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Preface

Welcome to SIMS 2022

The Norwegian University of Science and Technology (NTNU) in collaboration with OsloMetropolitan University (OsloMet), University of Southeast Norway (USN), University ofStavanger (UiS) and the Scandinavian Simulation Society were proud to arrange the 63rdInternational Conference on Simulation and Modelling (SIMS 2022) in Trondheim, Norway.
About 500 kilometers north of Oslo lies a beautiful city called Trondheim in Trøndelag county.This municipality has approximately 200,000 inhabitants. This makes Trondheim Norway’sthird largest municipality. The Nidelva river flows through the city from south to north, andempties into the Trondheim fjord. Trondheim has a wide range of rich outdoor and culturaloffer. There are many historical tourist attractions, such as Nidaros Cathedral, Munkholmenand Kristiansen Fortress. In addition, there are many natural attractions, such as Ringve Bay,Korsvika, Ilabekken, Ringve Botanical Garden and Burma Klippen. You can also be a part ofthe city’s student and technology life as country’s largest state university, NTNU, has its maincampus in Trondheim.
The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark,Finland, Norway, Sweden, and Iceland. The goal of SIMS is to develop further the science andpractice of modelling and simulation in all application areas and to be a forum for informationinterchange between professionals and non-professionals in the Nordic countries.
The SIMS 2022 conference covered broad aspects of recent research and development workin modeling, simulation and optimization in engineering applications. The scientific programincluded technical sessions with submitted papers. Ph.D. students were especially encour-aged to contribute with papers according to the conference themes. Conference Themesincluded:
1. Modeling and simulation for design, planning, optimization, control, and monitoring
2. Tools for modeling and simulation, numerical methods for simulation, novel techniques
3. Visualization of modeling and simulation results
Application areas included:
A. Renewable energy systems: bioenergy and biofuels, geothermal, hydro, solar, thermal,wave, tidal, and wind energy
B. Hydrogen technologies: production, storage and transportation, hydrogen value chain
6



C. Energy systems: electric power, energy storage, fuel cells, heat pumps, industrial plants,energy use in buildings, power plants
D. Transportation: automotive, hybrid and electrical vehicles, marine, infrastructure
E. Industrial processes: carbon capture and storage, chemical processing, hydrogen production,oil and gas, and water treatment, cyber-physical systems, biosystems and medical systems
A key component of the SIMS 2022 conference was the opportunity to socialize and make newconnections. This was the first time for the conference to take place physically after COVID-19pandemic. The conference offered several possibilities for networking including a conferencedinner at the restaurant AiSuma, a social mini-golf event at Trondheim Camping, a conferencestudy tour to various laboratory facilities at NTNU, and last but not least several coffee andlunch breaks.
On behalf of the organizers, we wish to thank all participants, authors, keynote speakers,session chairs and presenters for their contribution to this conference! We also want to ac-knowledge the support we have received from the conference board, the program committee,and the SIMS board. Finally, we hope that you will find the proceedings to be a valuableresource in your professional, research, and educational activities whether you are a student,academic, researcher, or a practicing professional.
Lars O. Nord, Tiina Komulainen, Corinna Netzer, Gaurav Mirlekar, Berthe Dongmo-Engeland,Lars Eriksson
Norwegian organizing committee

Ambrose Ugwu Gaurav Mirlekar Marcin PilarczykBerthe Dongmo-Engeland Haoran Li Nils-Olav SkeieBritt Moldestad Kristian Thorsen Tiina KomulainenCorinna Netzer Lars Ivar Hatledal Vadim EngelsonDebbie Koreman van den Bergh Lars O. Nord
© 2022 Scandinavian Simulation Society. All rights reserved.
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KL: Keynote Lecture, IT: Invited Industry Talk, PS: Parallel Sessions, LT: Lab Tour
Monday, 19 of September

18:30–19:00 On-site registration at Trondheim Camping
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Olav Tryggvasons gt. 5

Tuesday, 20 of September

8:30–9:00 Registration, Radisson Blu Royal Garden Hotel9:00–9:20 Welcome remarks

9:20–10:00 KL Terese LøvåsNTNU, Trondheim
How can numerical modellingsupport exploring ammonia as acarbon-free fuel?

10:10–11:10 PS District Heating,Cooling &Resources CO2 Capture I MedicalApplications
11:10-11:30 Coffee break
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Verheyleweghen,Cybernetica
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ControlEngineering II

Solver & MethodDevelopment16:40 End of day 116:45–17:45 SIMS General Meeting
19:00 Conference Dinner - AiSuma, Kjøpmannsgata 57
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15:20–16:40 PS Fluidized Beds MultiphaseModelling III Heat to PowerApplications
16:40-17:00 Best Paper Awards & Closing17:00 End of Conference

9





SIMS 63 Trondheim, Norway, September 20-21, 2022 
 

 
Development of a simulation tool for design and off-design 

performance assessment of offshore combined heat and 
power cycles  

 
Mohammad A. Motameda*, Lars O. Norda 

 
a NTNU - The Norwegian University of Science and Technology, Department of Energy and Process Engineering, NO-

7491, Trondheim, Norway 
*corresponding author:  mohammad.a.motamed@ntnu.no 

 
 
 

Abstract 
 
Ambitious targets for reducing carbon dioxide (CO2) emissions are set by Norwegian authorities to address the 
concerns about global warming. Emission reductions in the offshore heat and power sector can play a role in 
reaching these targets. Parts of the efforts in industry and academia to reduce offshore emissions are concerned 
with introducing new design configurations or proposing novel operational strategies for the combined heat and 
power cycles. Therefore, there is a desire to have a fast and reliable design and assessment tool to be used in the 
early design stage. Here, a generalized design and performance simulation tool is developed presenting a design 
point and off-design simulation of the offshore heat and power cycles. It helps the designer provide a fast and 
accurate thermodynamic assessment of proposed design solutions. The tool has a graphical user interface to 
facilitate working with the tool with a minimum level of effort and background knowledge from the user. Five 
part-load control strategies are included in the tool. The tool is verified with available data in the open literature 
and the results are shown to be in good agreement with the reference data. A combined heat and power cycle is 
designed and simulated at part-loads as a case study. The cycle includes a gas turbine, a process heat extraction 
unit, and an organic Rankine bottoming cycle. The simulated performance of the design case in various control 
strategies is compared showing a 2.5% emission reduction relative to the baseline control strategy.  

Keywords: Process simulation, Variable area nozzle turbine, Sliding pressure, Offshore heat and power, Organic 
Rankine cycle, Carbon emission 
 
1 Introduction 
Norway and Iceland have targeted to cut CO2 
emissions by at least 40% relative to the level from 
1990 [1]. Norway has pushed the target further up to 
55% under the Paris agreement [1]. Oil and gas 
extraction activities have the highest share of total 
CO2 equivalent emissions in Norway. About 27% of 
total emissions in 2020 originated from oil and gas 
installations [2]. A potential solution to reduce CO2 
emission in offshore oil and gas installations is 
producing extra power from the recovered waste 
heat of gas turbines (GTs). It was shown in [3] that 
smaller size gas turbines have the opportunity for 
higher power recovery from the waste heat per unit 
of the installed gas turbine power size. 
Organic Rankine cycles (ORC) have shown 
competency for low-footprint power production as 
the bottoming cycle in offshore installations. They 
are compact and can operate autonomously with 
lower operating and maintenance costs relative to 
steam bottoming cycles [4]. Offshore combined heat 
and power cycles can be accompanied by renewable 

energy sources for carbon-reduced power 
production. Intermittent availability of renewable 
energies puts gas turbines and the bottoming cycles 
in part-load operation for most of their lifetime. 
Therefore, several efforts are seen in the open 
literature to further optimize ORCs in the off-design 
part-load operation. The improvements include the 
development of new operational strategies, 
component performance upgrades, finding suitable 
working fluids, and proposing layout design 
solutions. It was studied in [3] how different ORC 
configurations with a heat transfer interloop and 
recuperators can influence the system performance. 
An optimization on determining the most 
appropriate organic working fluid among 39 
different candidates is carried out in [5]. The study 
showed that the optimal ratio of fluid critical 
temperature to the cycle evaporation temperature 
lies in the range of 0.93 to 1.02. Manente et. al., 
presented an off-design simulation model to 
optimize the control strategy in an ORC [6]. They 
showed that ambient temperature has a great 



SIMS 63 Trondheim, Norway, September 20-21, 2022 
 

influence on the cycle performance in air-cooled 
systems. A thorough insight into how ORC 
components upgrade can influence the cycle 
performance is presented in [7].           
With the ongoing improvements in the industry and 
academia on ORC performance, it is desired to have 
a fast and accurate design and simulation tool for 
performance assessment of the system in the early 
stages. A knowledge gap is identified in simulation 
tools covering different part-load control strategies 
in a gas turbine – ORC combined cycles. A tool that 
can provide users with the flexibility to select the 
configuration and operational strategy. Here an in-
house tool is developed to design and simulate an 
ORC cycle with different part-load control 
strategies. The tool has three main featuring 
sections. The design section provides a design tool 
that enables the designer to have a fast assessment 
of the ORC in the design point. The parametric study 
section determines the performance behavior of a 
designed candidate in the design choice range. The 
simulation section evaluates the key performance 
indicators under different control strategies at off-
design operation. An arbitrary working fluid is 
allowed in the tool. Therefore, users can choose 
among about 100 known working fluids in the 
library. A calculation of the required area and 
volume of the heat exchangers is provided to help 
the designer have a good estimation of the design 
case footprint.  
2 Method 
The design and simulation algorithm, scientific 
background, and mathematical formulations are 
presented. The calculations are based on basic 
thermodynamic and fluid dynamic principles. The 
open-source CoolProp package is used as the 
thermodynamic library to determine the 
thermodynamic properties of the fluids in each 
thermodynamic state. CoolProp is a comprehensive 
and free thermodynamic database that provides a 
fast and accurate estimation of thermodynamic 
properties for a wide range of organic fluids [8]. A 
list of available substances as the working fluid is 
available on the CoolProp reference list. 
The cycle performance is estimated by identifying 
the thermodynamic states in the intercomponent 
stations in the cycle. It is known that two 
independent thermodynamic properties are 
sufficient to determine the thermodynamic state of a 
single-phase substant uniquely [9]. Mass flow rate is 
the third parameter to determine component 
performance. Therefore, three parameters at each 
station are necessary and enough to determine a 
component’s performance. Each station is then 
identified by setting two thermodynamic properties 
and the mass flow rate passing through that inter-
component point. A pinch point temperature 
difference (PPTD) approach is taken to design 
temperatures in the heat exchangers.     

2.1 System layout configuration 
A single spool gas turbine is used as the topping 
cycle. In a single spool gas turbine, the compressor 
(COM), the turbine (TUR1), and the electric 
generator (GEN1) are mounted on the same shaft. 
Energy is added to the cycle by burning the fuel in 
the combustion chamber (CC). Process heat is 
extracted from the gas turbine exhaust at heat 
exchangers (Hex) before the bottoming cycle waste 
heat recovery unit. An intermediate heat transfer oil 
loop is placed between hot gas flow and the ORC to 
avoid direct contact of oxygen-rich exhaust gas and 
the organic fluid. A cascade layout is chosen for the 
combined cycle to avoid power capacity disturbance 
upon process heat demand change [4]. The exhaust 
heat then is retracted in a superheater (SUP), an 
evaporator (EVA), and an economizer (ECO) placed 
in series to provide heat to the ORC cycle.  The ORC 
cycle is a simple cycle that consists of a variable 
frequency drive pump, an economizer, an 
evaporator, a superheater, a throttle valve (in a 
throttling scenario), and a turbine expander (TUR2), 
and a condenser (CND). A cooling loop supplied by 
the see freshwater is located downstream to absorb 
the ORC rejected heat. A second electric generator 
(GEN2) is coupled to the ORC turbine to convert the 
shaft mechanical power to electric power. Cycle 
configuration and intercomponent station 
nomenclatures are illustrated in Fig. 1. 

 
Figure 1: Gas turbine ORC layout configuration. (The 

abbreviations are explained in the Nomenclature.) 

Table 1: Design point input/output list 

Input Data Output Results 
Working fluid name ORC power 

Process Heat demand Working fluid 𝑇𝑇𝑐𝑐 
Superheating ORC pressure ratio 
𝐸𝐸𝐸𝐸𝑇𝑇, �̇�𝑚𝐺𝐺𝐺𝐺 , 𝜂𝜂𝐺𝐺𝐺𝐺 ηORC , ηcc 
ηpump, ηturbine ṁORC 

T3 , T1, Tcw Tstack 
PPTDECO,IOL,CND ϵEVA , ϵECO 
ΔPECO,EVA,CND PPTDEVA 

Cooling Water

Process Heat

Air Inlet

Air Stack

1

2 3

4
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2.2 ORC design tool 
The design module in the tool gets the input 
parameters and provides the user with output results 
based on the design calculations. Tab. 1 includes the 
list of required input data and output results. This 
section includes the sequence of design calculations. 

2.2.1 Process heat  
Hot gas leaving the gas turbine undergoes a constant 
pressure heat transfer to supply the process heat 
required by the platform. The amount of needed 
heat, the exhaust gas mass flow rate, and the exhaust 
gas temperature are set by the user as inputs. 
Discharge air properties are calculated based on the 
conservation of energy law.  
2.2.2 Intermediate oil heat exchanger 
The flue gas then passes through an intermediate oil 
heat exchanger to transfer the energy from hot air to 
the ORC working fluid. A temperature drop equal to 
the allowed PPTD is imposed to determine the oil 
temperature. Air pressure drops in the heat 
exchangers are neglected as they do not influence 
the ORC performance. 
2.2.3 ORC heat transfer 
Heat transfer to the organic fluid is carried out in 
three main heat exchangers: an economizer, an 
evaporator, and a superheater (Fig. 1). Evaporation 
and condensing pressure are determined according 
to the saturation temperature in the evaporator and 
condenser. 𝑃𝑃1 ,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4 are then calculated based on 
the pressure loss values provided by the user as 
inputs. The thermodynamic cycle is designed to 
have the working fluid in the liquid saturation phase 
at the economizer-evaporator interface. Evaporator 
discharge temperature is elevated by the degree of 
superheating to set the turbine inlet temperature in 
the superheated gas region. The cooling water mass 
flow rate through the condenser is designed for 
having the allowable PPTD at the condenser’s hot 
side.   
2.2.4 ORC pump and turbine  
Knowing the inlet conditions of the pump and 
turbine, the discharge thermodynamic properties are 
calculated based on the isentropic efficiency 
concept. The pump or turbine discharge enthalpy is 
determined by knowing the pressure ratio across the 
component, the isentropic efficiency, and the inlet 
thermodynamic conditions. 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = ℎ𝑖𝑖𝑖𝑖 + �ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑠𝑠 − ℎ𝑖𝑖𝑖𝑖�𝜂𝜂𝑠𝑠𝑖𝑖  (1) 

Where n is 1 for a turbine and -1 for a pump.   
2.2.5 Stack 
Flue gas temperature is determined by setting the 
temperature difference at the economizer cold side 
to the allowed PPTD value. The organic fluid mass 
flow rate is adjusted to reach the desired temperature 
difference at the economizer cold side. Heat transfer 
effectiveness of the evaporator and the economizer 

are calculated by knowing the air temperature on 
both sides of the heat exchangers.  
2.2.6 ORC performance  
Cycle power output is simply the difference between 
power generated by the turbine and power consumed 
by the pump. The turbine/pump power is determined 
based on energy conservation law and knowing the 
mass flow rate, inlet, and discharge conditions of the 
component. Mechanical efficiency and electrical 
generator efficiency are set to unity in this work but 
can be adjusted in the code. Cycle thermal efficiency 
is defined as the ratio of power output to energy 
input in the cycle. Where delivered energy is 
calculated from the enthalpy difference between the 
superheater hot side and the economizer cold side. 
Finally, the combined cycle efficiency is defined as 
the ratio of ORC and gas turbine power output 
divided by the energy input to the system. 

𝜂𝜂𝑐𝑐𝑐𝑐 = 𝜂𝜂𝐺𝐺𝐺𝐺 + (1 − 𝜂𝜂𝐺𝐺𝐺𝐺)
�̇�𝑊𝑂𝑂𝑂𝑂𝑂𝑂

�̇�𝑚𝐺𝐺𝐺𝐺(ℎ𝐸𝐸𝐺𝐺𝐺𝐺 − ℎ𝑎𝑎𝑎𝑎𝑎𝑎)
  (2) 

2.2.7 Heat exchanger size estimation  
The heat exchanger’s footprint is estimated based on 
the required effective area for the heat transfer. A 
generic shell and tube configuration is assumed for 
the heat exchangers. The generic model proposed in 
[10], allows for fast design and acceptably accurate 
performance estimation in the early design stage. 
The heat exchanger effective area calculation 
procedure is adapted from [11], [12]. Heat transfer 
effectiveness is calculated according to the heat 
exchanger temperatures.  

𝜖𝜖 =
𝑇𝑇ℎ𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖 − 𝑇𝑇ℎ𝑜𝑜𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇ℎ𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖
  (3) 

𝐶𝐶𝑎𝑎𝑖𝑖𝑖𝑖/𝑎𝑎𝑎𝑎𝑚𝑚 = min/𝑚𝑚𝑚𝑚𝑚𝑚[𝐶𝐶𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐  ,𝐶𝐶ℎ𝑜𝑜𝑜𝑜] (4) 

𝐶𝐶𝐶𝐶 =
𝐶𝐶𝑎𝑎𝑖𝑖𝑖𝑖
𝐶𝐶𝑎𝑎𝑎𝑎𝑚𝑚

 (5) 

𝑈𝑈𝑈𝑈 =
𝐶𝐶𝑎𝑎𝑖𝑖𝑖𝑖

CR − 1
log �

1 − 𝜖𝜖
1 − 𝜖𝜖𝐶𝐶𝐶𝐶

� (6) 

The overall heat transfer coefficient is calculated 
based on the method suggested in [10], [12] and the 
Nusselt number, Reynolds number, Prandtl number, 
and friction factor inside the heat exchanger tubes.  

𝑁𝑁𝑁𝑁 =
(𝐶𝐶𝑒𝑒𝐷𝐷 − 103)𝑃𝑃𝑃𝑃

𝑐𝑐𝑓𝑓
2  

1.0 + 12.7�
𝑐𝑐𝑓𝑓
2 (𝑃𝑃𝑃𝑃2/3 − 1)  

  (7) 

𝛼𝛼 =
𝑁𝑁𝑁𝑁𝑁𝑁
𝐷𝐷

 (8) 

𝑈𝑈 = [𝛼𝛼ℎ𝑜𝑜𝑜𝑜−1 + 𝛼𝛼𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐−1 ]−1 (9) 

By knowing the overall heat transfer coefficient, the 
required effective area is calculated from equations 
6 and 9. Afterwards, the width and volume of heat 
exchangers are estimated according to the effective 
area needed. It is assumed for the heat exchangers to 
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have 1000 pipes with 30 mm diameter and 90-
micron surface roughness. These assumptions can 
be changed by the user. The on-design calculation is 
repeated for various design points upon user request 
in the parametric study mode. The designed 
thermodynamic cycle is graphically generated in a 
temperature-entropy diagram and is shown to the 
user. 
2.3 Off-design Simulation  
Plant off-design simulation includes performance 
analysis of the combined cycle in 30%-100% of gas 
turbine power loads. Gas turbine discharge 
temperature, mass flow rate, and thermal efficiency 
are the inputs to the off-design calculations. ORC 
power output, ORC thermal efficiency, and 
combined cycle efficiency at the power load range 
are the output results from the off-design analysis 
tool. The simulation is carried out for five different 
ORC control strategies. The simulated control 
strategies are sliding pressure, throttling valve 
control, partial addition turbine control, variable 
area nozzle (VAN) turbine control, and cooling 
water flow rate control strategies. The five 
implemented part-load control strategies in the tool 
are introduced here while a more detailed 
explanation of their operation principle and 
background can be reached in [13]. 
2.3.1 Control strategies  
A controller with a sliding pressure strategy uses a 
variable speed pump that adjusts the cycle flow rate 
by manipulating the pump’s rotational speed. The 
evaporation pressure slides to match the cycle with 
reduced heat available to the ORC in part-loads. 
A VAN turbine has pivoted vanes as stator blades in 
the turbine stationary part. In this strategy, the 
evaporation pressure is kept as high as possible in 
the part-loads by adjusting the turbine vanes setting 
angle and modifying the turbine performance 
without blockage losses [14]. Partial admission 
turbine control logic has the same strategy as with 
variable area nozzle except that the mass flow rate 
admitted to the turbine is regulated by changing the 
turbine inlet annulus area [15]. The VAN turbine 
control strategy shows higher part-load cycle 
efficiency than the partial admission turbine strategy 
due to less aerodynamic pressure loss in the turbine 
inlet passage throughflow [16].  
The throttling part-load control strategy uses a 
throttle valve placed at the evaporator discharge to 
regulate the pressure of the flow entering the turbine. 
The turbine inlet pressure and mass flow rate are 
reduced simultaneously in part-load to adjust the 
ORC power output according to the waste heat 
available from the gas turbine. 
In the cases where a gap exists between the ORC 
condensing temperature and the supply cooling 
water temperature in the design point operation, a 
cooling flow adjustment can be used to allow more 
efficient power regulation in part-load. Despite the 
previously mentioned control strategies, the cooling 

flow control logic can accompany various control 
logics to further boost the part-load ORC efficiency. 
The off-design simulator is an optimizer that finds 
the optimal thermodynamic cycle in each off-design 
operational condition. The optimization target is set 
to be the plant combined-cycle thermal efficiency 
but can be easily changed to ORC power output, 
ORC thermal efficiency, or any other desired figure 
of merits. The optimizer undergoes a simple plane 
search between all possible manipulating parameters 
to find the optimal operating point in each off-design 
condition. In each part-load condition, an ORC cycle 
is established including the thermodynamic state and 
the mass flow rate at all intercomponent stations, 
and the corresponding setting variables in the 
controller. The number of manipulating parameters 
is three in the cooling flow control strategy, two in 
variable area nozzle and partial turbine control 
strategies, and one in the throttling and sliding 
pressure control strategy. The cycle mass flow rate 
is a manipulating parameter in all mentioned control 
strategies. The cycle pressure ratio is the second 
setting parameter in the control logic with more than 
one degree of freedom. Condensing temperature is 
the third manipulating parameter used in the cooling 
flow rate control strategy.  
2.3.2 Heat exchangers performance  
Off-design pressure drop and heat transfer 
effectiveness in the heat exchangers deviates from 
the design values in part-load operation and are 
simulated based on the method presented in [13]. A 
𝛽𝛽 parameter is introduced which accounts for the 
change in the heat transfer coefficient of a heat 
exchanger [17]. The shift in heat transfer coefficient 
is calculated according to the change in flow Nusselt 
number and the fluid conductivity.  

𝛽𝛽 = (
𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑐𝑐𝑑𝑑

)(
𝑁𝑁
𝑁𝑁𝑐𝑐𝑑𝑑

)  (10) 

𝑈𝑈
𝑈𝑈𝑐𝑐𝑑𝑑

=
2𝛽𝛽𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝛽𝛽ℎ𝑜𝑜𝑜𝑜
𝛽𝛽𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐 + 𝛽𝛽ℎ𝑜𝑜𝑜𝑜

 (11) 

2.3.3 Turbine off-design performance  
Turbine off-design performance prediction is a 
calculation of turbine pressure ratio and isentropic 
efficiency for given mass flow rate, inlet flow 
conditions, and rotational speed. To accomplish the 
analysis in given off-design working conditions, a 
performance map is introduced for each turbine 
geometry. It is a graphical diagram that illustrates 
the quantitative relation between four non-
dimensional parameters determining the turbine 
performance [18].  
A generalized turbine performance map is used 
since very little geometrical information is available 
in the early design stage. The turbine performance 
map and the pump performance map are adapted 
from [19] and [20], respectively.  The performance 
maps are normalized and scaled to the design mass 
flow rate and pressure ratio values. This approach 
offers flexibility to designers for locating the design 



SIMS 63 Trondheim, Norway, September 20-21, 2022 
 

point locating in the performance map. In this work, 
a choke margin is defined to parametrize the location 
of the turbine design point in the design speed line 
of the turbine performance map. Choke margin is 
defined as the ratio of the mass flow rate difference 
between the design point and maximum mass flow 
rate in the design speed line over the difference 
between maximum and minimum mass flow rates in 
the design speed line.  
A generalized turbine efficiency model is presented 
in [21] for radial turbines and is used here. Turbine 
performance change due to adjusting the setting 
angle in the variable nozzle vanes is modelled in [19] 
for the range of 20% to 144% of vanes opening 
angle. The required turbine vane opening angle in 
each part-load condition is determined based on the 
desired mass flow rate and pressure ratio through the 
turbine. Afterwards, the variable area nozzle turbine 
isentropic efficiency is calculated using the specific 
speed parameter, the setting value for the vanes 
opening angle and the model presented in [19]. 
Specific speed is a well-known indicator for 
turbomachines which accounts for a combination of 
mass flow rate and pressure rise.  

𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑄𝑄1/2

𝛥𝛥ℎ𝑠𝑠
3/4   (12) 

Partial admission turbine efficiency at off-design 
conditions is simulated based on the method 
presented in [13]. The throttle valve performance 
placed before the turbine is predicted according to 
the method presented in [13] where a constant 
enthalpy pressure reduction is considered in the 
valve.  
2.3.4 Off-design solver algorithm  
The algorithm of the off-design solver is introduced 
here. A design point calculation is carried out before 
starting an off-design analysis. Therefore, design 
data required in the off-design analysis would be 
available to the solver. The off-design optimization 
is a plane search over all possible sets of 
manipulating parameters and then picking up the 
optimal one by comparing them to all other sets of 
target outputs. An n-dimensional array of 
manipulating parameters is set representing the 
possible options of the controller setting in different 
control strategies. Where n is the controller degree 
of freedom in each control strategy. Tab. 2 
represents the list of manipulating parameters for the 
studied control strategies.  

Table 2: manipulating variables as the controller setting 

Control strategy Manipulating 
parameters 

Sliding pressure �̇�𝑚𝑑𝑑𝑜𝑜𝑎𝑎𝑑𝑑 
Throttling valve �̇�𝑚𝑑𝑑𝑜𝑜𝑎𝑎𝑑𝑑 

Partial admission turbine �̇�𝑚𝑑𝑑𝑜𝑜𝑎𝑎𝑑𝑑 ;𝑃𝑃𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎 
VAN turbine �̇�𝑚𝑑𝑑𝑜𝑜𝑎𝑎𝑑𝑑 ;𝑃𝑃𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎 
Cooling flow �̇�𝑚𝑑𝑑𝑜𝑜𝑎𝑎𝑑𝑑 ;𝑃𝑃𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎 ;𝑇𝑇𝑂𝑂𝐶𝐶𝐷𝐷  

Evaporation and condensing temperature/pressure 
are determined using the pressure ratio value and 
assuming no change in the condensing temperature; 
except for the cooling flow rate control strategy 
where the condensing temperature is set by the 
controller. The pump discharge pressure is 
calculated based on the modified pressure loss in the 
heat exchangers. The pump outlet temperature is 
identified using the pump isentropic efficiency 
resulting from the pump performance map. The 
economizer hot/cold side temperatures are 
calculated according to the modified heat transfer 
coefficient of the heat exchangers. The implicit 
equations for heat exchanger’s inlet/outlet 
temperatures require an iterative approach to solve. 
The trial-and-error method is used for this iterative 
solver. After determining the heat exchanger’s 
temperatures, turbine inlet conditions are calculated 
accordingly. With all thermodynamic states and 
mass flow rates known, ORC performance (power 
output and thermal efficiency) is calculated.                             
2.4 Software framework 
The simulation process is implemented as an in-
house code in MATLAB [22]. A user interface is 
integrated into the code to facilitate using the tool for 
the users. The inputs can be fed into the tool both 
through a graphical table interface and through a 
data file. The user has the option to save and load 
both input data and results for a more convenient 
operation with the tool. Gas turbine off-design input 
data is delivered to the tool in the form of an Excel 
spreadsheet.   
2.5 Tool verification 
The validity of the tool is assessed by checking the 
output results against available data in the open 
literature. Simulation results are compared with the 
information presented in [23]. The verification is 
carried out in the rated power and 50% power load. 
In the reference work, A Solar Centaur 50 gas 
turbine is working as the topping cycle and an ORC 
operates as the bottoming cycle. Two different 
organic fluids are covered in the verification process 
to check the dependency of the results on the 
working fluid. The verification data are tabulated in 
Tab. 3 showing approximately 1% relative error in 
the results. Therefore, it could be inferred that the 
simulation tool results are in good agreement with 
openly published data in the literature.    
2.6 Case study 
The developed tool is named ORCSIM and is used 
to design and simulate a combined cycle. SGT800 
gas turbine is considered as the topping cycle on the 
platform. The gas turbine load is controlled using 
compressor variable guide vanes to prevent drastic 
decay of exhaust heat temperature at part-load. 8 
MW heat is extracted at the gas turbine discharge to 
provide the heat demand on the platform. 
Cyclopentene is the selected working fluid for the 
ORC since it has suitable pressure values in the 
range of operating temperatures.  
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Table 3 Simulation tool verification 

Parameters Verification cases 
Case 1 Case 2 Case 3 

gas turbine load [%] 100 100 50 
ORC working fluid MDM2 Toluene Toluene 

EGT [°C] 520 520 358 
�̇�𝑚𝐺𝐺𝐺𝐺 [kg/s] 19.2 19.2 19.2 
𝜂𝜂𝐺𝐺𝐺𝐺 [% LHV] 28.9 28.9 23.8 

𝜂𝜂𝑂𝑂𝑂𝑂𝑂𝑂 , open literature [%] 17.1 27.8 26.7 
𝜂𝜂𝑂𝑂𝑂𝑂𝑂𝑂 , current study [%] 17.2 27.9 27.0 

relative error [%] 0.5 0.3 1.1 

Design assumptions and input data to the design case 
are adopted from the design case in [13] except for 
the PPTD in the heat exchangers which is set to 15℃ 
for a lower footprint on the platform. A parametric 
study is conducted to find the optimal design point 
based on higher power capacity and lower footprint. 
Afterwards, an off-design simulation is conducted 
on the designed combined cycle to assess the cycle 
performance in part-load with the presented control 
strategies.  
3 Results and Discussion 
Fig. 2 and Fig. 3 show how the power capacity of the 
ORC and total heat exchangers volume per MW 
vary with different design temperatures in the 
subjected design case, respectively. The design 
evaporation and condensing temperature are 
selected from the parametric study to be 200°C and 
50°C, respectively. The designed cycle is shown to 
have the ability to provide 3.4 MW of power with 
18.1% thermal efficiency at the design point. The 
required total volume and total effective heat 
transfer area of the heat exchangers are estimated to 
be 1100 𝑚𝑚3 and 4200 𝑚𝑚2 for the design case, 
respectively. 
The simulations showed near-constant thermal 
efficiency at off-design loads with VAN turbine 
control logic and cooling flow control logic. 
However partial admission turbine control strategy, 
sliding pressure strategy, and throttling control 
strategy experienced higher efficiency loss relative 
to the VAN turbine control strategy. The plant with 
VAN turbine as the ORC expander showed to have 
a 1.25 percentage point higher combined cycle 
efficiency at 50% gas turbine load. It will result in 
2.5% less CO2 emission at part-load operation.  
4 Summary and Conclusions 
An in-house design and simulation tool was 
developed to facilitate the design procedure and an 
early performance assessment of GT-ORC 
combined cycles. The tool offers a graphical user 
interface for a more convenient design experience. 
Background scientific principles, mathematical 
formulations, and the coding algorithm were 
explained. A sample case was designed, and the 
part-load performance was discussed according to 
the results from the simulation tool. Five control 
strategies for off-design power demands were 

studied. VAN turbine control strategy showing 
higher thermal efficiency can be a potential solution 
for reducing carbon emission on the offshore oil and 
gas platforms as it reduced the CO2 emission by 
2.5% at part-load operation.  
ORC part-load thermal efficiency of the subjected 
design case is illustrated in Fig. 4. VAN turbine 
control strategy outperformed other studied control 
strategies by higher thermal efficiency at part-load.    

 
Figure 2: ORC power output design study [MW] 

 
Figure 3  Heat recovery unit specific volume [𝑙𝑙𝑙𝑙𝑙𝑙/𝑁𝑁𝑊𝑊] 

 
Figure 4: ORC part-load efficiency 
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Nomenclature 
A heat exchanger effective area (𝑚𝑚2) 
C heat capacity (𝐽𝐽/𝐾𝐾) 
CR heat exchanger heat capacity ratio 
𝑐𝑐𝑓𝑓 skin friction factor 
D diameter (m) 
ℎ enthalpy (J/kg) 
k thermal conductivity (𝑊𝑊/𝑚𝑚𝐾𝐾) 
�̇�𝑚 mass flow rate (kg/s) 
n exponent in the efficiency formula  
N rotational speed (𝑃𝑃𝑚𝑚𝑟𝑟/𝑁𝑁) 
Nu Nusselt number 
𝑁𝑁𝑁𝑁 turbine specific speed 
P pressure (Pa) 
Pr Prandtl number 
Q volume flow rate 
Re Reynolds number 
T temperature (K) 
U  overall heat transfer coefficient 

 (𝑊𝑊/𝑚𝑚2𝐾𝐾) 
�̇�𝑊 power (W) 
Greek letters  
𝛼𝛼 convective heat transfer coefficient 
𝛽𝛽 heat transfer ratio coefficient 
𝜂𝜂 efficiency 
𝜖𝜖 heat transfer effectiveness  
Abbreviations  
CC combustion chamber 
CND condenser  
COM compressor 
ECO economizer 
EGT gas turbine exhaust temperature 
EVA evaporator 
GEN generator 
GT gas turbine  
Hex heat exchanger 
ORC organic Rankine cycle 
PPTD pinch point temperature difference 
PR pressure ratio 
SUP superheater 
TUR turbine 
Subscripts  
1 ORC pump inlet 
2 economizer inlet 
3 Evaporator outlet 
4 Turbine outlet 
amb ambient 
c critical 
cc combined cycle 
cold heat exchanger cold side  
cw cooling water supply 
D based on diameter 
dp design point 

hot heat exchanger hot side 
in inlet 
IOL intermediate oil loop 
max maximum 
min minimum  
out outlet 
pump related to pump 
s isentropic 
turbine related to turbine 
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Abstract 

 

Municipal wastewater consists of a large fraction of particulate organic matter. During biological wastewater 

treatment these particles undergo extracellular depolymerisation before products are taken up by bacteria (MW < 

0.6 kDa).  Particle degradation and intermediate formation dynamics is important in process analysis of 

wastewater treatment as the transport regime differ. This work aims to develop a model for particle degradation 

that includes intermediate dynamics as observed in experimental work. A model for particle degradation including 

intermediate dynamics, bacterial growth and endogenous respiration is proposed. Particle hydrolysis was 

modelled using the particle breakup model. Depolymerisation products were separated into five different size 

groups: colloids; high, medium and low molecular weight (HMW, MMW and LMW) polymers; and one fraction 

for oligomers and monomers (SB). Depolymerisation of colloids, HMW and MMW polymers was modelled using 

first order kinetics. LMW polymer degradation was modelled using Michaelis-Menten kinetics, while growth was 

based on traditional Monod kinetics and endogenous respiration followed ASM3. The proposed model was 

implemented in AQUASIM for a batch reactor system, and parameter estimation by LSE fitting to experimental 

data on particulate starch degradation over 117 days in a dispersed biomass microcosm was performed. Validation 

of the model against experimental data gave a very good fit to the PBM. The intermediate dynamics seen in the 

experimental data was also qualitatively demonstrated by the model, with accumulation of HMW, MMW and 

LMW polymers in the bulk liquid. However, the accumulation of monomers and oligomers in the bulk liquid 

could not be reproduced in the suspended growth model proposed. Hence, a structured biomass model (biofilm) 

is suggested for future work. 

