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Abstract—Cervical cancer screening programs have reduced
the incidence of cervical cancer, but suffer from over- and
too infrequent screening as women’s risk of developing cervical
cancer differs. Personalized risk prediction models contribute to-
ward efficient, personalized cancer screening. This paper presents
a personalized time-dependent cervical cancer risk prediction
scheme to aid experts in recommending screening intervals. From
partially observed screening histories, the proposed approach
learns time-varying row-graphs that model the time-varying
relations among the screening records of patients and a column-
graph that encodes smoothness of an individual screening history.
Then, leveraging these geometric structures, we reconstruct the
entire latent risk of each individual from scarce screening data.
In order to accomplish this, a novel time-varying multi-graph
convolution neural network is proposed. These estimated latent
risk profiles are used to forecast the cancer risk of new patients.
The proposed approach is tested both on synthetic and real-life
screening data obtained from the Cancer Registry of Norway.

I. INTRODUCTION

The human papillomavirus (HPV) causes cervical cancer,
which develops cellular changes, from low-grade lesions to
high-grade (pre-cancerous) lesions to invasive cancer [1]. For
Norwegian women aged 25 to 49, cervical cancer ranks third
among the most common types of cancer. According to esti-
mates, approximately 1% of Norwegian women will develop
cervical cancer by age 75 [2]. Cervical cancer screening tests
such as Cytology, Histology, or HPV can predict a woman’s
risk of developing cervical cancer [3]. Nordic countries have
implemented mass-screening programs to detect and prevent
cervical cancer in females [4]. The Norwegian Cervical Cancer
Screening Program (NCCSP) recommends regular screening
every third year starting at age 25 and ending at age 69,
which means 15 screenings if they are all normal [5]. The
risk of being infected with HPV and developing cancer differs
greatly between females and also over time. As a result,
regular cervical cancer screening leads to over-screening (i.e.,
unnecessary screenings for patients unlikely to develop the
disease) or infrequent screening (i.e., very few screenings for
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patients at high risk) problems [6]. A personalized screening
interval can be inferred as a solution by predicting the future
risk of cervical cancer development. To this end, leveraging
the relations between screening histories of patients, a person-
alized risk prediction scheme has been proposed in [7]. As the
risk of being infected with HPV varies over time, the relations
among screening histories of females will also change over
time. Thus, it makes sense to model the relations among the
screening histories of females using time-varying graphs. In
this work, we develop a time-dependent cancer risk prediction
scheme, which capitalizes on the time-varying relationship
between screening histories. Our contributions are as follows:
• During training, under the assumption of temporal ho-

mogeneity [8], time-varying row-graphs are learned from
partially observed screen histories. A column-graph is
also generated under the assumption that cervical cancer
risk does not change dramatically within a year. Then,
utilizing these geometric structures, continuous screening
profiles are reconstructed from the partially observed
screening histories using a novel recurrent time-varying
multi-graph convolutional neural network.

• Inference is performed by using the matrix comprising
estimated continuous risks of individuals, referred to as
a dictionary. A given female’s cancer development risk
can then be predicted by computing and maximizing the
probabilities of possible risk conditions.

• Both synthetic and real-world datasets obtained from
the Norwegian Cancer Registry are used to examine the
performance of the proposed approach.

II. CERVICAL CANCER SCREENING DATA

Data collected through NCCSP includes the results of three
clinical examinations, namely, cytology, histology, and HPV,
as well as the date of these examinations. These screening
test results are labeled into four risk states: normal, low-risk,
high-risk and cancer that indicate how likely it is that one
will develop cervical cancer [9]. The normal state represents
an accepted baseline risk. The low-risk state indicates an



early stage of carcinogenesis, hence frequent screening is
recommended to detect the disease before it becomes invasive,
but there is usually no need for treatment. An high-risk state
denotes a high likelihood of future cancer progression and
requires immediate treatment. Finally, a cancer state is a result
of a screening program failure and is a potential state of a
patient.

Fig. 1. Cervical cancer screening histories of patients arranged in a matrix.

