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Abstract

We prove the existence of highest, cusped, periodic travelling-wave solutions with exact and optimal 
α-Hölder continuity in a class of fractional negative-order dispersive equations of the form

ut + (|D|−α u + n(u))x = 0

for every α ∈ (0,1) with homogeneous Fourier multiplier |D|−α . We tackle nonlinearities n(u) of the type 
|u|p or u |u|p−1 for all real p > 1, and show that when n is odd, the waves also feature antisymmetry 
and thus contain inverted cusps. Tools involve detailed pointwise estimates in tandem with analytic global 
bifurcation, where we resolve the issue with nonsmooth n by means of regularisation. We believe that both 
the construction of highest antisymmetric waves and the regularisation of nonsmooth terms to an analytic 
bifurcation setting are new in this context, with direct applicability also to generalised versions of the 
Whitham, the Burgers–Poisson, the Burgers–Hilbert, the Degasperis–Procesi, the reduced Ostrovsky, and 
the bidirectional Whitham equations.
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1. Introduction

1.1. Main result

In this paper, we shall be concerned with singular periodic travelling-wave solutions to a class 
of nonlinear and dispersive evolution equations of the form

ut + (|D|−α u + n(u))x = 0. (1)

This family may be viewed as a kind of generalised fractional Korteweg–de Vries (KdV) equa-
tions of negative-order, where we refer to [1] for a classical description of nonlocal variants of 
the KdV equation in the mathematical modelling of long-wave phenomena. The dispersive prop-
erties occur in the homogeneous negative-order (spatial) Fourier multiplier |D|−α for α ∈ (0,1)

defined by

F (|D|−α u)(ξ) := |ξ |−α û(ξ),

with D := −i∂x , whereas the nonlinear effects originate from either of the generally nonsmooth 
nonlinearities

n(x) :=
{ |x|p or

x|x|p−1

}
with p > 1 real.

(2abs)

(2sgn)
(2)

Our main contributions are to

i) prove the existence of highest, exactly α-Hölder continuous periodic steady solutions of the 
negative-order dispersive family (1) for all α ∈ (0,1) on the torus T := R/2πZ, and

ii) initiate a study of nonsmooth nonlinearities and antisymmetric features in the large-
amplitude theory for negative-order dispersive evolution equations.

Precisely, we obtain the following result, with corresponding numerical illustrations in Fig. 1.

Theorem 1 (Existence). Let α ∈ (0,1) and p > 1 be real. Then there exists a nontrivial periodic 
travelling-wave solution ϕ of (1) with positive speed c <

p
p−1

∥∥F−1(| · |−α)
∥∥

L1(T )
. The solution 

is even (about 2πZ), has zero mean, and satisfies

maxϕ = ϕ(0) = μ and ϕ ∈ Cα(T ),

where μ := (c/p)1/(p−1). It is also smooth (except possibly at the point where it vanishes) and 
strictly increasing on (−π,0) and exactly α-Hölder continuous at x ∈ 2πZ, that is,

μ − ϕ(x) � |x − 2π�|α

uniformly around 2π� for � ∈Z.
One has that ϕ is smooth around −π in case (2abs), while ϕ is antisymmetric about −π

2 in 
case (2sgn) and therefore also exactly α-Hölder continuous at πZ with minϕ = ϕ(−π) = −μ.
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Fig. 1. Numerical approximations of large-amplitude, Cα -regular periodic waves for various α’s and nonlinearities (2) in 
Theorem 1 using the SpecTraVVave software [2] for bifurcation in nonlinear dispersive evolution equations.

Remark 2. A � B is short for A � B � A, where A � B symbolises that A � λB for a con-
stant λ > 0. We say that A(x) � B(x) (etc.) holds uniformly over a region if λ does not depend 
on x there.

1.2. Background

Full-dispersion nonlinear evolution equations such as (1) have seen a keen interest in the 
recent years as nonlocal improvements of classical local equations. In particular, surface-wave 
models in shallow water of this class with various dispersive operators approximate the full 
water-wave equations [3,4] and capture singular features not found in their local counterparts. 
Equation (1) with n(u) = u2 may be seen as a dispersive perturbation of Burgers’ equation 
and [5] outlines how this case for α = 1

2 is perhaps the simplest model incorporating the lin-
ear behaviour and characteristic nonlinearity of the water-waves problem. Both [5]

(
for α = 1

2

)
and [6, Theorem 3.1] (for α ∈ (0,1)) prove that solutions of (1) blow up in finite time for certain 
initial data. The resulting singularities occur in at least two ways: wave breaking [7], in which 
the spatial derivative of a bounded solution of (1) blows up, or sharp crests in travelling-wave 
solutions – reminiscent of the highest Stokes’ wave [8] – which is the subject of this paper. We 
refer also to [9–13] for other results concerning singularities, well-posedness, persistence, and 
existence time of solutions.

Classical Fourier analysis shows that |D|−α constitutes a singular convolution operator on R
with kernel | · |α−1 and describes an eigenfunction of F when α = 1

2 . Related to this case is the 
recent work by Ehrnström & Wahlén [14] on the Whitham equation [15], being a shallow-water 
model of type (1) with inhomogeneous dispersion 

√
tanh(D)/D and n(u) = u2. Its correspond-

ing symbol behaves as that of the KdV equation for small frequencies and decays like |ξ |− 1
2
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Table 1
Exact and global regularity of extreme periodic waves in negative-order equations with inhomogeneous or 
homogeneous dispersion. This paper also treats nonsmooth nonlinearities (2) for any real order p > 1, with 
applicability to the other works (that considered smooth n(u) = u2).

DISPERSIVE OPERATOR NEGATIVE ORDER AND REGULARITY

α ∈ (0,1) α = 1 α > 1
α-Hölder log-Lipschitz Lipschitz

Inhomogeneous: (tanh(D)/D)α or (1 + |D|2)
− α

2 [14,20–22] [20,23] [24]

Homogeneous: |D|−α This paper [20] [25]

as |ξ | → ∞, for which the kernel may be written as |x|− 1
2 plus a regular term. The existence of 

a highest, cusped steady solution whose behaviour at the crest is like 1 − |x| 1
2 modulo constants 

was conjectured by Whitham [16, p. 479], and the authors of [14] found this exactly C
1
2 wave 

on T based on properties of the kernel, precise regularity estimates, and global bifurcation the-
ory, building on preliminary analysis from [17,18]. New work [19] also proves the existence of 
an extreme C

1
2 solitary-wave solution by means of nonlocal center-manifold theory for the global 

bifurcation.
Inspired by the results for the Whitham equation, there has been a series of papers concerned 

with exact and global regularity of extreme periodic waves in similar negative-order equations 
with prototypical inhomogeneous or homogeneous dispersion. As shown in Table 1, one obtains 
Cα waves for α ∈ (0,1), noting that [14] consider (tanh(D)/D)α for α = 1

2 and [21] the same 
dispersion for α ∈ (0,1), and that [22] studies (1 + |D|2)−α/2 for α ∈ (0,1). When α = 1, the 
extreme waves turn out to be log-Lipschitz [20,23] in the sense that the behaviour at the crests is 
like 1 − |x log |x||. In [20], they even provide exact asymptotics by new techniques, with appli-
cability also to a subregime of α ∈ (0,1) including the Whitham equation. We note that global 
existence of weak solutions are guaranteed by [26] in the homogeneous case of α = 1 known 
as the Burgers–Hilbert equation. Finally, the waves are all Lipschitz [24,25] when α > 1, and 
one naturally conjectures that the Lipschitz angles vanish as α ↘ 1. See further [27] for unique-
ness and instability of the highest wave when α = 2, corresponding to the reduced Ostrovsky 
equation, and also [28] for the existence of extreme Lipschitz waves for the Degasperis–Procesi 
equation.

1.3. Contributions

As promised and illustrated in Table 1, we complete the regularity picture for extreme periodic 
waves in the given negative-order class of dispersive equations. The regularity analysis emerges 
from the overall structure of [14] with the following key differences:

i) Whereas [14,21,25] obtain monotonicity properties of the kernels based on a general char-
acterisation of completely monotone functions or sequences, we establish monotonicity of 
the singular kernel

Kα(x) := F−1(| · |−α)(x)
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on T by computing an explicit integral representation valid for all α > 0, and use the Poisson 
summation formula to derive its precise singular behaviour (� |x|α−1 as |x| → 0) from the 
situation on R.

ii) Since Kα has only algebraic but not exponential decay (unlike the kernels in [14,21,22]), 
extra care must be applied to the finite-difference estimates for |D|−α u when α is arbitrarily 
close to 1. In fact, we must exercise order-optimal estimates in order for the integrals to 
converge.

iii) We treat a class of nonlinearities, including sign-dependent ones (2sgn), in the regularity esti-
mates, which amongst others requires the use of suitable properties of composition operators 
on Hölder spaces.

The study of nonsmooth nonlinearities – with both slow (p � 1) and arbitrary (polynomially) 
fast growth in (2) – also poses new challenges since analytic bifurcation theory cannot be ap-
plied directly. We resolve this issue by analytically regularising the nonlinearities and proving 
that important features related to wave regularity and speed hold uniformly as the regularisation 
vanishes. The approach is strikingly simple (see (35)).

In the special case of smooth n(x) = xp with 2 � p ∈N , we also compute in Theorem 20
local bifurcation formulas for all p, which may be of independent interest. We are also able to 
deduce the overall structure of the bifurcation formulas along the entire local bifurcation curve 
when p is odd. As for the case of general sign-dependent nonlinearities (2sgn), we establish that 
the highest waves exhibit antisymmetry and thus also contain an inverted cusp at the troughs, 
as illustrated in Fig. 1. This construction appears to be completely new in the context of large-
amplitude singular waves and sheds light on underlying symmetry principles.

With appropriate modifications, these results are also transferable to other nonlocal disper-
sive equations. In particular, one may obtain such “doubly-cusped” periodic solutions (with zero 
mean) in the full scale of equations in Table 1 with generalised nonlinearities of type (2). Specif-
ically, consider the evolution equation

ut + (Lαu + n(u))x = 0, (3)

where Lα is any of the dispersive operators

(tanh(D)/D)α,
(
1 + |D|2)−α

2 or |D|−α

for α ∈ (0,∞) and n is as in (2). By readily adapting the regularity estimates in [14,20–25] with 
the estimates for general nonlinearities considered here and applying the regularisation procedure 
in the global bifurcation analysis, we can also deduce the following analogous result of Theo-
rem 1. Here C := 1 for the inhomogeneous operators (the value at the origin for their symbol) 
and C := ‖F−1(| · |−α)‖L1(T ) in the homogeneous case.

Theorem 3. For all α ∈ (0,∞) and p > 1, the dispersive equation (3) admits a nontrivial peri-
odic travelling-wave solution ϕ with speed c <

p
p−1C, with zero mean in the homogeneous case 

and in case (2sgn). The solution is even (about x ∈ 2πZ) and strictly increasing on (−π,0), and 
satisfies
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maxϕ = ϕ(0) = μ and ϕ ∈

⎧⎪⎨⎪⎩
Cα(T ) if α ∈ (0,1);
log-Lipschitz(T ) if α = 1;
Lipschitz(T ) if α > 1,

where again μ = (c/p)1/(p−1). Moreover, the estimate

μ − ϕ(x) �

⎧⎪⎨⎪⎩
|x|α if α ∈ (0,1);
|x log |x|| if α = 1;
|x| if α > 1,

holds uniformly around the extreme point x = 0.
One has that ϕ is smooth around −π in case (2abs), while ϕ is antisymmetric about −π

2 in 
case (2sgn), thereby featuring inverted cusps/peakons at πZ.