 

1. Introduction 

Wastewater consists of a large fraction of particulate 

organic matter (POM) (Levine et al., 1991; Ravndal 

et al., 2018). During biological wastewater treatment 

these particles must undergo extracellular 

depolymerisation before products can be taken up by 

bacteria (MW < 0.6 kDa) (Decad and Nikaido, 1976; 

White et al., 2012).  Organic matter (OM) proceeds 

through a range of colloidal and polymeric 

intermediates during this process. The dominant 

mechanisms for this degradation are hydrolytic and 

lytic depolymerisation, and theoretically this allows 

for any sub-polymeric intermediates to be formed. 

Hence, both particle degradation and intermediate 

formation are important in process analysis of 

wastewater treatment. 

Over the years, several different approaches have 

been proposed for modelling of particle degradation 

in wastewater treatment processes (Hauduc et al., 

2013; Morgenroth et al., 2002; Vavilin et al., 2008). 

These models include one step, parallel and 

sequential hydrolysis, in addition to direct growth 

using adsorbed substrate and different types of 

surface related kinetics. For surface related kinetics 

two different models have been proposed, these are 

the shrinking particle model (SPM; Sanders et al., 

2000) and the particle breakup model (PBM; 

Dimock and Morgenroth, 2006). Hydrolysis is 

dependent on available surface area in both models. 

However, in the SPM particles shrink gradually as 

they are degraded, thus available surface area 

decreases. While in the PBM particles break up as 

they are degraded, leading to an increase in available 

surface area, and therefore increasing substrate 

availability over time. Hence, in the PBM surface 

area to volume ratio is considered, whereas surface 

area is used in the SPM. An open question of the 

PBM is that an increase in particle porosity and 

increased particle colonization could also lead to 

increased substrate availability over time (Dimock 

and Morgenroth, 2006). Hence the same dynamics 

would be observed as when particles physically 

break up by hydrolysis.  

In previous work by the authors an experimental 

study was performed to look at particle degradation 

in activated sludge microcosms (Ravndal and 

Kommedal, 2017). In this study starch was used as a 

model particle substrate. Starch is a good model 

substrate as it has a known structure, at the same 

time as much of the complexity expected for 

unidentified particles in wastewater are represented 

in starch granules. Starch is a natural component in 
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wastewater, and starch degrading bacteria are 

commonly found in activated sludge systems (Xia et 

al., 2008). In the experimental test starch particles 

were colonised by bacteria, leading to both increase 

in particle porosity and particle breakup (Ravndal 

and Kommedal, 2017). Polymeric, oligomeric and 

monomeric intermediates formed during particle 

degradation, however, not all intermediate sizes 

were formed to the same extent. Based on the data a 

conceptual model was proposed for chemical 

oxygen demand (COD) flow during starch 

depolymerisation. This conceptual model assumed 

the surface of the particle to be a hotspot for 

extracellular hydrolytic activity. The different 

intermediates were grouped based on size and 

included in the conceptual model.  

In this paper the aim is to develop a mathematical 

model for particle degradation that includes 

intermediate dynamics as observed in the 

experimental work by Ravndal and Kommedal 

(2017). This is done by developing a model 

including intermediate dynamics, bacterial growth, 

and endogenous respiration, and fitting the model to 

the experimental data. 

 

2. Methodology 

The model was developed based on experimental 

data previously published in Ravndal and 

Kommedal (2017). In this experiment starch 

degradation was followed over 117 days in batch 

tests inoculated with flocculated and dispersed 

activated sludge biomass. During the experiment the 

following was monitored: Oxygen utilisation rate 

(OUR), particle number and size (volume and 

surface area), polymer concentration and size (molar 

mass), and oligomer and monomer type and 

concentrations.   

 

2.1. Model development 

The experimental data in Ravndal and Kommedal 

(2017) supported the PBM proposed by Dimock and 

Morgenroth (2006). Hence, this model was chosen 

for particle degradation in the proposed model (Tab. 

1). The PBM is based on surface area to volume ratio 

(fav). fav was included as a state variable in the model 

and change in fav was directly coupled to the 

hydrolysis process with the constant cav. Colloids 

(CB) and polymeric intermediates are formed during 

particle degradation. Theoretically all intermediate 

sizes of polymers can be formed during particle 

degradation, however, for simplicity the polymers in 

the model were grouped into three groups based on 

size ranges; high molecular weight (HMW, 

Spol,HMW), medium molecular weight (MMW, 

Spol,MMW) and low molecular weight (LMW, Spol,LMW) 

polymers. Oligomers and monomers were grouped 

into one state variable, SB, representing readily 

biodegradable substrate small enough to be taken up 

by bacteria. 

To minimize model parametrisation, degradation of 

colloids, HMW and MMW polymers was 

implemented using first order biomass independent 

kinetics (Tab. 1). LMW polymer degradation was 

modelled using Michaelis-Menten kinetics (Tab. 1). 

Most Michaelis-Menten constants (Km) for 

hydrolytic enzymes are high (Technical University 

of Braunschweig, 2022), hence, in activated sludge 

where enzyme concentrations are high, 

simplification to first order kinetics can normally be 

assumed. However, LMW polymers are a common 

product of depolymerisation of starch, colloids and 

larger polymeric substrates (Robyt, 2009), hence 

large substrate concentrations can also be achieved. 

x
 

Table 1: Process matrix for starch degradation. Particle hydrolysis was based on the PBM (Dimock and Morgenroth, 2006), 

colloids, HMW and MMW polymer degradation followed first order biomass independent kinetics, LMW polymer 

degradation followed Michaelis Menten kinetics, growth was based on traditional Monod kinetics, and endogenous 

respiration was based on ASM3 (Henze et al., 2000). Nomenclature based on Corominas et al. (2010). 

Process SO2 SB Spol,LMW Spol,MMW Spol,HMW CB 𝒇𝒂𝒗,𝑿 𝑿𝑩 XU 𝑿𝑶𝑯𝑶 Rate 

Particle 

hydrolysis 
 𝑓𝑆𝐵_𝑋 𝑓𝐿𝑀𝑊_𝑋 𝑓𝑀𝑀𝑊_𝑋 𝑓𝐻𝑀𝑊_𝑋 𝑓𝐶𝐵_𝑋 𝑐𝑎𝑣 -1   𝑞𝑋𝑓𝑎𝑣,𝑋𝑋𝐵 

Colloid 

hydrolysis 
 𝑓𝑆𝐵_𝐶 𝑓𝐿𝑀𝑊_𝐶 𝑓𝑀𝑀𝑊_𝐶 𝑓𝐻𝑀𝑊_𝐶 -1     𝑞𝐶𝐵𝐶𝐵 

HMW 

polymer 

hydrolysis 

 𝑓𝑆𝐵_𝐻𝑀𝑊 𝑓𝐿𝑀𝑊_𝐻𝑀𝑊 𝑓𝑀𝑀𝑊_𝐻𝑀𝑊 -1      𝑞𝑆𝑝𝑜𝑙,𝐻𝑀𝑊𝑆𝑝𝑜𝑙,𝐻𝑀𝑊 

MMW 

polymer 

hydrolysis 

 𝑓𝑆𝐵_𝐼𝑀𝑊 𝑓𝐿𝑀𝑊_𝐼𝑀𝑊 -1       𝑞𝑆𝑝𝑜𝑙,𝑀𝑀𝑊𝑆𝑝𝑜𝑙,𝑀𝑀𝑊 

LMW 

polymer 

hydrolysis 

 1 -1        𝑞𝑆𝑝𝑜𝑙,𝐿𝑀𝑊
𝑆𝑝𝑜𝑙,𝐿𝑀𝑊

𝐾𝑚,𝐿𝑀𝑊 + 𝑆𝑝𝑜𝑙,𝐿𝑀𝑊
𝑋𝑂𝐻𝑂 

Growth on SB −
1 − 𝑌𝑂𝐻𝑂
𝑌𝑂𝐻𝑂

 −
1

𝑌𝑂𝐻𝑂
        1 µ𝑂𝐻𝑂,𝑀𝑎𝑥 (

𝑆𝐵
𝐾𝑆,𝑂𝐻𝑂 + 𝑆𝐵

)𝑋𝑂𝐻𝑂 

Endogenous 

respiration 
−(1 − 𝑓𝑋𝑈)        𝑓𝑋𝑈 -1 𝑏ℎ𝑋𝑂𝐻𝑂 
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In addition, enzyme affinity increases with a 

decreasing polymer size. Hence, Michaelis-Menten 

kinetics was used for LMW polymer degradation.  

For particle, colloid, HMW, MMW and LMW 

polymers smaller intermediate sizes are formed, and 

fractions of each intermediate formed is included in 

the process matrix in Tab. 1. Traditional Monod 

kinetics was used for growth on SB, and endogenous 

respiration from ASM3 was implemented for active 

biomass decay (Henze et al., 2000).  

 

2.2. Model implementation 

The model was implemented in AQUASIM 

(Reichert, 1994) using a simple mixed reactor 

compartment for the test bottle liquid phase. This 

was coupled by a diffusive link to a mixed reactor 

gas phase compartment representing the headspace 

in the test bottles. Parameter estimation was 

performed by LSE fitting the model to experimental 

data from the dispersed activated sludge microcosms 

published in (Ravndal and Kommedal, 2017). The 

following experimental data were used: Total 

particle volume (Xvol), HMW, MMW and LMW 

polymer concentrations, SB concentration, and OUR. 

Total particle volume was defined as the sum of 

starch particle volume (XB,vol), biomass volume 

(XOHO,vol) and inert particle volume (XU,vol) (eq. 1).  

 

𝑋𝑣𝑜𝑙 = 𝑋𝐵,𝑣𝑜𝑙 + 𝑋𝑂𝐻𝑂,𝑣𝑜𝑙 + 𝑋𝑈,𝑣𝑜𝑙 (1) 

 

Particle volume was related to COD concentrations 

using density and theoretical oxygen demand 

(ThOD) of the different particle types. In addition, 

starch particle swelling was observed in the early 

phase of the experiment and had to be accounted for. 

A swelling constant (fswell) for starch particles was 

estimated based on measured initial volume 

increase. fswell was set to increase linearly from 1 at 

time 0 to 1.53 after 5.93 d, and then kept constant 

throughout the experiment.  Starch particle volume 

(XB,vol) can be related to starch COD concentration 

(XB) using eq. 2. Where ρXB, the density of potato 

starch granules, is 1.54*106 g m-3, (BNID103206, 

Milo et al., 2010), and the ThOD of starch (fvXB) is 

1.19 g COD (g XB)-1. 

 

𝑋𝐵,𝑣𝑜𝑙 =
𝑋𝐵

𝑓𝑣𝑋𝐵∗𝜌𝑋𝐵
𝑓𝑠𝑤𝑒𝑙𝑙   (2) 

 

Volume of microbial biomass (XOHO,vol) was 

estimated based on literature data for Escherichia 

coli cells. Average density (ρXOHO) of an E.coli cell 

is 1.094 g mL-1 (BNID106306, Milo et al., 2010). 

The ThOD of bacterial biomass (fvXB) is 1.42 g COD 

(g XOHO)-1. The volume of bacterial biomass was 

related to biomass COD concentration (XOHO) using 

eq. 3. 

 

𝑋𝑂𝐻𝑂,𝑣𝑜𝑙 =
𝑋𝑂𝐻𝑂

𝑓𝑣𝑋𝑂𝐻𝑂∗𝜌𝑋𝑂𝐻𝑂
  (3) 

Inert particle volume (XU,vol) was estimated with the 

same ThOD and density as for microbial biomass. 

ThOD of polymeric intermediates was the same as 

for starch particles. Monomer and oligomer 

concentrations were related to individual specific 

ThODs and summarised in one state variable, SB.  

 

3. Results and discussion 

 

3.1 Parameter estimation 

Estimated stoichiometric parameters are 

summarised in Tab. 2. The experimental data 

showed that the MMW polymer concentration 

started to increase at the same time as the system 

shifted from a starch particle dominated system to a 

HMW polymer dominated system (Ravndal and 

Kommedal, 2017). Hence, MMW polymers where 

most likely degradation products of HMW polymer 

depolymerisation, and fMMW_X and fMMW_C was 

estimated as zero (Tab. 2). 

Starch granules consist of a mix of amylopectin (70-

80 %) and amylose (20-30 %) (Dona et al., 2010). 

Amylopectin is the largest of the two polymers with 

a molecular weight of 104-106 kDa, it is highly 

branched containing 5 % α-1,6 branches and water 

soluble (Ball et al., 1996; Shannon et al., 2009). 

Amylose is a smaller polymer with molecular 

weight of 100-1000 kDa, it is essentially linear with 

less than 1 % α-1,6 branches and has variable 

solubility depending on branching where linear 

amylose is essentially insoluble in water (Ball et al., 

1996; Mukerjea and Robyt, 2010). During particle 

degradation these polymers will be released from the 

starch granule. Due to the large size of amylopectin 

and the amylose being mostly insoluble, these 

polymers are expected to behave as colloids initially. 

Hence, fHMW_X was also estimated as zero (Tab. 2).  

Both the LMW polymer fraction and the grouped SB 

state variable contains several known degradation 

products from enzymatic degradation of starch 

(Robyt, 2009). All hydrolysis processes therefore 

led to fractions of these two variables (Tab. 2). The 

fractions increased, the closer in size the initial 

variable was. Because parameter estimation in 

Aquasim did not ensure that the sum of all fractions 

was one, it was chosen to manually test different 

numbers for the fractions and the numbers giving the 

best fit with the experimental data was chosen.  

Kinetic parameters for the extracellular degradation 

processes (Tab. 3) were estimated using LSE 

parameter estimation in Aquasim. The estimated 

hydrolysis rate constants increased with decreasing 

substrate size. This is expected, as faster degradation 

is expected for smaller substrate sizes.  

 
  



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 

Table 2: Stoichiometric parameters estimated for the 

starch particle degradation model. 

Parameter Definition Value [1] Reference 

𝑓𝐶𝐵_𝑋 Fraction of colloids 

formed in particle 

hydrolysis 

0.45 Estimated 

𝑓𝐻𝑀𝑊_𝑋 Fraction of HMW 

polymers formed in 

particle hydrolysis 

0 Estimated 

𝑓𝑀𝑀𝑊_𝑋 Fraction of MMW 

polymers formed in 

particle hydrolysis 

0 Estimated 

𝑓𝐿𝑀𝑊_𝑋 Fraction of LMW 

polymers formed in 

particle hydrolysis 

0.2 Estimated 

𝑓𝑆𝐵_𝑋 Fraction of 

monomers and 

oligomers (SB) 

formed in particle 

hydrolysis 

0.35 Estimated 

𝑓𝐻𝑀𝑊_𝐶 Fraction of HMW 

polymers formed in 

colloid hydrolysis 

0.15 Estimated 

𝑓𝑀𝑀𝑊_𝐶 Fraction of MMW 

polymers formed in 

colloid hydrolysis 

0 Estimated 

𝑓𝐿𝑀𝑊_𝐶 Fraction of LMW 

polymers formed in 

colloid hydrolysis 

0.45 Estimated 

𝑓𝑆𝐵_𝐶  Fraction of 

monomers and 

oligomers (SB) 

formed in colloid 

hydrolysis 

0.4 Estimated 

𝑓𝑀𝑀𝑊_𝐻𝑀𝑊 Fraction of MMW 

polymers formed in 

hydrolysis of HMW 

polymers 

0.5 Estimated 

𝑓𝐿𝑀𝑊_𝐻𝑀𝑊 Fraction of LMW 

polymers formed in 

hydrolysis of HMW 

polymers 

0.25 Estimated 

𝑓𝑆𝐵_𝐻𝑀𝑊 Fraction of 

monomers and 

oligomers (SB) 

formed in hydrolysis 

of HMW polymers 

0.25 Estimated 

𝑓𝐿𝑀𝑊_𝑀𝑀𝑊 Fraction of LMW 

polymers formed in 

hydrolysis of MMW 

polymers 

0.75 Estimated 

𝑓𝑆𝐵_𝑀𝑀𝑊 Fraction of 

monomers and 

oligomers (SB) 

formed in hydrolysis 

of MMW polymers 

0.25 Estimated 

𝑌𝑂𝐻𝑂 Aerobic yield of 

ordinary 

heterotrophic 

organisms 

0.5 (Sykes, 

1975) 

𝑓𝑋𝑈 Production of inert 

(XU) in endogenous 

decay 

0.2 (Henze et 

al., 2000) 

 

 

 

 

 

Table 3: Kinetic parameters estimated for the starch 

particle degradation model. 

Parameter Definition Value Reference 

𝑞𝑋 

Modified hydrolysis 

constant for particles in 

PBM 

1.25*10-9 m 

d-1 

Estimated 

𝑐𝑎𝑣 

PBM constant relating 

particle breakup to 

hydrolysis rate 

1.54*105 m2 

g-1 

Estimated 

𝑞𝐶𝐵 

Hydrolysis rate 

constant for colloid 

degradation 

0.05 d-1 

Estimated 

𝑞𝑆𝑝𝑜𝑙,𝐻𝑀𝑊 

Hydrolysis rate 

constant for 

degradation of HMW 

polymers 

0.08 d-1 

Estimated 

𝑞𝑆𝑝𝑜𝑙,𝑀𝑀𝑊 

Hydrolysis rate 

constant for 

degradation of MMW 

polymers 

0.09 d-1 

Estimated 

𝑞𝑆𝑝𝑜𝑙,𝐿𝑀𝑊 

Hydrolysis rate 

constant for 

degradation of LMW 

polymers 

0.3 d-1 

Estimated 

𝐾𝑚,𝐿𝑀𝑊 

Michaelis-Menten 

constant for 

degradation of LMW 

polymers 

93 g COD 

m-3 

Estimated 

µ𝑂𝐻𝑂,𝑀𝑎𝑥 

Maximum growth rate 

for heterotrophic 

organisms 

8 d-1 

Estimated 

𝐾𝑆,𝑂𝐻𝑂 
Saturation constant for 

substrate SB 

4 g COD m-

3 

Estimated 

𝑏ℎ 
Aerobic endogenous 

respiration rate of XOHO 
0.15 d-1 

(Henze et 

al., 2000) 

 

The proposed model contains many different 

stoichiometric and kinetic parameters (Tab. 2 and 3). 

Some of these were estimated manually, some 

estimated using parameter estimation in Aquasim 

and some are based on literature data. To test for 

parameter identifiability a sensitivity analysis could 

be done. This analysis is not included here, but it is 

suggested to include this in future work on an 

improved version of the model. 

 

3.2 Are the model able to reproduce the 

experimental data? 

The model output is compared to experimental data 

for OUR, particle volume and concentrations of 

different intermediates in Fig. 1 and Fig. 2. In the 

experiment, the OUR increased fast between day 2 

and 4 before it stabilised at a level of 1.8 mg L-1 h-1 

until day 36, before a steady decrease occurred (Fig. 

1). The model was not able to reproduce the initial 

increase and the stable phase, however, the decrease 

after 36 days was reproduced by the model.  
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Figure 1: Experimental data (point ± standard error bars) 

and modelled data (lines) for OUR, particle volume and 

substrate concentrations in dispersed biomass tests. 

 

 

 
Figure 2: a) HMW polymers, b) MMW polymers, c) 

LMW polymers and d) monomers and oligomers (SB). 

Points (± standard error bars) show experimental data for 

dispersed biomass tests, lines show modelled data. 
 

 

 

Total particle volume fitted the PBM model very 

well, with growth and decay modelled after ASM3 

(Fig. 1). This supported the conclusion in Ravndal 

and Kommedal (2017) of the data supporting the 

PBM proposed by Dimock and Morgenroth (2006). 

LMW, MMW and HMW polymers were produced 

and accumulated in the bulk liquid in the experiment 

(Ravndal and Kommedal, 2017). In the model the 

initial LMW peak had a good fit to the experimental 

data, while a faster accumulation of MMW and 

HMW polymers was seen compared to the 

experimental dataset (Fig. 2).  

Colloids was included as a state variable in the 

model. However, we did not have access to detection 

methods covering the colloidal size range in the 

experiment. This made it challenging to identify all 

parameters in the model. As HMW polymers are in 

the size range immediately below colloids, a better 

fit of HMW polymer production would be expected 

if the experimental dataset had included colloids 

concentrations.  

SB accumulated in the bulk liquid in the experiment, 

however, this data was not reproduced by the model 

(Fig. 2). Apart from a tiny peak reaching a maximum 

of 3 mg L-1 of SB after 0.37 d, no accumulation of SB 

was seen in the modelled data. Hence, after the start 

up, the uptake of SB by the biomass in the model was 

faster than the hydrolysis processes. 

 

3.3 Model limitations and suggestions for 

improvements 

The lack of SB accumulating in the bulk liquid in the 

modelled data compared to the experimental data 

(Fig. 2) showed that the model did not account for 

diffusion limitations in the system. The model was a 

simple suspended growth model, however, the 

experiment showed that in reality the biomass 

colonized the surface of the starch particles 

(Ravndal and Kommedal, 2017). Hence, a small 

biofilm was formed by the colonizing biomass 

leading to diffusion limitations for any intermediate 

in the bulk liquid. To allow for SB accumulation due 

to diffusion limitations, a heterogeneous biomass 

structure must be considered. 

A model based on activated sludge flocs as small 

bio-aggreagates with diffusion limitations and 

sorption dynamics, would greatly improve 

modelling of intermediate dynamics compared to the 

simplified model presented in this work. Diffusion 

limitations and sorption dynamics would allow for 

accumulation of all intermediates, including 

monomers and oligomers, in the bulk liquid. Hence, 

the initial increase of monomers and oligomers as 

seen in the experimental data, would be present in 

the modelled data. The delayed accumulation of 

MMW and HMW polymeric intermediates in the 

experimental data compared to the simplified model 

output, would also be recreated in a bio-aggregate 

model. However, including these factors in the 
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model will increase model complexity, thus, 

complicate model identification and validation. 

Model complexity must be balanced to the need for 

detailed understanding of degradation dynamics and 

acceptable uncertainty.  

To validate a bio-aggregate model, data on bio-

aggregate volume, depth and surface are needed. In 

the experimental work used to validate the model in 

this paper, this data is lacking as the particle size 

measurements is dominated by the starch particle 

fraction. To further improve modelling of 

intermediate dynamics during particle degradation it 

is suggested to combine this type of experimental 

work with work on a bio-aggregate model.  

 

4. Conclusions 

A mathematical model for particle degradation, 

including intermediate dynamics, was proposed in 

this work.  

• The PBM fitted experimental data for 

particulate substrate well.  

• Accumulation of LMW, MMW and HMW 

polymeric fractions in the bulk liquid was 

qualitatively replicated by the model, with 

the initial peak of LMW polymers giving 

the best fit to the experimental data.  

• The model was unable to replicate data 

showing oligomers and monomers to 

accumulate in the system. It is suggested to 

include a bio-aggregate model in further 

work to account for diffusion limitations in 

the system due to the biomass growing as a 

colonizing biofilm on the starch particles.  
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Abstract

Concentrating solar systems use reflective surfaces to concentrate sunlight onto a small area, where it is absorbed and converted
to heat. Many classes of concentrating collectors such as Compound Parabolic Concentrators (CPCs), parabolic dish and
parabolic trough are available, each with different concentrating ratio and maximum absorber temperature, depending on the
type of applications. A simplified 3D Compound Parabolic Concentrator (CPC) with 2 rings and 4 sectors has been designed.
The designed CPC is cost effective as it requires only 8 mirrors to cover the reflector surface. It does not require sun tracking,
but have capability to accept incoming solar radiation over a relatively wide range of angles. For further capturing of the solar
radiations, tilting of the CPC during a day can be made a few times. This study aims to model the discretized 3D CPC using
the ray tracing, to optimize the CPC for achieving optimal interceptions on a 0.2 m diameter cylindrical absorber, placed inside
the CPC. The ray tracing methodology is presented together with the results of the interceptions on the cylindrical absorber
using the discretized CPC. Results show the effect of tilting the discretized CPC is not very strong as the interception values
are slightly reduced and the curves a little bit not symmetric around the normal sun angles.

1. Introduction
The concentrating solar thermal systems use mirrors or
lenses to concentrate and collect solar radiations onto an
absorber in order to produce high temperatures needed for
various applications. Compound Parabolic Concentrators
(CPC) falls under the class of non imaging concentrators
which can be promising options for thermal solar energy
applications. The important features of the CPC is that it
does not require tracking of the sun and the capability of
collecting solar radiations over a wide range of angles [1].
The general principles of a CPC are reported in [1, 2].
CPC is made up of two parabolic mirror segments with
closely located focal points and their axes inclined to each
other, such that rays incident within the acceptance angle
of the CPC are collected at the lower exit opening. Fig. 1
gives the schematic diagram of the 2D CPC.

Figure 1: The schematic diagram of the 2D CPC

The 2D CPC can have an ideal performance where all

incoming rays within the acceptance angle will pass
through the lower opening. The concentration ratio for
a 2D CPC is given by [1, 3]:

C =
Aap

Aab
=

1

sinθ
(1)

where; C is the concentration ratio, Aap is the aperture
area, Aab is the absorber area and θ is the acceptance half
angle.
The CPC equation can be obtained from the rotation and
shift of parabolas. Let a coordinate system in the focus
point of a parabola be (z, r). (Z, R) is the rotated coordinate
system, where the rotation is around the focal point and
where the parabola has been shifted distance a. Then, the
parabola with focal point in the origo is given by:

z =
r2

4f
− f (2)

To represent both parabolas in one coordinate system,
denoted (R, Z), a rotation and translation is made. The
rotation angle is φ and the displacement along the R axis
is a as shown in Eqs. 3-8.

Rotation
r = Rcos(φ) + Zsin(φ) (3)

z = −Rsin(φ) + Zcos(φ) (4)

For compact notation, we define:

s = sin(φ) (5)

c = cos(φ) (6)

r = Rc+ Zs (7)

z = −Rs+ Zc (8)
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The inverted transformations are:

R = cr − sz (9)

Z = cz + rs (10)

Inserting into the equation for the parabola in Eq. 2, for
the rotation gives:

−Rs+ Zs =
(Rs+ Zs)2

4f
− f (11)

Solving for Z, we obtain two solutions:

Z1 =
1

s2

(
2f

√
1

f
(f −Rs)(c2 + s2) + 2cf −Rcs

)
(12)

Z2 = -
1

s2

(
2f

√
1

f
(f −Rs)(c2 + s2)− 2cf +Rcs

)
(13)

The solutions for Z1 and Z2 are shown on Fig. 2.
Inspection shows that of the two solutions, Z2 is the
relevant for the CPC (black curve in the figure).

Figure 2: The schematic diagram of the CPC from rotating the
parabolas

CPC can be generated by rotating positive and shifting
left which gives the right side of the CPC and mirror on
the other side gives the left side of the CPC. For a 3D
CPC, we consider the right side and revolve around z axis.
Considering only the rotation, where the origo is the focal
point for both, we obtain Fig. 3.

Figure 3: The schematic diagram of the CPC from rotating the
parabolas; the origo is the focal point for both parabolas

The parabola should be shifted such that the focal point is
at the rim of the other. The black will then be shifted to
the left such that the focal point (now at the origo) reaches

the red curve. By symmetry this should be the solution to
Z = 0. We call this shift b. In the figure it is b = 0.4. But
as we keep the origo, we shift the other way with a similar
amount. So, we can only shift half the distance given by
the Z = 0 solution. The real shift is what enters the CPC
equation, with the variable a. So, b can be obtained from
Z = 0 solution and then a = b

2
.

The solution for the only rotated, Z2 = 0 is given by:

0 = -
1

s2

(
2f

√
1

f
(f −Rs)− 2cf +Rcs

)
(14)

The solutions for the shift b becomes:

b = − 2f

c2s

(√
−c2 + 1− c2 + 1

)
(15)

b =
2f

c2s

(√
−c2 + 1 + c2 − 1

)
(16)

As c is less than one, the first solution is the one on the
negative side. We are looking for the other from Eq. 16.
Simplifying we get:

f =
b

2
(1 + s) = a(1 + s) (17)

a is now half the lower opening
Thus, the CPC equation becomes:

Z = -
1

s2

(√
A+BR+ C − csR

)
(18)

where;
A = a2(s+ 1)
B = −as(s− 1)
C = −ac(2− s)

The amount of solar radiations intercepted by the CPC
is directly related to the width of the entrance aperture
and the acceptance angle [4], where the aperture allows
the concentration of the solar radiation at the absorber.
The direction and angle of the solar irradiation can be
obtained by using the geometrical coordinates and time
which works as a seasonally altered clock.
The aperture size of the absorber affects ray interceptions
with the absorber such that, the larger the aperture size,
the higher the interceptions on the absorber. Interception
ratio is the ratio of the sun rays hitting the reflector and
reflecting on the absorber. It shows the performance of
a solar concentrator to enable the determination of the
optical losses. Interception ratio depends on the geometry
of the optical systems and the sun angles, the solar
tracking errors and varies for smooth and tiled surfaces
[5, 6].
Fig. 4 is a setup of the discretized CPC, a cylindrical
absorber and the vertical sun. The designed CPC is
strongly simplified but cost effective since only 8 mirrors
are needed to cover the reflector surface.
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Figure 4: A discretized CPC with 2 rings and 4 sectors, cylindrical
absorber and vertical sun

2. Ray tracing methodology
Ray tracing technique is used for the optical analysis of the
solar concentrating systems. It encompasses the tracing of
the individual paths of a large number of incident solar
rays passing through the optical systems to determine the
distribution pattern on the surface of interest. For analysis
of thermal systems, ray tracing can give the distribution
and intensities at the absorber [5].
Various software are available for ray tracing [7]. An
in-house ray tracer algorithm (Tracelt) is implemented in
C++ with Qt and the Open GL [5]. The Qt library provides
the basis for the user interface, and the OpenGL library for
the 3D graphical visualization. A model view of the data
is included, where panels can be selected for translation,
rotation or deletion. A screen capture of the program is
shown in Fig. 5.

Figure 5: A screenshot of the Tracelt program: The discretized
CPC, cylindrical absorber and the vertical sun

Panels are the basic elements in Tracelt, and they can
be absorbers, reflectors or refractors. An array of
sun rays (origin and direction) of individual rays are
made. For each ray, rays intersection with the panels
are computed. Ray tracing is performed after the
reflections and absorptions system are made. For the
nearest intersection, if the reflection side of the panel, the
reflected rays (origin and direction) are made and repeated
(recursive function), otherwise, the rays are terminated
(absorber or backside).
In this study, the reflectivity is assumed to be 100%, mirror
impections are ignored. A high density of sun rays leads
to longer computation times (minutes). In the current
case, a sun grid size of 2 cm can be sufficient to give low
simulation times and acceptable number of rays for the
visualization. The rays can be visualized as lines, points
or as colors on the surfaces. Computational loops with

varying sun angles or geometrical parameters have been
included.
After the ray tracing is completed, the data generated
by the Tracelt are saved in a text file and can be re
initiated afterwards. The data can be post processed
with other software. In our case, MATLAB was used
for better graphical presentations as compared to what is
implemented in Tracelt program. Fig. 6 shows the flow
chart for the description of the ray tracer algorithm.

Figure 6: Flow chart of the ray tracer algorithm for simulating the
performance of solar concentrating systems

3. Ray tracing sequence
The basic equation encountered in a ray tracer is to
determine the intersections between a line and a surface.
Subsequently, the reflected ray from the incoming ray
and the surface normal vector at the intersection point are
computed. Consider a ray, with point of intersection at P
(x, y, z) such that:

~P = ~S + u~d (19)

u~d is a line that intersects ~P and ~d is a unit vector.
A surface, can be cylinder, sphere, flat plate etc. and can be
described by an algebraic relation. For a CPC, this relation
is given in Eq. 18.
Assuming the starting point of the sun to be S(sx, sy , sz).
The components of parametric equation for each ray can
be described by: 

x = sx + u · dx
y = sy + u · dy
z = sz + u · dz

(20)

where (sx, sy , sz) are initial points and (dx, dy , dz) are
the direction vector.

Inserting the P components of Eq. 20 into the shape of the
surface f(x, y, z) = 0 gives an equation for u and thus the
intersection point, f(u)=0.
To formulate reflections in a ray tracing technique, the
normal vector (~n), calculated at the point of intersection
(P), has the reflected ray and direction (~d) given by:

~r = ~d− 2(~d · ~n)~n (21)

For a 2D CPC, the solution for u can be solved
analytically, but for a 3D CPC, the solution for u can be
obtained using numerical methods such as bisect iteration
scheme [8].

4. Examples of ray tracing for analysis of solar
concentrators
Studies with Tracelt include references [4, 5, 9, 10] as
briefly described below:
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4.1. Optimization of the size of surface tile on a CPC
Tracelt was used to perform a sensitivity analysis on the
dimensions of mirror tiles on the CPC surface. The results
show that uniform tile sizes up to 15 cm gives quite similar
interception ratios (less than 10% changes) compared
with the smooth surface. Larger and non-uniform tiles
discretized in terms of rings and sectors can give similar
results [4].

4.2. Simulation of a light guide efficiency
The tracelt has been applied for evaluation of a light guide
to provide the energy transfer from a solar concentrator
to an absorber. Using a tracelt ray tracer, results shows
energy losses through a light guide can be associated with
the number of internal reflections in the guide, and the
number of back scattered rays through the tube inlet [9].

4.3. Double reflector system
The optical performance of the double reflector system
was investigated by means of a ray tracer. Results shows
that increasing the absorber dish from 0.1 to 0.2 m makes
the system more tolerant for tracking accuracy and for low
solar angles. A large absorber dish also reduces the risk
of superheating the top plate which has conduction based
heat transfer to a salt storage [5].

4.4. Evaluation of the SK14 solar concentrator as a solar
fryer
SK14 is a solar dish reflector which is made for cooking
in a pot positioned at the focal point. [10] used Tracelt
ray tracing to evaluate the SK14 solar concentrator to
fry Ethiopian injera bread. Ray tracing reveals that the
reflected rays spread more evenly on the pan, but also
gives higher losses compared with an ideally smooth
reflector.
The novelty of this study is to analyze the efficiency of
this simplified system where the intention is to accumulate
heat for cooking on the cylindrical absorber.

5. Simulation parameters
A simplified CPC (15 degrees acceptance angle) with 2
rings and 4 sectors has been applied in the simulations.
The surface of the reflector is covered with 8 mirrors. The
CPC has aperture diameter of 1.0 m and exit diameter
opening of 0.15 m. The cylindrical absorber has 20 cm
diameter and 30 cm length.

6. Results
The sun angle-interception values were compared for the
fixed and tilted CPC at 5, 10 and 15 degrees. Fig. 7 shows
the effects of tilting the discretized CPC as compared to
the fixed CPC. In all cases, the absorber is fixed. The sun
angles are choosen to exceed the maximum acceptance
angle (15 degrees) to see the effect of using the discretized
CPC beyond the design regions. The effect of tilting
the discretized CPC does not affect much the interception
values, as they are slightly reduced and the curves a little
bit not symmetric around the normal sun angles.

