accuracy. The comparative performance evaluation results also indicate that k-means and

Otsu clustering-tree techniques can compete with the deep neural network-based algorithms.

7.2 | Other potential applications

A key step in the proposed method for segmenting tumour in FLAIR MRI images is to extract clusters with the maximum label index in each clus-

tered duplicate of the original image. This step in the proposed method can be modified to extract other regions of interest. For example, in a

FLAIR sequence, if the feature pooling at the low-level feature extraction stage focuses on clusters with the minimum label index, the hypointense

grey matter and the ventricles become the segmented structure. The flexibility of the proposed method can be exploited to segment tumour in

multispectral MRI data. Let us consider a case where the proposed method is applied separately to multispectral MRI data that consist of the T1

and T2 sequences. The low-level feature extraction stage of the proposed method will be configured to extract the hypointense grey matter and

ventricles in the T1 sequence by extracting clusters with the maximum label index. For the T2 sequence, the low-level feature extraction stage will

focus on the hyperintense structures consisting of tumour, grey matter, and the ventricles. Thereafter, the information extracted from both the

images can be combined to determine the tumour region.

The proposed method is potentially effective for evaluating image quality. The multiple images generated by the clustering tree can reveal

noisy pixels and provide a path for the quantitative evaluation of image contrast. Lung and heart segmentation in X-ray and computed tomogra-

phy (CT) images and the segmentation of images acquired from digital cameras are other potential applications of the proposed method.

7.3 | Limitations of proposed method and future work

Although the proposed clustering tree-based technique demonstrate significant segmentation accuracy over its corresponding classical tech-

niques, there is still room for improvement. In real clinical studies attaining acceptable segmentation accuracy will be challenging due to wide vari-

ations in image quality attributes. For example, in multi-center clinical studies the use of geometric features such as eccentricity and solidity may

no longer be an efficient method to discriminate between tumour and none tumorous objects. In its present form, the proposed method is robust

to relatively large single or double lesions. The algorithms may require modification for efficient segmentation of MRI slices that contains multiple

and relatively small tumours. The proposed method is robust to noise because of the different levels of details provided by the clustering tree,

however, there is a limit to its performance. Quality attributes of the image plays an important role in the performance of the proposed method.

We strongly recommend the preprocessing of images to optimize the performance of the proposed method.

Future work will focus on how to address the challenges in the application of the proposed method to brain analysis in multi-center clinical

trails. These challenges can be addressed through the use of an extreme learning machine to train the SLNN, located at the HLFE layer, on geo-

metric attributes of tumour and none tumorous objects, thereby improving the segmentation accuracy of the proposed method. Another

approach to address real-world challenges is to integrate the proposed method into a CNN whereby the proposed method set at the optimal num-

ber of clusters will generate image features needed for attention mechanism. Future work will also investigate how and why the fuzzy technique

perform poorly on tumorous slices and on improving the robustness of the proposed method to segmentation of multiple tumours and low con-

trast quality images. Other potential applications of the proposed method will be explored and possibly implemented. The utility of the algorithm

will also be extended to include the segmentation of relatively large and small abnormal structures such as lymph nodes in CT images of cancer

patients and lesions in MRI images of patients with multiple sclerosis.

8 | CONCLUSIONS

Benefits of classical clustering segmentation techniques include simplicity, unsupervised procedures, computational efficiency, cost-effectiveness

and minimal user interface. A significant requirement for its operation is that the user must select the number of clusters that the algorithm will

generate. It is challenging and inefficient for a user to manually determine the number of clusters that will maximize the output of a clustering-

based segmentation algorithm where a large volume of MRI images are processed. This study proposes to enhance the performance of classical

clustering-based segmentation techniques through a shift from manual selection of the predefined number of clusters to clustering trees. The pro-

posed clustering tree-based approach to segmentation was developed for four classical clustering algorithms: k-means, expectation maximization,

fuzzy c-means and Otsu. The clustering tree is coupled to artificial neural networks that do not require training. The clustering tree provides
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different levels of details and incorporates spatial information that is absent in the classical clustering algorithms. The artificial neural networks

mimic human intelligence. Comparative performance evaluation results shows that the proposed clustering tree-based methods outperform the

classical clustering-based methods. We consider that the proposed method will be attractive to data scientists and clinicians because of its fully

unsupervised and fully automated operational characteristics.
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