A similar statement may be formed for extreme Lipschitz waves in a generalised version of 
the Degasperis–Procesi equation with the nonlinearities (2) by combining the analysis here with 
that of [22,28].

1.4. Outline of the analysis

For homogeneous dispersion one has a choice as to what class of functions |D|−α should 
act upon in the interpretation of (1). We restrict our attention to functions with zero mean 
(
´
T u(·, x)dx = 0), but note that other alternatives such as equivalence classes of functions that 

differ by a constant are possible; see for instance [29] on homogeneous Sobolev-type spaces.
We set up (1) in steady variables u(t, x) := ϕ(x − ct) with wave speed c > 0, so that, after 

integration, (1) takes the form

|D|−α ϕ = N(ϕ; c) + ffl
Tn(ϕ), (4)

where we have introduced N(ϕ; c) := cϕ − n(ϕ), and the mean 
ffl
Tn(ϕ) := 1

2π

´
T n(ϕ(y))dy of 

n(ϕ) is the constant of integration. One may observe that

N ′(ϕ) > 0 ⇔ n′(ϕ) < c ⇔
{

ϕ < μ in case (2abs);
|ϕ| < μ in case (2sgn),

(5)

in which the value

μ := (c/p)1/(p−1), (6)

being the first positive critical point for N(ϕ), turns out to be the maximum of the highest wave. 
As the regularity analysis will reveal, the quadratic nature near ϕ = μ, where N ′′ is strictly neg-
ative, causes in partnership with |D|−α the singular behaviour of ϕ at the crest (and through, in 
case (2sgn)).

With regards to the precise Cα regularity estimates, we consider as in [14] fine details of lo-
cal regularity and first- and second-order differences of both u, |D|−α u, and n(u) in connection 
with the Hölder seminorm. We first establish global Cβ regularity for all β < α, then the exact 
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α-Hölder estimate at 0, and finally global Cα regularity with help of an interpolation argument. 
A key property in this setting is that |D|−α is α-smoothing on the scale of Hölder–Zygmund 
spaces, and that if |D|−α u is (2α)-Hölder continuous at a point, then u is α-Hölder continuous 
at that point for α ∈ (

0, 1
2

]
. However, when α > 1

2 (remember that [14] corresponds to α = 1
2 ), 

|D|−α u passes index 1 on the Hölder–Zygmund scale, and we must partially work with deriva-
tives as in [23].

When it comes to the bifurcation analysis, we first establish small-amplitude waves by the 
local Crandall–Rabinowitz bifurcation theorem [30, Theorems 8.3.1 and 8.4.1]. It is interesting 
to note that the regularisation of n lightens the computation of the local bifurcation formulas; 
case (2abs) acts essentially as u2 and case (2sgn) behaves like u3. As for the construction of the 
highest waves, we make use of the analytic global bifurcation theory of Buffoni and Toland [30]. 
One obtains, after ruling out certain possibilities, a global, locally analytic curve s �→ ϕε(s) of 
smooth sinusoidal waves, along which maxx∈T ϕε(s)(x) approaches a particular value με de-
pending on the wave speed and the regularisation parameter ε (see (6) and (36)). Although we 
are not able to establish unconditional antisymmetry in case (2sgn), we enforce this property 
along the global branch by working in a subspace. Coupled with the a priori regularity estimates 
for solutions touching με from below, it is then possible to extract a subsequence of (ϕε(s))s
converging to a solution ϕε with both maxϕε = με and the exact, global α-Hölder continuity. 
Finally, we show that ϕε converges to a solution of (1) with the same properties as ε ↘ 0.

The outline of the paper is as follows. In Section 2 we focus on properties and representations 
of |D|−α and Kα on T together with the relevant function spaces. In Section 3 we study a priori 
properties of solutions—especially, what concerns the α-Hölder continuity when maxϕ = μ, 
which is the most technical part. Finally, in Section 4 we first consider the local bifurcation 
analysis, and then study what happens at the end of the global bifurcation curve, supported by 
the theory in Section 3.

2. Properties of |D|−α and functional-analytic setting

2.1. Representations of the kernel

On the real line it is well known that the inverse Fourier transform of the symbol | · |−α for 
α ∈ (0,1) equals

F−1(| · |−α)(x) = γα |x|α−1 (7)

in the sense of (tempered) distributions, with γ −1
α := 2Γ(α) sin

(
π
2 (1 − α)

)
using the normalisa-

tion

(Fϕ)(ξ) = ϕ̂(ξ) =
ˆ

R

ϕ(x) e−iξxdx,

so that F−1(ϕ)(x) = 1
2πF (ϕ)(−x). Here Γ is the gamma function, and we observe that γα ↘ 0

as α ↘ 0 and γα ↗ ∞ as α ↗ 1. We are interested in the action of |D|−α in the periodic setting, 
and by the convolution theorem this amounts to understanding the periodic kernel

Kα(x) := 1
2π

∑
|k|−α eikx
k 
=0
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for which

K̂α = | · |−α on Z \ {0} and |D|−α ϕ = Kα ∗ ϕ on T .

Here ϕ has zero mean so that ϕ̂(0) = 0, and the normalisation is again ϕ̂(k) = ´
T ϕ(x) e−ikxdx. 

A naïve application of the Poisson summation formula yields that

1
2π

∑
k∈Z

|k|−α eikx“ = ”
∑
k∈Z

γα |x + 2πk|α−1 ,

which, although it is nonsense due to divergence on both sides, nevertheless suggests that the 
kernel on T mimics the singularity of the kernel on R. In fact, [31, Theorem 2.17] establishes the 
following result with help of a cut-off argument in the Poisson summation formula. We include 
a proof of this formula for two reasons. First, it is essential in our work. Second, the technique 
may be useful to define the analogues on T of other known kernels on R. The latter can be used 
to study other nonlocal weakly dispersive equations.

Proposition 4 ([31, Theorem 2.17]). The periodic convolution kernel may be written as

Kα = γα | · |α−1 + Kα,reg

on (−π,π), where Kα,reg is an even, smooth function. In particular, Kα ∈ L1(T ).

Proof. Let � be an even, smooth cut-off function that vanishes in a neighbourhood of ξ = 0 and 
equals 1 for |ξ | � 1, and define F(ξ) := �(ξ) |ξ |−α for ξ ∈ R. Then F is the Fourier transform 
of an integrable function of the form

f (x) := γα |x|α−1 + freg(x),

where freg ∈ C∞(R) and |f (x)| = O(|x|−m) as |x| → ∞ for all m � 1. Indeed, writing

F = | · |−α + (� − 1) | · |−α ,

it follows directly from (7) that f = F−1F has the given form, where we remember that the in-
verse Fourier transform of an integrable function of bounded support (in this case (� − 1) | · |−α) 
is smooth. Since F (xmf (x)) ∼ F (m) is integrable for all m � 1, it must be the case that xmf (x)

is bounded. In particular, f ∈ L1(R), and the Poisson summation formula then gives∑
k∈Z

f (x − 2πk) = 1
2π

∑
k∈Z

F(k) eikx = 1
2π

∑
k 
=0

|k|−α eikx = Kα(x).

Since ∑
k∈Z

f (x − 2πk) = f (x) +
∑
k 
=0

f (x − 2πk),

this proves the result with Kα,reg := freg + ∑
f (· − 2πk). �
k 
=0
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Fig. 2. Illustrating the differences between the singular kernels on R (cut at x = ±1) and T for various α. (The vertical 
axes also have different scaling.) We compute the kernels on T by numerically integrating the formula in Theorem 5.

In Fig. 2 we display the integral kernels on both R and T for various values of α. Whereas the 
kernels on R are all nonnegative, those on T become negative away from the positive singularity 
at 0, because Kα has zero mean. In both cases the profiles are monotone on either side of the 
singularity; this is obvious on R, and on T we deduce this by means of the following integral 
representation of Kα , which is valid for all α ∈ (0,∞). Although the formula is known [32, 
Section 5.4.3], we include a slick computation of it using the gamma distribution. We remark 
that we shall only need the monotonicity of Kα in our work, and for that property one may 
alternatively use the theory of completely monotone sequences and the discrete analogue of 
Bernstein’s theorem; see [25, Theorem 3.6 b)].

Proposition 5. For all α ∈ (0,∞) the periodic kernel has the integral representation

Kα(x) = 1

πΓ(α)

∞̂

0

tα−1(et cosx − 1)

1 − 2et cosx + e2t
dt

for x /∈ 2πZ. In particular, Kα is strictly increasing on (−π,0).

Proof. By recognising k−α in the definition of the gamma distribution with shape α and rate k, 
whose probability density function is t �→ kαtα−1e−kt /Γ(α) on (0,∞), we find that

πΓ(α)Kα(x) = Γ(α)

∞∑
k=1

k−α cos(kx)

=
∞∑

k=1

∞̂

0

tα−1e−kt cos(kx)dt

=
∞̂

tα−1 Re

( ∞∑
k=1

(
e−teix

)k
)

dt
0
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=
∞̂

0

tα−1 Re

(
eix

et − eix

)
dt =

∞̂

0

tα−1(et cosx − 1)

1 − 2et cosx + e2t
dt

using the dominated convergence theorem and a trick with geometric series. Leibniz’s integral 
rule next yields that

K ′
α(x) = − sinx

πΓ(α)

∞̂

0

tα−1et (e2t − 1)

(1 − 2et cosx + e2t )2 dt,

which shows that Kα is strictly increasing on (−π,0). �
Remark 6. For α = 1 in Theorem 5 one finds the explicit form

K1(x) = 1
π

[
1
2 log

(
1 − 2et cosx + e2t

)
− t

]∞
t=0

= − 1
2π log

(
2(1 − cosx)

)
= − 1

π log |x| +O(x2)

as x → 0. Such logarithmic singularities occur for all the kernels in Table 1 when α = 1; see 
for instance [23, Lemma 2.3 (iii)] for the kernel in the bidirectional Whitham equation with 
inhomogeneous dispersion tanh(D)/D.

2.2. Action of |D|−α on Hölder–Zygmund spaces

As regards the functional-analytic framework, it is desirable to work with spaces which both 
capture the precise regularity of cusps and interact well with Fourier multipliers. These turn out 
to be the so-called Hölder–Zygmund spaces, which we explain next.