Figure 7: Effects of tilting the discretized 3D CPC to the
interceptions on the absorber

7. Summary and Discussions
The ray tracing methodology for optimizing the solar
concentrating systems have been presented, together with
the results of the interceptions on the cylindrical absorber
using the discretized CPC. Results shows when the CPC is
tilted while the absorber is kept stationary, the interception
values are slightly reduced and the curves somewhat not
symmetric around the normal sun angles.
The CPC can be built with 8 mirrors and still give high
interceptions on the absorber.
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Abstract

With the introduction of unregulated renewable energy such as wind, solar and tidal power, the operation of the electrical grid
has become more and more challenging. The more dynamic production pattern requires more advanced control algorithms in
order to maintain an acceptable voltage quality which is within the limits given by the electrical network regulators. Better
tooling and improved simulation of different operation scenarios is required.
This paper presents the development of voltage droop/compensation controller as used in a typical hydro power controller. The
controllers has been implemented using the Modelica language [4] and are according to the Norwegian Energy Regulatory
Authority (NERA). Having the controller available in Modelica makes it possible to integrate them with hydro power system
models build with the use of OpenHPL [7]. The behaviour of the controller have been tested against a verified generator model
of the OpenIPSL [1].

1. Introduction
The electrical power demand is still increasing, and it
leads to pushing the society to find a renewable source
to produce electricity. Therefore the development of
existing and new hydropower stations is still increasing.
The development of hydropower plants focuses not only
on larger hydropower plants but also on small-scale
hydropower plants in order to utilise as much resource
from nature.
A hydropower plant consists of several components
such as a valve, turbine, generator, turbine-regulator,
excitation system, switch gear, etc. The generator converts
mechanical energy into electrical energy. A generator
needs an excitation system to provide field current to
the field winding in order to induce the voltage in the
generator terminals. An excitation system contains mainly
an exciter that produces field current and an excitation
control system that consists of an Automatic Voltage
Regulator (AVR), controllers, and protective limiters.
In order to keep the voltage quality within the
limits of what the electrical network regulators allow,
the government has developed requirements to the
hydropower stations to adequate operation of power
plants.
The legal requirement for excitation systems in Norway is
given in the National Guide for Functional Requirements
in the Power System, NVF 2020, [6]. It is a guideline
for the power system administrators to build, maintain
or operate their system in order to fulfil the functional
requirements set by the Norwegian Energy Regulatory
Authority (NERA). The NVF 2020 contains requirements
for the Norwegian grids, production power plants, High
Voltage Direct Current (HVDC), consumers, protections,
and measuring equipment. The production power
plant part in the NVF 2020 describes requirements for

synchronous power plants and power parks. Several
requirements are described under synchronous power
plants, such as turbine regulation, excitation system,
maximum reactive power, etc. Where the excitation
system section describes the requirement for excitation
system response time, VAR/PF control or regulation,
voltage droop/compensation control, limiters, Power
System Stabiliser, and reset functionality. This paper
focuses on modelling and simulation of the voltage
droop/compensation control function.

2. Theory
The voltage droop/compensation controller is an
additional function that is required by NERA. The
purpose of this controller is to maintain constant generator
terminal voltage concerning additional measurement
signals from the generator, such as reactive, active
current, and frequency. The voltage droop/compensation
controller influences the voltage reference in the AVR to
obtain the desired terminal voltage output. This controller
consists of four control functions, reactive current
droop, reactive current compensation, active current
compensation, and frequency droop, the characteristics of
each control function are described below.

2.1. Reactive Current Droop Control
Reactive current droop control is one of the functionality
implemented to stabilise the distribution of reactive load
between two or more generators on the same busbar.
Alternatively, to reduce the reactive load changes at a
small generator that is connected to an unstable grid
with high voltage variations. This control function has
a negative droop that reduces the terminal voltage as a
function of increasing reactive current (see Fig. 1, which
gives the same effect as an inductor connected in series
with the generator.
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Figure 1: Characteristic curve of reactive current droop control
function. VT : Generator terminal voltage, IQ: Generator
terminal reactive current output, VTsp: Generator terminal
voltage set point, IQsp: Reactive current setpoint.

2.2. Reactive Current Compensation Control
This control function is used to compensate for the
voltage drop due to reactive components as transformers
or transmission lines in the gird. The reactive current
compensation control function is quite the opposite of
the reactive current droop control function, as depicted
in Fig. 2. This control function has a positive droop,
meaning the terminal voltage increases for increasing
reactive current.

Figure 2: Characteristic curve of reactive current compensation
control function. VT : Generator terminal voltage, IQ: Generator
terminal reactive current output, VTsp: Generator terminal
voltage setpoint, IQsp: Reactive current setpoint .

2.3. Active Current Compensation Control
The active current compensation control function is used
to compensate for voltage drop over transformers or
transmission lines due to active power consumption.
This control function increases the terminal voltage as a
function of increasing active current, see Fig. 3.

2.4. Frequency Droop Control
This control function can be used to help the turbine
regulator to stabilise the frequency at the local grid. The
frequency droop control function increases or decreases
the terminal voltage as a function of increasing or
decreasing frequency within a limited span (see Fig. 4). As
a consequence, active power consumption in the resistive
load increases if the generator runs at a higher speed. This
control is only active if the circuit breaker is closed.

3. Modelling of Controller
The voltage droop/compensation controller varies the
generator terminal voltage considering the changes in
active and reactive current and frequency. The controller’s
output interacts with the summing point to modify the
voltage reference signal VREF , and consequently, the

Figure 3: Characteristic curve of active current compensation
control function. VT : Generator terminal voltage, IP : Generator
terminal active current output, VTsp: Generator terminal voltage
setpoint, IPsp: Active current setpoint.

Figure 4: Characteristic curve of frequency droop control
function. VT : Generator terminal voltage, f : Actual frequency
of the generator, VTsp: Generator terminal voltage setpoint, fsp:
Frequency setpoint.

generator terminal voltage will be regulated. The voltage
droop/compensation controller consists of four control
functions or three controllers. The modelling of the
controllers is described below.

3.1. Reactive Current Droop and Compensation
Controller
This controller inherent a combination of reactive
current droop and reactive current compensation control
functions. The controller is fundamentally modelled
based on the formula given in (1) [5]. This formula
is used to calculate the new generator terminal voltage
setpoint considering the droop/compensation value and
actual generator reactive current output. The Err obtained
by subtracting the measured terminal voltage VT from
the calculated generator terminal voltage value VTcal and
then the Err is applied through the PID controller to
the output. Additionally, the droop (regulation) value
should be given in percent, and most importantly, it
should be a negative value “-” for the droop control
function and a positive value “+” for the compensation
control function. Fig. 5 illustrates the block diagram of
the reactive current droop/compensation controller. The
Boolean signal IQcontroller should be “true” in order to
activate the output of the controller, else the output will be
zero.

VTcal = ((
IQ − IQsp

IQn
· RIQ

100
) + 1) · VTsp (1)

where
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RIQ: The droop (regulation) value [%]
IQ: The actual generator reactive current

output
[pu]

IQsp: The generator reactive current setpoint [pu]
IQn: Generator nominal reactive current [pu]
VTcal: The calculated new generator terminal

voltage setpoint
[pu]

VTsp: The generator terminal voltage setpoint [pu]

 (      )[         ]{           } KPIQ
KIIQ sKDIQ+ +

VIQmax

VIQmin

s 1+sTDIQ+
Err

A

B
0

VIQ

SW1
IQ - IQsp

IQn

RIQ

100
+ 1 VTsp

IQ

VT

-

IQcontroller

VTcal

Figure 5: Block diagram of reactive current droop/compensation
controller

3.2. Active Current Compensation Controller
The active current compensation control function model
uses the formula given in (2) to calculate the new generator
terminal voltage setpoint [35]. This controller regulates
the voltage only if the actual active current IP is higher
than the active current setpoint IPsp. Meaning, if the IP is
less than the IPsp the active compensation controller will
not react. Further, the Err is calculated by subtracting the
VT from VTcal then applied to the output through the PID
controller. The regulation value RIP should be a positive
value to obtain the compensation function. Otherwise, the
controller will behave on the contrary. The block diagram
of the active current compensation controller is presented
in Fig. 6. The Boolean signal IPcontroller should be
“true” to change the position in the switch SW1 to enable
the output of the controller, otherwise the it will be zero.

VTcal = ((
IP − IPsp

IPn
· RIP

100
) + 1) · VTsp (2)

where

RIP : The droop (regulation) value [%]
IP : The actual generator active current

output
[pu]

IPsp: The generator active current setpoint [pu]
IPn: Generator nominal active current [pu]
VTcal: The calculated new generator terminal

voltage setpoint
[pu]

VTsp: The generator terminal voltage setpoint [pu]

 (      )[         ]{           } +
ErrIP - IPsp

IPn

RIP

100
+ 1 VTsp

IP

VT

-

KPIP
KIIP sKDIP+ +

VIPmax

VIPmin

s 1+sTDIP A

B
0

VIP

SW1

IPcontroller

If IP≥IPsp then y =IP
else y = IPsp 

y VTcal

Figure 6: Block diagram of active current compensation
controller

3.3. Frequency Droop Controller
This controller model is modelled based on (3) to
determine the new generator terminal voltage setpoint.
This controller behaves similarly to the latter controllers,
where the Err is obtained by comparing the VT and
VTcal, then applying this through the PID controller to the

output. The droop (regulation) value should be a positive
value to obtain the compensation function. Besides, this
controller has an additional function limiting the voltage
support when the frequency exceeds the maximum and
minimum limit, fmaxlimit and fminlimit, respectively. This
means that the frequency droop controller will not increase
or decrease the VT when the frequency exceeds the latter
limits. The Boolean signal fcontroller should be “true”,
and the circuit breaker should be closed in order to
activate the output of the controller, else the output is zero.
The block diagram of the frequency droop controller is
depicted in Fig. 7.

VTcal = ((
f − fsp

fn
· Rf

100
) + 1) · VTsp (3)

where

Rf : The droop (regulation) value [%]
f : The actual frequency [pu]
fsp: The frequency setpoint [pu]
fn: Nominal frequency [pu]
VTcal: The calculated new generator terminal

voltage setpoint
[pu]

VTsp: The generator terminal voltage setpoint [pu]

 (      )[         ]{           } +
Errf - fsp

fn

Rf

100
+ 1 VTsp

f

VT

-

KPf
KIf sKDf+ +

Vfmax

Vfmin

s 1+sTDf A

B
0

Vf

SW1

fcontroller and CB

fsp+ fmaxlimit 

fsp+ fminlimit 

VTcal

Figure 7: Block diagram of the frequency droop controller

3.4. Final Combined Controller
All three controllers mentioned in Section , , and
are added together into a voltage droop/compensation
controller model as shown in Fig. 8). The checkboxes III,
V, and VII in Fig. 9 shall be selected in order to enable the
outputs of the reactive current droop/compensation, active
current compensation, and frequency droop controllers,
respectively. These checkboxes are associated with the
switches, SW1_IQ, SW1_IP, and SW1_f. Thus, the
controllers can either be used alone or in combination
with others to regulate the voltage. All the setpoint
values can be chosen as constant or variable setpoints by
choosing the checkboxes indicated with II, IV, VI, and
VIII in Fig. 9. When the checkboxes II, IV, VI, and
VIII are checked, variable setpoint inputs such as terminal
voltage setpoint VTvsp, reactive current setpoint IQvsp,
active current setpoint IPvsp, and frequency setpoint fvsp
will be enabled to connect, respectively. Simultaneously,
when those are activated, the associated constant setpoints
will be disabled. Moreover, conditional connections are
visibly indicated with dashed lines in Fig. 8. Note
that the controller’s parameters are placed in individual
tabs as indicated with (I) in Fig. 9, while the common
terminal voltage setpoint options are placed in the tab
called “General”. Further, in active compensation and
frequency droop control functions, an absolute block is
used to assure that a given negative droop (regulation)
value (RIP and Rf ) does not change the characteristics of
the control functions. Be aware of the named parameters
in the controller’s block diagram and the model because
they are changed due to modelling purposes.
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Figure 8: Implementation of voltage droop/compensation controller in Modelica

4. Simulation Results
This section presents simulation results of voltage
droop/compensation controller. A test setup of the voltage
droop/compensation controller is portrayed in Fig. 10.
The test setup is created using a GENSAL generator,
transmission line, infinite grid, and excitation system
typeST7C from the OpenIPSL version 2.0.0 [1], as shown
in Fig. 10. The system power base and frequency for
all the components are set to 10MVA and 50Hz,
accordingly. The generator is initialised, as presented
in Table 1, during the various simulations. Also the
voltage setpoint VTsp, reactive current setpoint IQsp,
active current setpoint IPsp, and frequency setpoint fsp
are varied to examine the controller. The simulation is
performed individually for each controller by changing
the controller’s latter setpoints at 1200 s and the voltage
setpoint at 2200 s.

4.1. Reactive Current Droop and Compensation
Controller
There are performed two tests with this controller,

Table 1: Initialisation of GENSAL generator for simulation

Name Description Value Units

P0 Initial active power 2 MW
Q0 Initial reactive power 1 Mvar
v0 Initial voltage magnitude 1 pu
angle0 Initial voltage angle 0 ◦

ω Initial generator speed 0 pu

first with the droop function and the second with the
compensation function. The generator reactive current
setpoint IQsp is changed from zero to 0.5 pu at 1200 s,
and the voltage setpoint VTsp is changed from 1 to 1.05 pu
at 2200 s. Initially, the controller starts to influence the
AVR to reduce the terminal voltage equal to the predefined
voltage setpoint, as shown in Fig. 11. Please note that
when the AVR influences, the field voltage applied to
the generator will be affected. Consequently, the reactive
power or current output is affected to obtain the desired
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Figure 9: Implemented user interfaces in Modelica for
voltage droop/compensation controller. I: Tabs for each
controller. II: Checkbox to enable the variable generator
terminal voltage setpoint. III: Checkbox to enable Reactive
current droop/compensation controller. IV: Checkbox to enable
the variable generator terminal reactive current setpoint. V:
Checkbox to enable Active current compensation controller. VI:
Checkbox to enable the variable generator terminal active current
setpoint. VII: Checkbox to enable the Frequency droop controller.
VIII: Checkbox to enable the variable frequency setpoint.

terminal voltage. Hence, the terminal voltage is stabilised
at 1 pu before IQsp changes. When IQsp changes, the
reactive current increases, hence the voltage increases.
The stabilised voltage ends up at 1.00748 pu, which is
similar to the calculated value. Simultaneously, when the
VTsp increases, there is a significant change in terminal
voltage due to an increase in the reactive current. The
deviation between the calculated value and the simulated
value is found to be about 1.97·10−6, which is reasonable.
Note that the steady-state terminal voltage after a setpoint
change can be calculated using (1) to verify the results.
Since the initial terminal voltage is higher than the preset
setpoint, the controller reduces the terminal voltage, as
shown in Fig. 12. The voltage is finally stabilised
at 0.9999 pu before any setpoint changes, which is
corresponds to manually calculated terminal voltage using
(1). After the increase in IQsp at 1800 s, the reactive
current and the terminal voltage are decreased to roughly
-0.0489 pu and 0.9912 pu, respectively. Whereas change
in VTsp is causing the voltage to rise again to 1.0453 pu,
as expected.

4.2. Active Current Compensation Controller
The results from the active current compensation
controller simulation are presented in Fig. 13. Where the
generator active current setpoint IPsp is changed from 0.5
to 0 pu at 1200 s, and the voltage setpoint VTsp is changed
from 1 to 1.05 pu at 2200 s. At the initial stage, when the
setpoint is at 0.5 pu, the generator active current output IP
is at 0.1996 pu, thus the controller does not react on IP . It
will rather consider the setpoint as an actual active current
output, and it compensates for it because the controller
does not operate for any IP below the setpoint. Thus,
the terminal voltage is reduced to 1 pu by regulating the
generator’s reactive power or current. Later, the setpoint
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Figure 10: Test setup for voltage droop/compensation controller
model
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Figure 11: Performance of voltage droop/compensation controller
when the reactive current droop function is activated.

reduces to zero, then the controller starts to compensate for
the actual active current output. Hence, IP is higher than
the setpoint, the terminal voltage increased and stabilised
at 1.0048 pu, as expected. When the voltage setpoint
increased, as a result, the terminal voltage increased to
1.0498 pu, which is equal to the manually calculated
value, where the manually calculated value is acquired by
using (2).

4.3. Frequency Droop Controller
Fig. 14 illustrates the simulation results of the voltage
droop/compensation controller using the frequency droop
function. Since in the beginning, the nominal frequency
and the frequency setpoint is at 50 Hz, and terminal
voltage is higher than VTsp, the controller tries to reduce
the voltage to 1 pu. Afterwards, when the frequency
setpoint is reduced to 48 Hz, consequently the voltage
is increased to 1.001 pu as expected. And, when the
voltage setpoint VTsp is increased to 1.05 pu at 2200 s,
the terminal voltage rises again and stabilises at roughly
1.05 pu as desired.

5. Discussion
This paper aims to model voltage droop/compensation
controller in the Modelica modelling language.
Fundamentally, the controller is modelled based on
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Figure 12: Performance of voltage droop/compensation controller
when the reactive current compensation function is activated.
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Figure 13: Performance of voltage droop/compensation controller
when the active current compensation function is activated.

the requirements in NVF 2020; however, the models
have been modified slightly for modelling purposes.
The excitation system, type ST7C, is obtained from the
OpenIPSL library.
Since the primary focus of this paper is to model the
voltage droop/compensation controller, the test setup
modelling is kept simple as possible to analyse the model
performance.
The overall behaviour of the model was reasonable to
compare to the theoretical behaviour. However, the
simulation results should be compared with the real
controller to verify the model performance. The controller
models have a switch at the output to disable the control
function. These switches may cause a sudden increase in
the control signal, consequently, an overshoot in terminal
voltage output may occur. It can be eliminated by adding
a self-reset function for the PID controller to reset when
the output is re-enabled.

6. Conclusions
In this paper, the voltage droop/compensation controller is
mainly object-oriented modelled in Modelica modelling
language using Dymola software. The models are
fundamentally modelled with reference to requirements
in the National Guide for Functional Requirements in the
Power System, NVF 2020, [6].
The voltage droop/compensation controller modelled
separately from scratch, except the AVR, obtained
from the external library OpenIPSL. Later, the model
was simulated separately and then compared to these
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Figure 14: Performance of voltage droop/compensation controller
when the frequency droop function is activated.

controller’s theoretical behaviour.
In conclusion, the model performed as desired but still
need proper tuning and further development to enhance
the performance. For the future it is planned to run further
tests with real power plant data in order to improve and
verify the behaviour of the limiter models.
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Abstract 

 

As climate change intensifies storms, larger rainwater volumes load the sewage network systems above the design 

capacity and escalate the risk of combined sewer wastewater overflow to natural waterways. Accordingly, the 

control challenge is to prevent the combined sewer overflow by adjusting the manipulated variables, such as 

pumps and gates, in the sewage network system. The aim of this study is to (1) compare traditional and predictive 

control strategies to four different storm scenarios, and to (2) quantify the preventive effect of these control 

strategies on wastewater overflow. The case study is applied in the Oslo combined sewage network system. 

Control strategies applying feedforward strategy minimize the overflow within the constraints of the sewer 

infrastructure. Compared to no control, applying feedforward-feedback control strategy decreases overflow to 

natural water ways by 21- 88% in different rain scenarios. Compared to feedback control strategy, the 

feedforward-feedback strategy can decrease overflow by 3--9%. 

 

 

1. Introduction 

As climate change intensifies storms, larger 

rainwater volumes load the sewage network systems 

above the design capacity and escalate the risk of 

combined sewer wastewater overflow to natural 

waterways. Accordingly, the control challenge is to 

prevent the combined sewer overflow by adjusting 

the manipulated variables in the sewage network 

system.  

Most urban water systems are controlled by passive 

control, rule based local control or manual operation 

in order to minimize overflow to natural waterways 

and optimize energy consumption for pumping [1]. 

In manually controlled combined sewer systems, 

heavy rain can easily lead to overflows if preventive 

manual actions are not taken prior to and during the 

rain event. In order to minimize the combined sewer 

overflow, research in different real time control 

algorithms has gained strong interest during the past 

decade. Real time control uses sensors and 

controllers, and an automation system with 

supervisory control and data acquisition. The 

controllers convert real-time measurements into 

operational decisions by rules and algorithms of 

varying complexity [1].  

Most of the advanced control applications to 

combined sewer systems have been implemented in 

simulation environment. For example, Schuetze and 

Alex [2] have used Simba model of the Astlingen 

sewer network in Germany to quantify the combined 

sewer overflow volume of the during a year using 

different control strategies. Their findings confirm 

that MPC would provide the minimal volume close 

between the base case and the theoretical optimum 

for the Astlingen sewer system [2]. A model-based 

approach on estimation and model predictive control 

of the wastewater levels in the Oslo sewer network 

tunnel basins has been proposed by [3]. 

So far, only a few industrial implementations of real-

time control have been presented, due to insufficient 

instrumentation of the sewer network. Model 

predictive control has been applied to utilize the 

water storage capacity of the sewer network to 

minimize costs of pumping during varying 

electricity prices in Denmark [4].  

In this study model-based control is applied to the 

Oslo combined sewage network system. Oslo 

metropolitan area with its surrounding 

municipalities host more than one million citizens 

and the region receives approximately 1010 mm 

precipitation (rain) each year. Despite continuous 

improvements on the infrastructure of the sewer 

system, storm events exert a considerable pressure 

on the city’s urban drainage system and combined 

sewer overflows to the Oslo fjord occasionally. The 

overflow of diluted, untreated wastewater-rainwater 

mixture affect negatively the marine life and water 

quality at beaches along the Oslo Fjord. The aim was 

to (1) compare traditional and predictive control 

strategies to four different storm scenarios, and to 

(2) quantify the preventive effect of these control 

strategies on wastewater overflow. Research 

question: Which control strategies can minimize 

overflow of diluted wastewater during heavy rain? 
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2. Materials and Methods 

2.1. Materials 

This study uses a high-fidelity MIKE simulator of 

the Oslo urban drainage system for the data 

collection. DHI has developed and calibrated the 

dynamic simulator as part of the Future City Flow 

EU-project. Simplified modeling, control strategy 

development and testing were done in 

Matlab/Simulink. 

 

2.2. Methods 

Modeling: High-fidelity MIKE model is used to 

collect data of historical rain scenarios in the Oslo 

sewage network.  The MIKE+ data was used to 

develop and calibrate the simplified model 

consisting of ordinary differential equations and 

algebraic equations.  The simplified model was 

implemented in Matlab/Simulink. 

Control: The ordinary differential equations were 

linearized and Laplace-transformed to transfer 

function models. The transfer function models were 

used for parametrization and tuning the MPC and the 

PID controllers. The control algorithms were tested 

in Matlab/Simulink environment using the ordinary 

differential equations. ODE23t solver was used for 

all scenarios and controllers. Due to late data access, 

control algorithm testing in MIKE+ software was 

not possible.  

 

2.3. Symbols 

Symbols used in equations are given in Table 1. 
Table 1: List of symbols 

Symbol Description Unit 

A Catchment area m2 

B Magazine bottom area m2 

F Flowrate m3/min 

i Catchment i - 

I Imperviousness % 

j Pipeline j - 

m Magazine m - 

PE Person equivalent - 

R Rain fall mm/min 

tD 
Transport delay in pipeline 

or magazine 
min 

θ Catchment area delay min 

  - 

 

2.4. System description 

The combined sewer network in Oslo and the 

surrounding municipalities stretches over 108 

catchment areas. In this study, based on geography, 

these areas were combined into 9 catchments with 

estimated average characterization given in Table 2. 

The characterization of the catchments is based on 

data from the MIKE+ model. The water from the 

catchment areas is led to a network sewer tunnels 

that transport the water to two separate water 

resource recovery facilities, Veas in the west side of 

Oslo and Bekkelaget in the east side of Oslo. 

 
Table 2: Catchments areas in the Oslo metropolitan 

sewer network with tunnel inlet point, estimated person 

equivalent PE, area A, imperviousness I and delay θ. 

Inlet Catchment 
PE 

[103] 

A 

[106m2] 

I 

[%] 

θ 

[min] 

I1 Festning 150 77 11,7 28,6 

I2 Østensjø 125 77 9,77 28,6 

I2 Furuset 150 115 7,81 42,9 

I3 Torshov 150 115 7,81 42,9 

I4 Nordstrand 125 77 9,77 28,6 

I2 Lillestrøm+ 181 415,8 2,62 154 

I5 Bærum 135 192 4,22 71 

I6 AskerLier 130 192 4,06 71 

I5 SkiOppegård 65 192 2,03 71 

 

2.5. Data collection and case scenarios 

Four historical rain events were chosen for this 

study, case 1 and 2 with heavy storm, case 3 with 

extremely heavy storm and case 4 with moderate 

rain. The length of each case scenario is four days 

(96h) in order to let the combined sewer system 

settle back to the dry conditions after the rain event. 

The periods selected have dry weather during the 

first day, rain during the second day and dry weather 

during the third and fourth day, as presented in Figure 

1. A summary of the rain scenarios in the Oslo 

combined sewer network is given in Table 3. 

 

Figure 1: Rain fall during case scenarios. 

Table 3: Characterization of case scenarios with length of 

96 hours. 

Case 
Rain start time 

[dd:mm:yy] 

Rain 

fall 

[mm] 

Rain 

duration 

[h] 

 

1 11.06.19 19:00 18 9  

2 29.08.19 04:00 22,7 5  

3 09.08.17 10:00 41,5 7  

4 09.05.16 12.00 8,2 8  
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3. Modeling 

The modelling of the Oslo sewer network consists of 

four sub-models. The first sub-model is between 

rainfall and sewer network inlet. The second sub-

model provides continuous municipal wastewater 

flow with sinusoidal diurnal pattern to the inlet of 

the sewer network. The third sub-model consist of 

the main tunnels in the sewer network. The sewer 

tunnel network is approximated as 13 links 

(transport delay) and 5 magazines with storage 

volume and a final control element (pump or gate). 

The fourth sub-model is the overflow accumulator 

in the magazines. In the simplified Matlab/Simulink 

model (Figure 2), every catchment area has only one 

inlet to a tunnel in the sewer network. The tunnel 

network leads water to the water resource recovery 

facilities. Parts of the tunnels are used to store a fixed 

volume of water during heavy rains. The storage 

capacity in the tunnels is modeled as magazines with 

finite volumes. The water flow through the 

magazines is controlled with a pump or a gate. If the 

maximum level limit in the magazine is reached, 

overflow is directed to natural waterways. 

 

 
Figure 2: Simplified model of the combined sewage 

network in Oslo area. 

The inlet boundaries of the model are the flowrates 

from the six catchment areas. The flowrate from 

catchment area i to the tunnel inlet Finlet,i is estimated 

as a sum of the municipal wastewater flow Fmun,i and 

the rain induced water flow Frain,i . 
𝐹𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝐹𝑚𝑢𝑛,𝑖 + 𝐹𝑟𝑎𝑖𝑛,𝑖 (1) 

The municipal wastewater flow is calculated based 

on population (person equivalent) in the area, person 

equivalent wastewater flow and the diurnal pattern ( 

24h day-night variation). The person equivalent 

wastewater flow FPE is assumed 0.0002005 m3/min. 

The diurnal pattern is estimated as sinus curve with 

amplitude of 1, bias of 1 and angular frequency of 

2π/(1440min), with zero value at 05:00 and 

maximum value of 2 at 17:00. 

𝐹𝑚𝑢𝑛,𝑖 = 𝐹𝑃𝐸 ∙ 𝑃𝐸𝑖 ∙ (1 + 𝑠𝑖𝑛 (
2𝜋

1440
𝑡)) (2) 

The rain induced water flow from catchment area i 

is estimated as a product of rain intensity Ri, 

catchment area Ai and catchment imperviousness Ii , 

and delay θ between rain fall and rain induced flow 

at the tunnel inlet. 

𝐹𝑟𝑎𝑖𝑛,𝑖 = 𝑅𝑖(𝑡 + 𝜃) ∙ 10−3 ∙ 𝐴𝑖 ∙ 𝐼𝑖 (3) 

 

The wastewater flow from tunnel inlets is gathered 

to the sewer tunnels. The tunnels are modeled as 

links and magazines. A link is modeled as a plug 

flow through the tunnel, a pure transport delay, 

given in Table 4. The flowrate through the link j is 

the flowrate in with a transport delay tDj: 

𝐹𝑜𝑢𝑡𝑙𝑒𝑡,𝑗 = 𝐹𝑖𝑛𝑙𝑒𝑡,𝑗(𝑡 − 𝑡𝐷,𝑗) (4) 

 
Table 4: Parameters of the tunnel/link models with inlet, 

outlet, length L and transport delay tD. 

Link from to 
L 

[km] 

tD 

[min] 

L1 
Festning 

inlet 
Festning 

magazine - 

Majorstuen 

4,4 44 

L2 
East inlet 

(Østensjø) 
Fagerlia 

separation 
3,5 35 

L3 
North inlet 

(Furuset) 
Fagerlia 

separation 
7,1 70 

L4 
Fagerlia 

separation 
Torshov 

magazine - 

Majorstuen 

7,3 72 

L5 
Torshov 

inlet 
Torshov 

magazine - 

Majorstuen 

3,0 30 

L6 Majorstuen Vaekerø 5,4 54 

L7 
Vaekerø Lysaker 

magazine 
7,6 75 

L8 
Baerum 

inlet 
Lysaker 

magazine 
6,0 59 

L9 
Lysaker 

magazine 
VEAS 

magazine – 

WWTP1 

15,0 149 

L10 
Asker inlet VEAS 

magazine – 

WWTP1 

8,0 79 

L11 
Fagerlia 

separation 
Bekkelaget 

magazine – 

WWTP2 

5,5 55 

L12 
Nordstrand 

inlet 
Bekkelaget 

magazine – 

WWTP2 

1,0 10 

L13 
Søndre N. 

inlet 
Bekkelaget 

magazine – 

WWTP2 

7,5 74 
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The Oslo sewer network model includes five 

magazines which are modelled as a pipeline with 

transport delay tDm and a vertical tank volume in the 

end. The parametrization of the magazines is given 

in Table 5.  The plug flow through the pipeline part 

of the magazine feeds to the tank at the end of the 

magazine. The flow rates from different links (L) is 

summed together at the inlet of the magazine 

pipeline and plug flow with transport delay tDm is 

assumed along the magazine pipeline: 

𝐹𝑖𝑛𝑙𝑒𝑡,𝑚 = ∑ 𝐹𝑜𝑢𝑡𝑙𝑒𝑡,𝑗(𝑡 − 𝑡𝐷,𝑚)  (5) 

Water height in the vertical tank at the end of the 

magazine is modeled with a simple tank. The 

magazine tank has inlet at the top and outlet at the 

bottom with a pump at the exit line. The maximum 

water height in the vertical tank model is about 3 

meters and the minimum water level is 0,1 m (to 

avoid numerical instabilities). The nominal dry 

weather level in the magazines is half of the 

maximum, about 1,5 m. The water height in the 

magazine is given as: 

𝑑ℎ𝑚(𝑡)

𝑑𝑡
=

1

𝐵
(𝐹𝑖𝑛𝑙𝑒𝑡,𝑚(𝑡) − 𝐹𝑜𝑢𝑡𝑙𝑒𝑡,𝑚(𝑡)) (6) 

Each magazine has an overflow model that applies 

if the high-level limit is reached. The volume of the 

overflow water is calculated as accumulated sum.  

Table 5: Parameters of the magazine models with max 

water height (H), bottom area (B) and nominal transport 

delay (tD). 

ID Magazine 

Lin

k 
Hmax 

[m] 

B 

[103m2

] 

tD 

[min] 

M1 Festning L1 3 10,3 44 

M2 Torshov L4 3 17,2 72 

M3 Lysaker 
L7 3,3

5 

19,9 
75 

M4 Bekkelaget 
L1

1 
3 

12,9 
55 

M5 Veas 
L9 3,3

5 

39,4 14

9 

 

The time delay tD for each link and magazine with 

length Lj is calculated based on estimated speed of 

flow through the tunnel. This estimate is based on 

the minimum flow velocity Vfmin=84.05 m/min, 

and the flow velocity difference Vfdif=33.6m/min 

between maximum flow velocity (117,7 m/min) and 

minimum flow velocity. The flow velocity 

difference is weighted with the hydrostatic ratio in 

the magazine, the water level H(t) in the magazine j 

divided by maximal water level Hmax.  

𝑡𝐷,𝑗 =
𝐿𝑗

𝑉𝑓,𝑚𝑖𝑛 + 𝑉𝑓,𝑑𝑖𝑓 ∙ (𝐻(𝑡)𝑗 𝐻𝑚𝑎𝑥⁄ )
(7) 

The final control element in each magazine is either 

a pump station (Frognerparken, Bjerke, Bekkelaget) 

or a gate (Torshov, Lysaker). It is assumed that the 

time dynamics of these are negligible, and thus they 

are represented with adjustable gain of 0-100% of 

the maximum outlet flowrate given in Table 6. The 

Fagerlia weir has position between 0,3-0,7 the 

nominal value is 0,5. The weir does not restrict the 

flowrate. 

Table 6: Final control elements of the sewer network 

with minimum, nominal and maximum flowrates. 

ID Placement 
Fmin 

[m3/min] 

Fnom 

[m3/min] 

Fmax 

[m3/min] 

M1 
Festning 

(pump) 
6 

30 
150 

M2 
Torshov 

(gate) 
0 

152 
343 

M3 
Lysaker 

(gate) 
0 

266 
638 

M4 
Bekkelaget 

(pump) 
17 

84 
440 

M5 
Veas 

(pump) 
32 

159 
660 

F6 
Fagerlia 

(weir) 
0 

- 
- 

 

In addition, wastewater from the catchment areas in 

North of Oslo can be divided at Fagerlia separation 

using a flow separation weir between west sewer 

system leading to Veas (WWTP1) and east sewer 

system leading to Bekkelaget (WWTP2). 

The outlet boundary conditions of the model are the 

two water resource recovery plants, Veas at west and 

Bekkelaget at east, with parameters given in Table 7. 

The Bekkelaget capacity was increased by 50% in 

October 2021, but in the simulation model for all 

scenarios it is assumed that this capacity applies 

already in 2016. 

Table 7: Water resource recovery facility with estimated 

capacities. 

Name 

P.E 

capacity 

Normal 

flow in 

[m3/min] 

Max flow in 

[m3/min] 

Veas 793000 159 660 

Bekkelaget 418000 83,8 440 

 

 

4. Control strategy development and testing 

4.1 Control strategy development 

The control goal is to avoid overflow in the 

magazines. Three different control strategies were 

developed based on linearized transfer function 

models of the governing nonlinear equations. The 

five (5) controlled variables are the wastewater 

levels in the five magazines. The manipulated 
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variables are three (3) pump stations, two (2) gates, 

and separation weir (1).  The disturbance variables 

of the system are the six (6) lumped tunnel inlet 

flowrates.  

Transfer functions 

For the controller development purposes, the 

ordinary differential equations of the system 

between the controlled variables and manipulated 

variables were linearized and Laplace transformed. 

The first order transfer functions between the 

controlled variables and the manipulated variables 

are integrators with gain Kp, presented in Table 8. 

The transfer functions in the magazine tanks were 

estimated with a delay τd of zero as the final control 

element is placed right at the outlet of the tank 

model. It is assumed that the Fagerlia flow 

separation weir has negligible time dynamics 

compared to the pumps and gates. 