The cervical cancer screening data is arranged in a matrix
X ∈ NS×N , where Xs,n ∈ {1, 2, 3, 4} is an integer encoding
the observed states in the screening exam. The rows of X
represent the partially observed screening history of a patient,
and the column represents the age at which the observations
were made. According to NCCSP, effective screening interval
for healthy patients is 3 years, and for low-risk patients is
3-6 months [10], so a 3-month interval is then considered
for data discretization. As shown by Fig. 1, there are only
a few entries in the screening data matrix due to the sparse
cervical screenings. The screening histories of individuals are
also irregular as the recommendations are not strictly followed.
Additionally, the screening results are highly skewed, mean-
ing that most of the screening results are normal. Here the
objective is to develop a cervical cancer risk prediction model
from this highly challenging screening data.

III. PERSONALIZED CERVICAL CANCER RISK PREDICTION

A. Learning the Graphs

For the graph-based methods to be used for reconstructing
the continuous latent risk of females, we must supply both
row- and column-graphs. Graphs that encode the relations be-
tween screening histories are not provided with the screening
data, so they must be inferred from partially observed screen-
ing data. To infer network/graph topology from the data, nu-
merous techniques have been proposed in the literature [11]–
[13]. As the risk of being infected with HPV changes over
time, the relationships between screening histories may change
as well. Therefore, rather than a single row-graph, we propose
to use time-varying row-graphs for encoding/modelling the
time-varying relations between screening histories of patients.

In this work, we learn time-varying graphs under the as-
sumption of temporal homogeneity, i.e., most of the edges and
their weights of time-varying graph remain unchanged over
a short period of time [8]. In other words, certain females
in the population exhibit similar screening histories within
a short period of time. For this purpose, we first partition
the data matrix X into T non-overlapping windows, where
every window Xt for t = 1, 2, · · · , T , covers K number of
time points (i.e., screening results) of each screening history.
Then, time-varying row-graphs can be obtained by solving the
following fused LASSO problem [8]:

min
Wr,tt∈Wm

T∑
t=1

1

2
‖Wr,t ◦ Zt‖1 + f(Wr,t)

+ η

T∑
t=2

‖Wr,t −Wr,t−1‖1, (1)

where Zt is the pairwise distance matrix defined by

[Zt]i,j =

K∑
k=1

‖xik,t − xjk,t‖
2, (2)

with xk,t is the kth column of the data window Xt. The
weighted adjacency matrix of the row-graph at time t is de-
noted by Wr,t andWm is the space that contains all valid non-
negative, symmetric weighted adjacency matrices, i.e., Wm =
{Wr,t ∈ RS×S+ : Wr,t = WT

r,t, diag(Wr,t) = 0}. The
regularization function f(Wr,t) in (1) prevents Wr,t being a
zero matrix. Researchers used various functions for f(Wr,t)
in the literature. However, we follow [12] to obtain the sparse
solution which is important in the case of large scale applica-
tions, and use f(Wr,t) = −α1T log(Wr,t1)+β‖Wr,t‖2F with
α ≥ 0 and β ≥ 0. The logarithmic barrier forces the node
degrees to be positive and the parameter β helps to control
the sparsity of the graph, i.e., as β decreases, the solution of
(1) becomes more sparse. Finally the third term, which is the
difference between neighboring time windows, promotes the
temporal homogeneity. We used primal-dual techniques [14]
for solving the optimization problem stated in (1). Finally, we
construct the column-graph under the assumption that the risk
of cancer development does not change rapidly within a year.

B. Reconstructing the Latent Risk of Cervical Cancer

A patient’s observed state Xs,n, is considered to be a
noisy measurement of underlying latent risk, Ys,n, that slowly
evolves over time. Specifically, we assume that observed states
are derived from a discrete Gaussian distribution with mean
Ys,n and variance 1

2θ , with θ > 0. By employing the principles
of geometric matrix completion [15], [16], we aim to estimate
the continuous latent risk Y from the partially observed screen
histories X.