Let Cm(T ), for m = 0,1, . . ., denote the space of m times continuously differentiable func-
tions ϕ on T with norm

‖ϕ‖Cm(T ) := ‖ϕ‖∞ + ‖ϕ(m)‖∞ ,

where ‖ · ‖∞ is the supremum norm on T . Furthermore, define Cm,β(T ) with β ∈ (0,1] to be the 
class of Hölder spaces consisting of all ϕ ∈ Cm(T ) for which ϕ(m) is β-Hölder continuous with 
norm

‖ϕ‖Cm,β(T ) := ‖ϕ‖Cm(T ) + |ϕ(m)|Cβ(T ) ,

where

|ψ |Cβ (T ) := sup
|ψ(x) − ψ(y)|

|x − y|β
x 
=y
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is a seminorm. We write C(T ) := C0(T ) and Cβ(T ) := C0,β(T ) for simplicity, and note that 
Cm,β(T ) is compactly embedded in Cm,β̃(T ) when β > β̃ . Moreover, the Fourier series of 
ϕ ∈ Cβ(T ) for β > 1

2 converges both uniformly to ϕ and absolutely.
While the standard Hölder norms provide an accurate description of the modulus of con-

tinuity of a function (and its derivatives), an alternative, frequency-based characterisation by 
means of the Littlewood–Paley decomposition is more suitable for Fourier multipliers. To 
this end, let 

∑∞
j=0 �j (ξ) = 1 be a partition of unity of smooth functions �j on R supported 

on 2j � |ξ | � 2j+1 for j � 1 and on |ξ | � 2 for j = 0. We then define the Hölder–Zygmund 
space Cs∗(T ) for s ∈ [0,∞) to consist of those functions ϕ for which

‖ϕ‖Cs∗(T ) := sup
j�0

2js
∥∥�j (D)ϕ

∥∥∞

is finite, where �j (D) is the Fourier multiplier with symbol �j , that is,

�j (D)ϕ(x) :=
∑
k∈Z

�j (k) ϕ̂(k) eikx .

One has that

Cs∗(T ) = C�s�,s−�s�(T ) for s 
= 1,2, . . . ,

in the sense of equivalent norms, whereas there are strict inclusions

Cs(T ) � Cs−1,1(T ) � Cs∗(T ) for s = 1,2, . . .

Since |D|−α is homogeneous, we restrict from now on to the corresponding subspaces C̊
m
(T ), 

C̊
m,β

(T ), and C̊
s

∗(T ) of functions with zero mean in the above spaces, with identical norms. Note 
that the seminorm | · |

C̊
β
(T )

is now a norm equivalent to ‖ · ‖
C̊

0,β
(T )

by the zero-mean restriction 
and compactness of T . We observe in this setting that

|D|−α : C̊
s

∗(T ) → C̊
s+α

∗ (T )

is α-smoothing for all s ∈ [0,∞) (and therefore also on the Hölder-space scale for s 
= 1,2, . . .), 
because in terms of Fourier multipliers we have, with j � 1, that

F
(
�j (D) |D|−α ϕ

) = �j | · |−α ϕ̂ ∼ 2−jα�j ϕ̂ = 2−jα�̂j (D)ϕ.

Finally, the subscript “even” attached to any space on T means the subspace of symmetric 
functions about 0 (mod 2π).

Lemma 7. The smoothing property |D|−α : C̊
s

∗(T ) → C̊
s+α

∗ (T ) extends to a local version. More 
precisely, if ϕ ∈ C̊(T ) lies in Cs

∗,loc(U) for an open subset U ⊂ T , in the sense that ρϕ ∈ Cs∗(T )

for any compactly supported ρ ∈ C∞
c (U), then we still have |D|−α ϕ ∈ Cs+α (U).
∗,loc
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Proof. To see this, let ρ ∈ C∞
c (U) and let η ∈ C∞

c (U) satisfy η = 1 in a neighbourhood V � U

of suppρ. Then

ρ |D|−α ϕ = ρ |D|−α (ηϕ) + ρ |D|−α
(
(1 − η)ϕ

)
,

and the first term on the right-hand side is globally Cs+α∗ regular. Moreover, since the integrand 
in

ρ(x) |D|−α
(
(1 − η)ϕ

)
(x) =

π̂

−π

Kα(x − y)ρ(x)(1 − η(y))ϕ(y)dy

vanishes for y near x and Kα is smooth away from 0, it follows that ρ |D|−α
(
(1 − η)ϕ

)
is 

smooth. Hence, |D|−α ϕ ∈ Cs+α
∗,loc(U), as claimed. �

Finally, we include a monotonicity property of |D|−α which will be useful in establishing a 
priori nodal properties of highest waves in Section 3.

Proposition 8 ([14, Lemma 3.6]). |D|−α is a parity-preserving operator, and |D|−α f > 0 on 
(−π,0) for odd f ∈ C̊(T ) satisfying f � 0 on (−π,0) with f (y0) > 0 for some y0 ∈ (−π,0).

Proof. Since Kα is even, one immediately obtains that |D|−α is parity-preserving from

|D|−α f (x) ± |D|−α f (−x) =
ˆ

T

Kα(x − y) (f (y) ± f (−y))dy.

Next consider odd f ∈ C̊(T ) satisfying f (y) � 0 on (−π, 0) with f (y0) > 0 for some y0 ∈
(−π, 0). Then

|D|−α f (x) =
π̂

−π

Kα(x − y)f (y)dy =
0ˆ

−π

(Kα(x − y) − Kα(x + y))f (y)dy

for x ∈ (−π,0). When y also lies in (−π,0), it follows that −2π< x + y < x − y < π and

dist(x − y,0) < min
{
dist(x + y,0),dist(x + y,−2π)

}
.

The latter inequality is a consequence of |x − y| < |x + y| for x, y < 0 and |x − y| < x + y + 2π
for x, y > −π. Since Kα is strictly decreasing as a function of the distance from the origin to ±π

by Theorem 5 and is even and periodic, we therefore obtain that

Kα(x − y) > Kα(x + y)

for every y ∈ (−π,0) \ {x}. In particular, |D|−α f (x) > 0 for all x ∈ (−π,0) as f is strictly pos-
itive in an interval around y0 by continuity. �
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3. A priori properties of travelling-wave solutions

In this section we establish many a priori bounds and regularity properties of continuous 
solutions of (4). Most importantly, we prove exact, global α-Hölder regularity in Theorem 16
for solutions touching the highest point μ (see (6)) from below at x = 0. This is obtained with 
help of a nodal pattern of solutions in Theorem 12. We remind the reader of (5): n′(ϕ) < c

corresponds to solutions which stay away from (±)μ, and n′(ϕ) � c includes the possibility of 
also touching (±)μ.

Our first result is a uniform upper bound on both the size of solutions and the wave speed that 
we will use in Section 4 in compactness arguments.

Lemma 9. For all solutions ϕ ∈ C̊(T ) of (4) satisfying n′(ϕ) � c one has the uniform estimate

‖ϕ‖∞ � (1 + c)1/(p−1).

Moreover, if c � p
p−1 ‖Kα‖L1(T ), then there are no nontrivial such solutions.

Proof. In case (2sgn) for n′(ϕ) � c, the bound in L∞ is immediate since μ ∼ c1/(p−1). As re-
gards (2abs), we need to control the minimum of a nontrivial ϕ. Let xmin and xmax be points 
where ϕ attains its global minimum ϕmin and maximum ϕmax, respectively, where we note that 
ϕmax > 0 > ϕmin as ϕ has zero mean. From (4) we then find that

c
(
ϕmax − ϕmin

)− (
n(ϕmax) − n(ϕmin)

) = |D|−α ϕ(xmax) − |D|−α ϕ(xmin)

� ‖Kα‖L1(T )

(
ϕmax − ϕmin

)
,

(8)

which leads to

n(ϕmin) � n(ϕmax) + (‖Kα‖L1(T ) − c)(ϕmax + |ϕmin|)
� max

{
n(ϕmax), (1 + c)(ϕmax + |ϕmin|)

}
.

In the first situation, n(ϕmin) � n(ϕmax), so that |ϕmin| � ϕmax � μ. In the second situation, it 
suffices to investigate the case ϕmax < |ϕmin| (otherwise we freely get |ϕmin| � ϕmax � μ). Then

|ϕmin|p = n(ϕmin) � (1 + c) |ϕmin| ,
implying that |ϕmin| � (1 + c)1/(p−1).

For the last part, we use in case (2abs) that for a > 0 > b one has

ap − |b|p = ap−1(a − b) − |b| (ap−1 + |b|p−1) < ap−1(a − b).

Applied to a = ϕmax and b = ϕmin, we reorder (8) and find that

c − ‖Kα‖L1(T ) � n(ϕmax) − n(ϕmin)

ϕmax − ϕmin
< ϕ

p−1
max � μp−1 = c

p
,

which gives c <
p ‖Kα‖ 1 . One may similarly treat case (2sgn). �
p−1 L (T )
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Next, we want to establish regularity for solutions which stay away from (±)μ. To this end, 
we need the inverse function theorem for the Hölder scale. We could not find a proof in the 
literature and therefore provide a short argument.

Proposition 10 (Inverse function theorem for Cm,β ). Let m � 1 be an integer and β ∈ (0,1], and 
assume that a function f is Cm,β regular and strictly monotone on a compact interval I ⊂ R. 
Then f −1 is Cm,β regular on f (I).

Proof. We only establish β-Hölder regularity of g′, where g := f −1; the rest follows by the 
standard inverse function theorem and similar estimates for the higher-order derivatives. To this 
end, let x, y ∈ f (I) be different and observe that

∣∣g′(x) − g′(y)
∣∣

|x − y|β =

∣∣∣ 1

f ′(g(x))
− 1

f ′(g(y))

∣∣∣
|x − y|β

= 1

|f ′(g(x))f ′(g(y))| ·
∣∣f ′(g(x)) − f ′(g(y))

∣∣
|g(x) − g(y)|β ·

∣∣∣∣g(x) − g(y)

x − y

∣∣∣∣β

= ∣∣g′(x)g′(y)
∣∣ · ∣∣f ′(g(x)) − f ′(g(y))

∣∣
|g(x) − g(y)|β · ∣∣g′(z)

∣∣β
for some z between x and y by the mean value theorem. Hence, 

∣∣g′∣∣
Cβ �

∥∥g′∥∥2+β

∞
∣∣f ′∣∣

Cβ < ∞, 
where we note that g′ is bounded on the compact set f (I) due to its continuity by the standard 
inverse function theorem. �
Lemma 11. Let ϕ ∈ C̊(T ) be a solution of (4). Then

i) ϕ is smooth on any open set where n′(ϕ) < c and that does not contain the boundary 
∂(ϕ−1(0)) of the set ϕ−1(0); and

ii) ϕ has at least the same regularity in the Hölder scale around ∂(ϕ−1(0)) as the nonlinearity n

around 0.

In particular, if n is smooth, then so is ϕ on any open set where n′(ϕ) < c.

Proof. Note first by translation invariance (|D|−α is a convolution operator) that if ϕ is a 
solution of (4), then so is ϕ(· + h) for any h ∈ R. Accordingly, it suffices to consider open 
sets U ⊆ (−π,π) where n′(ϕ) < c, so that (5) holds uniformly on every compact interval I ⊂ U . 
By the inverse function theorem (Theorem 10), it follows that N−1 exists on ϕ(I) and has the 
same regularity as n in the Hölder scale. As such, we may then invert (4) to get the pointwise 
relation

ϕ(x) = G(ϕ, c)(x) := N−1(|D|−α ϕ(x) − ffl
Tn(ϕ)

)
(9)

for x ∈ I , where G is a nonlinear composition operator, depending implicitly on c via N−1.
It is clear from the (higher-order) chain rule that an operator f �→ F ◦ f maps the space 

Cm(I) into itself provided that F ∈ Cm (R). More generally, the same remains true for Cm,β(I )
loc
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for all m ∈ N0 and β ∈ (0,1] if F ∈ Cm,β
loc (R) ∩ C0,1

loc (R) by [33, Theorems 2.1, 4.1 and 5.1], 
and the composition operator is also bounded (maps bounded sets to bounded sets). Therefore, 
since ϕ ∈ C̊(T ) ↪→ C0

∗,loc(U) and |D|−α is locally Cα∗ smoothing by Theorem 7, it follows by 
bootstrapping of G(·, c) in (9) that ϕ has at least the same Cm,β Hölder regularity as N−1 (that 
is, as n) on I . In particular, ϕ has the given regularity around ∂(ϕ−1(0)) by applying this result to 
a covering {Ij }j of compact intervals Ij such that (−π,π) ⊃ ⋃

j Ij ⊃ ∂(ϕ−1(0)), which proves 
property ii).