 
Table 8: Transfer functions between controlled variables 

(levels) and manipulated variables (pumps and gates). 

TF MV CV Kp [-] 

TF1 
Festning 

pump PF 

HF 
-1/B1 

TF2 
Torshov gate 

GT 

HT -

172/B2 

TF3 
Lysaker gate 

GL 

HL -

319/B3 

TF4 
Bekkelaget 

pump PB 

HB 
-1/B4 

TF5 
Veas pump 

PV 

HV 
-1/B5 

 

4.2 SISO control strategy development 

As each magazine has one controlled variable (level) 

and one manipulated variable (pump station or 

weir), these were paired for the single-input single-

output control strategy. Fagerlia separation weir has 

its own independent controller for allocating the 

northern inflow between the west and east sewer 

networks 

The PI-controller parameters for the level controllers 

in the magazines were calculated based on the 

Skogestad IMC tuning [5] rules for integrating 

system. The transfer functions are given in Table 8. 

The tuning parameter τc was chosen as 1 minute 

because the transfer functions did not include a 

delay. The controller gain at magazine j was 

calculated as: 

𝐾𝑐,𝑗 =
1

𝐾𝑝,𝑗(𝜏𝑐,𝑗 + 𝜏𝑑,𝑗)
(8) 

 

The controller integral time at magazine j was 

calculated as: 

𝑇𝑖,𝑗 = 4 ∙ (𝜏𝑐,𝑗 + 𝜏𝑑,𝑗) (9) 

 

The PI-controller parameters are given in Table 9. 

 

Table 9: PI-control parameters for the final control 

elements at magazines. 

ID Description TF 

Kc 
Ti 

[min] 

Rate 

limiter 

[1/min] 

M1 
Festning 

(pump) 
1 

-10 

367 
4 

±4,8 

M2 
Torshov 

(gate) 
2 

-

100 
4 

±0,033 

M3 
Lysaker 

(gate) 
3 

-63 
4 

±0,033 

M4 
Bekkelaget 

(pump) 
4 

-39 

466 
4 

±21 

M5 
Veas 

(pump) 
5 

-12 

959 
4 

±14 

 

Proportional control with the following relationship 

between water height at Torshov magazine HT(t) 

and Bekkelaget magazine HB(t) was applied to the 

flow separation weir at Fagerlia: 

 

𝑊1(𝑡) = 0,5 + 0,2 (
𝐻𝑇(𝑡)

𝐻𝑇,𝑚𝑎𝑥

+
𝐻𝐵(𝑡)

𝐻𝐵,𝑚𝑎𝑥

) (10) 

 

4.3 MIMO control strategy development 

Linear model predictive control was chosen as the 

multi input-multi output control algorithm due to its 

popularity in similar applications. The linear MPC 

tuning rules were adopted from [6] and [1]. The 

MPC controller was parametrized using the transfer 

functions between the controlled variables (levels) 

and the manipulated variables (pumps, gates and 

weir) given in Table 8. The sampling time of the 

system was chosen 5 min. As the transfer functions 

of the integrating systems (magazines in Table 8) do 

not have time constants, a model horizon N of 120 

minutes was chosen. According to [6], the control 

horizon M was chosen to be half of N, 60 minutes. 

The collective horizon approach with equal control 

and prediction horizons, presented in [1] was the 

most used approach found in the literature review 

and adopted in this study. The prediction horizon P 

was therefore 60 minutes. The tuning parameter Q, 

weighting the importance of the five controlled 

variables, was chosen as identity matrix, because 

keeping the level under high limit is as important in 

every magazine. The tuning parameter R, penalizing 

changes in the manipulated variables was set to zero. 

The rate limiters of the PI-controllers (Table 9) were 

implemented also as separate blocks for the control 

signals (outputs) of the model predictive controller. 

 

4.4 Feedforward control strategy development 

A feedforward control strategy was designed to 

maximize the available storage volume in the main 

tunnels of the combined sewer system. The strategy 

uses the weather forecast and lowers the water levels 

in the combined sewer tunnels to minimum before 

the anticipated rain event. In this study, the 
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feedforward strategy was implemented as real-time 

optimization of controlled variable setpoints using 

rain forecast data. The nominal setpoints of the 

magazines water levels were 50% of the maximum 

level. Twelve hours prior to the forecasted rain 

event, the setpoints were lowered to 0,2 m for 28 

hours, and then, lifted back up to nominal value.  

 

4.5. Control strategy testing 

The control results are illustrated for case 4. The 

precipitation data is presented in Figure 3. The 

combined sewer inlet flowrates from the six lumped 

catchment areas are presented in Figure 4. The 

changes in the manipulated variables are shown in 

Figure 5 and the setpoint tracking of the controlled 

variables in Figure 6. 

The results for total overflow with the difference 

control strategies compared to no control is given in 

Table 10. Applying control strategies decrease the 

overflow as can be seen from Table 11 comparing 

overflow reduction between no-control strategy and 

the other control strategies. The maximal overflow 

reduction is about 0,6 million m3, if the water levels 

in the combined sewer tunnels (magazines) are at its 

lowest when the rain starts. 

Implementation of PI and MPC control strategies 

decrease the overflow by 40 % in heavy rain cases 1 

and 2, and up to 80% for moderate rain case 4, 

whereas in extreme heavy rain case 3 the limitation 

of the buffer/storage capacity of the combined sewer 

system only allow overflow decrease of 16 %. 

Both PI and MPC control strategies with forecast 

(lowering storage setpoint 12 hours prior to rain) 

improves the results compared to no-control result 

by 45 % in heavy rain cases 1 and 2, 88% in 

moderate rain case 4 and by 21 % in extremely 

heavy rain case 3. 
Table 10: Total overflow in Mm3 for case scenarios with 

different control strategies. 

Case 
No 

control 
PI 

PI+F MPC 
MPC+F 

1 1,13 0,62 0,58 0,62 0,58 

2 1,49 0,96 0,88 0,95 0,89 

3 2,78 2,34 2,20 2,34 2,21 

4 0,45 0,095 0,055 0,094 0,056 

 
Table 11: Difference [Mm3] in total overflow between 

no-control strategy and other control strategies. 

Case PI PI+F MPC MPC+F 

1 0,51 0,55 0,51 0,55 

2 0,54 0,61 0,55 0,60 

3 0,44 0,59 0,44 0,58 

4 0,36 0,40 0,36 0,40 

 

 

 

 

Table 12: Difference [%] in total overflow between no-

control strategy and other control strategies. 

Case PI PI+F MPC MPC+F 

1 45 49 45 49 

2 36 41 37 40 

3 16 21 16 21 

4 79 88 79 88 

 

 
Figure 3: Rain event 4 with real precipitation 

measurement from Blindern weather station in Oslo. 

5. Summary and Discussions 

 

For all scenarios, real-time optimization using 

forecast data have significantly improved the 

performance of both PI and MPC control strategies. 

PI control with forecast has performed slightly better 

than MPC with forecast. Additionally, PI with 

forecast had lower pump loads than MPC with 

forecast. 

Thus, the answer our research question is: Control 

strategies applying feedforward strategy will 

minimize the overflow within the constraints of the 

infrastructure. Compared to no control, applying 

feedforward control strategy that uses rain 

prediction, overflow to natural water ways can be 

decreased up to 88% in moderate rain scenario, up 

to 49% in heavy rain scenarios and up to 21% in 

extreme storm scenario. Compared to control 

strategy without feedforward strategy, the 

feedforward strategy can minimize overflow by 3--

9%. 

Due to late data access during the project, some 

assumptions in the combined sewer network model 

need to be updated. As our project partners have 

pointed out, some of the catchment areas 

(Lillestrøm, Lier, Ski and Oppegård), should be 

omitted as these deliver water to other water 

resource recovery facilities than Bekkelaget and 

Veas. As these four catchment areas produce only 

small flowrates to the current combined sewer 

model, it is assumed that the effect to the final results 

is minimal. 

Future work is suggested on alternative SISO and 

MIMO controller parametrizations, new case studies 
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on different rain events, and handling of 

uncertainties of rain events using advanced control 

strategies such as stochastic MPC using the Matlab 

model. Implementation of the best control 

algorithms should be implemented in the MIKE+ 

model and tested with different rain scenarios. 
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Figure 4: Rain event 4 with combined sewer inlet flowrates I1 North+East; I2:Festning; I3: Torshov; I4: Nordstrand; 

I5:Bærum I6: Asker. The orange line presents the simulated sewer system inlet flowrate (combined municipal wastewater 

flow with diurnal pattern and rain event) around the average daily value of municipal wastewater flow indicated with black 

line. 
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Figure 5: Rain event 4 with changes in manipulated variables in Frognerparken magazine, Torshov magazine, Lysaker 

magazine, Bekkelaget magazine, Veas magazine and Fagerlia separation using the feedforward strategy combined with PI-

controllers (magenta), MPC algorithms (yellow). The nominal MV value is indicated with black line. 

 

 
Figure 6: Rain event 4, controlled variables (levels) in Frognerparken magazine, Torshov magazine, Lysaker magazine, 

Bekkelaget magazine and Veas magazine using the feedforward strategy combined with PI-controllers (magenta), MPC 

algorithms (yellow). The setpoint is indicated with black line and the high-limit with red line. If the high level is exceeded, 

wastewater flows over to natural waterways. 
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Abstract 

 

Integrating anaerobic digestion into electrochemical reactors is an advanced technology for biomethane 

recovery. Imposing low electric potential between electrodes, supplies CO2, electrons, and hydronium ions from 

anodic oxidation of organic and/or inorganic compounds. Then, autotrophic methanogens on the cathode 

produce methane from CO2 and H+ by electron uptake from the cathode. However, in mixed microbial 

environments, acetogens produce acetate as well. These reactions can take place via two different mechanisms, 

DIET (direct interspecies electron transfer) or IMET (indirect mediated electron transfer). This work 

investigates CO2 conversion to acetate and methane in an electrochemical biofilm reactor comparing the 

efficiency of CO2 reduction via DIET and IMET mechanisms at hydrogen evolving potentials from -0.3 to -0.7 

vs SHE. The other goal is to prove the importance of mass balance in CO2 reduction at applied voltages. 

Simulations are done in AQUASIM version 2.1. Simulation results depicted that higher H+ concentration at -0.7 

V vs SHE can reduce more CO2 in DIET with less current generation compared to IMET. This shows DIET the 

more efficient mechanism. Methane production is dominant in IMET model, however higher current is needed 

for CO2 fixation in this mechanism. Also, biomass concentration, acetate and methane production, substrate 

concentration, biofilm thickness, biomass distribution in biofilm, and current density over time in both 

mechanisms are investigated at variant voltages and substrate concentrations. Simulations showed that at high 

CO2 levels in both mechanisms CO2 conversion cannot reach maximum if the voltage is not high enough to 

supply H+.  

 

Keywords: biofilm reactor, cathode, DIET, IMET, CO2 conversion, methane, acetate  

 

1. Introduction 

Microbial electrosynthesis systems (MES) can 

solve the limitations of anaerobic digestion which 

have gained attention as power to gas technology; 

PtG in recent years (Nelabhotla et al., 2021). 

Biogas normally contains 50-70% CH4, 50-30% 

CO2 and other trace elements. Microbial 

communities can be stimulated to higher biogas 

production by a slight increase in the redox 

potential of the microbial environment. Applying 

low electric potentials between electrodes to 

execute electron transfer from anodic to cathodic 

biofilm has several advantages. Low voltage in the 

range of microbial redox activities triggers 

microorganisms to produce more biogas for a 

longer period and convert more CO2 to methane. 

likewise, CH4 content in biogas reaches up to 90-

98%. This could happen when autotrophic 

microbes namely methanogens and mediator- 

producing microbes as acetogens contribute to CO2 

reduction via consumption of the available 

hydrogen. In these systems, CO2 and hydrogen 

could be products of anodic dissociation of organic 

compounds such as complex carbohydrates or 

inorganic substances such as ammonium 

(Nelabhotla & Dinamarca, 2018; Sivalingam et al., 

2020). Autotrophic methanogenesis and 

acetogenesis (equations 1 to 3) could take place via 

indirect mediated electron transfer (IMET)1: 

 
2𝐻+ + 2𝑒− → 𝐻2 ,                                𝛥𝐸° =  −0.414 𝑉            (1)  

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂,              𝛥𝐺0 = −16.35
𝑘𝐽

𝑒. 𝑒𝑞⁄  (2) 

2𝐶𝑂2 + 4𝐻2 → 𝐶𝐻3𝐶𝑂𝑂− + 2𝐻2𝑂, 𝛥𝐺0 = −12.78
𝑘𝐽

𝑒. 𝑒𝑞⁄ (3) 

 

Or via equations 4 and 5 corresponding to direct 

interspecies electron transfer (DIET) (Nelabhotla & 

Dinamarca, 2019): 

 
𝐶𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻4 + 2𝐻2𝑂,            𝛥𝐸0 = −0.248 𝑉  (4) 
2𝐶𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻3𝐶𝑂𝑂− + 2𝐻2𝑂,   𝛥𝐸0 = −0.28𝑉(5) 
 

In a microbial electrosynthesis system, both 

mechanisms are possible depending on the 

microbial species types. According to equation 1, 

IMET needs higher applied potentials to happen 

 
1 Voltage values in the paper are stated versus standard 
hydrogen electrode (vs, SHE) 
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compared to DIET. This makes IMET less energy 

efficient since higher potentials are necessary to 

supply electrons and H+ for H2 formation. 

However, if the inflow to the MES reactor is fully 

digested, it has low volatile fatty acids (VFAs), but 

high amounts of hardly degradable organic 

compounds and soluble CO2. Such systems are 

dependent on hydrogen evolving potentials to 

provide H+ for CO2 fixation. It is important the 

potentials must be lower than the voltage required 

for water electrolysis in single chamber MES to 

avoid oxygen formation that is toxic for anaerobes. 

Electroactive hydrogen producing bacteria can 

produce hydrogen via IMET (Gharbi, et al., 2022). 

Hydrogenotrophic methanogens are of this kind 

which can produce hydrogen and consume it again 

for CO2 fixation to methane (Berghuis et al., 2019). 

Tremblay et al. (Tremblay et al., 2019), reported 

that in an enriched medium with microbiome S. 

Ovata known as a hydrogen producing species, a 

gradual increase in the cathodic voltage from -0.3 

to -0.7 vs, SHE, increased microbial H2 evolution 

in the MES system. In another work, acetate 

production happened parallel to methane and 

hydrogen gas formation in a mixed microbial broth 

of chemolitoautotrophs at -0.9 V vs SHE on 

cathode (Bajracharya et al., 2015). Although 

theoretical reactions in equations 1 to 5 show a 

lower voltage, the local potential reported for 

hydrogen gas evolution, acetate and CH4 formation 

is higher than the theoretical values. The reason is 

to overcome potential losses in the MES reactor 

which depend on factors such as the feed, microbial 

medium, electrode material, electrode surface area 

and the reactor volume. This study simulates 

autotrophic CO2 conversion to CH4 and acetate via 

DIET and IMET mechanisms which depend highly 

on the microbial community in the reactor. Not 

much particular work is available to compare DIET 

and IMET mechanisms. Nevertheless, in a 

modelling performed by Storck et al, DIET is 

suggested more advantageous for microbes because 

of fewer thermodynamic barriers (Storck et al., 

2016). It is difficult to control microbial 

communities, however if the more efficient 

mechaism is found, the process operation can be 

controlled to increase the microbial species that 

demand less energy for CO2 capture i.e, lower 

electron flow requirement for the process.  

 

2. Methodology  

The simulation is based on a single chamber 

biofilm reactor. Anode and cathode are in the same 

microbial medium. The reactor is fully mixed and 

has continuous inflow and discharge. Figure 1 

shows the scheme of the model. 

 

 
Figure 1. A schematic overview of a single chamber 

anaerobic MES reactor. The external electric potential on 

the cathode leads to bio anodic oxidation of organic or 

inorganic components and generation of CO2/H+ that 

transfer in the liquid toward the cathodic biofilm, and 

electrons which flow through the wire connection from 

anode to cathode. Cathodic biofilm ingests the substrates 

together with electrons to produce acetate (n=2) or 

methane (n=1) via two possible mechanisms: a) DIET or 

b) IMET. 

2.1. Model assumptions and expressions 

Assumptions of the model are as follows: 

• The reactor operates at 1 atm and pH 7.  

• Physiochemical gas/liquid mass transfer is not 

included. Diffusion and convection are 

assumed between liquid and biofilm. 

• Effect of electrode material is not incorporated.  

• Only cathodic reactions and cathodic biofilm is 

included in the simulated model. 

• The source of H+ for cathode is limited. H+ 

values in the simulation are taken from 

experimental work based on anodic oxidation 

of organic compounds corresponding to a 

certain applied potential. However, anodic 

reactions are not included in the simulations.  

• CO2 is the carbon source for cathode which is 

soluble and in equilibrium with HCO3
−. 

• The active biomass is attached to cathode. 

Collaboration of the detached biofilm and 

suspended media to redox reactions is ignored.  

• Initial biomass fraction is equal for all species. 

In DIET model, biomass consists of acetogens 

and methanogens. In IMET model, 

hydrogenotrophs are added to the other two 

species. 

• The detachment velocity in the simulation 

(Reichert, 1998) is assumed as an indicator of 

bacterial decay (Kd) and loss of biofilm due to 

operating conditions. 

In IMET model, hydrogenotrophic microbes 

produce hydrogen molecule at cathode. So, the 

electron acceptor in Monod expression is H+ ion. 

Cathode performs as electron donor in the Nernst 
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term (equation 6). Autotrophic methanogens and 

acetogens take part in H2 consumption (equations 7 

and 8) which is expressed by multiplicative Monod 

equation. Cathodic reactions are the opposite of 

anode. therefore, the Nernst term is positive to 

represent cathode where electrons are taken from 

cathode and the voltage is negative (Flowers & 

Theopold, 2019; Metcalf et al., 2014; Torres et al., 

2007). 

 
𝑑[𝑋𝐻2]

𝑑𝑡
= 𝑋𝐻2

· (𝜇𝑋𝐻2

𝑚𝑎𝑥 ·
𝑆𝐻+

𝐾𝐻++𝑆𝐻+
·

1

1+𝑒𝑥𝑝⌈(𝐸𝑎𝑝𝑝)
2𝐹

𝑅𝑇
⌉

− 𝑘𝑑,𝐻2
)        (6)    

𝑑[𝑋𝐶𝐻4]

𝑑𝑡
= 𝑋𝐶𝐻4

· (𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥 ·
𝑆𝐶𝑂2

𝐾𝐶𝑂2+𝑆𝐶𝑂2

·
𝑆𝐻2

𝐾𝐻++𝑆𝐻+
− 𝑘𝑑,𝐶𝐻4

)           (7)  

𝑑[𝑋𝑎𝑐]

𝑑𝑡
= 𝑋𝑎𝑐 · (𝜇𝑋𝑎𝑐

𝑚𝑎𝑥 ·
𝑆𝐶𝑂2

𝐾𝐶𝑂2+𝑆𝐶𝑂2

·
𝑆𝐻2

𝐾𝐻2+𝑆𝐻2

− 𝑘𝑑,𝑎𝑐)                   (8)  

 

In DIET, microbes take electrons directly from 

cathode and consume H+ and CO2 from the bulk 

liquid. H+ and CO2 are both the limiting electron 

acceptor substrates. Therefore, Nernst-Monod 

equations in DIET can be expressed as in equations 

9 and 10.  

Product concentration in IMET and DIET is 

calculated according to equations 11 and 12. 

 

 
𝑑[𝑋𝐶𝐻4,]

𝑑𝑡
= 𝑋𝐶𝐻4

· (𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥 ·
1

1+𝑒𝑥𝑝⌈(𝐸𝑎𝑝𝑝)
8𝐹

𝑅𝑇
⌉

·
𝑆𝐶𝑂2

𝐾𝐶𝑂2 +𝑆𝐶𝑂2

·
𝑆𝐻+

𝐾𝐻++𝑆𝐻+
−

𝑘𝑑,𝐶𝐻4
)                                                                                                (9)  

𝑑[𝑋𝐴𝐶]

𝑑𝑡
= 𝑋𝐴𝐶 · (𝜇𝑋𝐴𝐶

𝑚𝑎𝑥 ·
1

1+𝑒𝑥𝑝⌈(𝐸𝑎𝑝𝑝)
8𝐹

𝑅𝑇
⌉

·
𝑆𝐶𝑂2

𝐾𝐶𝑂2,𝐻𝐶𝑂3
−+𝑆𝐶𝑂2

·

𝑆
𝐻+

𝐾𝐻++𝑆𝐻+
− 𝑘𝑑,𝑎𝑐)                                                                            (10)  

𝑑[𝑆𝐶𝐻4
]

𝑑𝑡
= (

𝑑[𝑋𝐶𝐻4
]

𝑑𝑡
) 𝑌𝐶𝐻4

⁄                                                       (11) 

𝑑[𝑆𝑎𝑐]

𝑑𝑡
= (

𝑑[𝑋𝑎𝑐]

𝑑𝑡
) 𝑌𝑎𝑐⁄                                                                 (12) 

 

Change in j (current density, A∙m-2) over time 

correlates to electroactive biomass concentration, 

obtained by equation 13 (Torres et al., 2008). 

 
𝑑𝑗

𝑑𝑡
=

𝑑[𝑋𝑖]

𝑑𝑡
· 𝛾 · 𝐿𝑓 · (𝑓𝑠

0 − 1)                                         (13)  

Table 1. Model parameters for the simulation 

Parameter Symbol Value Unit Ref 

Specific respiration rate of microorganisms 𝑏𝑋 0.05 d-1 [a] 

Diffusivity of acetate 𝐷𝑎𝑐 1. 54 ∙ 10−5 m2 ∙ d−1 [b] 

Diffusivity of methane  𝐷𝐶𝐻4
 1.296 ∙ 10−4 m2 ∙ d−1 [b] 

Diffusivity of CO2 𝐷𝐶𝑂2
 1. 658 ∙ 10−4 m2 ∙ d−1 [b] 

Diffusivity of H2 𝐷𝐻2
 3.88 ∙ 10−5 m2 ∙ d−1 [b] 

Diffusivity of hydrogen ion (H+) 𝐷𝐻+ 8.04 ∙ 10−5 m2 ∙ d−1 [b] 

Diffusivity of biomass 𝐷𝑋 1 ∙ 10−7 m2 ∙ d−1 [c] 

Biomass density ρ 222 mol ∙ m−3 [c] 

Half saturation concentration of CO2 𝐾𝐶𝑂2
 3.8 mol ∙ m−3 [d] 

Half saturation concentration of H2 𝐾𝐻2
 8 ∙ 10−4 mol ∙ m−3 [b] 

Max growth rate of methanogens 𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥  2.28 d−1 [f] 

Max growth rate of acetogens 𝜇𝑋𝑎𝑐

𝑚𝑎𝑥 1.008 d−1 [e] 

Max growth rate of Hydrogenotrophs 𝜇𝑋𝐻2

𝑚𝑎𝑥 2.2 d−1 Assumed*1 

Acetogenic growth yield 𝑌𝐶𝐻4
 6.8 ∙ 10−3 - [f] 

Methanogenic growth yield 𝑌𝑎𝑐 6 ∙ 10−3 - [e] 

Hydrogenotrophic growth yield 𝑌𝐻2
 6.4 ∙ 10−3 - Assumed 

Boundary layer resistance LL 1 ∙ 10−4 M [c] 

Applied potential on cathode 𝐸𝑎𝑝𝑝 Variant V [g] 

Biofilm reactor volume V 0.1 m3 [c] 

Cathodic biofilm surface area  A 10 m2 [c] 

Energy production of acetogenic cells 𝑓𝑠,𝑎𝑐
0  0.067 - Calculated*2 [h]  

Energy production of methanogenic cells fs,𝐶𝐻4

0  0.07 - Calculated [h] 

Stoichiometric coefficient of biomass in 

acetogenesis 

- 0.0232 - Calculated [h]  

Stoichiometric coefficient of biomass in 

methanogenesis 

- 0.028 - Calculated [h]  

[a] (Kazemi et al., 2015), [b] (Picioreanu et al., 2010), [c] (Reichert, 1998), [d] (Cabau-Peinado et al., 2021), [e] 

(Vandecasteele, 2016), [f] (Muñoz-Tamayo et al., 2019), [g] (Tremblay et al., 2019), [h] (Rittmann & McCarty, 2001). 

*1. Different values are reported for hydrogenotrophic microbes. Here, the growth rate and yield are assumed based on 

hydrogenotrophic methanogens. (Berghuis et al., 2019; De Silva Muñoz et al., 2010) .  
*2. The biomass formula is C5H7O2N (Metcalf et al., 2014). 
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Where, 𝛾 is the equal electron production, that for 

acetate and methane is 8, and for hydrogen is 2.  
 

2.2. Simulation parameters, inputs, and outline 

Simulation parameters are given in Table 1. The 

choice of cathodic voltage and relevant H+ 

concentration was established from experimental 

work by Tremblay et al. where H2 evolution 

depends on cathodic electric potential at ambient 

temperature 25° C (Tremblay et al., 2019). H+ 

concentration from the experiment is scaled up to 

the reactor volume in the simulations. H+ 

concentration depends highly on voltage, so at each 

step, H+ concentration varies at the same time with 

voltage change at constant CO2 concentration. The 

objective is to calculate the reduced CO2 at each 

voltage and H+ concentration. Also, picture the 

importance of H+/H2 concentration in CO2 

conversion efficiency. All varying steps is executed 

for both DIET and IMET mechanism to find the 

more efficient mechanism based on the defined 

model parameters and inputs. Furthermore, the 

effect of CO2 concentration is simulated at three 

different levels at constant H+ concertation and 

constant voltage to prove that controlling CO2 

concentration according to the available H+ at the 

corresponding voltage is important to have the 

highest CO2 reduction efficiency. Table 2 shows 

the simulation inputs. 

Table 2. Substrate concentration and voltage inputs 

to the cathodic biofilm for each step. 
Step Eapp  

(V vs SHE) 

SH+   

(mol ∙ m−3) 

SCO2
  

(mol ∙ m−3) 

1 -0.3 60 25 

2 -0.4 70 25 

3 -0.5 80 25 

4 -0.6 120 25 

5 -0.7 160 25 

6 -0.7 160 10 ,25, 50 

According to the inflow and the reactor volume, 

simulation is done at 1 day HRT for 400 days for 

step 1 to 5. For step 6, CO2 concentration increases 

every 100 days for total 300 days.  

Simulations include the change in state variables 

including concentration of acetate (Sac), methane 

(SCH4
), CO2 (SCO2

), H+ (SH+), hydrogen (SH2
) and 

biomass (hydrogen producing microbes (XH2
), 

methanogens (XCH4
) and acetogens (Xac)), current 

density (j), biofilm thickness (Lf), and the 

distribution of biomass through the biofilm in 

IMET and DIET mechanisms at different cathodic 

voltages and substrate concentration.  

  

3. Results and discussion 

 

3.1. Effect of voltage at constant CO2 level 

Figures 2 and 3 compare the simulated methane 

and acetate concentration in DIET and IMET 

models. In DIET (Figure 2), both acetate and 

methane are formed from day one. However, 

acetate concentration decreases over time at all 

hydrogen concentrations while methane production 

increases until day 300. Then acetate production 

reaches 0.02 mol∙m-3∙d-1 and methane production 

reaches steady state at 19.95 mol∙m-3∙d-1.  

 
Figure 2. Acetate and methane concentration in DIET 

model at different potentials. 

 
Figure 3: Acetate and methane concentration in IMET 

model at different potentials. 

In IMET (Figure 3) acetogens fail to contribute to 

hydrogen uptake. Since the third species 

(hydrogenotrophs) contributes to the IMET model. 

In this case, diffusion of two CO2 molecules toward 

acetogens for acetate formation will be limited. In 

IMET model, methane attains steady state in the 

first week at all voltages from -0.3 to -0.6 V. 

However, at -0.7 V, it takes 90 days for methane 

production to reach steady at 19.91 mol∙m-3∙d-1. 

Experimental studies also reported that methane 

production can be dominated by hydrogenotrophic 

methanogens via IMET (Gharbi et al., 2022). 
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However, in DIET model at steady state, the total 

amount of both products is 1.2% higher than in 

IMET model. Voltage increment has a positive 

impact on product formation in both mechanisms 

especially at -0.7 V which corresponds to higher 

concentration of H+ ions, so more CO2 can be 

reduced. 

 
Figure 4. Unconsumed concentration of substrates in 

pore water in DIET model at different potentials. 

 
Figure 5: Unconsumed substrate concentration in pore 

water in IMET model at different potentials. 

Figures 4 and 5 show the unconsumed substrate 

concentration in pore water. In DIET model (Figure 

4), CO2 consumption is slightly higher than IMET 

(80% for DIET and 79.7% for IMET). In both 

figures, higher voltage, which supplies more H+ 

concentration, increases CO2 consumption. Also, 

the highest unconsumed CO2 in pore water refers to 

-0.3 V. All H+ in DIET and all H2 in IMET are 

consumed. This can give an idea of a real scenario 

that increasing CO2 levels in an MES reactor 

without supplying enough H+, cannot increase 

product formation. The simulation shows low CO2 

conversion efficiency at -0.3V in both mechanisms. 

The conversion increases gradually by increasing 

voltage to -0.7 V due to higher H+ supply. 

However, at -0.7 V in the simulation, it takes 

longer for the system to stabilize the hydrogen 

consumption and CO2 reduction.  

 
Figure 6. Electroactive biomass concentration in DIET 

model at different potentials. 

 
Figure 7. Biomass concentration in IMET model at 

different potentials. 

Figures 6 and 7 show biomass concentration on the 

cathodic biofilm which in DIET model (Figure 6) 

consists of electroactive acetogens and 

methanogens. In IMET model (Figure 7) biomass 

concentration comprises acetogens, methanogens 

and electroactive hydrogenotrophs. In DIET, 

acetogenic and methanogenic biomass 

concentration change relatively. Finally, 

methanogens become dominant while acetogenic 

growth reaches close to zero. Methanogenic 

biomass attains maximum until day 300 then it 

follows a slow decreasing trend until day 400. That 

is due to the biofilm detachment velocity in the 

simulation. Increasing voltage in the simulation 

shows a positive effect on microbial growth and 

biomass concentration especially at -0.6 and -0.7 V. 

Figure 7 shows in IMET model, the dominant 

biomass is hydrogenotrophs with a concentration of 

3.2 times higher than the total acetogenic and 

methanogenic biomass after 90 days. There is a 
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decline in acetogenic and methanogenic 

concentration while electroactive hydrogenotrophic 

biomass concentration reaches maximum 8 

mmol∙m-3 until day 90. Despite the electroactive 

biomass, acetogenic concentration attains zero at 

day 100, and methanogenic biomass concentration 

becomes stable between 0.5-1 mmol∙m-3. The 

decline in biomass may be according to microbial 

maintenance and detachment velocity parameters 

included in the simulated biofilm model.  

 
Figure 8. Generated current density in DIET and IMET 

models at different potentials. 

 
Figure 9. Biofilm thickness in DIET and IMET models at 

different potentials. 

Figure 8 shows current density obtained from DIET 

and IMET models which is presented as j∙(Lf)-1 in 

mA∙m-3 related to electroactive biomass 

concentration. In DIET model, current density is 

calculated based on the total current consumed by 

electroactive acetogens and methanogens. In 

IMET, it is obtained according to electroactive 

hydrogenotrophs. In this simulation, the consumed 

current in DIET is lower than IMET (which 

corresponds to the total electron flow from anode to 

cathode). It rises by increasing voltage because of 

the growing biomass concentration. Considering      

-0.7 V at steady state, the current density is -7.8 in 

DIET and -12.22 mA∙m-3 in IMET model. 

According to the simulations, DIET can fix 80% of 

CO2 at 36% lower required current density. CO2 

conversion efficiency in the simulation with respect 

to energy consumption is higher in DIET model 

(regarding current density and consumed 

electrons). IMET model shows higher current 

density. The reason may be due to consuming more 

electrons and substrates for microbial growth and 

maintenance.  

Figure 9 shows the simulated biofilm thickness. 

The five lower lines depict DIET, and the five 

upper lines correspond to IMET mechanisms. In 

the simulation, biofilm thickness increases by 

increasing the voltage due to higher biomass 

formation. However, Lf in DIET is 2.5 times 

thinner than IMET. Thinner biofilm in DIET at the 

same voltage can fix marginally higher CO2 than 

IMET. In IMET, biofilm is 60% thicker than in 

DIET which is due to existence of 

hydrogenotrophs. According to the assumed 

parameters in the simulation, hydrogenotrophs can 

grow faster because they grow only on one 

substrate. So, they become the abundant biomass in 

IMET and increase the biofilm thickness.  

 
Figure 10. Acetogenic and methanogenic biomass 

distribution in biofilm in DIET model at different 

potentials. 

 
Figure 11. Hydrogenotrophic, acetogenic, and 

methanogenic biomass distribution through the biofilm in 

IMET model at different potentials. 

Figures 10 and 11 show the simulated biomass 

distribution after 400 days in DIET and IMET. In 
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both models, biomass distribution has a direct 

relation with biofilm thickness. In DIET (Figure 

10), distribution of both acetogens and 

methanogens is equal at the substratum (Z=0). The 

abundance of methanogens becomes higher in outer 

layers close to the pore water. In contrast, 

acetogenic community decrease at outer layers. 

That could be the reason for acetogenic decline in 

the simulation. The argument could be as the 

biofilm thickness is low at preliminary stages, 

acetate can be produced easier since the substrate 

diffusion is not limited by biofilm thickness. As the 

biofilm becomes thicker over time, methanogens 

will be dominant in outer layers which can uptake 

substrates from pore water faster than acetogens. 

Therefore, the dominant product is methane in the 

simulation after 400 days.   

In the IMET model (Figure 11) most species in 

outer layers are hydrogenotrophs which consume 

all the H+ to produce H2. Compared to that, the 

abundance of acetogens and methanogens is almost 

equal at the substratum to the outer layers. 

However, acetogens grow by consuming two CO2 

molecules. If CO2 reaches inner layers, methanogen 

which grow on one CO2 molecule can consume it 

easier, so acetogens cannot produce acetate in such 

simulated conditions.  

 

3.1. Effect of CO2 concentration 

Figures 12 and 13 resulted from run 6, indicate the 

effect of CO2 concertation on product formation at 

a constant voltage of -0.7 V and constant H+ 

concentration for both DIET and IMET 

mechanisms for 100 days each. In DIET model 

(Figure 12), the whole CO2 (10 mol∙m-3) is 

consumed in the presence of H+. Following the 

stoichiometry of these biological reactions, 62% of 

H+ remains unconsumed in pore water. If this 

happens in a reality, surplus H+ may decrease the 

pH, or H+ may be consumed in other possible 

reactions which are not desired. Increasing CO2 

concentration in the simulations, leads to full 

hydrogen consumption while CO2 consumption 

efficiency reaches 80%. By further increase in CO2 

concentration, all the hydrogen will be consumed, 

while 60% of CO2 remains unconsumed in pore 

water. If this is a case in real experiments, unused 

CO2 may go out with methane due to gas/liquid 

CO2 equilibrium and decrease the final methane 

concentration in biogas (Metcalf et al., 2014). The 

same trend can be seen in the simulated IMET 

(Figure 13) that at low CO2 concentration, H2 is not 

fully consumed. If such scenario happens, biogas 

may contain 82% H2 and 18% CH4 which is not 

desired. Reversely, at high CO2 levels in the 

simulation, microorganisms consume all H2, but in 

real cases, excess CO2 may appear in biogas and 

decrease the biogas methane content according to 

biogas production theory (Metcalf et al., 2014). 