Let an undirected weighted row-graph Gr, with associated
graph Laplacian Lr = ΦΛrΦ

T, encode the relationships be-
tween screening histories of patients. Similarly, an undirected
weighted column-graph Gc, with associated graph Laplacian



Lc = ΨΛcΨ
T, encodes the temporal smoothness of an indi-

vidual screening history. Then, leveraging on these geometric
structures, the geometric matrix completion approaches [15],
[16] reconstruct Y from X by solving:

min
Y
‖PΩ ◦ (Y −X)‖2F +

γr
2
‖Y‖2Lr

+
γc
2
‖YT‖2Lc

, (3)

where the symbol ◦ is the Hadamard product operator and
PΩ is an indicator matrix of observed entries set of X.
The regularization terms γr

2 ‖Y‖
2
Lr

and γc
2 ‖Y

T‖2Lc
quantify

the smoothness of all screening profiles over the row-graph
and column-graph, respectively. The regularization coefficients
γr, γc > 0. The recurrent multi-graph convolutional neural
network (RMGCNN) framework [16] efficiently reconstructs
the underlying continuous latent risk Y by solving the above
optimization problem.

Since the risk of being infected with HPV varies over time,
the relations among the screening histories will also vary over
time. Single row-graph fails in modeling these time-varying
relationships between patients screening histories. So, we aim
to use time-varying row-graphs to encode these time-varying
relations, and used these time-varying geometric structures for
reconstructing the continuous latent risk Y. Using the time-
varying row-graphs, the geometric matrix completion problem
becomes:

min
Y
‖PΩ ◦ (Y −X)‖2F +

γr
2

T∑
t=1

‖Yt‖2Lr,t
+
γc
2
‖YT‖2Lc

,

(4)

To solve the above time-varying geometric matrix completion
problem, we propose a novel recurrent time-varying multi-
graph convolution neural network (RtvMGCNN), whose ar-
chitecture is illustrated in Fig. 2.
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Fig. 2. RtvMGCNN architecture.

The RtvMGCNN solves the time-varying geometric matrix
completion problem as follows: First the spatial features are
extracted by performing the multigraph convolution using
time-varying row-graphs and column graph as follows:

X̃ = σ
( p∑
j,j′=0

θj,j′ Append
{
Lr,tXt

}T
t=1

Lc

)
, (5)

where θj,j′ are the filtering coefficients in RtvMGCNN layer,
and the function Append represents the appending operation.
The matrices Lr and Lc be the respective Chebyshev poly-
nomial of scaled Laplacians of the row- and column-graphs
with eigenvalues are being in the interval [−1, 1]. In the next
step, these extracted spatial features from tvMGCNN layer will
be feeding to the recurrent neural network (RNN) that pro-
gressively reconstructs the complete screening profiles matrix
by implementing a diffusion process. The RtvMGCNN uses
an LSTM architecture to learn complex non-linear diffusion
processes [16]. The tvMGCNN, together with LSTM predict
accurately small changes of X that can propagate through the
full temporal steps.

C. Predicting the Risk of Cervical Cancer Development

Given the screening record of a new patient z, i.e., the
screening results from n1, · · · , nk, this section presents a
method for predicting a patient’s future state zn̂ for n̂ > nk.
By substituting empirical distribution of reconstructed latent
risk Ŷs,n̂ for the true distribution, we can calculate conditional
probabilities for the future state zn̂ as follows:

p(zn̂ = c | z) ∝
S∑
s=1

CŶs,n̂
exp(−θ(c− Ŷs,n̂)2)

×
k∏
j=1

CŶs,nj
exp(−θ(znj

− Ŷs,nj
)2),

(6)

where CŶs,n
is a risk-dependent normalization constant and c

denotes the state of screening result. Using (6), the conditional
probabilities have to be calculated for ∀c ∈ {1, 2, 3, 4}. Then,
the state with the highest conditional probability will be the
predicted risk.