Similarly, when U does not contain ∂(ϕ−1(0)), we know that N−1 is smooth on ϕ(I) /� 0, 
and so bootstrapping (9) yields that ϕ is smooth on I . As I ⊂ U was arbitrary, this establishes 
property i). �

We continue by proving a nodal pattern for solutions which stay away from ±μ. The result 
will be crucial in establishing that the global bifurcation branch of solutions in Section 4 is not 
periodic.

Theorem 12 (Nodal pattern). Let ϕ ∈ C̊even(T ) be a nontrivial solution of (4) that is increasing 

on (−π,0). If ϕ ∈ C̊
1
even(T ), then

ϕ′ > 0 and n′(ϕ) < c on (−π,0),

and ϕ has the regularity specified in Theorem 11. Moreover, if ϕ is also C2 regular around 0 and 
−π (in the sense of T ), then n′(ϕ) < c everywhere,

ϕ′′(0) < 0, and ϕ′′(−π) > 0.

Conversely, if n′(ϕ) � c everywhere, then ϕ features the regularity in Theorem 11, with

ϕ′ > 0 on (−π,0).

Remark 13. We write “in-/decreasing” instead of “nonde-/increasing”, so that constant functions 
are both increasing and decreasing, and add the prefix “strictly” for the nontrivial cases.

Proof. In the first case, ϕ′ is odd and satisfies ϕ′ � 0 on (−π,0) with ϕ′(y0) > 0 for 
some y0 ∈ (−π,0), as ϕ is nonconstant and increasing, so that |D|−α ϕ′ > 0 on (−π,0) by The-
orem 8. We then differentiate in (4) to find that

N ′(ϕ)ϕ′ = |D|−α ϕ′ > 0 on (−π,0),

which implies that both N ′(ϕ) = c − n′(ϕ) and ϕ′ are strictly positive on that interval.
If ϕ is also C2 around 0, we differentiate (4) twice and use that ϕ′(0) = 0 to obtain

N ′(ϕ(0))ϕ′′(0) = (|D|−α ϕ′)′(0)

= lim
r↘0

d

dx

( ˆ

|y|<r

Kα(y)ϕ′(x − y)dy +
ˆ

π�|y|�r

Kα(y)ϕ′(x − y)dy

)∣∣∣∣∣
x=0

,
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where we have also isolated the singularity of Kα and interchanged limits (which is legitimate 
since (|D|−α ϕ′)′ is continuous around 0). Leibniz’s integral rule now gives

d

dx

ˆ

|y|<r

Kα(y)ϕ′(x − y)dy

∣∣∣∣
x=0

=
ˆ

|y|<r

Kα(y)ϕ′′(y)dy,

and the latter integral vanishes as r ↘ 0 because Kα is integrable and ϕ′′ is continuous around 0. 
By Leibniz’s rule once more, we also find that

1
2

d

dx

ˆ

π�|y|�r

Kα(y)ϕ′(x − y)dy

∣∣∣∣
x=0

= − 1
2

d

dx

ˆ

π�|x−y|�r

Kα(x − y)ϕ′(y)dy

∣∣∣∣
x=0

= Kα(r)ϕ′(r) − Kα(π)ϕ′(π)︸ ︷︷ ︸
=0

−
π̂

r

K ′
α(y)ϕ′(y)dy,

where we have utilised that Kα is even and ϕ′ is odd. Observe that Kα(r) � |r|α−1 and 
ϕ′(r) = O(r) (because ϕ′′ is continuous around 0) as r ↘ 0, which means that Kα(r)ϕ′(r)
vanishes in the limit. Since K ′

α and ϕ′ are strictly negative on (0,π) by Theorem 5 and the 
assumption, respectively, we further infer that −´ π

r
K ′

α(y)ϕ′(y)dy is both negative and strictly 
decreasing as r ↘ 0. As such, we obtain

(
c − n′(ϕ(0))

)︸ ︷︷ ︸
=N ′(ϕ(0))

ϕ′′(0) = (|D|−α ϕ′)′(0) = −2 lim
r↘0

π̂

r

K ′
α(y)ϕ′(y)dy < 0.

Since n′(ϕ) < c on (−π,π) \ {0} and n′(ϕ) is continuous, it follows that n′(ϕ(0)) < c also, 
and consequently ϕ′′(0) < 0. By similar calculations one finds that n′(ϕ(−π)) < c (for free in 
case (2abs)) and ϕ′′(−π) > 0.

Conversely, suppose that n′(ϕ) � c everywhere. If in fact n′(ϕ) < c uniformly, then Theo-

rem 11 implies that ϕ ∈ C̊
1
(T ), which leads to ϕ′ > 0 on (−π,0) by the first case of Theorem 12. 

When n′(ϕ) touches c, however, we must use a different approach. Note that ϕ is differentiable 
almost everywhere on (−π,0) by Lebesgue’s theorem for increasing functions, and that we may 
also use central differences to compute ϕ′. To this end, observe that

|D|−α ϕ(x + h) − |D|−α ϕ(x − h)

=
0ˆ

−π

(
Kα(y − x) − Kα(y + x)

) (
ϕ(y + h) − ϕ(y − h)

)
dy (10)

for x ∈ (−π,0) and h ∈ (0,π) by periodicity and evenness of Kα and ϕ. The second factor in 
the integrand is nonnegative by assumption, whereas the first factor is strictly positive by Theo-
rem 5. Consequently, since ϕ is nontrivial, |D|−α ϕ and therefore also N(ϕ) are strictly increasing 
on (−π,0). Then for all −π< y < x < 0 we find that
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0 < N(ϕ(x)) − N(ϕ(y)) = (ϕ(x) − ϕ(y))N ′(ϕ(ξ))︸ ︷︷ ︸
>0

(11)

for some ξ ∈ (y, x) by the mean value and intermediate value theorems, which yields that ϕ is 
strictly increasing on (−π,0). Moreover, (10) and (11) together show that

N ′(ϕ(x))ϕ′(x) = lim
h↘0

N(ϕ(x + h)) − N(ϕ(x − h))

2h

= lim
h↘0

|D|−α ϕ(x + h) − |D|−α ϕ(x − h)

2h

�
0ˆ

−π

(
Kα(y − x) − Kα(y + x)

)
ϕ′(y)dy,

(12)

where we have applied Fatou’s lemma in the last transition. Focusing on (−π,0), we know that 
both the first factor in the integrand is strictly positive, N ′(ϕ) = c − n′(ϕ) > 0 (because ϕ is 
strictly increasing), and ϕ′ � 0. Thus ϕ′ > 0 on (−π,0). �

We next start to investigate what happens if solutions touch μ, and begin with a one-sided 
α-Hölder estimate around 0.

Lemma 14. Let ϕ ∈ C̊even(T ) be a nontrivial solution of (4) that is increasing in (−π,0) and 
satisfies n′(ϕ) � c everywhere. Then uniformly around 0 one has

μ − ϕ(x) � |x|α .

Proof. Let x ∈ (−π,0) be close to 0 and let ξ ∈ (
x, x2

)
. Monotonicity yields that N ′(ϕ(x)) �

N ′(ϕ(ξ)), and since ϕ′ > 0 on (−π, 0) by Theorem 12, we may compute

N ′(ϕ(x))ϕ′(ξ) � N ′(ϕ(ξ))ϕ′(ξ)

�
0ˆ

−π

(
Kα(ξ − y) − Kα(ξ + y)

)
ϕ′(y)dy

using Fatou’s lemma as in (12). By strict positivity of the integrand and the mean value theorem 
with ζ ∈ (ξ, ξ − 2y), this may be continued as

N ′(ϕ(x))ϕ′(ξ) �

x
2ˆ

x

K ′
α(ζ + y)(−2y)ϕ′(y)dy

� |x|min
y∈

[
x,

x
]K ′

α(ζ + y)
(
ϕ
(

x
2

)− ϕ(x)
)

2
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� |x|α−1 (ϕ( x
2

)− ϕ(x)
)
,

where we have used that minK ′
α(ζ + y) � K ′

α(2x) � |x|α−2 as x → 0 by Theorem 4. We then 
integrate over 

(
x, x

2

)
in ξ and divide by ϕ

(
x
2

)− ϕ(x) on both sides, which is valid since ϕ is 
strictly increasing on (−π,0). This gives

N ′(ϕ(x)) � |x|α

uniformly around 0. The stated bound is now a consequence of

N ′(ϕ(x)) = c − n′(ϕ(x)) ∼ μp−1 − (ϕ(x))p−1 � μ − ϕ(x), (13)

where the latter uniform equivalence around 0 follows from continuity of ϕ and the observation 
by L’Hôpital’s rule that

lim
t↗μ

μp−1 − tp−1

μ − t
= (p − 1)μp−2 > 0. �

Lemma 15. The wave speed c is uniformly bounded away from 0 over the class of solu-
tion pairs (ϕ, c) for which ϕ ∈ C̊even(T ) is nontrivial, increasing in (−π,0), and satisfies 
n′(ϕ) � c everywhere, where we in case (2sgn) also assume that ϕ

(−π
2

) = 0. The estimate 
c − n′(ϕ(−π)) � 1 holds in case (2abs), implying that ϕ is smooth around −π.

Proof. Let x ∈ I := [− 3π
4 ,−π

4

]
and consider first case (2abs). Monotonicity of N ′ and ϕ

plus (12) show that

N ′(ϕ(−π))ϕ′(x) � N ′(ϕ(x))ϕ′(x)

�
0ˆ

−π

(
Kα(x − y) − Kα(x + y)

)
ϕ′(y)dy

�
ˆ

I

(
Kα(x − y) − Kα(x + y)

)
ϕ′(y)dy

� Mα

(
ϕ
(−π

4

)− ϕ
(− 3π

4

))
,

where we have used that Mα := min
{
Kα(x − y) − Kα(x + y) : x, y ∈ I

}
> 0 by the extreme 

value theorem and the fact that Kα is even and strictly increasing on (−π,0) by Theorem 5. 
Integrating over I in x then yields

c − n′(ϕ(−π)) = N ′(ϕ(−π)) � π
2 Mα > 0 (14)

after cancelling ϕ
(−π

4

)− ϕ
(− 3π

4

)
> 0 on both sides. Suppose to the contrary that there exists 

a sequence {(ϕj , cj )}j of such solution pairs for which cj ↘ 0. Then n′(ϕj (−π)) � cj ↘ 0 as 
769



F. Hildrum and J. Xue Journal of Differential Equations 343 (2023) 752–789
well, contradicting (14). Thus c � 1 uniformly and n′(ϕ(−π)) does not touch c, so ϕ is smooth 
around −π by Theorem 11.

In case (2sgn) we consider −π
2 instead of −π and similarly obtain c = N ′(ϕ(−π

2

))
� 1. �

Finally we come to the main result in this section, which concerns both the global regularity 
of solutions and the exact α-Hölder regularity at 0 for solutions that touch μ. This is the most 
technical part of the paper.