 
Figure 12. Effect of CO2 concentration on acetate and 

CH4 production in DIET model at -0.7V. 

 
Figure 13. Effect of CO2 concentration on acetate and 

CH4 production in IMET model at -0.7 V. 

4. Summary and conclusions 

This work simulates CO2 reduction to acetate and 

methane in a continuous flow MES reactor via 

IMET and DIET mechanisms at H+ evolving 

potentials (-0.3 to -0.7 vs SHE) at constant CO2 

concentration, then at constant H+ concentration 

and constant voltage. Simulation results show that 

higher voltage which could provide higher H+ 

concentration could convert more CO2 to methane 

and acetate in DIET model with 80% CO2 fixation. 

Voltage increment could enhance product 

formation in both DIET and IMET models. Product 

formation in DIET model is calculated at 36% 

lower current density which shows it the more 

energy efficient mechanism compared to IMET 

model. Moreover, simulations show that 

controlling CO2 concentration is another criterion 

of importance in limited source of H+ supply.  

DIET model implies to be more efficient than 

IMET model in CO2 fixation. This means 1.2% 

higher product formation in DIET at steady state 

with 36% lower generated current. That means less 

energy requirement than in IMET mechanism. Not 

much particular work is available to compare DIET 

and IMET mechanisms in bioelectrochemical CO2 

fixation. The overall result of this simulation aligns 

with Stork et al. that DIET needs less energy in 
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form of electrons for CO2 fixation. However, the 

simulations were done assuming simple conditions. 

Real MES reactors have complex microbial 

communities which may affect acetogenesis and 

methanogenesis. Also, intracellular, and 

extracellular limitations of diverse types of 

acetogens and methanogens, and their substrate 

uptake capacity is not studied in these simulations. 

The yield and maximum growth rate of the 

assumed microbes in the simulations are found in 

literature which might overestimate or 

underestimate the production in DIET or IMET 

models. Also, detachment velocity and diffusion 

phenomena are the only limitations included in the 

simulations. Moreover, there is a non-zero initial 

value for microbial concentration on the biofilm, so 

the product formation starts from the first day 

without a lag phase. However, in real reactors, the 

lag phase of microbial adaptation to start CO2 

fixation is longer (Metcalf et al., 2014). In these 

simulations, since H+ is available from the first day, 

microbes start CO2 reduction from the first day. 

This simulation studied the cathodic reactions for 

both mechanisms. However, electron generation 

source which depends on the available compounds 

for anode is an important measure of investigation 

at the next stage. The number of transferred 

electrons depends on the molecular compounds 

accessible to anodic biofilm for degradation at a 

certain voltage. Thus, the model can be completed 

by including anodic reactions. 
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Abstract 

 

Finite Volume Methods (FVM) are high quality methods for solving conservative/hyperbolic partial differential 

equations (PDEs). A popular class of high-resolution methods utilize a nonlinear combination of low order 

methods and high order methods via flux limiting functions. Another class of high-resolution methods is the 

class of weighted essentially non-oscillatory (WENO) schemes. Here, the focus is on flux limiting schemes. An 

experimental finite volume (FV) semi-discrete solver for systems of hyperbolic PDEs has been implemented in 

Julia, utilizing Julia’s DifferentialEquations.jl package for handling the time marching. A first order upwind 

formulation is used for the low order method, and a central second order formulation is used for the high order 

method. The PDE can be provided either in flux form, or in quasi-linear form. In the former case, automatic 

differentiation (AD) package ForwardDiff.jl is used to compute the Jacobians of the flux vector. Package 

LinearAlgebra.jl is used to compute the eigenspace of the Jacobians. The implementation allows for up to 3 

internal/external coordinates. More than a dozen flux limiting functions are given, with the possibility of the 

users to write their own flux limiters. The implementation allows for user provided spatial discretization points, 

and source terms in the PDE. In this paper, we will compare various flux limiting schemes for PDEs with 

analytic solutions, and will also compare flux limiting schemes for a simple granulation model (layering). 

Possible extensions of the experimental implementation include: (i) higher order methods, (ii) more extensive 

support for boundary conditions, (iii) improved support for source terms.  

 

 

1. Introduction 

A partial differential equation (PDE) is a 

mathematical equation having two or more 

independent variables, an unknown function 

(depending on those variables), and partial 

derivatives of the unknown function with respect to 

the independent variables [1]. Solving a PDE leads 

to a function that solves the equation or, in other 

words, converts it into an identity when it is 

replaced into the equation. Although some variants 

of PDEs have analytical solutions, in general 

numerical methods are used to solve PDEs.  

There are different types of numerical methods for 

solving PDEs such as finite elements, finite 

volumes, and finite difference. In this paper, the 

finite volumes method (FVM) is considered as the 

basic for converting PDE problem into a set of 

ordinary differential equations (ODEs).  Then, the 

ODEs are solved using ODE solver. There are 

several standard ODE solvers available in almost 

every programming language. Usually, this 

approach is called semi-discretization.  

FVMs are high quality methods for solving 

conservative/hyperbolic PDEs. To achieve high-

order accurate numerical approximation of PDEs, 

especially in presence of shocks or discontinuities, 

a group of FVM related schemes called high-

resolution schemes are vastly used. Among the 

methods, flux limiter and WENO1  schemes are 

shown effective in solving difficult-to-solve PDE 

problems [2, 3].  

Flux limiters (or slope limiters) schemes utilize a 

nonlinear combination of low order methods and 

high order methods via flux limiting functions. One 

simple but effective combination of methods is to 

use upwind as the low (first) order and centered 

difference as the high (second) order schemes 

(called MUSCL2 scheme) [2]. MUSCL scheme is 

the core approach in this paper and more than a 

dozen of flux limiter functions are utilized to solve 

the PDEs.  

This paper focus on the introduction of an open-

source solver for Julia programming language. This 

 
1 Weighted Essentially Non-Oscillatory 
2 Monotonic Upstream-centered Scheme 
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solver package is available for the interested reader 

via the following GitHub link: 

https://github.com/amirfarzin/FVM_PDEsolver.jl  

In addition, to evaluate the performance of the 

developed package, several PDE problems are 

solved using different flux limiter functions. 

Therefore, as the result, a fair comparison of the 

functions is also presented in this paper.  

The rest of this paper is structured as follows: the 

second section starts with an introduction to the 

class of PDEs the solver is design to deal with. 

Then, the MUSCL scheme equations and flux 

limiter functions are reviewed. The third section 

contains a brief documentation for the package. 

The PDE problems used for evaluation and their 

solution are presented in section four. In addition, 

the flux limiter functions are compared based on 

their performance in solving those PDEs. Finally, 

the paper ends with discussion in section five. 

2. PDE problem definitions  

As mentioned, PDEs are equations involving at 

least two independent variables, one or more 

dependent variables and their derivatives which are 

functions the independent variables. The first 

assumption here, is that time is always an 

independent variable in all PDEs. Therefore, we 

denote the variables as follows: 

• 𝑧1, 𝑧2, … , 𝑧𝑛𝑧 , 𝑡 are independent variables 

where 𝑛𝑧 ≥ 1. With this notation, the PDE 

involves 𝑛𝑧 + 1 independent variables. In 

vector form, 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑛𝑧]
𝑇
∈ ℝ𝑛𝑧 is 

called the vector of spatial (i.e., 

internal/external coordination) independent 

variables. Commonly, the time variable 𝑡 is in 

the range [0,∞) (i.e., 𝑡 ∈ ℝ+). And the spatial 

variables 𝑧1, 𝑧2, … , 𝑧𝑛𝑧 are defined in a 

domain denoted by 𝛀 ⊂ ℝ𝑛𝑧 (i.e., 𝒛 ∈ 𝛀).  

• 𝑞1, 𝑞2, … , 𝑞𝑛𝑞  are dependent variables 

where 𝑞𝑖 = 𝑞𝑖(𝑧1, 𝑧2, … , 𝑧𝑛𝑧 , 𝑡 ) = 𝑞𝑖(𝒛, 𝑡) 

and 𝑛𝑞 ≥ 1. In vector form, 𝒒 = 𝒒(𝒛, 𝑡) =

[𝑞1, 𝑞2, … , 𝑞𝑛𝑞]
𝑇

: ℝ𝑛𝑧+1 → ℝ𝑛𝑞  is the vector 

of unknown functions or dependent 
variables.  

With above definitions, the general form of a PDE 

problem is as follows:  

𝑭(𝒛, 𝑡, 𝒒, 𝐷𝒒, 𝐷2𝒒,… , 𝐷𝑚𝒒) = 𝟎 (1) 

where 𝐷𝛼𝒒 denotes the tensor of all partial 

derivatives of order 0 ≤ 𝛼 ≤ 𝑚, and 𝑚 ≥ 1 is the 

highest order of partial derivatives in the system. 

System of Eq. Error! Reference source not 

found., in general perspective, consists of 𝑛𝑓 

equations. And the number of unknown variables is 

𝑛𝑞. 

• if 𝑛𝑞 = 𝑛𝑓 then the PDE problem is called 

determined, 
• if 𝑛𝑞 < 𝑛𝑓 or 𝑛𝑞 > 𝑛𝑓 then the PDE problem 

is called over-determined or under-
determined, respectively. 

Without losing generality, it can be assumed that 

the system of PDEs is determined (i.e., 𝑛𝑞 = 𝑛𝑓). 

The classification of PDE problems, helps easier 

referring to what type of PDE someone is dealing 

with. In addition, it is essential to know the class of 

PDE while using the textbooks and papers, and 

selecting the solution methodologies. The PDE 

problems can be classified in four ways: 

• Order of PDE: The highest order of partial 
derivatives exists in any of the system 
equations (i.e., 𝑚). 

• Number of equations: if the number of 
equations is one (i.e., 𝑛𝑞 = 1), then the PDE 

is called scalar. Otherwise, the equations 
represent a system of PDEs. 

• Linearity: A PDE system expressed by Eq. 
(1) is non-linear unless it fits into one of 
the following groups: (i) quasi-linear3, (ii) 
semi-linear4, or (iii) linear5.  

• Homogeneity: A PDE system represented 
by Eq. (1) is called homogenous if 𝒗 ∈ ℝ𝑛𝑞  
is a solution to the system then 𝑎𝒗 is also a 
solution for any scalars 𝑎. 

The package is developed to solve conservation 

law equation which appears in several physical 

phenomena such as electromagnetism, fluid 

dynamics, heat transfer, etc. However, only semi-

linear first order system of PDEs with up to three 

spatial dimensions is considered. For increasing the 

readability of the notations, let us replace 𝑧1, 𝑧2, 
and 𝑧3 with  𝑥, 𝑦, and 𝑧, respectively. Note that, 𝑥, 

𝑦, and 𝑧 are not necessarily 3-D Cartesian axes, but 

can represent internal coordination as well.   

The differential form of the conservation law is as 

follows: 

where ∇⃗⃗ = [
𝜕

𝜕𝑥
,
𝜕

𝜕y
,
𝜕

𝜕z
] is the divergence vector and 

�⃗⃗� = [𝒇, 𝒈, 𝒉] is the field vector. Equivalently, the 

Eq. (2) can be written as: 

 
3 A PDE system of order 𝑚 is called quasi-linear if it is 

linear in terms of the highest order (i.e., 𝑚) partial 

derivatives. 
4 A quasi-linear PDE system of order 𝑚 is called semi-

linear if the coefficients of the highest order (i.e., 𝑚) 

partial derivatives are only functions of the independent 

variables. 
5 A PDE is called linear if the coefficients of all 

dependent variables and their derivatives are only 

functions of the independent variables. 

𝜕𝑡𝒒 + ∇⃗⃗ . �⃗⃗� (𝒒) = 𝝈(𝒒) (2) 

https://github.com/amirfarzin/FVM_PDEsolver.jl
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𝜕𝑡𝒒 + 𝜕𝑥𝒇(𝒒) + 𝜕𝑦𝒈(𝒒) + 𝜕𝑧𝒉(𝒒) = 𝝈(𝒒) (3) 

In above equations, 𝝈(𝒒) is called the source term. 

If 𝝈(𝒒) = 𝟎, Eq. (3) represent a homogenous 

system of PDEs. In above equations, 𝒇, 𝒈, and 𝒉 

are arbitrary functions for field vectors in 𝑥, 𝑦, and 

𝑧 directions respectively. 

If the flux functions are differentiable with respect 

to conserved variable 𝒒, using the chain rule, the 

Eq. (3) can be written as follows: 

𝜕𝑡𝒒 + 𝑱𝒇𝜕𝑥𝒒 + 𝑱𝒈𝜕𝑦𝒒 + 𝑱𝒉𝜕𝑧𝒒 = 𝝈 (4) 

The matrices 𝑱𝒇 =
𝜕𝒇

𝜕𝒒
, 𝑱𝒈 =

𝜕𝒈

𝜕𝒒
, and 𝑱𝒉 =

𝜕𝒉

𝜕𝒒
 are the 

Jacobians of 𝒇, 𝒈, and 𝒉. If all the eigenvalues of 

the Jacobian matrices are real with linearly 

independent eigenvectors, the system of PDEs is 

called hyperbolic [4]. Note that this paper and the 

solver package only consider hyperbolic PDEs. The 

solver is design to handle the PDEs expressed 

either by Eq. (3) or Eq. (4).  

3. Methodology 

In this section, for the simplicity of equations, the 

methodology is discussed for 1-D homogenous 

conservation law equation as follows: 

𝜕𝑡𝒒 + 𝜕𝑥𝒇(𝒒) = 𝟎 (5) 

At the end this section, the method is extended for 

solving PDE problems of Eq. (3) and (4).  

3.1. Grid 

To solve Eq. (5), the general idea is to convert it 

into a set of ODE problems where we need the 

values of 𝜕𝑡𝒒 at each time step. As 𝒒 is a function 

of time and space, the values of 𝜕𝑡𝒒 at each time 

step should be found for every point in the space. 

Here, the space domain is simply bounded to 

min/max values (i.e., 𝑥 ∈ [𝑥min , 𝑥max]). 
Numerically, working with a continuous space 

domain is impossible. Therefore, it is necessary to 

discretize the space first. The developed package 

uses a non-uniform rectangular grid up to three 

dimensions for space discretization. It is also 

possible to extend it for more dimensions or 

improve it with triangular cells. A small part of the 

𝑥 axis is shown in Fig 1.  

i+1i–1  

Control Volume

i+½ i–½ 

i

i+½ Fi–½ F

 
Figure 1: Grid-point cluster for one-dimensional problem 

The advantage of non-uniform grid is the variable 

cell sizes. This feature allows larger cells in non-

challenging and smaller cells in critical areas.  

Regarding the grid, the following notation is used 

in the rest of this paper:  

• Integer subscripts such as 𝑖 − 1, 𝑖, and 𝑖 + 1 
are used for quantities at cell centers. For 
example, 𝑥𝑖  and 𝒒𝑖  are the coordination and  
𝒒 vector at the center point of 𝑖th cell.  

• Subscripts such as 𝑖 −
1

2
 and 𝑖 +

1

2
 are used 

for referring to the quantities at the cell 
boundaries. For example, as shown in Fig. 
1, 𝑭

𝑖−
1

2

 is the flux vector from (𝑖 − 1)th cell 

into 𝑖th cell at the boundary between them. 
• As mentioned, the grid is assumed to be non-

uniform which means the lengths of cells can 

be different. Therefore, the length of the 𝑖th 

cell is denoted by 𝛥𝑥𝑖 = 𝑥𝑖+1
2

− 𝑥
𝑖−
1

2

. In 

addition, 𝛥𝑥
𝑖−
1

2

= 𝑥𝑖 − 𝑥𝑖−1 is the distance 

between center points of (𝑖 − 1)th and 𝑖th 

cells.  

3.2. Finite volume method (FVM) 

The FVM is a popular and efficient numerical 

approach for solving PDE problem. In the FVM, 

the problem domain (i.e., only space in semi-

discretization strategy) is broken into grid cells. 

Then, the total integral of 𝒒 over each grid cell is 

approximated [5]. If the problem presents a 

conservation equation (e.g., Eq. (5)), the value of 

the integral is equal to the net flow into the control 

volume: 

𝜕𝑡∫ 𝒒𝑑𝑥
𝑥
𝑖+
1
2

𝑥
𝑖−
1
2

= 𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

 (6) 

where 𝑭
𝑖−
1

2

 is some approximation to the flux along 

the left boundary of the 𝑖th cell: 

𝑭
𝑖−
1
2
≈ 𝒇(𝒒)|𝑥=𝑥

𝑖−
1
2

 (7) 

In addition, the cells (called control volumes) are 

small enough to assume that 𝒒 is constant in each 

cell. Let us say the average value of 𝒒 in 𝑖th cell is 

equal to its value at the center of that control 

volume (i.e., 𝒒𝑖). Replacing 𝒒 with 𝒒𝑖 in Eq. (6) 

gives:  

𝜕𝑡𝒒𝑖∫ 𝑑𝑥
𝑥
𝑖+
1
2

𝑥
𝑖−
1
2

= 𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

  

𝑦𝑖𝑒𝑙𝑑𝑠
→          𝜕𝑡𝒒𝑖 =

𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

𝛥𝑥𝑖
 (8) 

Hence, we only need to find an accurate 

approximation of fluxes at the boundaries to solve 

the PDE problem using the FVM. The difference 
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between various schemes is how they estimate 𝑭
𝑖−
1

2

 

at each time step.  

3.3. High-resolution flux limiter schemes  

One drawback of linear methods like upwind is 

predicted by Godunov’s theorem which states that 

no linear convection scheme of second-order 

accuracy or higher can be monotonic [6]. This limit 

would be significant while working with shock 

waves with sharp gradients. To tackle the problem, 

non-linear discretization methods are used.  

One category of such non-linear approaches is flux 

limiters (FL) which uses a limiter function for the 

flux in the boundaries.  A unified formulation for 

flux limiters is presented in [7] which is used here 

with some manipulations. 

As mentioned in previous section, to solve Eq. (5), 

we need to find an approximation for fluxes at the 

boundaries (i.e., 𝐹
𝑖−
1

2

 and 𝐹
𝑖+
1

2

). A flux limiter 

scheme gives the following formulae for 

calculating the boundary fluxes [8]: 

{
 
 

 
 𝑭

𝑖+
1
2

𝐹𝐿 = 𝑭
𝑖+
1
2

𝑙𝑜𝑤 −𝛹(𝒓𝑖) (𝑭
𝑖+
1
2

𝑙𝑜𝑤 − 𝑭
𝑖+
1
2

ℎ𝑖𝑔ℎ
)    

𝑭
𝑖−
1
2

𝐹𝐿 = 𝑭
𝑖−
1
2

𝑙𝑜𝑤 −𝛹(𝒓𝑖−1) (𝑭
𝑖−
1
2

𝑙𝑜𝑤 − 𝑭
𝑖−
1
2

ℎ𝑖𝑔ℎ
)

  (9) 

Here, 𝛹(𝒓) is called the flux limiter function, 𝑭𝑙𝑜𝑤  

is the low-resolution flux (i.e., the flux calculated 

based on a low order scheme) and 𝑭ℎ𝑖𝑔ℎ  is the 

high-resolution flux (i.e., the flux calculated based 

on a high order scheme). The value of 𝒓 at point 𝑖 
is given by: 

𝒓𝑖 = (
𝜕𝒒

𝜕𝑥
)
𝑖−
1
2

(
𝜕𝒒

𝜕𝑥
)
𝑖+
1
2

⁄  (10) 

If the grid is uniform, Eq. (10) reduces to: 

𝒓𝑖 =
𝒒𝑖 − 𝒒𝑖−1
𝒒𝑖+1 − 𝒒𝑖

 (11) 

The package use Eq. (10) which provides the 

capability of non-uniform grids.  

Several methods can be used as the low/high-

resolution schemes. Our implementation uses the 

first order upwind (UW) and central difference 

(CD) as low-resolution and high-resolution 

schemes, respectively: 

{
 

 𝑭
𝑖−
1
2

𝑙𝑜𝑤 = 𝑭𝑈𝑊 (𝒒
𝑖−
1
2
)  

𝑭
𝑖−
1
2

ℎ𝑖𝑔ℎ
= 𝑭𝐶𝐷 (𝒒

𝑖−
1
2
) 
  (12) 

One promising issue about the UW-CD 

combination is  that it allows a generalization 

method called κ-scheme to model linear schemes as 

flux limiters [9]. 

The UW scheme considers the flow direction when 

determining the flux value at a boundary [10]: the 

flow at a boundary is calculated based on the value 

of conserved variable in the upstream cell (i.e., the 

cell that corresponds the flow: 

{

𝑭𝑈𝑊+ (𝒒
𝑖−
1
2
) = 𝒇(𝒒𝑖−1)  

𝑭𝑈𝑊+ (𝒒
𝑖+
1
2
) = 𝒇(𝒒𝑖)      

  (13) 

{

𝑭𝑈𝑊− (𝒒
𝑖−
1
2
) = 𝒇(𝒒𝑖)    

𝑭𝑈𝑊− (𝒒
𝑖+
1
2
) = 𝒇(𝒒𝑖+1)

  (14) 

The superscripts + and – are used for distinguishing 

between positive and negative flux direction.  

In contrast, the CD does not consider the flux 

direction and simply uses the average value of 

adjacent cells to calculate the flux at a boundary:  

{
 

 𝑭𝐶𝐷 (𝒒
𝑖−
1
2
) = 𝒇(

𝒒𝑖−1 + 𝒒𝑖
2

)  

𝑭𝐶𝐷 (𝒒
𝑖+
1
2
) = 𝒇(

𝒒𝑖 + 𝒒𝑖+1
2

)      
  (15) 

For hyperbolic problems the information 

propagates with finite speed as determined by the 

eigenvalues of the flux Jacobian [5]. Therefore, the 

positive eigenvalues of 𝑨 corresponds to positive 

fluxes (i.e., left to right) and wise versa [11]. This 

suggests to separate the positive and negative 

fluxes using the concept of eigenvalues. 

Decomposition of the Jacobian matrix (i.e., 𝑨) in 

terms of eigenvalue matrix (𝜦 =

diag (𝜆1, 𝜆2, … , 𝜆𝑛𝑞)) and right eigenvector matrix 

(𝑽) yields: 

𝑨𝑽 = 𝑽𝜦 (16) 

As the PDE problem is assumed hyperbolic, the 

eigenvector matrix 𝑽 is nonsingular, so that: 

𝑨 = 𝑽𝜦𝑽−𝟏 (17) 

Let us define the positive and negative eigenvalues 

as follows: 

𝜆𝑘
+ ≜ max(𝜆𝑘 , 0) =

1

2
(𝜆𝑘 + |𝜆𝑘|) (18) 

𝜆𝑘
− ≜ min(𝜆𝑘 , 0) =

1

2
(𝜆𝑘 − |𝜆𝑘|) (19) 

for 1 ≤ 𝑘 ≤ 𝑛𝑞. Now, using above values, positive 

and negative eigenvectors are constructed as 

follows: 

𝜦+ ≜

[
 
 
 
𝜆1
+ 0 … 0

0 𝜆2
+ … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛𝑞

+
]
 
 
 

 (20) 
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𝜦− ≜

[
 
 
 
𝜆1
− 0 … 0
0 𝜆2

− … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛𝑞

−
]
 
 
 
 (21) 

Finally, the positive and negative Jacobians are 

defined as: 

𝑨+ ≜ 𝑽𝜦+ 𝑽−1     ,     𝑨− ≜ 𝑽𝜦−𝑽−1 (22) 

It can easily be shown that: 

𝑨 = 𝑨+ + 𝑨− (23) 

Now, to put all above equation together, we need to 

change the right-hand side of Eq. (8) as follows: 

𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

𝛥𝑥𝑖
= −(

𝜕𝒇(𝒒)

𝜕𝑥
)
𝑖

= −(𝑨𝜕𝑥𝒒)𝑖  

𝑦𝑖𝑒𝑙𝑑𝑠
→          𝜕𝑡𝒒𝑖 = −(𝑨𝜕𝑥𝒒)𝑖  (24) 

Replacing Jacobian from Eq. (23) in Eq. (24) 

yields:  

𝜕𝑡𝒒𝑖 = −𝑨𝑖
+𝜕𝑥𝒒𝑖

+ − 𝑨𝑖
−𝜕𝑥𝒒𝑖

− (25) 

where 𝜕𝑥𝒒
+ and 𝜕𝑥𝒒

− are defined as: 

 

𝜕𝑥𝒒𝑖
+ =

𝒒
𝑖+
1
2

+ − 𝒒
𝑖−
1
2

+

𝛥𝑥𝑖
 (26) 

𝜕𝑥𝒒𝑖
− =

𝒒
𝑖+
1
2

− − 𝒒
𝑖−
1
2

−

𝛥𝑥𝑖
 (27) 

Using UW-CD combination the values of 𝒒
𝑖∓
1

2

−/+
 are 

as follows: 

𝒒
𝑖+
1
2

− = 𝒒𝑖 +𝛹(𝒓𝑖) (
𝒒𝑖+1 − 𝒒𝑖

2
) (28) 

𝒒
𝑖−
1
2

− = 𝒒𝑖−1 +𝛹(𝒓𝑖−1) (
𝒒𝑖 − 𝒒𝑖−1

2
) (29) 

𝒒
𝑖+
1
2

+ = 𝒒𝑖+1 −𝛹(𝒓𝑖) (
𝒒𝑖+1 − 𝒒𝑖

2
) (30) 

𝒒
𝑖−
1
2

+ = 𝒒𝑖 −𝛹(𝒓𝑖−1) (
𝒒𝑖 − 𝒒𝑖−1

2
) (31) 

3.4. Generalization 

In previous subsection, the methodology derived 

for solving Eq. (5). However, solving PDE problem 

of Eq. (3) is straightforward. As we need the values 

of 𝜕𝑡𝒒 at each time step, we can apply the same 

procedure explained for 𝜕𝑥𝒇(𝒒), on 𝜕𝑦𝒈(𝒒) and 

𝜕𝑧𝒉(𝒒). In addition, in semi-linear problems, the 

source term depends only on the values of 𝒒 and 𝑥. 

Therefore, at each time step, the value of the source 

term can easily be calculated. This means, the 

methodology is applicable for solving Eq. (5) 

without any further manipulation. The complete 

semi-discretization formula (i.e., generalization of 

Eq. (25)) is as follows: 

𝜕𝑡𝒒𝑖𝑗𝑘 = 𝝈(𝒒𝑖𝑗𝑘) − 𝑨𝑖𝑗𝑘
+ 𝜕𝑥𝒒𝑖𝑗𝑘

+ − 𝑨𝑖𝑗𝑘
− 𝜕𝑥𝒒𝑖𝑗𝑘

−

− 𝑩𝑖𝑗𝑘
+ 𝜕𝑦𝒒𝑖𝑗𝑘

+ − 𝑩𝑖𝑗𝑘
− 𝜕𝑦𝒒𝑖𝑗𝑘

−

− 𝑪𝑖𝑗𝑘
+ 𝜕𝑧𝒒𝑖𝑗𝑘

+ − 𝑪𝑖𝑗𝑘
− 𝜕𝑧𝒒𝑖𝑗𝑘

−  
(32) 

where 𝑩 and 𝑪 are Jacobians of flux functions 𝑩 

and 𝑪, respectively. In addition, in case of 

problems given as Eq. (4), the Jacobians are 

already given which reduce a discretization step for 

computing them numerically.  

3.5. Flux limiter functions 

Several limiter functions can be found in books and 

scientific papers. The interested reader may refer to 

[7], which reviews a wide range of limiter 

functions in a unified approach. A list of the limiter 

functions implemented in the package given in 

Table 1. For each limiter function, its syntax in the 

package and the formula for Ψ(𝑟) is provided. The 

first six schemes are linear; while the rest of them 

are non-linear schemes. 

Note that, the developed package has the capability 

to accept any user-defined limiter function.   
Table 1: List of limiter functions 

Syntax Name Flux limiter formula 

uw1 
First-order 
upwind 

Ψ(𝑟) = 0 

uw2 
Second order 
upwind 

Ψ(𝑟) = 1 

uw3 Cubic upwind Ψ(𝑟) =
2

3
𝑟 +

1

3
 

uw4 
Quadratic 
upwind Ψ(𝑟) =

3

4
𝑟 +

1

4
 

scd 
Second-order 
central 
difference 

Ψ(𝑟) = 𝑟 

fr Fromm Ψ(𝑟) =
1

2
𝑟 +

1

2
 

kn Koren Ψ(𝑟) = max [0,𝑚𝑖𝑛 (2𝑟, min (
1 + 2𝑟

3
, 2))] 

sb Superbee Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, 1) , 𝑚𝑖𝑛(𝑟, 2)] 

mm Minmod Ψ(𝑟) = max[0,𝑚𝑖𝑛(𝑟, 1)] 

mu MUSCL Ψ(𝑟) = max [0,𝑚𝑖𝑛 (2𝑟,
𝑟 + 1

2
, 2)] 

ha Harmonic Ψ(𝑟) =
𝑟 + |𝑟|

𝑟 + 1
 

va1 van Albada 1 Ψ(𝑟) =
𝑟(𝑟 + 1)

𝑟2 + 1
 

va2 van Albada 2 Ψ(𝑟) =
2𝑟

𝑟2 + 1
 

vl van Leer Ψ(𝑟) =
𝑟 + |𝑟|

1 + |𝑟|
 

op OSPRE Ψ(𝑟) =
3𝑟(𝑟 + 1)

2(𝑟2 + 𝑟 + 1)
 

hc HCUS Ψ(𝑟) =
1.5(𝑟 + |𝑟|)

𝑟 + 2
 

hq HQUICK Ψ(𝑟) =
2(𝑟 + |𝑟|)

𝑟 + 3
 

cm CHARM Ψ(𝑟) = max [0,
𝑟(3𝑟 + 1)

(𝑟 + 1)2
] 

mc 
Monotonized 
central 

Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, 0.5(𝑟 + 1), 2)] 

sm Smart Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, (0.75𝑟 + 0.25), 4)] 

um UMIST 
Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, (0.75𝑟 + 0.25), (0.25𝑟

+ 0.75), 2)] 
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4. Developed package 

The package “FVM_PDEsolver.jl” is developed for 

Julia programming language to solve first-order 

semi-linear hyperbolic PDE systems using high-

resolution flux limiters. It is capable of handling 

PDEs given as Eq. (3) and Eq. (4). The package 

uses the semi-discretization method and calculates 

the right-hand side of Eq. (32). Then, it uses ODE 

solvers from “DifferentialEquations.jl” to find the 

final solution of the PDE system. If the equation is 

in the form of Eq. (4), then the Jacobians of flux 

functions are calculated numerically using 

“ForwardDiff.jl” pachage. To calculate the 

eigenvalues and eigenvectors, “LinearAlgebra.jl” 

package is used.  

4.1. Algorithm 

The algorithm is exactly what was discussed as the 

flux limiter scheme in the previous section. Here, a 

detailed description of the algorithm is presented: 

Step 0: Initialize the gird values for 𝑡 = 0: the 

current values of 𝒒 vector is set to the initial values 

provided by the user.  

Step 1: Calculate 
𝜕𝒒

𝜕𝑡
 for each cell in current time 

step based on the current values of 𝒒 are as follows 

(expressed for 1-D case6): 

1 Calculate (
𝜕𝒒

𝜕𝑥
)
𝑖+
1

2

=
𝒒𝑖+1−𝒒𝑖

𝑥𝑖+1−𝑥𝑖
  at all cells boundaries 

2 Calculate 𝒓𝑖 = (
𝜕𝒒

𝜕𝑥
)
𝑖−
1

2

(
𝜕𝒒

𝜕𝑥
)
𝑖+
1

2

⁄  for each cell.  

3 Calculate 𝒒
𝑖∓
1

2

+/−
 using Eq. 28 to 31 at all cell boundaries. 

4 Calculate 𝜕𝑥𝒒𝑖
+ =

𝒒
𝑖+
1
2

+ −𝒒
𝑖−
1
2

+

𝛥𝑥
  and 𝜕𝑥𝒒𝑖

− =
𝒒
𝑖+
1
2

− −𝒒
𝑖−
1
2

−

𝛥𝑥
 for each cell.  

5 Calculate the Jacobian matrixes for each cell: 
5-1 If the equation is in form Error! Reference source not found. 

then by the given function (i.e., 𝑨𝑖 = 𝑱𝒇(𝒒𝑖)). 

5-2 If the equation is in form Error! Reference source not found. 

then by using numerical method (i.e., 𝑨𝑖 =
𝜕𝒇(𝒒)

𝜕𝒒
|
𝒒=𝒒𝑖

). 

6 Calculate the eigenvalues and eigenvectors matrices 
numerically for each cell (i.e., 𝜦𝑖 and  𝑽𝑖). 

7 Calculate positive/negative eigenvalue matrices for each cell 

(i.e., 𝜦𝑖
+ =

1

2
(𝜦𝑖 + |𝜦𝑖|) and  𝜦𝑖

− =
1

2
(𝜦𝑖 − |𝜦𝑖|) where 

absolute sign denotes the elementwise absolute value). 
8 Calculate positive and negative Jacobian matrices for each cell 

(e.g., 𝑨𝑖
+ = 𝑽𝑖𝜦𝑖

+𝑽𝑖
−1 and  𝑨𝑖

− = 𝑽𝑖𝜦𝑖
−𝑽𝑖

−1 ). 
9 Calculate 𝑺𝑖 = 𝑺(𝒒𝑖) for each cell. 

10 Calculate 𝜕𝒒𝑖
𝜕𝑡
= −(𝑨𝑖

+𝜕𝑥𝒒𝑖
+ +𝑨𝑖

−𝜕𝑥𝒒𝑖
−) + 𝑺𝑖 

Step 2: Use the ODE solver to solve 
𝜕𝒒

𝜕𝑡
= ⋯ find 𝒒 

for the next time step. 

Step 3: Set the current values of 𝒒 to the values 

found in step 1. 

Step 4: Re-do step 1 to step 3 until reaching 𝑡𝑒𝑛𝑑. 

5. Evaluation of package performance 

 
6 For 3-D case, the index 𝑖 should be changed to 𝑖𝑗𝑘 and the 

steps 1-8 should be done for 𝑦 and 𝑧 axes as well. Step 10 also 
calculates Eq. (32). 

In this section, some example PDE problems are 

defined and solved using the package.  

5.1. Moving wave with constant velocity 

A simple step like wave which propagate with 

constant speed in a 1-D space (𝑥 ∈ [0,1]) is defined 

by the following PDE: 

𝜕𝑞

𝜕𝑡
+ 𝑎

𝜕𝑞

𝜕𝑥
= 0 (33) 

with initial condition: 

𝑞(𝑡 = 0, 𝑥) = {
1.0       𝑥 ≤ 0.5   
0.0        𝑥 > 0.5  

   

where 𝑎 = 0.5 is the propagation speed in 𝑥 

direction. As 𝑎 > 0, the exact solution at each time 

step is defined by shifting the wave position by 𝑎𝑡 
in 𝑥 direction. Assume we want to find the solution 

at 𝑡 = 0.2. To solve the problem a uniform grid 

with 0.01 intervals is used. Then, the problem is 

solved by the package and the results using uw1, 

uw2, scd, kn, and sb schemes are shown in Figure 

2.  

 
Figure 2: Solution of moving wave with constant velocity 
problem using different schemes 

As expected, the worst scheme is the scd; while the 

best is sb in this example. The same problem is also 

solved using all nonlinear schemes available in the 

package. For better illustration, the values in range 

[0.5, 0.7] are plotted in Figure 3.  