IV. EXPERIMENTAL RESULTS

Numerical experiments were conducted on synthetic and
real-life screening data to demonstrate the ability of the
proposed RtvMGCNN in predicting the future risk of cervical
cancer development. We generated synthetic data to resemble
the high sparsity, randomness, and imbalance of the screening
data. A latent risk matrix Y = UVT is synthesized from
a rank-five basis of the form Vt,k = exp(−103(t − µk)

2)
with µk ∈ {70, 95, 120, 145, 170} and the patient-specific
coefficients drawn from an exponential distribution. We obtain
a partially observed matrix X so to resemble the scarcity,
irregularity, and skewness of the NCCSP data. We repeat the
procedure of synthesizing six datasets of each having 10000
samples with similar density (i.e., the fraction of observed
entries in X) for five different random seeds. Each dataset
was partitioned into 80% training and 20% test samples. The
trained data matrix was partitioned into 4 non-overlapping
windows and their corresponding row-graphs were learned.
The continuous latent risk matrix reconstructed from training
data is used to estimate the conditional probabilities, which
have been used to predict the future risk at specific time points
in independent test data. The hyperparameters were optimized
through cross-validation. The k-category Matthews correlation



coefficient (MCC) [17] that summarizes the confusion matrix
by a number MCCk ∈ [−1, 1] was considered a performance
metric. For comparative assessment, the task of predicting the
future risk of cancer development has also been carried out
by forward fill (FF) (in which the last screening result is
repeated to fill the missing screening result) and RMGCNN [7]
approaches. The performance of these models is compared to
an Oracle, which returns the most likely screening result given
the true latent risk Ys,n. The MCCk scores of various models
vs. dataset density are illustrated in Fig. 3.
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Fig. 3. Performance of proposed RtvMGCNN on synthetic data given as the
K-category Matthews correlation coefficient (MCCk) against dataset density.
Also illustrated the performance of Oracle, FF and RMGCNN.

From Fig. 3, we see that the performance of all approaches
is proportional to the synthetic dataset density. Above 6%
dataset density, as the time-varying graphs efficiently mod-
eled the relations among screening histories, the proposed
RtvMGCNN based approach exhibited better performance on
synthetic datasets compared to the FF, and RMGCNN. The
time-varying graphs, on the other hand, failed to model the
relationships at low dataset densities, hence, the proposed
approach performs similar to RMGCNN.

A. Results on Real-life Screening Data

From the NCCSP population-level data, we randomly se-
lected the data of 10000 female patients in which every female
patient has at least one screening exam result. In this dataset,
screening exams account for an average of 8 and the maximum
is 37 per patient; this corresponds to 2.3% observed entries.
With a temporal resolution of three months, each history was
aligned over a time grid spanning from youngest to oldest
screened patient. We used the last observation when multiple
screenings occurred within a three month period in order
to reflect the clinical data available to clinicians. In Table.
I, we present the MCCk scores for predicting future cancer
development risk from NCCSP data one to three years in the
future.

TABLE I
PERFORMANCE OF VARIOUS APPROACHES GIVEN AS THE K-CATEGORY
MATTHEWS CORRELATION COEFFICIENT (MCCk ) ON THE NCCSP DATA

Forecast
(years) FF MF RMGCNN RtvMGCNN

1 0.1505 0.1250 0.1649 0.1821
2 0.0804 0.0728 0.1407 0.1563
3 0.0834 0.0429 0.1215 0.1488

From Table. I, one can see that the RtvMGCNN performs
slightly better than the FF, matrix factorization and RMGCNN
approaches. However, all these methods exhibit poor perfor-
mance on real-life screening data. This is due to low density
of observed entries in the real-life screening dataset. When
the real-life screening data matrix was partitioned to 4 non-
overlapping windows for learning the time-varying row graphs,
few data windows contained only 1% observed entries. Due to
this, the time-varying row-graphs were unable to encode the
relations among the screening histories in those windows.

V. CONCLUSIONS

In this paper, we considered the problem of predicting the
future risk of cervical cancer development in an individual. For
this, leveraging the time-varying relations among screening
histories of patients continuous latent risk have been con-
structed. To this end a novel recurrent time-varying multi
graph convolutional neural network has been proposed. The
reconstructed cancer screening data matrix was then used
to forecast the cancer risk of a new patient. The proposed
approach has been tested on the synthetic and real-life datasets
to demonstrate its potential. The numerical results revealed
that the proposed approach can predict individuals’ short-term
risk of being diagnosed with cervical cancer (12-36 months),
targeting those who would benefit from more frequent screen-
ings in order to reduce under-treatment.
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