Theorem 16 (Regularity). Let ϕ ∈ C̊even(T ) be a nontrivial solution of (4) that is increasing 
in (−π,0) and satisfies n′(ϕ) � c, with maximum ϕ(0) = μ. Then

i) ϕ is strictly increasing on (−π,0), smooth except at 0 and possibly the point ϕ−1(0), and 
features at least the same regularity in the Hölder scale around ϕ−1(0) as n around 0;

ii) ϕ ∈ C̊
α

even(T ); and
iii) ϕ is exactly α-Hölder continuous at 0, that is, uniformly around 0 we have

μ − ϕ(x) � |x|α .

Proof. Property i) and the lower bound in property iii) follow directly from Theorems 11, 12
and 14. As a consequence, it remains to establish global α-Hölder regularity and the upper bound 
in property iii). Note that Hölder regularity at a point plus smoothness everywhere except at that 
point does not in general imply global Hölder regularity—one additionally needs uniform Hölder 
regularity around the point. In particular, in order to obtain property ii), it suffices to prove Cα

regularity in a small interval around 0.
To this end, we first establish Cβ regularity (around 0) for all β < α. Let −r � y < x � 0 with 

0 < r � 1, and observe from Taylor’s theorem that

N(ϕ(x)) − N(ϕ(y)) = (ϕ(x) − ϕ(y))N ′(ϕ(x)) − 1
2 (ϕ(x) − ϕ(y))2 N ′′(ϕ(ξ))

for some ξ ∈ (y, x) due to the intermediate value theorem. By (13) we know that

N ′(ϕ(x)) � μ − ϕ(x),

and −N ′′(ϕ(ξ)) = n′′(ϕ(ξ)) � 1 independently of ξ by choosing r so small that ϕ(−r) > 0 and 
remembering that ϕ is monotone (ϕ(ξ) � ϕ(−r)). This gives

N(ϕ(x)) − N(ϕ(y)) � (ϕ(x) − ϕ(y)) (μ − ϕ(x)) + (ϕ(x) − ϕ(y))2

uniformly over −r � y < x � 0, and by evenness of ϕ, also uniformly over x, y ∈ (−r, r) with 
|y| > |x|. Thus (4) implies both that

|D|−α ϕ(x) − |D|−α ϕ(y) � (ϕ(x) − ϕ(y)) (μ − ϕ(x)) (15)

and

|D|−α ϕ(x) − |D|−α ϕ(y) � (ϕ(x) − ϕ(y))2 (16)
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uniformly over x, y ∈ (−r, r) with |y| > |x|. Since |D|−α is locally Cα∗ smoothing by Theorem 7, 
we deduce by a bootstrapping argument in (16) that ϕ, being a priori only continuous around 0, 
is in fact Cβ regular around 0 for all β < min

{ 1
2 , α

}
.

If α ∈ ( 1
2 ,1

)
, however, then |D|−α ϕ will eventually pass index 1 in the Hölder scale, and 

we must instead work with derivatives. Specifically, take any β sufficiently close to 1
2 from 

the previous argument such that now α + β > 1 and |D|−α ϕ ∈ C̊
α+β

∗ (T ) = C̊
1,α+β−1

(T ). Then, 
since |D|−α ϕ′(0) = 0, we find from the mean value theorem that

|D|−α ϕ(x) − |D|−α ϕ(y) = |x − y| ∣∣|D|−α ϕ′(ξ) − |D|−α ϕ′(0)
∣∣

� |x − y| |ξ |α+β−1

< |x − y| |y|α+β−1

(17)

for some ξ ∈ (y, x), where −r � y < x � 0, as above. If |x| < |x − y|, then (16), (17), and the 
triangle inequality imply that

ϕ(x) − ϕ(y) � |x − y| α+β
2 . (18)

In particular, for x = 0, this gives

μ − ϕ(y) � |y| α+β
2 (19)

for all y ∈ [−r,0]. Otherwise, if |x − y| � |x|, then (15), (17), and the triangle inequality yield

(ϕ(x) − ϕ(y)) (μ − ϕ(x)) � |x − y| |x|α+β−1 .

We next use that μ − ϕ(x) � |x|α by Theorem 14 and get

ϕ(x) − ϕ(y) � |x − y|
|x|1−β

. (20)

Interpolating between (19) and (20) with index γ ∈ (0,1), and using that |y| � 2 |x|, then subse-
quently show that

ϕ(x) − ϕ(y)

|x − y|γ � (ϕ(x) − ϕ(y))γ

|x − y|γ (μ − ϕ(y))1−γ

� |x|(β−1)γ+ α+β
2 (1−γ )

is uniformly bounded over −r � y < x � 0 in the case |x − y| � |x| provided the last exponent 
is nonnegative, that is, if

γ � α + β

2 + α − β
.

As such, by choosing the maximal γ , we obtain the estimate
771



F. Hildrum and J. Xue Journal of Differential Equations 343 (2023) 752–789
ϕ(x) − ϕ(y) � |x − y|(α+β)/(2+α−β)

when |x − y| � |x|, so that, together with (18) it is true that

ϕ(x) − ϕ(y) � max
{|x − y| α+β

2 , |x − y|(α+β)/(2+α−β)
}

uniformly over −r � y < x � 0. Since both exponents are strictly increasing in β and converge 
to α as β ↗ α, it follows by bootstrapping that ϕ is Cβ regular around 0 for all β < α.

We next establish the upper Cα estimate at 0 in property iii). In fact, with u(x) := μ − ϕ(x), 
we shall prove that

u(x) � |x|β (21)

uniformly over x ∈ (−r, r) and β ∈ [0, α), from which the desired estimate follows by letting 
β ↗ α. On this route, note from (16) that

(u(x))2 � |D|−α ϕ(0) − |D|−α ϕ(x) =
ˆ

T

(
Kα(y) − Kα(x − y)

)
ϕ(y)dy

=
ˆ

T

(
Kα(x − y) − Kα(y)

)
u(y)dy

= 1
2

ˆ

T

♦yKα(x)u(y)dy,

(22)

where ♦yf (x) := f (x + y) − 2f (y) + f (x − y) denotes the second-order central difference op-
erator. Here we have utilised periodicity of Kα in the first transition between the integrals, and 
averaging, variable change y �→ −y, and evenness of u (from ϕ) in the last step. Since we have 
already established that u ∈ Cβ(T ) for all β ∈ [0, α), it is clear that u | · |−β is bounded on (−r, r). 
Thus (22) shows that

sup
|x|<r

∣∣u(x) |x|−β
∣∣ � sup

|x|<r

|x|−2β

ˆ

T

∣∣♦yKα(x)
∣∣ |y|β dy

after cancelling sup|x|<r

∣∣u(x) |x|−β
∣∣ once on each side. Now remember that Kα = γα | · |α−1 +

Kα,reg from Theorem 4. In particular, for the regular part we may Taylor expand around y to see 
that ∣∣♦yKα,reg(x)

∣∣ = O(x2)

uniformly over y ∈T , because Kα,reg is even and K ′′
α,reg and K ′′′

α,reg are bounded on T . As such, 
using that |y|β � 1 on T independently of β , we obtain that

|x|−2β

ˆ ∣∣♦yKα,reg(x)
∣∣ |y|β dy = O

(|x|2(1−β)
) = O(1)
T
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since β < 1. For the singular part, one has with y = xs that

|x|−2β

ˆ

|y|�π

∣∣♦y | · |α−1 (x)
∣∣ |y|β dy � |x|α−β

ˆ

|s|<∞

∣∣♦1 | · |α−1 (s)
∣∣ |s|β ds (note the 1 in ♦1).

The right-hand side is O(1) over x ∈ (−r, r) because of α − β � 0 and the following observation: 
| · |α−1 is locally integrable, and

♦1 | · |α−1 (s) = |s|α−1 [(α − 1)(α − 2) s−2 +O(s−4)
]

as |s| → ∞, so that ∣∣♦1 | · |α−1 (s)
∣∣ |s|β � |s|α+β−3

for |s| � 1, where α + β − 3 < −1 uniformly over β < α because α ∈ (0,1) is fixed, thereby 
guaranteeing integrability at infinity. Hence, sup|x|<r

∣∣u(x) |x|−β
∣∣ � 1 uniformly over β < α, 

which is (21).
It remains to establish Cα continuity around 0. Since ϕ is increasing on [−π,0] and even, it 

suffices to show that

sup
x∈[−r,0);
h∈(0,|x|]

�hϕ(x)

hα
< ∞,

where we have introduced the (scaled) symmetric difference �hf (x) := f (x + h) − f (x − h). 
To this end, we shall extract �hϕ(x) from �h[N(ϕ)](x) and estimate each side of the relation

�h[N(ϕ)](x) = �h[|D|−α ϕ](x), (23)

which comes straight from (4). On this path, we let x ∈ [−r,0) and h ∈ (0, |x|], and then choose 
a := ϕ(x + h) and b := ϕ(x − h) in the Taylor expansion

N(b) = N(a) + N ′(a)(b − a) + 1
2N ′′(ζ )(b − a)2,

with ζ between a and b, to see that

�h[N(ϕ)](x) = (
N ′(ϕ(x + h)) − 1

2N ′′(ϕ(ξ))�hϕ(x)
)
�hϕ(x) (24)

for some ξ ∈ (x − h,x + h) (satisfying ϕ(ξ) = ζ ) by the intermediate value theorem. Here

−N ′′(ϕ(ξ)) = n′′(ϕ(ξ)) � 1

uniformly over x ∈ [−r,0) and h ∈ (0, |x|]. Now note that

N ′(ϕ(x + h)) − p
(
ϕ(x)p−1 − ϕ(x + h)p−1

)
∼ μp−1 − ϕ(x)p−1 � μ − ϕ(x) � |x|α
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in light of (13) and the exact Cα estimate at x = 0. Since ϕ(x)p−1 − ϕ(x + h)p−1 and �hϕ(x)

both vanish as h ↘ 0, we see that

sup
h∈(0,|x|]

(
N ′(ϕ(x + h)) − 1

2N ′′(ϕ(ξ))�hϕ(x)
)
� |x|α .

Thus (24) yields that

sup
h∈(0,|x|]

�hϕ(x)

hβ
� |x|−α sup

h∈(0,|x|]
�h[N(ϕ)](x)

hβ
(25)

for all β < α, where we postpone taking the supremum over x ∈ [−r,0) until we have estimates 
for �h[|D|−α ϕ](x) in (23). With that in mind, we first consider the regular part in |D|−α ϕ and 
compute

�h

[
Kα,reg ∗ ϕ

]
(x) =

ˆ

T

�hKα,reg(x − y)ϕ(y)dy

= h

ˆ

T

2K ′
α,reg(x − y)ϕ(y)dy

= h

ˆ

T

�xK
′
α,reg(y)ϕ(y)dy (note the x in �x )

= xh

ˆ

T

1ˆ

−1

K ′′
α,reg(y + tx)dt ϕ(y)dy

by the mean value theorem and repeated use of parity and periodicity of Kα,reg and ϕ. Conse-
quently,

∣∣�h

[
Kα,reg ∗ ϕ

]
(x)

∣∣ � ‖ϕ‖θ

C̊
β
(T )

|x|h < ‖ϕ‖θ

C̊
β
(T )

|x|α hβ,

for any θ ∈ (0,1) because K ′′
α,reg is bounded and ‖ϕ‖∞ � ‖ϕ‖θ

C̊
β
(T )

‖ϕ‖1−θ∞ � ‖ϕ‖θ

C̊
β
(T )

. Hence,

|x|−α sup
h∈(0,|x|]

�h

[
Kα,reg ∗ ϕ

]
(x)

hβ
� ‖ϕ‖θ

C̊
β
(T )

. (26)

Switching to the singular part, one finds by parity and periodicity that
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�h

[| · |α−1 ∗ ϕ
]
(x) =

0ˆ

−π

�h | · |α−1 (y)�|x|ϕ(y)dy

= hα

0ˆ

−π/h

�1 | · |α−1 (s)�|x|ϕ(hs)ds (note the subscripts).