 
Figure 3: Solution of moving wave with constant velocity 
problem using all available nonlinear flux limiters 

Although the plot in Figure 3 is a little nasty, it 

shows all nonlinear flux limiter functions have 

similar performances on this particular problem. 

However, the sb method shows a slightly better 

performance than others.  

5.2. Euler problem: rarefaction-shock case 
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The Euler equations are a collection of nonlinear 

hyperbolic conservation rules that regulate the 

dynamics of compressible fluids while ignoring the 

effects of body forces and viscous stress [12]. The 

1-D Euler equation is expressed by Eq. (5); where 

𝒒 and 𝒇(𝒒) are given as follows: 

𝒒 = [

𝑞1
𝑞2
𝑞3
] = [

𝜌
𝜌𝑢
𝜌𝑒
]    ,   𝒇(𝒒) = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢ℎ

] (34) 

where: ℎ = 𝑒 +
𝑝

𝜌
   ,     𝑝 = 𝜌(𝛾 − 1) (𝑒 −

1

2
𝑢2)  

In above equations, 𝜌 is the density, 𝑝 is the 

pressure, 𝑢 is the velocity in 𝑥 direction, 𝑒 is the 

internal energy, ℎ is the static enthalpy, and 𝛾 is the 

ratio of specific heats which is a constant scalar. 

Although 𝒇(𝒒) is not expressed explicitly in terms 

of  𝒒, it is possible to reformulate it doing some 

maths: 

𝒇(𝒒) =

[
 
 
 
 
 

𝑞2
𝑞2
2

𝑞1
+ 𝑞1(𝛾 − 1)(

𝑞3
𝑞1
−
1

2
(
𝑞2
𝑞1
)
2

 )

𝑞2 (
𝑞3
𝑞1
+ (𝛾 − 1)(

𝑞3
𝑞1
−
1

2
(
𝑞2
𝑞1
)
2

 ))
]
 
 
 
 
 

 (35) 

Assume the domain 𝑥 ∈ [0,1] and following initial 

conditions: 

𝜌(𝑥, 𝑡 = 0) = {
𝜌𝐿          0.0 ≤  𝑥 <  𝑥0
𝜌𝑅         𝑥0  <  𝑥 ≤  1.0

 

𝑢(𝑥, 𝑡 = 0) = {
𝑢𝐿          0.0 ≤  𝑥 <  𝑥0
𝑢𝑅          𝑥0 <  𝑥 ≤  1.0

 

𝑝(𝑥, 𝑡 = 0) = {
𝑝𝐿          0.0 ≤  𝑥 <  𝑥0
𝑝𝑅         𝑥0  <  𝑥 ≤  1.0

     

 

Using the following parameters, the PDE problem 

represents a rarefaction-shock case: 

𝑥0 = 0.5,   𝛤 = 1.4,    

𝜌𝐿 = 1.0,   𝜌𝑅 = 0.125,     

𝑢𝐿  =  0.0,   𝑢𝑅  =  0.0,     

𝑝𝐿 = 1.0,    𝑝𝑅 = 0.1 

It is desired to find the solution at 𝑡 = 0.2. The 

exact analytical solution is given in [13]. To solve 

the problem a uniform grid with 0.01 intervals is 

used. Figure 4 and Figure 5 shows the solution 

using uw1 and kn schemes, respectively.  

5.3. Shallow water equation: supercritical case 

The 1-D shallow water equation is as follows [14]: 

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 

(ℎ𝑢)𝑡 + (ℎ𝑢
2 +

1

2
𝑔ℎ2)

𝑥
= −𝑔ℎ𝐵𝑥  

(36) 

Here, 𝑔 is the gravitational constant, h is the water 

depth, 𝑢 is the mean velocity in 𝑥 direction, and 

𝐵(𝑥) is the waterway bottom topography. Although 

the source term in Eq. (36) has a differential term, 

as the topography is not changing, the values of 𝐵𝑥 

are constant and can be pre-calculated.  

 

 

 
Figure 4: Solution of Euler problems: rarefaction-shock 
case using uw1 scheme 

 
Figure 5: Solution of Euler problems: rarefaction-shock 
case using kn scheme 

To match Eq. (36) with Eq. (3), the following 

equations should be considered: 

𝒒 = [
𝑞1
𝑞2
] = [

ℎ
ℎ𝑢
] 

𝒇(𝒒) = [
ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

] = [

𝑞2
𝑞2
2

𝑞1
+
1

2
𝑔𝑞1

2] 

   𝝈(𝒒) = [
0

−𝑔ℎ𝐵𝑥
] = [

0
−𝑔𝑞1𝐵𝑥

] 

(37) 

In the definition of 𝝈(𝒒), 𝑔 is a constant scalar and 

𝐵𝑥 is a known function of 𝑥. So, the Eq. (36) is 

semi-linear and the package is capable of solving it. 

Note that, in some contexts the Eq. (36) is referred 

to as the dam-break wave equation.  

Assume the problem domain 𝑥 ∈ [−10,10] and the 

following initial conditions: 
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ℎ(𝑥, 𝑡 = 0) = {
ℎ𝐿         − 10 ≤  𝑥 <  0
ℎ𝑅            0 <  𝑥 ≤  10

 

𝑢(𝑥, 𝑡 = 0) = {
𝑢𝐿          − 10 ≤  𝑥 <  0
𝑢𝑅             0 <  𝑥 ≤  10

 

𝐵(𝑥) = {
𝐵𝐿          − 10 ≤  𝑥 <  0
𝐵𝑅         0 <  𝑥 ≤  −10

     

The following parameter setting makes the super 

critical case: 

𝑔 = 9.8,   ℎ𝐿 = 4.0,   ℎ𝑅 = 1.0,     

𝑢𝐿  =  −10.0,   𝑢𝑅  =  −6.0,    𝐵𝐿 = 0.0,    𝐵𝑅 = 1.0 

It is desired to find the solution at 𝑡 = 0.2. 

Although the exact solution is not available, a 

solution to this problem can be found in [14]. To 

solve the problem a uniform grid with 0.05 

intervals is used. Figure 6 shows the solution using 

kn schemes. 

 
Figure 6: Solution of Shallow water equation: 
supercritical case using kn scheme 

Comparing the result with those presented in [14] 

approve the performance of the package. 

5.4. Granulation process: growth by layering 

The initiative of this work was the granulation 

process modeling and finding the numerical 

solution for the growth by layering equation. The 

equation according to [15] is as follows: 

𝜕

𝜕𝑡
𝑛𝑏(𝑉𝑝, 𝑡) + 𝐺(𝑡)

𝜕

𝜕𝑉𝑝
𝑛𝑏(𝑉𝑝, 𝑡) = 0 (38) 

where, 𝑉𝑝 is the internal coordination of particles 

volumes, 𝐺(𝑡) is the growth rate, and 𝑛𝑏 is the 

particle size distribution function. Eq. (38) 

represents a square wave moving with speed 𝐺(𝑡). 
Therefore, the for 𝐺(𝑡) = 𝑐𝑡𝑒. the exact solution is 

available.  

As the Jacobian is given outside of the derivative 

term, this equation is in the form of Eq. (4). 

Assume the problem domain 𝑉𝑝 ∈ [0,400] and the 

following initial conditions: 

𝑛𝑏(𝑉𝑝, 𝑡 = 0) = {
10 × 104        15 ≤  𝑥 <  50
0                              otherwise

 

Given 𝐺(𝑡) = 1, the solution at 𝑡 = 150 is desired. 

To solve the problem a uniform grid with Δ𝑉𝑝 = 5 

is used. Figure 7 shows the solution using uw1, scd, 

and kn schemes. 

 
Figure 7: Solution of granulation process: growth by 
layering problem using different schemes 

Comparing the results with the same schemes used 

in [15], approve the performance of the package. 

One difference between our results and those given 

in [15] is that they limited the values of 𝑛𝑏 to be 

always non-negative. This is not done in our 

solution which caused the scd scheme find negative 

values for 𝑛𝑏. This issue will be resolved in further 

improvements of the package.  

6. Summary and Discussions 

The PDE problems are challenging to solve. High- 

resolution schemes provide high-order accurate 

numerical approximation of PDEs, especially in 

presence of shocks or discontinuities. In this paper, 

flux limiter schemes, which are among the high-

resolution methods, was reviewed in detail. The 

derived equations made the basis for development 

of a package named “FVM_PDEsolver.jl” in Julia 

programming language. The algorithm of solving 

mechanism is explained and its performance is 

shown in several examples. The package is an 

open-source program available in GitHub. The 

authors aim to improve the package in many 

aspects in future. Some ideas for improvement are: 

triangular grids, limiting the quantities’ values, 

adding more schemes, etc. One interesting 

observation in this paper was the high accuracy of 

Superbee flux limiter which was the best among all 

available limiters in the package.  

References 
 

[1] A. D. Polyanin, W. E. Schiesser, and A. I. 

Zhurov, “Partial differential equation,” 

Scholarpedia, vol. 3, no. 10, pp. 4605, 2008. 

[2] B. Van Leer, “Towards the ultimate 

conservative difference scheme. V. A second-order 

sequel to Godunov's method,” Journal of 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

computational Physics, vol. 32, no. 1, pp. 101-136, 

1979. 

[3] C.-W. Shu, “Essentially non-oscillatory and 

weighted essentially non-oscillatory schemes for 

hyperbolic conservation laws,” Advanced 

numerical approximation of nonlinear hyperbolic 

equations, pp. 325-432, 1998. 

[4] C. Hirsch, Numerical computation of internal 

and external flows: The fundamentals of 

computational fluid dynamics, pp. 105-140: 

Elsevier, 2007. 

[5] R. J. LeVeque, Finite volume methods for 

hyperbolic problems: Cambridge university press, 

2002. 

[6] S. Godunov, and I. Bohachevsky, “Finite 

difference method for numerical computation of 

discontinuous solutions of the equations of fluid 

dynamics,” Matematičeskij sbornik, vol. 47, no. 3, 

pp. 271-306, 1959. 

[7] N. P. Waterson, and H. Deconinck, “Design 

principles for bounded higher-order convection 

schemes–a unified approach,” Journal of 

Computational Physics, vol. 224, no. 1, pp. 182-

207, 2007. 

[8] J. Pietrzak, “The Use of TVD Limiters for 

Forward-in-Time Upstream-Biased Advection 

Schemes in Ocean Modeling,” Monthly Weather 

Review, vol. 126, no. 3, pp. 812-830, 1998. 

[9] P. L. Roe, “Approximate Riemann solvers, 

parameter vectors, and difference schemes,” 

Journal of computational physics, vol. 43, no. 2, 

pp. 357-372, 1981. 

[10] H. K. Versteeg, and W. Malalasekera, An 

introduction to computational fluid dynamics: the 

finite volume method, 2nd ed., pp. 134-178: 

Pearson education, 2007. 

[11] C. Hirsch, Numerical computation of internal 

and external flows: Computational Methods for 

lnviscid and Viscous Flows, pp. 408-492: Wiley, 

1990. 

[12] E. F. Toro, Riemann solvers and numerical 

methods for fluid dynamics: a practical 

introduction: Springer Science & Business Media, 

2013. 

[13] F. Lora-Clavijo, J. Cruz-Pérez, F. Siddhartha 

Guzmán, and J. Gonzalez, “Exact solution of the 

1D riemann problem in Newtonian and relativistic 

hydrodynamics,” Revista mexicana de física E, vol. 

59, no. 1, pp. 28-50, 2013. 

[14] S. Jin, and X. Wen, “An efficient method for 

computing hyperbolic systems with geometrical 

source terms having concentrations,” Journal of 

Computational Mathematics, pp. 230-249, 2004. 

[15] L. Vesjolaja, B. Glemmestad, and B. Lie, 

“Solving the population balance equation for 

granulation processes: particle layering and 

agglomeration,” 2021. 

 



SIMS 63 Trondheim, Norway, September 20-21, 2022

Comparison and Application of Multi-Rate Methods for
Real-Time Simulations of Production Systems

Lars Klingela,∗, Valentin Kamma, Alexander Verla,

aInstitute for Control Engineering of Machine Tools and Manufacturing Units (ISW)
University of Stuttgart

Seidenstraße 36, 70174 Stuttgart, Germany
∗lars.klingel@isw.uni-stuttgart.de

Abstract

A distributed simulation makes it possible to couple simulation tools and lays the foundation for the usage of multicore
capabilities to decrease the calculation time. In consequence the simulation is partitioned on multiple simulation tasks. If
simulation tasks with different integration step sizes are used, the configuration is called multi-rate simulation. In real-time
simulations the tasks are calculated parallely, which means that fast tasks do not wait for the simulation result of slower
tasks. A sequential approach where fast tasks wait for slower tasks would slow down the overall simulation and therefore
tear the real-time requirements. In a real-time multi-rate approach, signal processing of the coupling signals between the
tasks is required. For this signal processing, multi-rate methods are used. Easy multi-rate methods lead to stepped signals in
the faster task, because the slower task does not provide a new calculated signal at each timestep of the faster task. In this
work further methods are investigated in an industrial real-time simulation environment. The analysis contains continuous and
discontinuous as well as energy conserving methods. It is shown how these different methods perform for various kinds of
signals. The methods are compared and evaluated on signals with different characteristics, which allows a recommendation
for the choice of a method in a specific simulation scenario. The application of the multi-rate methods is shown on an example
virtual commissioning simulation of an industrial robot. It shows that the right choice of a multi-rate method has a big impact
on the overall simulation result.

1. Introduction
The increasing digitization in the life cycle of production
systems can be summarized under the term digital factory,
which contains models, methods and tools with the aim of
planning, evaluation and ongoing improvement of the real
factory [1]. A method of the digital factory which can help
to reduce the development time of production systems and
increase their quality is virtual commissioning (VC).
VC can help to detect errors and validate the software in
the engineering phase of a production system [2]. VC
always contains a simulation model of the production
system which interacts with the control system of the
machine or plant. VC can be performed using different
configurations which differ in the degree of realisation
of the control system. In the early phase of the
control development model-in-the-loop simulations are
used, where the modeled control logic is tested. If
the control logic is already available in a programming
language for control systems, the code can be run on
an emulated controller. The most common and realistic
configuration is the hardware-in-the-loop simulation. In
a hardware-in-the-loop simulation, the simulation model
is connected to the real control system of the machine
or plant through a fieldbus. With this structure real-
time requirements arise for the simulation because the
simulation must be calculated in the same cycle time as
the deterministic fieldbus communication and the control
system. Pritschow and Röck present an approach for

the architecture of a hardware-in-the-loop simulation tool
which meets the real-time requirement by calculating
the simulation on a real-time operating system on one
processor core [3].
By using only one processor core on a real-time operating
system, two main restrictions are imposed: It is not
possible to a) calculate complex simulation models due to
the limited performance and b) no other simulation models
or tools can be coupled. To counter this problem a real-
time co-simulation has been introduced by Scheifele [4].
In [4] a real-time capable coupling and synchronisation
between simulation tasks is described. A block diagram
based model can be partitioned on several simulation
tasks which are calculated in a jacobi sequence. That
means the tasks are calculated parallely and only exchange
signals at dedicated coupling times [5] in order to maintain
the real-time capability. In Figure 1 the real-time co-
simulation is shown with an example block diagram,
which is partitioned on two tasks. The approch is not
limited to a specific number of tasks and can be extended
as needed.
In a co-simulation it often occurs that the simulation tasks
are calculated with different cycle times, which is called a
multi-rate simulation. This is exemplary shown in Figure 1
where the upper task is calculated with the cycle time h1

and is three times as fast as the lower task with cycle time
h2. This can be the case if a computationally intense
model, like a physical simulation is integrated into the
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Figure 1: A block diagram based simulation model is partitioned
on two simulation tasks and calculated in a jacobi sequence in
real-time.

simulation model. In a VC it is also possible that the
model’s calculation time is to slow for a coupling with
the fieldbus. In this case the fieldbus emulation can be
calculated with a shorter cycle time than the rest of the
model. No matter why the model is partitioned on tasks
with different cycle times, a slow simulation task cannot
provide a new calculated signal at each time step of a faster
task. At this point multi-rate methods come into play [6].
In Figure 1 the position where multi-rate methods can be
integrated into a real-time co-simulation is shown with a
blue box.
In this work, the authors show how multi-rate methods
integrated into a real-time industrial simulation
environment can improve partitioned simulations by
processing the coupling signals. This work is organized
as follows: After introducing related work, a concept for
integrating multi-rate methods is shown, as well as the
implementation of the different methods. In the fourth
section, the validation of the multi-rate methods is shown.
A use case of an industrial robot simulation and the
conclusion as well as an outlook on the future complete
this paper.

2. Related Work
In this section an overview of the current state of the
art concerning multi-rate methods is given. Basically,
there are three approaches for the modification of coupling
signals in a distributed multi-rate simulation [7]:

• Standard method: Zero-order-hold

• Application-specific methods

• General methods: Interpolation and extrapolation

Zero-order-hold is the simplest variant, in which the input
of the fast system is held until the slow system provides
a new value. This approach is also the standard for a
real-time co-simulation. The implementation of a zero-
order-hold method is simple but the method is subject to
jumps in the signal course. The zero-order-hold method
shall be used in the following sections as a reference for
the evaluation of the investigated multi-rate methods.
Application-specific methods use behavioral models to
predict the course of certain signals. In [8] a kalman

filter was used as a multi-rate method for a physics-based
material flow simulation. As an example, a cuboid running
on a narrowing conveyor belt is simulated. By applying
the smoothing filter and boundary conditions, good results
are obtained for continuous signals. An automated
integration into other coupling signals is described as
difficult. In general, application specific methods like
a kalman filter are usually not transferable to other
simulations models.
The general multi-rate methods can be divided into
extrapolation and interpolation. In the case of a real-
time co-simulation, due to the parallel operation of the
subsystems in a jacobi sequence, no future information of
the signals are available. For this reason, interpolation can
not be used. Instead, an extrapolation is necessary, where
previous coupling signals are used for the prediction of
the further behaviour of the signal. In [9] the hardware-
in-the-loop simulation of a conveyor belt is investigated.
The real control hardware is coupled to the simulation
computer through a fieldbus. The simulation is divided
into real-time capable models and the slower physics-
based material flow model. The calculation time of a
simulation step is due to the complexity of the material
flow model up to 40 ms. To enable communication with
the control hardware, signals must be provided for the
real-time capable solver in 1 ms. The current position
and velocity data of the slow model are used to extrapolate
new position data for the fast solver. By using the method,
the error between the reference signal and the processed
signal with the multi-rate method is significantly reduced
compared to the standard zero-order-hold method.
Different basic extrapolation models and their
convergence behaviors have been investigated in [10].
The multi-rate methods are then successfully applied to
the reduction of the simulation time in different areas of
simulated vehicle dynamics. Polynomial extrapolation
with and without the use of derivative values as well as
continuous extrapolation are used. In [11], the overall
thermal system of a bus is simulated. By partitioning it
into four subsystems, a co-simulation architecture was
created. A smoothed extrapolation method was used as
a multi-rate method to optimize the system behavior and
the simulation speed. An extension of the extrapolation
methods by an error correction analogous to control
engineering concepts is presented in [12]. Thereby a
nearly energy-conserving multi-rate method is obtained.
By simulating a driver assistance system, the effect of the
developed coupling method is demonstrated.
There are multiple multi-rate methods available [6, 10–
12]. Some already have been implemented into a real-
time VC simulation [8, 9] but only specific simulation
scenarios have been considered. Therefore it is necessary
to implement and compare several general methods into
a real-time simulation system which can be used for
different virtual commissioning simulation scenarios. In
the next chapter a concept and implementation of general
multi-rate methods is shown.

3. Concept and Implementation
In this section the concept for the integration of the multi-
rate methods into an industrial simulation environment is
shown. Afterwards different multi-rate implementations
are shown which can be classified into:

• Discontinuous multi-rate methods

• Continuous multi-rate methods

• Energy conserving multi-rate methods
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3.1. Concept for the Integration of Multi-Rate Methods
into Real-Time Simulation Environments
For the integration of multi-rate methods into an industrial
simulation environment the approach from [9] is used. In
Figure 1 this concept is shown for the example of two
tasks which exchange signals. The multi-rate methods are
inserted into the fast task to process signals from the slow
task. In the following the step size of the slow subsystem
is referred to as macro step size and the step size of the
fast subsystem is referred to as micro step size.
In the next subsection different multi-rate methods are
shown. Those methods are implemented to be usable as
black boxes which can be parameterized and used for any
model.

3.2. Implementation of Multi-Rate Methods
In this section the implemented multi-rate methods are
described and visualized on a sine model.

3.2.1. Discontinuous Multi-Rate Methods
For the first set of multi-rate methods a discontinuous
approach is chosen where the input is directly carried over
to the output at every coupling time (macro step size).
In between these communication steps an extrapolation
method is executed to approximate the expected output.
The most simple attempt for this is to use a polynomial.
An efficient way to calculate the polynomials p(t) is
Newton’s method:

p(t) =

n∑
j=0

cjNj(t) . (1)

The Newton basis function Nj(t) is given by:

Nj(t) =

j−1∏
i=0

(t− ti) , j = 1, . . . , n . (2)

The initial condition is N0(t) = 1. The coefficients cj =
f [t0 . . . tj] are calculated using the method of divided
differences which is shown for a polynomial of second
order in Table 1 in form of a Horner-scheme.

Table 1: Divided differences for a polynomial of second order.
tj fj f [tj, tj+1] f [tj, tj+1, tj+2]

t0 f [t0]

t1 f [t1]
f [t1]−f [t0]

t1−t0
= f [t0, t1]

t2 f [t2]
f [t2]−f [t1]

t2−t1
= f [t1, t2]

f [t1,t2]−f [t0,t1]
t2−t0

= f [t0, t1, t2]

The order of the extrapolation is determined by the
number of used data points n and can be adapted to each
problem. Figure 2 shows the theoretical evaluation of the
extrapolation using a polynomial of third order compared
to the standard zero-order-hold. The blue signal is the
reference signal which should be accurately predicted by
the multi-rate methods. The only information, the multi-
rate methods have about the reference signal is signal
value on the past coupling times (shown with a dotted
line).
The approximated function is f(t) = sin(2πt) and the
step size for the slow subsystem is 40ms.
If additionally the derivation of the input value is known
for every coupling time, the method according to Hermite
can be used. Every coupling time there can be used two
values for the calculation of the polynomial. Especially
in the beginning of the simulation, when fewer values are
known than needed for the desired order of extrapolation,
the hermite variant leads to more accurate performance.

2.2 2.22 2.24 2.26 2.28 2.3
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Sine wave
Zero-order-hold
Polynomial

Figure 2: Polynomial of third order compared to the standard
zero-order-hold for approximation of a sine. Step size for the
slow subsystem is 40ms.

3.2.2. Continuous Multi-Rate Methods
As can be seen in Figure 2 the discontinuous methods
result in small jumps at the coupling time. To avoid
this, extrapolation methods are introduced which are
continuous and differentiable. For a first approach
a combination of extrapolation with interpolation is
integrated which has been introduced by Knorr [10].
At every coupling time only the expected value for the
next coupling time is extrapolated and saved in an array.
The array is then used for interpolation to approximate
the value for every step of the fast subsystem. The
polynomials needed for the interpolation are calculated
according to section 3.2.1. This approach is referred to
as ’integrated extrapolation’.
A second approach based on Kossels work [11] is based on
making the transition between the previously calculated
extrapolation function fp(t) and the new function fn(t)
calculated at the current coupling time using smoothing.
The output from the multi-rate method is defined as
follows:

f(t) =

{
g(x(t)) · fp(t) + (1− g(x(t))) · fn(t) , ti ≤ t < ts
fn(t) , else

(3)

Switching from the previous to the new extrapolation
polynomial happens half way to the next coupling time:

ts = ti +
hs

2
. (4)

Here ts is the time of the switchover and ti is the time
stamp of the previous coupling time. The variable x(t)
has to be normalized to guarantee the continuous behavior
of equation (3):

x(t) =
t− ti
ts − ti

(5)

For the smoothing function g(x(t)) then follows that
g(x = 0) = 1 and g(x = 1) = 0. Additionally to ensure
differentiability:

g(i)(x = 0) = g(i)(x = 1) = 0 , i = 1, . . . , n (6)

If n = 2 meaning double differentiability the system
of equations is solved to give the following smoothing
function:
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g(x) = −6x5 + 15x4 − 10x3 + 1 (7)
Using the smoothing function and the polynomials
calculated at every coupling time, equation (3) is used
as a multi-rate method to approximate values for each
micro step. Figure 3 shows the result for both continuous
methods for the same sine as before with the discontinuous
approach using the same parameters. As can be seen,
the jumps at the coupling times disappear at the expense
of some accuracy, which means that the processed signal
does not have the exact same value as the reference signal
at the coupling times.

2.2 2.22 2.24 2.26 2.28 2.3
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Sine wave
Interpolated extrapolation
Smoothed extrapolation

Figure 3: Comparison of the continuous multi-rate methods for
approximation of the sine. Degree of extrapolation: nE = 3;
degree of interpolation (only interpolated extrapolation): n = 3;
macro step size: hs = 40ms.

3.2.3. Energy conserving Multi-Rate Methods
A closed loop approach to multi-rate methods resulting in
nearly energy conserving behavior was shown by Benedikt
[12]. Following his example the discontinuous as well
as the continuous multi-rate methods are enhanced using
control loops. The schematic overview of the approach for
the discontinuos method is shown in Figure 4.

hs
Polynomial

Extrapolation
y(t) ŷ(t) ŷk(t)

Interpolation

Z−hs

yI(t) −

e(t)

Dead time

Zoh

hs: Macro step size
Zoh: Zero-Order-Hold

Figure 4: Schematic overview of the integrated closed loop for
the extrapolation using polynomials resulting in almost energy
conserving behavior.

The slow system generates new output values every hs

seconds which is shown using the zero-order-hold (Zoh).
These values are used for extrapolation to generate the
estimated signal ŷ(t) which after a dead time of the macro
step size can be compared to the much more accurate
interpolated signal yI(t):

e(t) = yI(t)− ŷ(t) (8)

The identified error e(t) is added to the estimated signal
to generate the corrected values ŷk(t) at each micro step.
If the macro step size is low enough compared to the
frequency of the input signal the closed loop can lead to
a significantly improved accuracy as shown in Figure 5.
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Energy conserving polynomial

Figure 5: Approximation of the sine using polynomials with and
without closed loop control.

Using the energy conserving multi-rate methods while still
getting continuous behavior requires a different approach.
As a basis the interpolated extrapolation method from
section 3.2.2 is used. The schematic overview is shown
in Figure 6.

hs
Interpolated

Extrapolation
y(t)

Interpolation

Correction
Extrapolation Z−hs

Correction
Interpolation

ŷ(t)

yI(t)

k(t)

−

ŷk(t)

Dead time

Zoh

hs: Macro step size
Zoh: Zero-Order-Hold

Figure 6: Schematic block diagram for the energy conserving
continuous multi-rate method.

Similar to the discontinuos control loop the extrapolated
value can be compared to the real value delayed by a
dead time of the slow systems step size hs. The error
is added to the following estimation which is then in
turn used for the continuous interpolation. In the block
diagram this is marked as correction extrapolation
resulting in the corrected signal k(t). Although this simple
approach increases the accuracy of the approximation, it
does not provide energy conserving behavior. Therefore
the delayed but more accurate interpolation between the
actual input values is again computed to be compared to
the multi-rate methods estimated interpolation. For every
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macro step the individual errors added up to result in the
error total E:

E(Ti) =

N∑
i=0

(yI(ti)− k(ti)) (9)

Here N is the number of micro steps:

N =
hs

hf
− 1 (10)

Ti are the coupling times at the distance of the macro
step size hs whereas ti are the micro steps in the faster
cycle time of hf . Adding the error total E at the next
macro step to the corrected signal k(t) then ensures energy
conservation. To avoid losing continuity this summation is
done using a quadratic distribution function d which has to
be zero at the boundaries of the macro steps:

d(ti) =
E(Ti−1)

N∑
i=0

(i(i−N))

· i(i−N) (11)

Here i is the counter of the micro steps which is reset after
every coupling time. With this procedure, shown in the
figure as correction extrapolation, the corrected output
is obtained:

ŷk(t) = k(t) + v(t) (12)

In Figure 7 the result of the correction is compared to
the interpolated extrapolation without energy conserving
behaviour. As can be seen, the correction leads to an
improved accuracy at least for this particular example.
Generally the improvement depends on the cycle time of
the subsystem compared to the frequency of the input
signal as explained for the discontinuous method. For the
chosen example signal, the sine wave, that means that the
frequency of the sine wave needs to be higher than the
cycle time of the macro and micro step size, otherwise the
signal may swing up. This The phenomenon is based on
the Nyquist-Shannon-theorem.
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Figure 7: Approximation of the sine with and without control
loops using continuous multi-rate methods.

4. Validation of the Multi-Rate Methods
For the validation of the implemented multi-rate methods,
three input signals are examined. The first function y1(t)
is the previously used sine wave as a periodic function.
Second is an aperiodic function y2(t) resembling a

damped harmonic oscillator with a displacement at t = 0.
Third is a function y3(t) with a point of discontinuity:

y1(t) = f(t) = sin(2πt) (13)

y2(t) = e(−
3t
2

) cos(3t) (14)

y3(t) =

{
1
3
(4t− t2) , 0 ≤ t < 3

1 , t ≥ 3
(15)

The three functions are shown in Figure 8.
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Figure 8: Input signals used to validate the multi-rate methods.

Using the validation functions in equations (13) to (15),
the implemented multi-rate methods are evaluated by
different criteria while using the validation functions as
the input signal for the slow subsystem. The step size as
well as the order of extrapolation of the multi-rate methods
are varied to investigate different behaviour of the multi-
rate methods. The variation of those parameters is shown
in Table 2. For the validation three different combinations
of step size and order of extrapolation are used, which is
shown as variant A1, A2 and A3. For each variant the
behavior of the multi-rate methods for the three different
validation functions is recorded.

Table 2: Recordings for the theoretical validation of the multi-rate
methods. The index after the dot corresponds to the respective
input signal.

A1{y1, y2, y3} A2{y1, y2, y3} A3{y1, y2, y3}
hs(ms) 40 40 75

nE 3 4 3

The first and most important criterion to validate the multi-
rate methods is the achievable accuracy. For this the mean
squared error is calculated:

MSE(y, ŷ) =
1

n

n∑
i=0

(yi − ŷi)
2 (16)

Where n is the number of considered time steps, yi is the
actual value at the time step i and ŷi is the value estimated
by the multi-rate method. The results for the mean squared
error of the nine recordings are listed in Table 3.
As additional criteria, continuity and differentiability are
evaluated. Finally, the response time of the method is
evaluated with respect to abrupt changes in the input
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Table 3: Mean squared error of the multi-rate methods: Zero-Order-Hold (Zoh), discontinuous methods polynomial extrapolation (Pol),
hermite extrapolation (Her), interpolated extrapolation (Int), smoothed extrapolation (Smo), energy conserving discontinuous method (Ecd)
and energy conserving continuous method (Ecc).

Zoh Pol Her Int Smo Ecd Ecc

A1 y1 1.01 · 10−2 1.54 · 10−6 2.57 · 10−6 7.64 · 10−6 4.34 · 10−6 9.57 · 10−8 2.72 · 10−7

A1 y2 1.79 · 10−4 7.79 · 10−10 7.73 · 10−9 3.88 · 10−9 2.19 · 10−9 1.41 · 10−11 9.57 · 10−11

A1 y3 1.45 · 10−4 1.29 · 10−5 1.31 · 10−5 5.14 · 10−5 2.77 · 10−5 3.95 · 10−5 2.45 · 10−4

A2 y1 1.01 · 10−2 8.38 · 10−8 1.39 · 10−5 4.54 · 10−7 2.56 · 10−7 5.75 · 10−9 3.79 · 10−8

A2 y2 1.79 · 10−4 6.17 · 10−12 4.77 · 10−8 3.32 · 10−11 1.89 · 10−11 2.08 · 10−13 2.51 · 10−9

A2 y3 1.45 · 10−4 3.77 · 10−5 1.81 · 10−5 2.83 · 10−4 9.11 · 10−5 1.24 · 10−4 1.10 · 10−3

A3 y1 3.56 · 10−2 2.31 · 10−4 2.34 · 10−5 1.20 · 10−3 6.39 · 10−4 4.62 · 10−5 3.52 · 10−4

A3 y2 6.19 · 10−4 1.34 · 10−7 3.97 · 10−8 1.50 · 10−6 3.98 · 10−7 6.58 · 10−9 3.40 · 10−6

A3 y3 5.10 · 10−4 8.68 · 10−5 8.84 · 10−5 3.39 · 10−4 1.83 · 10−4 2.67 · 10−4 1.60 · 10−3

signal. An example for such a change would be the point
of discontinuity in y3(t). All the multi-rate methods as
well as the standard zero-order-hold are graded using a
harvey balls table. An empty circle means the method can
not meet the criteria. The more filled the circle is, the
better is the performance of the method for the specific
criteria. It should be noted that the evaluation in Table 4
is qualitatively and should serve as a decision-making aid
for the selection of a multi-rate method. All the chosen
criteria depend on the parameters of extrapolation order as
well as the macro step size.

Table 4: Classification of the multi-rate methods regarding the
output behavior for different input signals.

Achievable
Accuracy Continuity Differentia

bility
Reaction

time

Zoh

Pol

Her

Int

Smo

Ecd

Ecc

The table can be used to choose the proper multi-
rate method for given signals in a simulation scenario.
For example, the highest accuracy can be achieved
using the energy conserving methods. However if
the input signal tends to change abruptly another
method with a better reaction time should be chosen
since the energy conserving methods tend to overshoot.
Additional considerations are necessary if continuity and
differentiablity are necessary which come at the cost of
accuracy.

5. Application Use Case in Industrial Robotics
In this section the presented concept is applied to a
real VC use case. VC simulations which contain real
programmable logic controllers (PLC) and computerized
numerical controllers (CNC) for motion are normally
calculated in a cycle time of one or a few milliseconds
on a real-time operating system [3]. In comprehensive
production systems with robots, the robot tasks are

triggered and observed by the PLC. To validate the
interaction of all controls in a production system, virtual
robot controls are integrated into a VC simulation. Those
virtual controls are also used for the programming of
the robots and are normally running on a non-real-time
operating system with a higher cycle time than the PLC,
CNC and the virtual production system. This is why
multi-rate methods come into play at this use case. As
an application example an industrial robot handling task is
chosen. In the simulated scene the robot is performing
a handling task, which is the most common task for
industrial robots [13]. The simulation setup, which is
used for the application example in this work is shown in
Figure 9.

Virtual PLC
Multi-Rate 

Method

1 ms

Virtual Robot 
Control

60 ms

Robot and Material Flow

Figure 9: The example use case: A robot is performing a handling
task.

For this example the robot control is running with a cycle
time of 60 ms and the rest of the simulation setup is
running with a cycle time of 1 ms. For the orchestration
of the robot tasks a simple PLC is implemented into
the simulation tool. The mutli-rate methods are inserted
between the virtual robot control and the simulation
model of the robot. The robot itself performs a pick
and place task where it interacts with parts, which are
modeled physically. The robot, the material flow and
the virtual PLC are modeled with the real-time simulation
environment ISG-virtuos while the multi-rate methods are
integrated with custom C++ blocks. As a robot control
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a virtual CNC kernel is used and integrated into the
simulation environment.
The robot movement is very dynamic, this is why a
hermite-method is chosen as a multi-rate method for this
example. According to Table 4 the hermite extrapolation
has a quick reaction time which is necessary to prevent
overshoots in the signal path. In Figure 10 the signal of
the second axis of the robot is shown. The blue signal is
the output signal of the robot control and the input to the
fast task with a zero-order-hold method which has jumps
at the macro step size. The red signal is the processed
signal after the hermite-method has been applied to the
input signal.
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Figure 10: The input angle of the second axis of the robot with
zero-oder-hold (Zoh) and the hermite-method (Her).

It shows how the hermite-method can smooth the signal
which helps to prevent collisions of the gripper with the
transported parts, which can be seen in Figure 11. In
the top picture the physics engine could not resolve the
collision anymore, which is evident on the picture by
the penetration of the workpiece and the gripper. With
the help of the hermite-method in the lower picture it is
possible to resolve the collision in the fast subsystem.
Furthermore the multi-rate methods help that the robot
movement looks smooth for the human eye.

6. Conclusion and Future Prospects
With the help of multi-rate methods it is possible
to process coupling signals in distributed real-time
simulations and therefore improve the overall simulation
outcome. The focus of this work was the investigation of
general multi-rate methods. Different methods have been
implemented and compared. With Table 4 a basis for the
choice of a proper method in a given simulation scenario is
provided. To demonstrate the methods on a real use-case
of VC, a robot handling task was chosen. It shows that the
hermite-method is a good choice for this use case and can
help to smooth the signals which are integrated in the fast
subsystem. In future investigations the methods could be
considered in a simulation setup which is distributed on
different hardware where latency and fluctuating signals
have a larger impact.
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Figure 11: Comparison of zero-order-hold (top) and the hermite-
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signals of all robot axis are processed by each method.
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Abstract  

Steam assisted gravity drainage is a thermal method for enhanced bitumen recovery. In this method, steam is 

injected to bitumen and heavy oil to reduce the viscosity and make the oil mobile. However, early breakthrough 

of steam in some parts of the well results in loss of the required amount of steam in contact with the cold bitumen, 

and poor distribution of the steam chamber. This limits the oil production and increases the SAGD operation cost. 

Autonomous inflow control valve (AICV) is able to prevent the steam breakthrough and restrict the production of 

steam. The objective of this paper is to investigate the performances of AICV and passive inflow control device 

(ICD) in a SAGD production well. This is achieved by developing a dynamic wellbore-reservoir model in the 

OLGA-ROCX simulator. Reservoir and fluid properties have been specified in ROCX, and the wellbore model 

has been developed in OLGA. Coupling OLGA and ROCX enable the user to simulate the fluid production from 

the reservoir into the well. The simulation results demonstrate the significant benefit of AICV in steam to oil ratio 

(SOR) reduction compared to ICD. Indeed, the simulation results show that utilizing AICV in the SAGD 

production wells will reduce the steam production by 88% after 300 days of production. From environmental 

aspect, reduction in the steam to oil ratio by utilizing AICV will reduce the energy demand for steam generation. 

This will eventually improve the economics of SAGD projects. Also, reduction in the steam and energy demand 

will consequently contribute to lower the intensity of greenhouse gas (GHG) emissions. 

 

 

1.Introduction  

Steam assisted gravity drainage is a thermal recovery 

method based on gravity drainage for extraction of 

bitumen and heavy oil. More than 80% of the world’s 

annual heavy oil production is by means of 

deploying this technology [1]. As the bitumen and 

heavy oil viscosity are as high as 106 cP, the mobility 

is very low. Thus, the viscosity must be reduced 

drastically to make the bitumen mobile and 

extractable. Therefore, the SAGD method is used, 

where the oil is heated to temperatures around 200°C 

and higher. At this temperature range, the oil 

viscosity is below 20 cP (see Figure 1) which implies 

that the oil is mobile and is able to flow towards the 

production well by gravity.  

 

Figure 1:Viscosity of Athabasca bitumen sample versus 

temperature. [2] 

 

The SAGD process is shown in Figure 2. Steam is 

injected continuously from the steam injection well 

which is located about 4-6m above the production 

well. As steam is injected, it forms a growing steam 

chamber with uniform temperature, called a 

depletion chamber. The continuous injected steam 

flows to the interface and condenses in contact with 

the cold bitumen. As a result, the latent steam energy 

is released leading to the higher oil temperature, 

lower oil viscosity, and consequently greater oil 

mobility. The low viscous mobile oil and condensate 

flow continuously from the edge of the steam 

chamber towards the production well.  

 

 
Figure 2:SAGD process. [3] 

One of the key parameters of an efficient SAGD 

operation is attaining an even steam distribution 



along the injection well. This can be achieved by 

deploying inflow control devices (ICDs) which 

balance the steam outflow to the reservoir. The role 

of ICD installation on the injection well is of great 

importance specially in the early phases of steam 

chamber growth, since it encourages more uniform 

steam development. [4] 

One of the challenges in the SAGD wells is steam 

and water breakthrough in some parts of the well. 

This reduces the heavy oil/bitumen production and 

will consequently increase the SAGD operation cost. 

ICDs initially and autonomous inflow control 

devices (AICDs) latterly have been used to 

overcome this challenge. The newest generation of 

AICD is autonomous inflow control valve (AICV). 

AICV is able to delay the onset of steam and water 

breakthrough and ensure an even influx of oil along 

the well. In addition, in case of breakthrough of 

unwanted fluids like steam and/or water, AICV 

restricts the production of these fluids significantly. 

The ratio of steam injection to oil production (SOR) 

is of great importance in the SAGD process. From 

both environmentally and economically aspects, it is 

crucial to implement technologies which contribute 

to decrease the SOR. 

The aim of this paper is to examine the impact of the 

ICD and AICV technology on reducing SOR and 

consequently improving the SAGD economics.  

 

2. Inflow control technologies; ICD and AICV 

Inflow control technologies such as ICDs and AICVs 

were introduced to the oil industry in order to 

overcome the early water and gas breakthrough 

challenges associated with heel-toe effect in 

horizontal wells. The heel-toe effect refers to the 

variations of the inflow rate of the fluid along the 

well, from toe to heel, due to the frictional pressure 

losses [5]. In addition, these technologies promote a 

balance drainage of long horizontal wells, and in 

general increase the oil production and recovery. 

The following sub-sections present the functionality 

and performance curves of passive and autonomous 

inflow control device. 

2.1. ICD 

Figure 3 shows a pipe section with nozzle-type ICD 

completion. Fluid from the reservoir (red arrows) 

flows through the sand-screen, traverses along the 

annulus, and enters the production tubing through 

the ICD.  

 

Figure 3: Nozzle-type ICD mounted on the pipe.[6] 

The governing equation of the nozzle-type ICD is 

as follows [7]: 

∆𝑃 =
8𝜌𝑄2

𝑑4𝜋2𝑛2𝐶𝐷
2 

     (1) 

Where ∆P is the pressure drop through the nozzle, ρ 

is the fluid density, Q is the volumetric flow rate of 

the fluid through the nozzle, d is the diameter of the 

nozzle, n is the number of tested nozzles, and CD is 

the discharge coefficient. CD is mostly a function of 

the Reynolds number (Re) [7]. It can be interpreted 

from the equation (1) that the pressure drop through 

the nozzle is mainly dependent on the fluid density. 

The performance curve of a nozzle type ICD for 

water, oil and gas is shown in Figure 4. A nozzle type 

ICD with 4.75 mm diameter is used in the 

simulations. By performance curve, it means that the 

pressure drop through the device is plotted as a 

function of the volume flow rate of the fluid.   

 

Figure 4: ICD performance curves.[8] 

As it is illustrated in Figure 4, at constant pressure 

drop, the volume flow rate of oil and water differ 

slightly as the density differences are minor (1000 

kg/m3 for water vs 965 kg/m3 for oil), while the 

volume flow rate of gas is much higher due to the 

much lower density (about 11.5 kg/m3). This 

indicates that when gas breakthrough occurs, ICD 

will not restrict the gas production significantly.  

2.1. AICV 

Figure 5 shows a pipe section with sand screen and 

AICV completion.  

 



 

Figure 5:AICV mounted in a base-pipe with sand 

screen.[9] 

The mathematical model describing the performance 

of the AICV can be described as: 

∆𝑃𝑇𝑜𝑡 = (
𝜌𝑚𝑖𝑥

2

𝜌𝑐𝑎𝑙

) ∙ (
𝜇𝑐𝑎𝑙

𝜇𝑚𝑖𝑥

)
𝑦

∙ 𝑎𝐴𝐼𝐶𝐷 ∙ 𝑄𝑥 (2) 

 

where ∆𝑃𝑇𝑜𝑡  is the differential pressure across the 

AICV, 𝜌𝑐𝑎𝑙 and µ𝑐𝑎𝑙  are the calibration fluid density 

and viscosity, and 𝜌𝑚𝑖𝑥  and µ𝑚𝑖𝑥  are the mixture 

fluid density and viscosity respectively. The 

parameter 𝑎𝐴𝐼𝐶𝐷  is a valve characteristic given by the 

ICD strength, 𝑄 is the volumetric mixture flow rate, 

and 𝑥 and 𝑦 are constants. [10] 

It can be interpreted from equation (2) that the 

pressure drop through the AICV is much more 

viscosity dependent than density dependent. The 

concept and principle of AICV is described in detail 

in earlier scientific works [11, 12]. 

The performance curve of AICV for water, oil and 

gas is shown in Figure 6. 

 
Figure 6:AICV performance curves.[8] 

As it is illustrated in Figure 4 and Figure 6, at 

constant pressure drop the volume flow rates of oil 

with 200 cP viscosity through the ICD and the AICV 

are almost the same, while the gas flow rate is 

significantly higher through the ICD than the AICV. 

The location of performance curves of the gas and 

water for AICV have changed compared to the 

performance curves through ICD. The gas and water 

curve are now located far away to the left side of the 

oil curve. This indicates that when gas and water 

breakthrough occur, AICV will restrict the gas and 

water production significantly while maintaining a 

high oil production.  

3. OLGA-ROCX set up 

In this study, OLGA-ROCX is used to describe and 

compare the behavior of ICD and AICV in the 

SAGD reservoir, and to illustrate the impact of 

AICV completion on increased oil recovery. OLGA-

ROCX is an integrated transient well/reservoir 

model. The reservoir model and the wellbore model 

are coupled in an implicit way [13]. Reservoir and 

fluid properties are specified in ROCX, and the 

wellbore model is developed in OLGA. Coupling 

OLGA and ROCX enable the user to simulate the 

fluid production from the reservoir into the well. 

NETool was used to simulate the AICV performance 

in a SAGD reservoir in previous author’s work [8]. 

NETool is a static one-dimensional steady state 

simulation tool that shows the instantaneous inflow 

profile along the well, while OLGA/ROCX is a 

robust transient simulation tool to perform integrated 

well-reservoir simulations. 

3.1. Reservoir model, ROCX 

The black oil model which simulates the multiphase 

fluid transport in porous media is selected in ROCX. 

Input data to the model are grid dimensions, fluid, 

and reservoir properties. Reservoir properties such as 

permeabilities and porosities of the porous medium, 

and in addition thermal properties of the rock and 

fluids are among the input data. Initial conditions 

such as fluid saturations and temperature together 

with the boundary conditions at the well and at the 

outer near well boundary are needed. [14] 

The boundary conditions of the reservoir grid 

elements are matched with inflow points of the 

components placed in the wellbore model. This will 

define the flow from the reservoir model. So, the 

pressure boundary for the reservoir model is 

provided by the wellbore model while the reservoir 

model provides the flow and the fluid temperatures 

into the pipeline[14]. The shape of the reservoir 

drainage area is considered to be rectangular, and the 

dimensions are given in Table 1. 

Table 1:The dimensions of the drainage area. 

Direction Length 

(m) 

Number 

of 

blocks 

Block size (m) 

X 1000 10 100 

Y 117 15 20,20,5,5,3,3, 

2,1,2,3,3,5,5, 

20,20 

Z 40 10 4 



As the fluid properties varies significantly around the 

well and in the Y-Z plane, a finer mesh is considered 

in the grid setup to achieve more accurate results. 

The size of the blocks varies along the y direction 

while a uniform mesh along the z and x-direction is 

defined. Finer mesh along the x-direction will have 

insignificant impact on the overall flow rate [15]. 

The well length is 1000 m containing 10 segments 

with a length of 100 m each. One equivalent 

ICD/AICV is placed in each segment.  

Since the purpose of this study is to evaluate the 

ICD/AICV performance in case of steam 

breakthrough, the well is located as near as possible 

to the bottom of the drainage area to delay the 

probable steam breakthrough. The schematic of the 

drainage area geometry and the well location is 

shown in Figure 7.  

 

Figure 7:The schematic of the drainage area geometry. 

The grid in three dimensions is shown in Figure 8. 

 
Figure 8:3-D view of grid. 

As seen from the figure, the mesh in the y-direction 

and towards the well located in the middle of the 

drainage area is finer than in the z and x-direction.  

3.1.1 Fluid and reservoir properties 

The black oil model which estimates the pressure 

volume temperature (PVT) relations is selected in 

ROCX.  The basic modeling assumption is that the 

gas may dissolve in the liquid oil phase, but no oil 

will dissolve in the gaseous phase. This implies that 

the composition of the gaseous phase is assumed the 

same at all pressure and temperatures [12],[16].In 

other words, the black oil model assumes that the oil 

components will always be in the liquid phase 

despite any changes in the conditions [15] . 

The reservoir pressure at initial conditions is 27 bar 

and it is assumed to be constant. The fluid properties 

used for the simulation are listed in Table 2. The oil 

viscosity is measured at 180°C at atmospheric 

pressure [2]. 

Table 2: Fluid properties as input in ROCX. 

Property Value 

Oil viscosity [cP] 15.50 

Oil specific gravity [-] 0.90 

Gas specific gravity [-] 0.64 

Gas oil ratio (GOR) [Sm3/Sm3] 150 

A gas cap is placed at the top of the reservoir in the 

boundary conditions section. Hence a gas feed in 

addition to oil feed are defined. The feed streams are 

presented in Table 3. 

Table 3:Feed streams. 

Feed stream Fraction type Fraction 

Oil GOR 150 

Gas OGR 0.99 

The reservoir porosity is assumed to be constant 0.3 

throughout the reservoir. Different permeabilities are 

specified for each block in order to simulate a 

heterogenous reservoir. It is assumed that the area 

close to the toe section of the well has a higher 

permeability in all directions. The permeability of 

the heterogenous reservoir in both x and y-direction, 

varies from 3000 mD in relatively low permeable 

zones to 6000 mD in relatively high permeable 

zones. The vertical permeability is specified in each 

block of the reservoir, and it varies from 300 to 600 

mD for relatively low permeable and relatively high 

permeable zones respectively. The vertical 

permeability profile of the heterogenous reservoir is 

illustrated in Figure 9 

 
Figure 9:Vertical permeability profile. 

 

Generally, it is challenging to obtain information 

about relative permeability for different fields. Data 

for relative permeabilities are set manually in table 



form in Rocx. The “Stone II” model with exponent 2 

is used to evaluate the oil phase relative permeability 

while the Corey correlation with exponent 1.5 is used 

to estimate the gas phase relative permeability. The 

relative permeability curves for oil and gas are 

presented in Figure 10. 

 

Figure 10: Relative permeability curves for the SAGD 

reservoir. 

3.1.2 Initial and boundary conditions 

Initially, it is assumed that the fraction of the black 

oil feed is equal to one. The initial oil and gas 

saturation of in the reservoir are set to 0.9 and 0.1. 

Pressure and temperature of the reservoir are 27 bar 

and 180°C, respectively.  

3.2. Wellbore model, OLGA 

In OLGA, separate continuity equations are applied 

for the gas, for the oil (or condensate) and water 

liquids and also for oil (or condensate) and water 

droplets. Three momentum equations are also used: 

one for each of the continuous liquid phases 

(oil/condensate and water) and one for the 

combination of gas with liquid droplets. One mixture 

energy equation is also applied. Totally, seven 

conservation equations and one equation of state to 

be solved: the seven conservation equations are three 

for mass, three for momentum, and one for energy, 

while the equation of state is for pressure.[17] 

3.2.1 Mass Transport Equations: 

𝜕𝑡𝑚𝑖 + 𝜕𝑧(𝑚𝑖𝑈𝑖) = ∑𝑖Ψ𝑗𝑖 + 𝐺𝑖                                          (3)                                      

where mi and Ui denote mass field (gas, oil in liquid 

layers, water in liquid layers, oil droplets in gas layer, 

and water droplets in gas layer) and velocity 

respectively. In addition, ∂t denotes differentiation in 

time, ∂z denotes spatial differentiation, Ψji denotes 

the rate of mass transfer between the j-th and i-th 

mass field, that is, dispersions, droplet deposition 

and entrainment, and phase transitions, and Gi 

denotes any mass source/sink. 

3.2.2 Momentum Balance Equations 

𝜕𝑡(𝑚𝑖𝑈𝑖) + 𝜕𝑧(𝑚𝑖𝑈𝑖
2) = 𝑚𝑖 . 𝑔. cos(𝜑) + 𝓅𝑖 + 𝐺𝑖𝑈𝑖 +

 ∑𝑗  (Ψ𝑗𝑖
+𝑈𝑖 −  Ψ𝑗𝑖

−𝑈𝑖) + ∑𝑗 𝐹𝑗𝑖
𝐼  (𝑈𝑗 − 𝑈𝑖) − 𝐹𝑖

𝑤 𝑈𝑖         (4)      

where ∂t denotes differentiation in time, ∂z denotes 

spatial differentiation. g is the acceleration of 

gravity, φ is the pipe angle relative to the 

gravitational vector, Pi is the pressure force, GiUi is 

the momentum contribution corresponding to the 

mass source/sink Gi. Also, FI
ji are friction forces 

between the i-th and j-th mass field, and Fw denotes 

the wall friction. Ψji denotes momentum 

contributions corresponding to the mass transfer 

between the j-th and i-th mass field. In the equation 

(4), Ψ+
ji accounts for a net contribution from mass 

field i to j while Ψ-
ji accounts for a net contribution 

from mass field j to i.    

3.2.3 Energy balance equation 

𝜕𝑡(𝑚𝑖𝐸𝑖) + 𝜕𝑧(𝑚𝑖𝑈𝑖𝐻𝑖) = 𝒮𝑖 + 𝒬𝑖 + ∑𝑖T𝑖𝑗𝐸𝑗                (5) 

where Ei denotes the field energy, Hi denotes the 

field enthalpy, S denotes enthalpy source/sink, Q is 

the heat flux through the pipe wall, and Tij models 

the energy transfer between fields. 

3.3 OLGA set-up 

In this work, a basic case is selected to generate the 

wellbore model in OLGA. The model consists of two 

pipes: pipeline and flowpath. The flowpath 

represents the production tubing, and the pipeline 

represents the annulus and the inflow from annulus 

to the well. On the pipeline, the flow components 

such as inflow controls and packers are placed. The 

characteristics and dimensions of the two pipes are 

listed in Table 4. 

Table 4:The characteristics of pipeline and flowpath. 

Pipe Length 

(m) 

Diameter 

(mm) 

Roughness 

(mm) 

 

Pipeline 1000 222 0.028 

Flowpath 1000 114 0.050 

Figure 11 shows the set-up in OLGA for one 

production zone which consists of two sections. This 

set-up was developed and proposed for the first time 

in 2012 [12] and results were presented in a scientific  

paper [11]. 

 

Figure 11:Set-up of a single production zone with inflow 

controller in OLGA. 

The pipeline (PIPELINE) includes a near-well 

source (NWSOUR) which connects the ROCX file 



as input data. The near-well source is the flow source 

from the reservoir to the annulus. In addition, the 

pipeline consists of one inflow controller (VALVE-

A), two packers (VALVE-1 and 2 with zero 

opening), and leak (LEAK) which outflows the flow 

through the inflow control to the production well 

(FLOWPATH) and towards the heel (OUTLET). 

Each production zone is divided into two sections 

and is isolated by packers. The near-well source and 

the leak is placed in each section and the packers, and 

the inflow controllers are the section boundaries. 

Each pipe is divided into 10 production zones each 

100 m long which implies that there are totally 20 

sections.10 nozzle type ICDs with a diameter of 15 

mm is distributed in the 10 production zones. The 

flow area of this ICD in one production zone (100 m) 

corresponds to the flow area of 10*4.75 mm ICDs. 

Usually, in the industry, the ICDs are installed in 

approximately 10-11 m long joints. So, the flow area 

of one equivalent ICD in a 100 m production zone is 

approximately the same as the flow area of 10 ICDs 

with 4.75 mm diameter which are installed in 10-11 

meters long joints. 

A comprehensive and step by step workflow for 

modelling of the rate controlled production (RCP) 

valves in the OLGA simulator was proposed in a 

scientific paper [18]. In this new method, a controller 

is used to chock the RCP valve based on the 

characteristics of the RCP valve and the reservoir 

fluid mixture. This method can also be used for 

AICVs. Set-up of a single production zone with 

AICV in OLGA is illustrated in Figure 12 .  

 

Figure 12:Set-up of a single production zone for AICV in 

OLGA. 

Based on the single-phase (Figure 6)  and multi-

phase gas/oil performance of the AICV, a table 

controller (TABLECONTROLLER-1) is created. 

This table controller gets the measured gas volume 

fraction (GVF) data from the transmitter (TM-1) and 

provides corresponding control signals for chocking 

the AICV.  The multiphase gas/oil behavior of the 

AICV for SAGD conditions was presented earlier in 

a scientific paper [8] . According to the experimental 

results provided in that paper, the AICV gradually 

opens when the oil/gas mixture flows through the 

valve. However, the AICV restricts the gas flow 

when the GVF is getting higher, until pure gas flows 

through the valve and the valve is almost closed.  

The control signal table in the OLGA simulator for 

controlling the AICV, consists of independent and 

dependent variables. In this case, the percentage of 

the valve opening is a function of the GVF. Indeed, 

the valve opening is getting less and less by 

increasing the GVF.  

4. Results and discussion 

In this chapter, the obtained simulation results which 

are conducted for two cases are presented. The 

simulation cases are as follows: 

1. Heterogeneous reservoir with ICDs 

2. Heterogeneous reservoir with AICVs 

The gas density and viscosity in the simulations 

performed by OLGA/ROCX, are set to 11.5 kg/m3 

and 0.02 cP respectively. In the simulations and the 

experiments, the gas represents steam. 

In order to study the performance of ICD and AICV 

in a specific well production period, the accumulated 

oil and gas for AICV and ICD completions are 

compared.   Figure 13 illustrates the accumulated oil 

and gas produced from the well after 300 days of 

production.  

 

Figure 13:Accumulated oil and gas from the well 

completed with AICVs and ICDs. 



As can be seen in this figure, after 300 days of 

production, the accumulated oil in the AICV and 

ICD cases differs marginally. However, due to the 

better performance of AICV in both single and 

multiphase flow regions, the amount of accumulated 

gas drops significantly from 4.8 Mm3 to 1.9 Mm3 

after 300 days of production. 

When the gas breakthrough occurs, AICV starts to 

chock the gas production gradually. Indeed, AICV 

chocks the gas production consistently by increasing 

GOR. This behavior, which is based on experimental 

data [8], was implemented in the Table Control 

module in OLGA.  

Figure 14 Shows the comparison of oil and gas 

production rates for AICV and ICD completion for 

300 days of production. The oil production rate for 

both cases reach its maximum at the start of the 

production. The oil production decreases slightly as 

the gas production increases simultaneously. Gas 

production grows suddenly and rapidly at 35th day of 

production, which implies that gas breakthrough has 

occurred. At the time of gas breakthrough, gas enters 

the well rapidly due to its high mobility. This 

restricts the production of oil significantly, and as a 

result, the oil production rate drops drastically. 

However, oil production is continued at an 

acceptable level until the end of the production time.  

 

Figure 14:Voumetric flow rate of oil and gas for the well 

completed with AICVs and ICDs. 

As can be seen from the figure, the volumetric oil 

flow rate of ICD is on average slightly higher than 

the volumetric oil flow rate of AICV during the 

whole period of production. However, the gas 

breakthrough occurs a few days later for the AICV 

case than for the ICD case. Also, the development of 

gas breakthrough is much faster for the ICD case 

compared to the AICV case. It can be concluded 

from the figure that the well completed with AICVs 

reduces the gas production by approximately 88% 

compared to using ICDs after 300 days of 

production. 

Figure 15 shows the GOR at standard conditions as 

a function of accumulated oil production. This figure 

illustrates how the GOR varies with accumulated oil. 

Usually in the wells, the total allowable gas 

production is limited, since the total gas processing 

capacity is an active constraint [19]. This highlights 

the importance of developing new inflow control 

technologies which guarantee a higher maximum oil 

production while meeting the GOR constraint.  

As it can be seen from the figure, the accumulated 

oil at a specific GOR, for example 600, for the AICV 

case is 15% more than the accumulated oil for the 

ICD case.  

 

Figure 15: Accumulated oil production versus gas oil 

ratio for AICV and ICD. 

4. Conclusions 

The performances of AICV and ICD in a SAGD 

production well are investigated. This is achieved by 

developing a dynamic wellbore-reservoir model in 

the OLGA-ROCX simulator. Reservoir and fluid 

properties are specified in ROCX, and the wellbore 

model is developed in OLGA. Coupling OLGA and 

ROCX enable the user to simulate the fluid 

production from the reservoir into the well.  

The simulation results demonstrate the significant 

benefit of AICV in SOR reduction compared to ICD. 

Indeed, simulation results show that utilizing AICV 

in the SAGD production wells will reduce the gas 

(steam) production by 88% after 300 days of 

production. Reduction in SOR, will improve the 

overall SAGD operation performance. This will also 

result in more cost-effective oil production.  

 



From environmental aspect, reduction in the steam 

to oil ratio by utilizing AICV, will reduce the energy 

demand for steam generation. This will improve the 

economics of SAGD projects. Also, reduction in the 

steam and energy demand will consequently 

contribute to lower the intensity of greenhouse gas 

(GHG) emissions. 
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Abstract 

 

A standard process for CO2 capture based on absorption in mono ethanolamine (MEA) has been simulated and 

cost estimated with an equilibrium-based model in Aspen HYSYSTM. The aim has been to calculate cost optimum 

process parameters and evaluate the possibility of automated cost optimization using a spreadsheet facility. An 

Excel spreadsheet is used for dimensioning and cost estimation of the specified process.  New in this work is that 

Visual Basic for Application (VBA) was used to automatically update installation factors for next iteration based 

on cost calculations in previous iteration.  The equipment cost was obtained from the Aspen In-plant Cost 

EstimatorTM, and an enhanced detailed factor (EDF) method was used to estimate the total investment cost. The 

optimum process was found as the process with minimum calculated total cost.  The cost optimum process 

parameters for the standard process were calculated to 15 m absorber packing height, 9 °C minimum approach 

temperature and 2.2 m/s superficial gas velocity through the absorber.  With this approach, iterative cost estimation 

and optimization of CO2 absorption and desorption processes can be performed automatically. 

Keywords: Carbon capture, Aspen HYSYS, simulation, cost estimation, optimization  

 

1. Introduction 

1.1. Aim 

One aim of this work was to calculate cost optimum 

process parameters for a traditional amine based 

CO2 capture process. Another aim was to evaluate 

the possibility of automated cost optimization using 

a spreadsheet facility. An Excel spreadsheet is 

traditionally used for dimensioning and cost 

estimation of the specified process with optimization 

performed by minimizing the total cost calculated in 

the spreadsheet. New in this work is that Visual 

Basic for Application (VBA) was used to 

automatically update installation factors for next 

iteration based on cost calculations in previous 

iteration.  

 

1.2. Literature 

There is a large number of papers on cost estimation 

of CO2 capture plants (Rao and Rubin, 2002; Rubin 

et al., 2013; van der Spek et al., 2019). Some of 

these are based on a combination of process 

simulation and cost estimation (Abu-Zahra et al., 

2007; Amrollahi et al., 2012; Nwaoha et al., 2018).  

This work is a further development of earlier works 

at the Telemark University College and the 

University of South-Eastern Norway (USN). The 

projects have been focused on process simulation, 

equipment dimensioning, capital and operating cost 

estimation, and cost optimization of CO2 capture 

processes using the process simulation tool Aspen 

HYSYS. Some of the previous works are Kallevik 

(2010), Øi (2012), Park and Øi (2017), Aromada and 

Øi (2017), and Øi et al. (2021). 

The cost estimation part has been based on the 

Enhanced Detailed Factor (EDF) method (Ali et al., 

2019; Aromada et al., 2021). While this method has 

several advantages, the time required to implement 

the detailed installation factors in capital cost 

estimation is a drawback. This becomes 

cumbersome when there is a need to run several 

process simulations by varying a process parameter 

followed by cost estimation for each iteration. 

Recently, the focus has been on automatic process 

simulation combined with cost estimation for fast 

cost optimization of CO2 capture processes in Aspen 

HYSYS (Haukås, 2020; Øi et al., 2021). The 

Iterative Detailed Factor (IDF) scheme was then 

developed (Aromada et al., 2022a). The IDF scheme 

was applied for several minimum temperature 

approach cost optimization studies in (Aromada et 

al., 2022a). However, there was yet a need for 

manual observation for implementing any change 

required in the detailed installation factors and 

subfactors whenever process parameters are varied 

for subsequent simulation of the CO2 capture 

process. Therefore, there is a need to make the entire 

process simulations, equipment dimensioning and 

cost estimation automatic, without requiring any 

manual input as done in the IDF scheme mode of 

implementation (Aromada et al., 2022a). This was 

mailto:lars.oi@usn.no
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accomplished in this work by linking Aspen HYSYS 

simulation spreadsheets with Microsoft Excel by a 

VBA code.  This has been discussed by Sharma and 

Rangaiah (2016).     

The Aspen HYSYS library was activated in 

Microsoft Excel from the developer tab > visual 

basic > tools> and preference (Rangaiah, 2016; 

Rahmani, 2021). The Aspen HYSYS root needs to 

be inserted into a Microsoft Excel sheet and it should 

be updated for each model. The Aspen HYSYS 

application should be closed during the process. The 

VBA script was developed for coupling the Aspen 

HYSYS and Microsoft Excel spreadsheets. The 

code imports equipment prices from the Aspen 

HYSYS spreadsheet into an Excel spreadsheet for 

cost estimation and optimization. At the same time, 

the right equipment units’ installation factors/sub-

factors are automatically imported from the 

Microsoft Excel sheet into the Aspen HYSYS 

spreadsheet. By this, the EDF method is simply and 

automatically implemented very fast without errors 

in the selection of the detailed installation 

factors/subfactors. The code and more details are 

documented in (Rahmani, 2021).  

With this new approach of involving a VBA code, 

human errors in selecting EDF method installation 

factors and subfactors for different equipment are 

eliminated. And most importantly, each time a new 

process simulation is performed, the costs are 

automatically available without requiring any form 

of manual inputs.  

With this work, process simulation based CO2 

capture process parameter cost optimization studies 

and sensitivity analysis can be conducted quickly 

and obtain reasonably accurate results. This paper 

documents cost optimization studies conducted with 

this new approach and comparison with other works. 

This work is based on the Master thesis work of 

Rahmani (2021). 

 

1.3. Process Description 

Prior to the CO2 capture process, the flue gas is 

cooled in a direct contact cooler (DCC) with 

circulating water before it is sent to the absorption 

column. The amine with absorbed CO2 from the 

bottom of the absorption column is pumped through 

the rich/lean heat exchanger with the temperature 

after the heat exchanger specified. The hot amine 

solution is entering the desorption column which 

separates the feed into the CO2 product at the top and 

hot regenerated amine at the bottom. The 

regenerated amine is pumped to a higher pressure in 

a pump, then passes through the lean/rich heat 

exchanger and is further cooled in the lean cooler 

before it again enters the absorption column. 

 

 
 
Figure 1: Process flow diagram of a standard amine-based 

CO2 capture process (Aromada et al., 2020). 

 

2. Specifications and simulations  

2.1. Specifications and simulation of standard CO2 

capture process 

Specifications for the base case are given in Tab. 1. 

In the base case, 85 % CO2 removal efficiency and a 

minimum approach temperature of 10 °C was 

achieved in the lean/rich heat exchanger. Aspen 

HYSYS version 11 was used with the Acid Gas 

package as the recommended equilibrium model by 

Aspen HYSYS.  

The calculation sequence is similar to earlier works 

(Øi and Haukås, 2021). The calculation strategy is 

based on a sequential modular approach (Kisala et 

al., 1987; Ishii and Otto, 2008).  The calculation 

starts with the flue gas inlet stream and a guessed 

amount of the lean amine stream. After calculation 

of the DCC and the absorption column, the 

amine/amine heat exchanger is calculated based on 

a guessed (or specified) temperature in the stream 

from the desorber. The temperature can be adjusted 

in an adjust block to obtain a specified minimum 

temperature approach. After calculation of the 

desorber, the lean amine pump and the amine/amine 

heat exchanger the lean amine cooler is calculated to 

give an updated lean amine amount and 

composition.   

The updated lean amine amount and composition is 

checked in a recycle block with the amine stream 

from the last iteration.  

Adjust and Recycle operations in the flowsheet are 

used to get an automated simulation model. An 

Adjust block is adjusting the minimum approach 

temperature in the lean/rich heat exchanger by 

varying the temperature on the hot side outlet. A 

Recycle block is adjusting the removal efficiency by 

varying the lean amine mass flow. The Aspen 

HYSYS flowsheet is shown in Fig. 2. 

Water was added to the process (water make-up). 

The make-up water can be calculated by a material 

balance.   
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Table 1: Aspen HYSYS model parameters and 

specifications for the base case alternative. 

 

Parameter Value 

Inlet flue gas temperature [oC] 110/40.0 

Inlet flue gas pressure [kPa] 101/120 

Inlet flue gas flow rate [kmol/h] 10910 

CO2 content in inlet gas [mole %] 3.3 

Water content in inlet gas [mole %] 6.9 

Lean amine temperature [oC] 40.0 

Lean amine pressure [kPa] 101.0 

Lean amine rate [kg/h] 132100 

MEA content in lean amine [mass %] 22.5 

CO2 content in lean amine [mass %] 3.5 

Number of stages in absorber [-] 10 

Murphree efficiency in absorber [m-1] 0.25 

Rich amine pump pressure [kPa] 200.0 

Rich amine temp. out of HEX [oC] 103.6 

Number of stages in desorber [-] 6 

Murphree efficiency in desorber [m-1] 0.5 

Reflux ratio in stripper [-] 0.3 

Reboiler temperature [oC] 120.0 

Lean amine pump pressure [kPa] 500.0 

 

 

2.2. Parameter variations 

10 stages, 85 % removal efficiency and 10 °C as 

minimum approach temperature were specified in 

the base case simulation. For parametric studies, the 

packing height and minimum approach temperature 

were varied. The gas velocity through the absorber 

column and the pressure drop were also varied.   

The Case study function in Aspen HYSYS was used 

to perform a series of calculations automatically. An 

important restriction is that when using the Case 

study function, it is not possible to perform other 

adjustments for each new parameter value. 

 

2.3. Process convergence and stability  

A Recycle block and an Adjust function were used 

in the Flowsheet calculation.  The Modified Hysim 

Inside-Out algorithm with adaptive damping was 

used according to a recommendation by Øi (2012).  

This is the algorithm to solve the material, enthalpy 

and equilibrium equations in a column simulation.  