(27)

Since ϕ ∈ C̊
β
(T ), we have∣∣�|x|ϕ(y)

∣∣ � ‖ϕ‖
C̊

β
(T )

min{|x|β , |y|β} for β < α, (28)

and furthermore, ∣∣�|x|ϕ(y)
∣∣ � max{|x|α , |y|α} (29)

by the already established estimate μ − ϕ(ξ) � |ξ |α for |ξ | � 1. Interpolating between (28)
and (29) with parameter

θ := α

α + β
∈ ( 1

2 ,1
)
, so that θβ = (1 − θ)α,

then yields

∣∣�|x|ϕ(y)
∣∣ � ‖ϕ‖θ

C̊
β
(T )

min
{|x|θβ , |y|θβ}max

{
|x|(1−θ)α , |y|(1−θ)α

}
= ‖ϕ‖θ

C̊
β
(T )

|xy|θβ .

(30)

This estimate, with y = hs, is appropriate for small s in (27), but becomes problematic for large s

when α > 2/3 since

�1 | · |α−1 (s) |s|θβ � |s|α−2+θβ

for |s| � 1 (at scale s ∼ h−1), thus failing to be integrable in (27) as h ↘ 0. As a remedy, we use 
the estimate ∣∣�|x|ϕ(hs)

∣∣ � ‖ϕ‖θ

C̊
β
(T )

|x|θβ ∣∣�|x|ϕ(hs)
∣∣1−θ

� ‖ϕ‖θ

C̊
β
(T )

|x|θβ+1−θ max
|t−hs|�|x|

∣∣ϕ′(t)
∣∣1−θ

(31)

when s ∼ h−1, where one observes that the given maximum of ϕ′(t) is uniformly bounded over 
h ∈ (0, |x|] and x ∈ [−r,0) since t stays away from the singularity at 0. We then note that

min
{

|hs|θβ , |x|1−θ max
∣∣ϕ′(t)

∣∣1−θ
}

� max
{
hθβ, |x|1−θ

}
� |x|min{θβ,1−θ}
|t−hs|�|x|
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uniformly over s ∈ (−π/h,0), where we have utilised that h � |x|. In particular, combining (30)
and (31) implies that ∣∣�|x|ϕ(hs)

∣∣ � ‖ϕ‖θ

C̊
β
(T )

|x|θβ |x|min{θβ,1−θ}

uniformly over s ∈ (−π/h,0). Now (27) may be estimated as

∣∣�h

[| · |α−1 ∗ ϕ
]
(x)

∣∣ � ‖ϕ‖θ

C̊
β
(T )

hα |x|θβ+min{θβ,1−θ}
0ˆ

−∞

∣∣�1 | · |α−1 (s)
∣∣ds

� ‖ϕ‖θ

C̊
β
(T )

hα |x|θβ+min{θβ,1−θ} ,

where the integral converges because �1 | · |α−1 (s) � |s|α−2 for |s| � 1 with α − 2 < −1. There-
fore, as h � |x|,

|x|−α sup
h∈(0,|x|]

�h

[| · |α−1 ∗ ϕ
]
(x)

hβ
� ‖ϕ‖θ

C̊
β
(T )

|x|min{(2θ−1)β,(1−θ)(1−β)}

� ‖ϕ‖θ

C̊
β
(T )

(32)

uniformly over x ∈ [−r,0) and all β < α sufficiently close to α, since in that case

min
{
(2θ − 1)β, (1 − θ)(1 − β)

}
> 0 (uniformly).

We then put (23), (25), (26), and (32) together and find that

sup
x∈[−r,0);
h∈(0,|x|]

�hϕ(x)

hβ
� ‖ϕ‖θ

C̊
β
(T )

(33)

uniformly over all β sufficiently close to α. By smoothness away from 0, one has

‖ϕ‖
C̊

β
(T )

� max

{
1, sup

x∈[−r,0);
h∈(0,|x|]

�hϕ(x)

hβ

}

for all β � α, and so (33) implies that

(
sup

x∈[−r,0);
h∈(0,|x|]

�hϕ(x)

hβ

)1−θ

� 1

uniformly over β sufficiently close to α. In particular, letting β ↗ α (for which θ ↘ 1
2 stays away 

from 1), it follows that ϕ is indeed Cα continuous around 0. �
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Fig. 3. Illustrating the global bifurcation diagram in the smooth case n(x) = xp for 2 � p ∈N of 2π/k-periodic even 
solutions obtained in Theorem 24 bifurcating from the trivial solution (0, k−α) and reaching a limiting extreme wave. 
The dashed vertical lines mark the bounds for the wave speed in Theorems 9 and 27, whereas the solid curve displays 
the possible maximal height from (6) for these waves (plotted for p = 3). Along the dotted bifurcation curve, one may 
extract a sequence for which possibilities i) and ii) in Theorem 24 occur simultaneously, converging to a solution of (4)
with the Cα properties of Theorem 16.

In case (2sgn) we could have assumed that ϕ(−π) = −μ instead of ϕ(0) = μ in Theorem 16
and then proved exact α-Hölder continuity at −π. We conjecture that both assumptions imply 
the other and more generally imply antisymmetry of waves about −π

2 whenever one deals with 
antisymmetric nonlinearities. This is also the reason why we assumed that ϕ

(−π
2

) = 0 in Theo-
rem 15. As a remedy to the lack of proof of the general property, we shall in Section 4 instead 
construct solutions which are antisymmetric about −π

2 .

4. Global bifurcation analysis

We first establish nontrivial small-amplitude travelling waves around the line c �→ (0, c) of 
trivial solutions by means of local bifurcation theory and then extend the bifurcation curve glob-
ally using the analytic theory of Buffoni and Toland [30]. By carefully examining the structure of 
the global curve in connection with the a priori nodal properties in Section 3, we finally deduce 
the existence of a limiting sequence along the curve which converges to a highest wave satisfying 
Theorem 16. This establishes Theorem 1 when the nonlinearities (2) are smooth, that is, when 
they equal n(x) = xp for 2 � p ∈N , and in Fig. 3 we provide a sketch of the analysis.

In the general nonsmooth situation, however, one cannot use the analytic bifurcation theory 
directly. We resolve this issue by regularising n analytically around 0 (where its regularity is only 
of order p in the Hölder scale) and instead study global bifurcation for the regularised equation

0 = Fε(ϕ, c) := |D|−α ϕ − Nε(ϕ; c) − ffl
Tnε(ϕ) (34)

of (4) for every 0 < ε � 1. This leads to solutions (ϕε, cε) at the end of the bifurcation 
curves, with the optimal α-Hölder continuity of Section 3, that will be shown to converge 
(up to a subsequence) to a solution of (4) with the same Hölder properties as ε ↘ 0. Here 
Nε(ϕ; c) := cϕ − nε(ϕ) and
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nε(x) :=
⎧⎨⎩
(
x2 + ε2

)p/2 − εp in case (2abs);

x
((

x2 + ε2
)(p−1)/2 − εp−1

)
in case (2sgn)

(35)

is a natural analytic regularisation with the same monotonicity properties as n and that converges 
uniformly to n on compact sets as ε ↘ 0. In particular, the regularity theory in Section 3 carries 
over to the new setting by replacing n and N with nε and Nε , noting that the extreme value 
corresponding to the first positive critical point for Nε is a continuous function

με := μ(p, c, ε) (36)

that converges to μ in (6) as ε ↘ 0 by the implicit function theorem.
In the remainder, we focus on the analysis of the nonsmooth situation, leaving the appropri-

ate modifications (“ε = 0”) when n(x) = xp for 2 � p ∈N to the reader, but shall nevertheless 
provide details for the bifurcation formulas in the smooth case as they may be of independent 
interest.

According to the above, we study Fε from (34) as an operator X β ×R+ →X β , where 

R+ := [0,∞) and X β := C̊
β

even(T ), noting that Nε(·, c) acts on X β in light of [33, Theorem 2.1]. 
We also let β ∈ (

max
{
α, 1

2

}
,1

)
; the choice β > 1

2 guarantees that the Fourier series of ϕ ∈X β

converges uniformly to ϕ, whereas the requirement β ∈ (α,1) avoids the technicalities of the 
Hölder–Zygmund space of order 1 and assures that X β contains the sought-after extreme wave 
in Theorem 16.

Observe that Fε is analytic due to the regularisation and that its linearisation around the line 
of trivial solutions equals

∂ϕF ε(0, c) = |D|−α − c id .

Hence, for c > 0 the kernel of ∂ϕF ε(0, c) is trivial unless c = k−α for some integer k � 1, being 
a simple eigenvalue of |D|−α , in which case

ker ∂ϕF ε(0, k−α) = span
k�1

{cos(k·)}

is one-dimensional. Furthermore, |D|−α is a compact operator X β →X β since it is α-smoothing 
and X β ′

is compactly embedded in X β for β ′ > β . Thus ∂ϕF ε(0, c) is a compact perturbation 
of the identity and therefore constitutes a Fredholm operator of index zero. We may therefore 
apply the (analytic) Crandall–Rabinowitz theorem [30, Theorems 8.3.1 and 8.4.1] and obtain the 
following local bifurcation result.

Theorem 17 (Local bifurcation). For all ε > 0 and k � 1 there exists a local, analytic curve

Cε
loc,k : s �→ (ϕε

k (s), c
ε
k(s)) ∈X β ×R+,

defined around s = 0, of nontrivial 2π/k-periodic solutions of (34) that bifurcates from the line 
of trivial solutions c �→ (0, c) at Cε

loc,k(0) = (0, k−α). In a neighbourhood of (0, k−α) these are 
all the nontrivial solutions of Fε(ϕ, c) = 0 in X β ×R+.
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Since we have an analytic curve in X β ×R+, we may compute the associated asymptotic 
formulas for Cε

loc,k(s) as s → 0 by means of direct expansions in the regularised steady equa-
tion (34). Alternatively, one could use the more general theory in [34, Section I.6].

Theorem 18 (Bifurcation formulas). Cε
loc,k can be parametrised in such a way that s �→ cε

k(s) is 
even, and with this choice the bifurcation formulas are as follows as s → 0:

In case (2abs):

⎧⎨⎩ϕε
k (s)(x) = s coskx + s2 Cε

k,abs cos 2kx +O(s3);
cε
k(s) = k−α + s2 2Cε

k,abs +O(s4);

in case (2sgn):

⎧⎨⎩ϕε
k (s)(x) = s coskx + s3 Cε

k,sgn cos 3kx +O(s5);
cε
k(s) = k−α + s2 3

4 (p − 1)εp−3 +O(s4),

with Cε
k,abs :=

1
4pεp−2

k−α − (2k)−α
and Cε

k,sgn :=
1
8 (p − 1)εp−3

k−α − (3k)−α
.

Remark 19. It suffices to study the case k = 1 of 2π-periodic solutions in the bifurcation analy-
sis, since Fε(ϕ, c) = 0 is invariant under the scaling

ϕ �→ kα/(p−1)ϕ(k·), c �→ kαc, ε �→ kα/(p−1)ε.

Thus we focus on Cε
loc := Cε

loc,1, ϕε := ϕε
1 , and cε := cε

1 from now on.

Proof. As in the proof of [14, Theorem 6.1], we parametrise Cε
loc with the requirement 

�ϕε(s)�1 = s, where

�ϕ�m := 1
π

ˆ

T

ϕ(x) cos(mx)dx, m = 1,2, . . .

are the coefficients in the cosine expansion ϕ = ∑∞
m=1�ϕ�m cos(m·). Since (ϕε(· + π), cε) also 

constitutes a solution pair whenever (ϕε, cε) is, and

�ϕε(s)(· + π)�1 = −�ϕε(s)�1 = −s = �ϕε(−s)�1,

it follows by uniqueness that ϕε(s)(· + π) = ϕε(−s) and cε(s) = cε(−s), proving the symmetry.
Switching to the bifurcation formulas, we analytically expand ϕε(s) and cε(s) into

ϕε(s) =
∞∑

�=1

ϕ� s� and cε(s) =
∞∑

�=0

ς2� s2� (37)

and observe that the coefficients may be found by plugging the expansions into (34) and identi-
fying terms of equal order in s by uniqueness. Note that the Taylor expansion
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nε(x) =
{ 1

2pεp−2x2 +O(x4) in case (2abs);

1
2 (p − 1)εp−3x3 +O(x5) in case (2sgn)

(38)

holds in an ε-dependent interval around x = 0, which simplifies the analysis for all sufficiently 
small s. With L := |D|−α − ς0 id, this gives the following in case (2abs):

s : Lϕ1 = 0;
s2 : Lϕ2 = − 1

2pεp−2(ϕ2
1 − ffl

Tϕ2
1

);
s3 : Lϕ3 = ς2ϕ1 − pεp−2(ϕ1ϕ2 − ffl

Tϕ1ϕ2
)
.

The first-order case yields that ϕ1 = cos and ς0 = 1 (more generally, ς0 = k−α), whence

ϕ2(x) =
1
4pεp−2

1 − 2−α
cos 2x.

Since 2 cosx cos 2x = cosx + cos 3x, it follows that

ς2 =
1
8p2ε2(p−2)

1 − 2−α
and ϕ3(x) =

1
8p2ε2(p−2)

(1 − 2−α)(1 − 3−α)
cos 3x.

As for case (2sgn), we find that

s : Lϕ1 = 0,

s2 : Lϕ2 = 0,

and s3 : Lϕ3 = ς2ϕ1 − 1
2 (p − 1)εp−3(ϕ3

1 − ffl
Tϕ3

1

)
,

leading to ϕ1 = cos and ς0 = 1. Moreover, ϕ2 = 0 by choice of parametrisation (�ϕ��1 = 0
for � � 2). Finally,

ς2 = 3
4 (p − 1)εp−3 and ϕ3(x) =

1
8 (p − 1)εp−3

1 − 3−α
cos 3x

with help of the identity 4 cos3 x = 3 cosx + cos 3x. �
We also include asymptotic formulas in the smooth case n(x) = xp for any 2 � p ∈ N (with 

no regularisation). Formulas with arbitrary order in p seem to be new, and the result adapts easily 
to other dispersive operators as well.

Theorem 20 (Bifurcation formulas for smooth n). Consider smooth n(x) = xp for 2 � p ∈ N . 
Then the bifurcation formulas for Cε=0

loc,k with the parametrisation that s �→ cε=0
k (s) is even are as 

follows as s → 0:

ϕε=0(s)(x) = s coskx + sp� (x) +O(s2p−1),
k k
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where �k ∈ {
�even

k ,�odd
k

}
depending on whether p � 2 is even or odd, with corresponding speed

cε=0
k (s) = k−α + s2p−2Ceven

k +O(s2p)

or cε=0
k (s) = k−α + sp−1 Codd

k +O(s2p−2).

Here

�even
k := ∑ p

2 −1
j=0 �k,j , Ceven

k := p

2p−1

(
Ck,0 +∑ p

2 −1
j=1

((
p−1

j

)+ (
p−1
j−1

))
Ck,j

)
,

�odd
k := ∑ p−3

2
j=0 �k,j , and Codd

k := 1
2p−1

( p
p−1

2

)
,

with Ck,j :=
(
p
j

)
/2p−1

k−α − ((p − 2j)k)−α
and �k,j (x) := Ck,j cos

(
(p − 2j)kx

)
.

Proof. The cases p = 2,3 are similar to those in the proof of Theorem 18, and we only examine 
k = 1 by Theorem 19. Thus let L := |D|−α − ς0 id and consider first even p � 4:

s : Lϕ1 = 0;
s2 : Lϕ2 = 0;
s3 : Lϕ3 = ς2ϕ1;

. . .

sp−1 : Lϕp−1 = ∑ p
2 −1
i=1 ς2iϕp−1−2i;

sp : Lϕp = ∑ p
2 −1
i=1 ς2iϕp−2i − ϕ

p
1 + ffl

Tϕ
p
1 .

The first-order case yields that ϕ1 = cos and ς0 = 1, and we successively find that

ϕ2 = · · · = ϕp−1 = 0 and ς2 = · · · = ςp−2 = 0. (39)

This leads to

ϕp = −L−1 (ϕp

1 − ffl
Tϕ

p

1

) = �even
1

by means of the even power-reduction formula

cosp x − ffl
T cosp = 1

2p−1

∑ p
2 −1
j=1

(
p
j

)
cos ((p − 2j)x) .

Taking the prior results into account, we next examine higher-order coefficients for even p � 4
with help of successive cancellations of terms that vanish:
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sp+1 : Lϕp+1 = ςpϕ1 ⇒ ϕp+1 = 0, ςp = 0;
sp+2 : Lϕp+2 = 0 ⇒ ϕp+2 = 0;

...
...

s2p−3 : Lϕ2p−3 = ς2p−2ϕ1 ⇒ ϕ2p−3 = 0, ς2p−2 = 0;
s2p−2 : Lϕ2p−2 = 0 ⇒ ϕ2p−2 = 0;
s2p−1 : Lϕ2p−1 = ς2p−2ϕ1 − pϕ

p−1
1 ϕp + ffl

T

(
pϕ

p−1
1 ϕp

)
.

From the last equation it follows that

ς2p−2 = the coefficient of (ϕ1 =) cos in p
(
ϕ

p−1
1 ϕp − ffl

T

(
ϕ

p−1
1 ϕp

)) = Ceven
1

with help of the odd power-reduction formula cosq x = 2−q
∑ q−1

2
j=1

(
q
j

)
cos ((q − 2j)x) for 

q = p − 1 and the product-to-sum identity for cosine.
Switching to odd p � 5, we similarly obtain that ϕ1 = cos and ς0 = 1 and that (39) is true. 

Moreover, from

sp : Lϕp = ςp−1ϕ1 − ϕ
p

1 + ffl
Tϕ

p

1︸ ︷︷ ︸
=0 for odd p

we finally deduce that

ςp−1 = the coefficient of cos in ϕ
p
1 = Codd

1

and

ϕp = L−1(ςp−1ϕ1 − ϕ
p

1

) = �odd
1 ,

again by the odd power-reduction formula. �
For odd p we can improve upon Theorem 20 and obtain the overall structure of the bifurcation 

formulas near the line of trivial solutions. This shows that ϕε=0(s) is antisymmetric about −π
2 , 

and agrees with the general conjecture set forth in Section 3.

Proposition 21 (Local antisymmetry). Consider n(x) = xp for odd p � 3 and the choice of 
parametrisation in Theorem 20. Then the analytic structure (37) of the local bifurcation formulas 
equals

ϕε=0(s) =
∞∑

j=0

ϕj(p−1)+1 sj (p−1)+1 and cε=0(s) =
∞∑

j=0

ςj(p−1) s
j (p−1),

on Cε=0
loc , where all the ϕj(p−1)+1 functions lie in W := span

odd k�1
{cos(k·)}. Hence ϕj(p−1)+1 and thus 

also ϕε=0 are antisymmetric about −π .
2
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Remark 22. Theorem 21 also hold in case (2sgn) of (35) with ε > 0, provided s is sufficiently 
small. In this case the representations become

ϕε(s) = ∑∞
j=0 ϕ2j+1 s2j+1 and cε(s) = ∑∞

j=0 ς2j s2j ,

as indicated by Theorem 18.

Proof. We use strong induction, where the base case is given by Theorem 20. Let q := p − 1
and suppose the result is true for {0q, . . . , jq} for some j � 0. Now consider case (j + 1)q . As 
in the proof of Theorems 18 and 20, we insert (37) into (4), identify terms of equal order in s, 
and simplify by means of successive cancellations, with L := |D|−α − ς0 id:

sjq+2 : Lϕjq+2 = 0 ⇒ ϕjq+2 = 0;
sjq+3 : Lϕjq+3 = ςjq+2ϕ1 ⇒ ϕjq+3 = 0, ςjq+2 = 0;

...
...

s(j+1)q−1 : Lϕ(j+1)q−1 = ς(j+1)q−2ϕ1 ⇒ ϕ(j+1)q−1 = 0, ς(j+1)q−2 = 0;
s(j+1)q : Lϕ(j+1)q = 0 ⇒ ϕ(j+1)q = 0;

s(j+1)q+1 : Lϕ(j+1)q+1 = ∑j+1
i=1 ςiqϕ(j−i+1)q+1 − �,

where

� :=
{(

p
1

)
ϕ

q
1 ϕjq+1 + (

p
2

)
ϕ

q−1
1

(
ϕq+1ϕ(j−1)q+1 + ϕ2q+1ϕ(j−2)q+1 + · · · + ϕ� j

2 �q+1ϕ� j
2 �q+1

)

+ · · · + (
p
j

)
ϕ

q−j+1
1 ϕ

j

q+1

}
follows by expanding (ϕε=0(s))p . Then we obtain

ς(j+1)q = coefficient of (ϕ1 =) cos in � and

ϕ(j+1)q+1 = L−1
(∑j+1

i=1 ςiqϕ(j−i+1)q+1 − �)
)

.

By the induction hypothesis we know that ϕj̃q+1 ∈W for all 0 � j̃ � j . Moreover, each term 
in � is the product of an odd number of (some of) the terms ϕjq+1, with repetitions allowed. 
This establishes the result by noting that W is algebraically closed under an odd number of 
multiplications, which can be deduced from the identity

4 cosu cosv cosw = cos(u + v + w︸ ︷︷ ︸
= odd

) + cos(−u + v + w︸ ︷︷ ︸
= odd

) + cos(u − v + w︸ ︷︷ ︸
= odd

) + cos(u + v − w︸ ︷︷ ︸
= odd

)

whenever u, v, and w are odd. General products reduce iteratively to triple products. �
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Although Theorem 21 is promising, it is not clear to us how one can prove antisymmetry 
everywhere along Cε

loc and its upcoming global extension. Thus we instead redefine X β in 
case (2sgn) as the subspace{

ϕ ∈ C̊
β

even(T ) : ϕ is antisymmetric about −π
2 , that is, ϕ(· + π) = −ϕ

}
,

for which correspondingly ker∂ϕF ε(0, k−α) = W and Theorems 17 and 18 hold for odd k.
We proceed to analyse the global structure of an extension of Cε

loc in Theorem 17. To this end, 
let

Sε := {
(ϕ, c) ∈ Uε : Fε(ϕ, c) = 0

}
be the set of admissible solution pairs, where

Uε := {
(ϕ, c) ∈X β ×R+ : (nε)′(ϕ) < c

}
is an open set whose boundary contains any solution pair of (34) with the desirable regularity 
features in Theorem 16. We first note the following property of Sε .

Lemma 23. Bounded, closed subsets of Sε are compact in X β ×R+.

Proof. It follows from Theorem 11 and its proof, that the operator G in (9)—adapted with 
Nε replacing the nonsmooth N—sends (ϕ, c) to ϕ on Sε and boundedly maps Sε into Cm for 
any m � 1. Since X β ′

is compactly embedded in X β for β ′ > β , we find that

G maps bounded subsets of Sε into relatively compact subsets of X β.

In particular, if {(ϕj , cj )}j is a sequence in a bounded subset B ⊆ Sε , then a subsequence of 
{ϕj }j converges in X β , which together with the Bolzano–Weierstrass theorem imply that a 
subsequence of {(ϕj , cj )}j converges in the X β ×R+-topology. Thus if B also is closed, it 
is compact. �

By means of Theorem 23 and the fact that cε(s) is not identically constant due to Theorem 18, 
we may appeal to [30, Theorem 9.1.1] and obtain a global extension of Cε

loc. Note that we do not 
distinguish between a curve and its image.

Theorem 24 (Global bifurcation). Cε
loc extends to a global continuous curve Cε : R+ → Sε of 

solution pairs Cε(s) = (ϕε(s), cε(s)), and either

i) lim
s→∞

∥∥Cε(s)
∥∥
X β×R+ = ∞, ii) dist(Cε, ∂Uε) = 0, or iii) Cε is periodic.

We shall prove that possibility iii) does not happen and that possibilities i) and ii) occur si-
multaneously, from which it will follow that one finds a highest, α-Hölder continuous wave as a 
limit along Cε .

In order to eliminate the possibility that Cε is periodic, we make use of a conic refinement of 
the global bifurcation theorem [30, Theorem 9.1.1]. Specifically, let
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K := {
ϕ ∈X β : ϕ is increasing on (−π,0)

}
be a closed cone in X β and observe that Cε(s) ∈ K ×R+ for sufficiently small s. Indeed, co-
sine is strictly increasing on (−π,0) and strict monotonicity is stable under C1-perturbations 
on a compact set (here, T ). Therefore, since ϕε(s) = s cos+O(s2) from Theorems 17 and 18
is smooth on T by Theorem 11 (adapted to (34) with nε), it holds that ϕε(s) ∈ K \ {0} for 
small s = o(ε). In fact, this is true globally.

Proposition 25. ϕε(s) ∈ K \ {0} for all s > 0 and 0 < ε � 1. In particular, Cε never returns (for 
finite s) to the line of trivial solutions, thereby ruling out possibility iii) in Theorem 24.

Proof. According to [30, Theorem 9.2.2], it suffices to show that each (ϕε, cε) on Cε which also 
belongs to (K \ {0}) ×R+ lies in the interior of (K \ {0}) ×R+ in the topology of Sε . To this 
end, observe by Theorems 11 and 12 that such ϕε with speed cε is smooth and satisfies (ϕε)′ > 0
on (−π,0), with (ϕε)′′(0) < 0 and (ϕε)′′(−π) > 0. Now let (φ, d) ∈ Sε be another solution (not 
necessarily on Cε ) lying within δ-distance to (ϕε, cε) in X β ×R+. Then φ and d are nonzero, 
and φ is also smooth (Theorem 11). Moreover, (Nε)−1 is smooth—also as a function of the wave 
speed. Hence, it follows from [33, Theorems 2.2, 4.2 and 5.2] and iteration of the smoothing 
effect of |D|−α that G in (9) (with Nε replacing N ) is a continuous map Sε → Sε

1 ∩Xm for any 
integer m � 1, where Sε

1 is the functional component of Sε . As such,∥∥φ − ϕε
∥∥

C̊
2
(T )

= ∥∥G(φ,d) − G(ϕε, cε)
∥∥

C̊
2
(T )

< τ(δ)

when ‖(φ, d) − (ϕε, cε)‖X β×R+ < δ. Thus for sufficiently small δ, one deduces that φ is strictly 
increasing on (−π,0), so that φ ∈K \ {0}. �
Remark 26. Proofs of similar results (for instance [14, Theorem 6.7], [25, Proposition 5.9], 
and [28, Theorem 4.6]) as Theorem 25 seem to disregard that G depends on the wave speed. 
But G(ϕ,d) does not necessarily equal ϕ when d 
= c and (ϕ, c) ∈ Sε , and it is key to work with 
open δ-balls around solution pairs (ϕ, c) ∈ Sε and not only around solutions ϕ.

Theorem 15 (adapted to (34) with nε) and Theorem 25 immediately imply the following 
result.

Corollary 27. The wave speed cε(s) is uniformly bounded away from 0 along Cε and 0 < ε � 1.

In the remainder, we let {(ϕε
j , c

ε
j )}j := {(ϕε(sj ), c

ε(sj ))}j denote a generic sequence along Cε

with sj → ∞ as j → ∞.

Proposition 28. Any sequence {(ϕε
j , c

ε
j )}j with {cε

j }j bounded has a subsequence converging to 

a solution of (34) in X 0 ×R+.

Proof. Note from Theorem 9 (adapted to (34) with nε) that {ϕε
j }j is bounded in X 0. Since Kα

is integrable and translation in L1(T ) is uniformly continuous, it follows from∣∣∣|D|−α ϕε
j (x) − |D|−α ϕε

j (y)

∣∣∣ � ‖Kα(x − ·) − Kα(y − ·)‖L1(T ) sup‖ϕε
j ‖∞
j
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that {|D|−α ϕε
j }j is (uniformly) equicontinuous on T . Moreover,

|D|−α ϕε
j (x) − |D|−α ϕε

j (y) = Nε(ϕε
j (x)) − Nε(ϕε

j (y))

= (
ϕε

j (x) − ϕε
j (y)

)
(Nε)′(ϕε

j (ξj ))

for some ξj between x, y ∈ T , which since (Nε)′(ϕε
j (ξj )) > 0, implies equicontinuity of {ϕε

j }j
strictly away from 0 (and −π in case (2sgn)). Patched together with (16) around 0, we infer 
that {ϕε

j }j is equicontinuous on all of T . Thus a subsequence converges in X 0 by the Arzelà–

Ascoli theorem. Continuity of |D|−α and nε on X 0 together with the existence of a convergent 
subsequence of {cε

j }j (by the Bolzano–Weierstrass theorem), then show that a subsequence of 

{(ϕε
j , c

ε
j )}j converges to a solution of (34) in X 0 ×R+. �

Proposition 29. Possibilities i) and ii) in Theorem 24 occur simultaneously.

Proof. In light of Theorem 25, we know that either possibility i) or possibility ii) takes place, 
and that ϕε(s) is nontrivial and increasing on (−π,0) for s > 0 by Theorem 25. If possibility i) 
occurs, then either ‖ϕε(s)‖X β → ∞ or cε(s) → ∞ as s → ∞. Since the wave speed cannot blow 
up due to Theorem 9 (adapted to (34)) and ϕε(s) being nontrivial, it must be that ‖ϕε(s)‖X β

explodes. But then

cε(s) − (nε)′(ϕε(s)(x)) −−−→
s→∞ 0

at x = 0 (and at x = −π in case (2sgn)) by Theorem 11 adapted to (34), demonstrating that 
possibility ii) holds.

Conversely, suppose that possibility ii) but not possibility i) occurs. Then there exists a 
sequence {(ϕε

j , c
ε
j )}j along Cε , with ϕε

j increasing on (−π,0), satisfying (nε)′(ϕε
j ) < cε

j every-
where and

cε
j − (nε)′(ϕε

j (0)) −−−→
j→∞ 0, equiv. that με

j − ϕε
j (0) −−−→

j→∞ 0,

while {ϕε
j }j remains bounded in X β , where με

j
:= μ(p, cε

j , ε) as in (36). By compactness we may 

extract a convergent subsequence in X β ′
for β ′ ∈ (α,β), which yields a contradiction to Theo-

rem 14 (adapted to (34)) with respect to the one-sided α-Hölder rate at 0. Hence, possibility i) is 
true. �

In order to conclude the proof of Theorem 1, let {(ϕε
j , c

ε
j )}j be any sequence along Cε for fixed 

0 < ε � 1. By Theorem 9 (adapted to (34)) we know that {cε
j }j is bounded, and so Theorem 28

shows that {(ϕε
j , c

ε
j )}j converges, up to a subsequence, to a solution (ϕε, cε) ∈X 0 ×R+ of (34)

with ϕε 
= 0 increasing on (−π,0) by Theorem 25 and cε 
= 0 due to Theorem 27. It is then clear 
from Theorem 29 that (nε)′(ϕε(0)) = cε or equivalently, that ϕε(0) = με by (36).

Now let ε ↘ 0. Theorems 9 and 15 (adapted to (34)) imply that {cε}ε converges, up to a 
subsequence, to some c 
= 0, from which we also find that {ϕε}ε is bounded in X 0. As in the 
proof of Theorem 28, there exists a uniformly convergent subsequence (not relabeled) with 
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limit ϕ ∈X 0 by the Arzelà–Ascoli theorem. Since also nε → n uniformly (locally in R) by its 
construction (35), we infer that

nε(ϕε) → n(ϕ) in X 0.

Coupled with continuity of |D|−α on X 0, it follows that {(ϕε, cε)}ε converges, up to a subse-
quence, to a solution (ϕ, c) ∈ X 0 ×R+ of the original equation (4), with n′(ϕ) � c and ϕ being 
increasing on (−π,0), and with ϕ also being antisymmetric about −π

2 in case (2sgn). Observe 
finally that ϕ is nontrivial, because

ϕ(0) = lim
ε↘0

ϕε(0) = lim
ε↘0

με = μ 
= 0,

where μ is as in (6). This then finishes the proof in light of Theorem 16.

5. Conclusion

In this paper, we have established the existence of large-amplitude periodic travelling-wave 
solutions with exact and optimal α-Hölder regularity in a class of evolution equations with 
negative-order homogeneous dispersion of order −α for all α ∈ (0,1). Techniques include elab-
orate local estimates for nonlocal operators and global bifurcation analysis. A main novelty is the 
inclusion of generally nonsmooth, power-type nonlinearities in the considered class of equations, 
which which we analyse using a regularisation process. We also obtain that antisymmetric non-
linearities lead to the first existence result of “doubly-cusped” extreme waves with antisymmetry.

These results open up for new investigations. One may, for instance, consider inhomogeneous 
nonlinearities and also study associated symmetry principles for the existence of large-amplitude 
waves. Another line of research may seek to establish the convexity of the highest waves and its 
connection to the order of the dispersive operator and the growth and regularity of the nonlinear-
ity.
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