Stable convergence is especially important when 

running a Case study in Aspen HYSYS for the 

purpose of optimization. 

 

 

3. Cost estimation procedures and assumptions 

3.1. Equipment dimensioning and assumption 

The equipment was dimensioned using the mass and 

energy balances obtained from the process 

simulations as done in previous works (Øi et al., 

2021).  

The absorber was specified to have 10 stages and the 

desorber 6 stages (Aromada and Øi, 2017). Each 

stage of both columns was assumed to be 1 meter 

(Aromada et al., 2020). A constant stage (Murphree) 

efficiencies of 0.15 and 0.5 were specified for the 

absorber and the desorber respectively (Aromada et 

al., 2022b). Structured packing was specified for 

both the absorber and desorber. Superficial gas 

velocity of 2.5 m/s was applied to estimate the 

diameter of the absorber (Øi et al., 2020). For the 

desorber, the desorber was evaluated using a 

superficial gas velocity of 1 m/s (Park and Øi, 2017). 

The tangent-to-tangent shell height of the absorber 

was specified to be 40 meter (Aromada et al., 

2022a). A tangent-to-tangent shell height of 15 m 

was used for the desorber. The height in both 

columns were necessary to account for distributors, 

water wash packing, demister, gas inlet, outlet and 

sump. 

The sizing of the direct contact cooler and the flash 

tank were based on Souders Brown’s equation with 

k-parameter 0.15 and 0.075 respectively. The heat 

exchange equipment units were dimensioned based 

on the heat exchange areas calculated from the heat 

duties. The overall heat transfer coefficient of 500 

W/(m2K), 800 W/(m2K), 800 W/(m2K), and 1000 

W/(m2K) were specified for the lean/rich heat 

exchanger, lean amine cooler, reboiler and 

condenser respectively (Aromada et al., 2020).  

The pumps were specified as centrifugal pumps with 

75 % adiabatic efficiency. They were sized based on 

flow rate and duty. 

 

3.2. Capital cost estimation methods 

The capital costs were estimated using the Enhanced 

Detailed Factor (EDF) method (Ali et al., 2019; 

Aromada et al., 2021). The total capital cost is the 

sum of all the equipment installed costs. The EDF 

updated installation factors for 2020 by Nils Eldrup 

was used (Aromada et al., 2021). 

A traditional factor method for cost estimation is 

based on a table of factors multiplying the purchased 

cost of each type of equipment unit. In a detailed 

factor method, the total factor for each type is the 

sum of contributions from e.g. installation, 

electrical, instrumentation, administration etc. In the 

EDF method, these detailed factors are also 

dependent on the size and cost of the purchased 

equipment, so that the factors may change from one 

iteration to the next in an optimization procedure.     
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Figure 2: Aspen HYSYS flow-sheet of the base case simulation (Pouya, 2021). 

 

 

The cost of each equipment was obtained from 

Aspen In-plant Cost Estimator (v.10), based on the 

sizes estimated. The cost currency is in Euro (€) and 

the cost year is 2016. The default location for 

Europe, Rotterdam was selected in this study. 

Stainless steel (SS316) was specified for all 

equipment. Welded equipment has a material factor 

of 1.75. The seamlessly manufactured equipment, 

the pumps and fan have a material factor of 1.3 (Øi 

et al., 2021).   

Since this work is aimed at automatic cost 

estimation, the capital cost is initially estimated 

based on equipment costs obtained from Aspen In-

Plant Cost Estimator. Subsequent equipment cost is 

then estimated automatically based on the Power 

law.  The Power law is based on the assumption that 

the cost ratio of two sizes of a unit is proportional to 

the dimension ratio raised to a power factor 

(typically 0.65).   The installation factors and 

subfactors are also automatically implemented in 

each simulation iteration by the aid of the VBA code 

which connects Aspen HYSYS spreadsheets with 

Microsoft Excel spreadsheet. 

The economic assumptions used for the capital cost 

estimation are summarized in Tab. 2 (Rahmani, 

2021). 

 
Table 2: Cost calculation specifications (Rahmani, 2021).  

Parameter  Value 

Plant lifetime 20 years 

Discount rate  8.5 % 

Maintenance cost 
4 % of installed 

cost 

Electricity price 0.06 Euro/kWh 

Steam price 0.015 Euro/kWh 

Annual operational time 8000 hours 

Location Rotterdam 

Currency exchange rate 

2016 
9.21  

Cost index 2016 103.6  

Cost index September 2020  111.3  

 

3.3. Operating cost estimation and assumption 

The annual operating cost in this work was limited 

to cost for consumption of steam, electricity, cooling 

water and an annual maintenance cost as done in 

(Aromada and Øi, 2017). The electricity 

consumption was based on the pump duties obtained 

from Aspen HYSYS. Similarly, the steam 

consumption was based on the reboiler steam duty 

in kW. The annual hours of operation were assumed 

to be 8000 hours/year. The annual maintenance cost 

was specified as 4 %. 

 

3.4. Net present value 

The cost metric in this work for cost optimization is 

negative net present value (NPV) as done in 

(Haukås, 2020). The NPV is the sum of investment 

cost and the operation cost for each year in the plant 

lifetime. The spreadsheet unit in Aspen HYSYS was 

used to calculate the detailed cost estimation of 

CAPEX, OPEX and NPV (net present value). For 

the case of optimizing the temperature difference in 

the main heat exchanger, the calculation could be 

performed effectively by using the Case Study 

option in Aspen HYSYS. The optimum solution can 

then be found by the simulation giving the lowest 

NPV as shown in Fig. 3. For the case of optimizing 

the number of absorber stages, each calculation was 

performed independently by specifying the number 

of stages in each calculation. 
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4. Results and Discussion  

 

4.1. Base case cost results 

For the base case, the total cost (or negative NPV) 

was estimated to 401 mill. EURO.  This is the sum 

of CAPEX and OPEX for a Plant lifetime of 20 

years. 

 

4.2. Optimization of minimum ΔT approach 

The minimum temperature approach optimization 

for the process is shown in Fig. 3. The absorber 

packing height was 15 m in these optimizations.  The 

optimum value at 9 K can be found as the one with 

minimum (negative) NPV. The cost optimum 

minimum temperature approach has been calculated 

in literature to values typically between 10 and 15 K. 

The differences are due to different ratios between 

cost of heat exchangers and cost of heat. 

 

 
Figure 3: NPV and energy consumption as a function of 

ΔTmin with 85% capture rate, EM = 0.25, 20 years 

calculation period, and 8.5% interest rate. 

 

4.3. Optimum absorber height 

The results from the optimization of the absorber 

packing height are given in Fig. 4. It shows an 

optimum for 15 stages equivalent to 15 meter 

packing height.  This is similar to results in earlier 

work (Kallevik, 2010; Aromada and Øi, 2017; Øi et 

al., 2020). 

  

 
Figure 4: NPV as a function of absorber packing height 

with removal efficiency 85%, EM=0.15, 20 years 

calculation period and 8.5% interest rate. 

 

The minimum NPV when optimizing the absorber 

packing height is 366 mill. EURO. This is a cost 

reduction of 9 % compared to the base case.  

 

4.4. Optimization of gas velocity 

When the superficial velocity through the absorption 

column is increased, the cross section of the 

absorber decreases and reduces the cost, while the 

pressure drop increases and increases the cost. The 

result when varying the superficial velocity is given 

in Figure 5.  

 
Figure 5: NPV as a function of superficial velocity with 

85% capture rate, 20 years calculation period, and 8.5% 

interest rate and constant packing volume. 

 

Fig. 5 shows an optimum for a gas velocity of about 

2.2 m/s. This is a value close to values from Park and 

Øi (2017). There are not found other references in 

the open literature showing similar results to 

compare with. 

 

5. Automation 

5.1. Automation approaches 

Automation of the simulations has been 

investigated, and results have been compared with 

manual simulations. Some of the input data should 

be changed in the simulations manually, which is 

time-consuming. Connecting Excel and Aspen 

HYSYS to transfer the data is the first step toward 

automating the process. In order to make the 

connection, one possibility is to use an Aspen 

simulation workbook and programming in Visual 

Basic. In addition, defining a case study in the Aspen 

HYSYS can be useful for automating the 

simulations. 

The Aspen simulation workbook is an Excel feature 

that can be activated through Excel's settings. The 

Aspen HYSYS simulation model should be linked 

to Excel, under the simulation tab in the Aspen 

simulation workbook. Variables in the Aspen 

HYSYS simulation can be copied to the Aspen 

simulation workbook. In the scenario table, all of the 

input data are collected once, and the simulation 

runs one at a time.  

ΔTmin is considered as input in the lean-rich heat 

exchanger. The capture rate and NPV are considered 

as outputs. In order to fix the capture efficiency at 

about 85%, a controller is added to the simulation. 
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Visual Basic for application (VBA) programming 

language in Excel is another method for automating 

the process and cost estimation in Aspen HYSYS. In 

Aspen HYSYS, it can be activated in Excel from the 

developer tab, visual basic, tools and preference. 

One of the most time-consuming steps in cost 

estimations is determining the correct installation 

factor e.g. from a table. With this approach VBA 

was used to automatically update installation factors 

for next iteration based on cost calculations in 

previous iteration. 

 

5.2. Automatic optimization of ΔTmin 

In Fig. 6, sensitivity analysis is performed 

comparing manual calculations and a case study 

including updated cost factors using the Visual 

Basic for Application approach as explained in 

subsection 5.1.   

 

 
Figure 6: NPV as a function of ΔTmin with removal 

efficiency 85%, EM=0.25, 20 years calculation period and 

8.5% interest rate for case study(automatic) and manually, 

by using Aspen HYSYS model for ΔTmin=10°C. 

 

The results are not exact equal for manual and 

automatic calculations. The accuracy is however 

reasonable, the difference in NPV is less than 1 %. 

The calculated optimum ΔTmin where 9 and 11 K, 

respectively. The study shows that it is possible to 

calculate reasonable optimums automatically.     

 

5.3. Automatic optimization of column height and 

gas velocity 

Automatic optimization of column height (number 

of absorber stages) is still a challenge. In Aspen 

HYSYS, the number of stages is specified in the 

simulation input and can only be changed manually. 

This is also the case for pressure drop in the absorber 

column which can be used for gas velocity 

optimizations. This limitation is not necessarily a 

restriction in the future versions or in other tools, so 

this is an interesting challenge for further work. 

 

5.4.  Automatic optimization of other processes    

The automatic optimization method in this work is 

specific for a process simulation in Aspen HYSYS. 

In principle, this approach could be used for any 

process using any process simulation tool. However, 

the specific challenges using Aspen HYSYS is 

related to the limitations in Aspen HYSYS regarding 

possibilities for varying some specified parameters.  

Examples are the number of stages in a column and 

the pressure drop for a column stage which have to 

be specified manually. 

 

 

6. Conclusion  

The aim has been to calculate CO2 capture cost 

optimum process parameters and evaluate the 

possibility of automated cost optimization using a 

spreadsheet facility. The adjust and recycle blocks 

are used to automate the energy and material balance 

for a specified simulation. An Excel spreadsheet is 

used for dimensioning and cost estimation of the 

specified process. New in this work is that Visual 

Basic for Application (VBA) was used to 

automatically update installation factors for next 

iteration based on cost calculations in previous 

iteration.  

Equipment cost was obtained from Aspen In-plant 

Cost EstimatorTM, and an enhanced detailed factor  

method was used to estimate the total investment 

cost. Parametric studies of the absorber packing 

height and the minimum approach temperature in 

the main heat exchanger were performed at 85 % 

capture efficiency. The cost optimum process 

parameters for the standard process were calculated 

to 15 m absorber packing height, 9 °C minimum 

approach temperature and 2 to 2.2 m/s superficial 

gas velocity through the absorber. 

With this approach, iterative cost estimation and 

optimization of CO2 absorption and desorption 

processes can be performed automatically.  

Automatic optimization of some parameters like the 

number of column stages is a challenge because they 

must be specified manually. 
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Abstract

Post-combustion carbon capture (PCC) technologies play an important role in the reduction of CO2 emissions to address
climate challenges. This process is usually simulated in process simulation software based on first-principle models, which
calculate physical properties directly from basic physical quantities such as mass and temperature. Using first-principle
models usually requires a long computation time, which makes optimization and control difficult. In this study, machine
learning algorithms, such as eXtreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR), are investigated as
potential alternative modeling approaches. XGBoost is an ensemble algorithm that is based on the decision tree and optimized
by gradient boosting. SVR fits the best line within a predefined or threshold error value. These two algorithms are used to build
models to predict the CO2 capture rate (CR) and specific reboiler duty (SRD) in a monoethanolamine-based PCC process. By
using the XGBoost, the verification result shows R2 (a statistical measure that represents the fitness of the model) in predicting
CR is 91.7% and in predicting SRD is 80.8%, while by using SVR the R2 in predicting CR and SRD is 87.9% and 87.2%
individually. In addition, XGBoost and SVR take 0.022 seconds and 0.317 seconds respectively to predict CR and SRD of
1318 cases, while the first-principal process simulation model needs 3.15 seconds to calculate 1 case. The data-driven models
built using the XGBoost algorithm are employed for further optimization, which aims to find an operating point to have a
higher CR and lower SRD. Particle swarm optimization (PSO), a stochastic optimization technique based on the movement
and intelligence of swarms, is implemented for the optimization. The CR and SRD for optimal operating conditions are 72.2%
and 4.3 MJ/kg each. The computations are faster with the data-driven models incorporated in the optimization technique.
Thus, the application of machine learning techniques in carbon capture technologies is demonstrated successfully.

Keywords: Post-combustion carbon capture; Machine learning; Optimization

1. Introduction

The world has experienced global warming due to
greenhouse gas emissions. The temperature difference
between global mean surface temperature in 2020 and
the pre-industrial baseline (1850-1900) reaches 1.2◦C [1].
Net zero emissions is proposed to avoid the worst climate
impacts. It refers to the balance between the amount of
produced greenhouse gas and the amount removed from
the atmosphere. Carbon capture and storage (CCS) is
one of the technologies to achieve net zero emissions.
CCS is the process of capturing CO2 before it enters the
atmosphere, transporting and storing it for centuries or
millennia. Three technology routes are usually discussed
in the CO2 capture: pre-combustion capture, oxy-fuel
combustion capture, and post-combustion capture(PCC).

PCC is a process to capture CO2 from flue gas generated
after burning the coal, oil, and gas before transportation,
and it is the most commonly used carbon capture
technology. Therefore, this study focused on the PCC
process. The most advanced technology used in PCC
technologies is chemical absorption followed by the
thermal-stripping route. In the absorption process, CO2
from the gas stream is captured by an absorbent solvent.
While in the stripping process, pure CO2 is released and
the absorbent solvent is regenerated [2]. The typical
solvents for absorption processes are amines, such as
monoethanolamine (MEA) and diethanolamine (DEA).

In the literature, the PCC process is widely studied with

the assistance of simulations by researchers to analyze the
process behavior. In particular, several methods have been
applied to improve prediction performance. Xiaobo Luo
et al. developed an accurate rate-based steady-state model
for the MEA-based carbon capture process and validated
it against thermodynamic and physical properties
calculations over a wide range of pressures, temperatures,
and CO2 loadings [3]. A case study was then performed to
capture CO2 from a 250 MWe combined cycle gas turbine
(CCGT) power plant to achieve shorter packing height
and lower specific duty. Rohan Dutta et al. used reduced
stage efficiencies in an equilibrium-based absorber
model to predict operating conditions within an accepted
range [4]. This modification reduces the computational
time for simulation. Typically, these processes are
simulated by using mass and energy balance equations to
calculate physical properties such as mass flow rate and
temperature in a computer software environment, e.g.,
Aspen HYSYS®, Aspen Plus® or gPROMS® [5][6][7].
However, the process simulation models based on the
first principle require considerable computational time
for solving complex equations and thus pose challenges
in the implementation of advanced optimization and
control techniques. To overcome the challenges brought
by the first-principle models, the application of machine
learning techniques has also been investigated for various
CO2 capture processes. For example, the effectiveness
of the machine learning techniques in recognizing
high-performing metal-organic framework materials
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for CO2 capture has been proved in the past [8]. In
addition, the applicability of these advanced methods
can also be seen in ionic liquid-based CO2 capture for
prediction of structure-property relationships between
molecular structures of cations and anions and their CO2
solubilities in comparison with the quantum chemistry
based COSMOtherm predictions [9]. Furthermore,
improvement in absorption and regeneration-based
carbon capture processes and opportunities for machine
learning methods are investigated in the literature
[10]. Specifically, the opportunities associated with
reinforcement learning to get the optimal operational
parameters by using data from software simulation
and pilot plants are highlighted. Abdelhamid Shalaby,
AliElkamel et al. developed machine learning approaches
to predict the outputs of the PCC process simulation in
gPROMS® using Matérn Gaussian process regression
(GPR), rational quadratic GPR, squared exponential GPR
models, and feed-forward artificial neural network model
[11]. These approaches were able to forecast the system’s
energy requirement, capture rate, and the purity of the
condenser outlet stream with artificial neural network
showing higher accuracy. Fei Li, Jie Zhang et al. used
gPROMS® to simulate the PCC process and collect data
and applied the bootstrap aggregated extreme learning
machine and bootstrap aggregated neural networks to
predict capture rate [12]. In this case, the BA-ELM
was demonstrated as a powerful tool due to smaller
mean-square error (MSE) and less computational time.

The challenge of long simulation times for first-principles
models remains. During the optimization, the optimal
value is usually settled after many searches, if the search
time can be reduced, the optimization efficiency could
be improved. Therefore, a time-efficient model is highly
desirable. Although Abdelhamid Shalaby, AliElkamel
et al., Fei Li, Jie Zhang et al. have demonstrated
the application of machine learning in the CO2 capture
process, the application of eXtreme Gradient Boosting
(XGBoost) and support vector regression (SVR) in steady-
state PCC process simulation is not studied yet. This study
aims to fill the research gap.

In the past, the application of data-driven models
for the optimization of the energy system is studied
[13][14]. In particular, the Autoregressive model with
exogenous inputs (ARX) method is used for deriving
the simplified dynamic model and employed in the
biologically inspired optimal control strategy (BIOCS) for
implementation on a subsystem of a CO2 capture process
associated with an integrated gasification combined cycle
(IGCC) power plant [14]. In this study, a systematic
methodology is proposed to implement computationally
efficient machine learning techniques in CO2 capture
process. XGBoost and SVR techniques are employed
using data samples generated by process simulation to
summarize the characteristics of the data sets and establish
data-driven models. The main tasks are to predict CO2
capture rate (CR) and specific reboiler duty (SRD) in the
PCC process. Consequently, the developed data-driven
models are incorporated into an optimization. In the
present paper, particle swarm optimization (PSO) which
iteratively improves an alternative solution for a given
measure of quality is used as an optimization routine.
It is a heuristic global optimization method extensively
employed in mathematics and computer science for
solving problems more quickly when classic methods are
too slow or for finding an approximate solution when
classic methods fail to find any exact solution. It has

been used in engineering optimization such as, CCS cost
and revenue optimization and the optimization of CO2
solubility predicting model [15][16]. The optimization
goal for this study is to find operating conditions with
a relatively high CR and low SRD, which would be
beneficial for improving energy efficiency during the
process operation.

The paper is organized as follows: the methodology is
described in section 2; section 3 discusses the results; and
in section 4, the summary and conclusions are presented.
The development of the PCC process simulation model,
the theory of XGBoost and SVR algorithms, and the
principle of PSO are introduced in the next section.
2. Methodology

In this section, the developed methodology for the
implementation of machine learning techniques in the
PCC process is described. The proposed framework of the
work is shown in Figure 1. A steady-state process model
is built in Aspen HYSYS® to simulate the PCC process.
The data collected from this model is used as the raw data
to build a data-driven model. After the data collection, the
XGBoost and SVR algorithms are applied to build data-
driven models. Coefficient of determination (R2) and MSE
are assessment indicators to measure model performance.
Besides, a new data set is created to validate the model.
The proposed data-driven models are developed by the
process illustrated in Figure 1. Then the PSO is adopted to
search for the optimal operating conditions in optimization
and control.

Figure 1: Methodology to implement machine learning technique
in PCC process.

2.1. PCC process simulation model

The process flow diagram of the PCC steady-state
simulation used for demonstration purposes is shown in
Figure 2. This process is a two-step regenerative process,
one is the absorption chemical process with solvent, and
the other one is the desorption of CO2 from the solvent
and generation of the lean solvent. The flue gas enters the
absorber from the bottom and encounters the lean amine
which is going down in the column. Depleted gas and
rich amine leave the absorber from the top and bottom.
Rich amine is pumped, heated up by lean amine from the
stripper, then enters the regenerator. In the regenerator,
the stripping vapor goes up and condenses at the cooler
and condenser, which are on the top of the column. The
condensate containing the regenerated solvent is recycled
back to the regenerator column. The CO2 separated is sent
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Figure 2: Schematic of chemical absorption process for post-combustion CO2 capture

to the compressor and further processed for transportation
or storage. Lean amine is recycled back to the absorber
via a heat exchanger and a cooler.

Based on the selected independent variables, the control
variable’s value is changed in a step-wise manner while
the rest variables are held constant. The corresponding
output data information is collected and stored. A base
case is defined with main parameters which are listed as
Table 1 and Table 2 show.

Table 1: Main parameters in base case

Stream Flow rate
(kg/s)

Temperature
(K)

Pressure
(bar)

Lean amine 0.642 313.7 1.703
Flue gas 0.158 332.4 1.033

Table 2: Main parameters in base case
Stream Value

CO2 molar fraction in flue gas (-) 0.1666
Lean amine loading (-) 0.2814
Rich amine loading (-) 0.4879

Capture rate (-) 0.7627
Reboiler duty (MJ/kg) 5.9580

For the lean amine stream, the compositions are H2O, CO2
and MEA. The main compositions in flue gas are H2O,
CO2 and N2. Mass fractions of lean amine stream and
molar fraction of compositions in the flue gas are listed in
Table 3.

Table 3: Lean amine composition in base case

Compositions Lean amine
mass fraction

Flue gas
molar fraction

H2O 0.6334 0.0325
CO2 0.0618 0.1666
MEA 0.3048 -

N2 - 0.8009

A set of ranges for the selected variables is defined
to create the data sets. As the system encounters the
converged problem when the flue gas flow rate increases to
0.2623 kg/s or the lean amine flow rate decrease to 0.4520
kg/s, these two values are set to be the upper limit of the
flue gas flow rate and the lower limit of lean amine flow
rate. The initial objective is to collect around 1000 data
samples when each variable changes, therefore, the step
is set at 0.0001 for flue gas flow rate and 0.001 for lean
amine flow rate. The numerical changes of flue gas and
lean amine flow rate are done automatically via the script
written in Python 3.8 in connection to the Aspen HYSYS®

process simulation file.

Table 4: Variables range

Unit Lower
limit

Upper
limit

Flue gas flow rate kg/s 0.1081 0.2623
Lean amine flow rate kg/s 0.4520 2.0040

CO2 molar fraction in flue gas - 0.1666 0.2264
Lean loading - 0.0278 0.5242

The steps and number of collected data samples for each
variable are listed in Table 5.

Table 5: Number of collected samples

Step Total
sample

Flue gas flow rate 0.0001 1543
Lean amine flow rate 0.01 1553

CO2 molar fraction in flue gas around 0.0004 150
Lean loading around 0.0005 1147

Total - 4393

Challenges encountered during data collection:

1. The values in the composition worksheet can not be
changed automatically by the Python script that is
connected to Aspen HYSYS®, no other scripts are
found to realize the automatic filling of composition
parameters.

2. While changing the CO2 molar fraction, the total
molar fractions of the flue gas stream do not sum up
to 1.

3. When the molar fractions of different compositions
are changed, Aspen HYSYS® would perform
normalization, the step size of CO2 molar fraction
would not be exact 0.0004.

Proposed solutions to overcome these challenges:

1. Use the Python script to control the mouse and
keyboard to achieve automatic filling. The mouse
is set to click on a fixed position on the desktop, so
the value of CO2 and N2 molar fraction is naturally
written into the Aspen HYSYS® worksheet. But the
worksheet menu of Aspen HYSYS® is not always in
a fixed position when it pops up, this program fails
sometimes.

2. The sum of CO2 and N2 molar fraction is assumed to
be constant. When CO2 molar fraction is changed,
the N2 molar fraction is changed to a value to make
the total molar fraction of the flue gas stream to be 1.
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3. The step size of CO2 molar fraction is set to be
approximately 0.0004.

Due to these challenges and technical limits, only 150
cases are generated for the change of CO2 molar fraction
in the flue gas. Lean amine loading is manipulated by
changing the CO2 molar flow rate in the lean amine
stream. The method is the same as the mouse and
keyboard control in changing CO2 molar fraction in
the flue gas stream. Consequently, the step is also an
approximation. By controlling and changing values of
different variables, 4393 cases are simulated to produce
the raw data.

2.2. Machine learning techniques

2.2.1. eXtreme Gradient Boosting (XGBoost)

Ensemble machine learning technique is used to combine
several base models for building one optimal predictive
model. XGBoost stands for "eXtreme Gradient Boosting",
an ensemble algorithm that is based on the decision tree
and optimized by gradient boosting [17].

The following introduction starts from the decision tree.
The evolution route is shown in Figure 3.

Figure 3: Schematic of evolution from decision tree to XGBoost.

Decision tree mainly consists of the root node, decision
nodes, and leaf nodes. The root node is the start point.
The decision node is a judgment condition, a question like
"lean amine loading is larger than 0.2 or not", "flue gas
flow rate is larger than 0.18kg/s or smaller than 0.1kg/s",
different answers lead to the different nodes in the next
level. It may enter another decision node to cross a new
judgment, or go to the leaf node, which is the end of the
prediction process. The leaf node is the final prediction
result.

Bagging, stands for "Bootstrap aggregating", is an
ensemble learning method. When bagging is used, a
certain amount of samples can be randomly selected from
data sets with replacement. The average or most voted
result is the final result. A sample can be chosen more than
one time in bagging. It is a good way to reduce variance
within noisy data sets.

Random forest is a bagging-based algorithm. In a
decision tree, some characteristics are chosen to be the
judgment condition in a decision node. However, in a
random forest, characteristics can be randomly picked to
form different decision trees. All trees gather together
to become a random forest, the prediction result of the
random forest comes from the average or most voted of
all tree results.

Boosting is a set of ensemble algorithms that can help
convert weak learners (refer to models) to strong learners.
The boosting would train a basic learner from training
data, then focus more on the wrong prediction samples,
and correct errors from the first learner to generate the
second learner. Repeat this "correct" work step by step,
until a strong learner is trained.

Gradient boosting is one kind of boosting. As the loss
function represents the unreliability of the model, gradient

boosting adjusts the model towards a gradient descent
direction of the loss function from the previous model.

XGBoost is a decision-tree-based ensemble machine
learning algorithm that uses a gradient boosting
framework. It takes the bootstrap sample 1 to build model
1, then takes the bootstrap sample 2 to build model 2,
which is more advanced than model 1. Then iterate to
get the final model and result. It minimizes a regularized
objective function:

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (1)

where Ω(f) = γT + 1
2
λ ∥w∥2.

L(ϕ) is the objective in this minimization problem. It
is the summation of convex loss function represented
as

∑
i l(ŷi, yi) and regularization item denoted as∑

k Ω(fk). Here, yi and ŷi stands for targeted value and
predicted value respectively. λ and γ are hyperparameter
constants. T is the number of leaf nodes. w is the
predicted value of the leaf node.

2.2.2. Support vector regression (SVR)

An SVR model gives users the freedom to decide how
much error is accepted. A line or a hyperplane (when
the data has higher dimensions) is searched to fit the data.
The goal is to minimize the coefficients, the l2-norm of
the coefficient vector, rather than the squared error which
is usually used in linear regression [18]. The constraint
would be:

|Yi − αXi| ≤ ε (2)

The goal is to minimize:

MIN
1

2
∥α∥2 (3)

Here, Yi stands for the targeted value, Xi represents the
feature value, α denotes coefficients. In SVR models,
kernel functions can be used to transform input data to
the required form of processing data. There are different
kinds of kernels: Gaussian Kernel, Radial Basis Function,
Sigmoid Kernel, and Polynomial Kernel.

2.3. Optimization algorithm

2.3.1. Particle swarm optimization (PSO)

PSO is a search optimization technique inspired by the
migration behavior of birds. Assume there are N particles
in a swarm. These particles are subject to random
uniform initialization, and they have random positions
and velocities in a D-dimensional search space. These
particles move at a certain speed to find the best position
inside the whole space. For each particle, the new velocity
is updated based on its own historical experience and the
group experience. Assume the D-dimensional position
vector of the i-th particle is:

Si = (Si1, Si2, Si3, ..., SiN ), i = 1, 2, ..., N (4)

The velocity vector of i-th particle is:

Vi = (Vi1, Vi2, Vi3, ..., ViN ), i = 1, 2, ..., N (5)

The equation to update the position and velocity of each
particle is:

vk+1
id = mvkid + c1r1(p

k
id − skid) + c2r2(p

k
gd − skid) (6)
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sk+1
id = skid + rvk+1

id (7)
This speed update equation of the PSO algorithm is the
sum of three parts. The vid and sid are the velocity and
position of the i-th particle in the d-th dimension, k and
k+1 represent the current and next iterations. First part
mvkid is the exploration, m is an inertia factor of fixed
value. Second part c1r1(pkid − skid) is self-learning, and
the third part c2r2(pkgd − skgd) is group learning. c1 and c2
are learning factors, r1 and r2 are random numbers within
the range [0, 1]. pid and pgd are the best positions searched
by the i-th particle and the whole group so far.

In the next section, the data analysis result, the prediction
performance of built models, and the optimization result
are shown and discussed.

3. Results

3.1. Data analysis and model development

The purpose of data analysis is to initially have an
overview understanding of the data sets by observing the
connections between variables. The Pearson correlation
coefficient, which is a measure of linear correlation
between two sets of data, is used in data analysis. Given
paired data set (Z11,Z21),(Z12,Z22),...,(Z1n,Z2n), the formula
of Pearson correlation coefficient RZ1 ,Z2 is:

RZ1 ,Z2 =

∑n
i=1(Z1i − Z1)(Z2i − Z2)√∑n

i=1(Z1i − Z1)2
√∑n

i=1(Z2i − Z2)2

(8)
where Z1 and Z2 are the average values of variables Z1
and Z2. Figure 4 shows Pearson correlation coefficients
between different variables in this study.

Figure 4: Plot of data correlation coefficients

The number on the grid is the correlation coefficient of
the corresponding horizontal and vertical axis variable.
The darkness or grid color shade is directly proportional
to the correlation coefficient. For example, the grids
which are intersected by lean amine flow rate and the
flue gas flow rate are light blue, and the value of the
correlation coefficient is -0.17. This indicates that they
are slightly inverse related. The correlation coefficient
between rich amine loading and lean amine loading is
0.62, which shows they might have positive relationships.
Thus, rich amine loading is not included as an input
variable. There may be some non-linear relations between
different variables that are not included in the correlation
coefficient. The purpose of the data analysis is to get
a general understanding of data sets, thus, non-linear
relations are not considered here.

The relation between dependent variables and independent
variables can be further investigated in Figure 5. In the
following section, To atmosphere, CO2 for compression,
Rich MEA refer to gas stream out from absorber, captured
CO2 stream out from desorber, loaded amine stream out
from absorber in Aspen HYSYS® simulation model as
shown in Figure 2.

Figure 5-(a) shows the relationship between the capture
rate and the flue gas flow rate of 1543 data samples.
The highest point represents a case in which the flue gas
flow rate is 0.1081kg/s and the capture rate is 0.8738, the
lowest point represents a case the flue gas flow rate is
0.2623kg/s and the capture rate is 0.5557. Capture rate
decreases as flue gas flow rate increases. As the flue gas
mass flow rate increases, more CO2 enter the absorber
in a time unit. Due to the absorbing solvent limitations
and increased inflow of CO2, the capture rate is decreased
and more CO2 is released into the atmosphere through
To atmosphere stream. Consequently, the capture rate
becomes smaller. When the flue gas flow rate is close to
0.2623, the capture rate value starts fluctuating, this could
be caused by the model instability. In Figure 5-(b), the
SRD decreases as the flue gas flow rate increases. The
reasons behind this are the increase of the CO2 in CO2 for
compression stream and the decrease of the reboiler duty
in the regenerator. SRD is calculated by the reboiler duty
divide mass of CO2 in CO2 for compression, therefore,
SRD decreases. When the lean amine flow rate increases,
the CO2 enter the rich stream increases. Thus, as Figure
5-(c) shows, the capture rate increases with the lean amine
flow rate. In Figure 5-(d), when the lean amine flow
rate is increased, the CO2 in the To atmosphere stream
becomes less and CO2 in the rich amine stream increased,
which increases the CR. Reboiler duty increases since
the stream entering the regenerator include more MEA.
Accordingly, the SRD increases. The increase of CO2
molar fraction in flue gas results in the increase in CO2
in the stream that is released into the atmosphere and
rich amine stream, but the increase in To atmosphere is
larger while the increase in rich amine stream is smaller,
consequently, the CR is lower. The reboiler duty of the
regenerator is lower, resulting in a lower SRD. Lean amine
loading is changed by adjusting the mass flow rate of CO2
in lean amine. When increases lean amine loading, CO2 in
the To atmosphere stream increases, and the capture rate
decreases. Reboiler duty also decreases and accordingly
SRD is lower.

It is observed that SRD has fluctuations quite often. It is
caused by the unstable reboiler duty. Data smoothing is
suggested to deal with these instabilities. There are many
ways to smooth data, such as simple exponential, moving
average, exponential moving average, and Holt-Winters
smoothing. The models developed by using smoothed
didn’t show an expected improvement. Therefore, to keep
the original information of data, all the following models
are developed based on original data without smoothing.

3.2. Modeling and validation

All data sets are divided into training data sets and test data
sets with a division ratio of 7:3. After building models
based on training data sets, the predicted values based on
independent variables in test data sets are compared with
the value of dependent variables in test data sets. Cross-
validation score, MSE, RMSE, R2 are calculated to assess
model performance. Using XGBoost to predict capture
rate had a cross-validation average score of 0.9995. The
R2 was 0.9996 and the MSE was 0.0000. The difference
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(a) Flue gas flow rate vs Capture rate (b) Flue gas flow rate vs SRD

(c) Lean amine flow rate vs Capture rate (d) Lean amine flow rate vs SRD

(e) CO2 molar fraction vs Capture rate (f) CO2 molar fraction vs SRD

(g) Lean amine loading vs Capture rate (h) Lean amine loading vs SRD
Figure 5: Plots of relationship between each independent variable and dependent variable

between predicted CR and tested CR is shown in Figure 6-
(a). Most points were distributed around line y=0, which
indicated that there are no huge deviations in prediction,
and the model has a good prediction accuracy. It is shown
that the accuracy of the XGBoost model is quite high.
To validate this accuracy, cross-validation was used to
avoid overfitting. And the SVR algorithm was applied to
build the other model. If SVR shows a different accuracy
level, the qualities of the models can be compared. The
XGBoost and SVR algorithms are employed to predict
capture rate and SRD respectively, therefore, 4 models are
built. The performances of each model can be seen from
Figure 6.

In each subplot is the scatter plot of the difference between
the predicted value and the real value. It can be observed
that when using XGBoost to predict SRD, the errors are
smaller. SVR may not be a suitable method to predict
CR. The error-represented points are randomly distributed
in the different positions instead of scattering around line
y=0.

3.3. Results and verification

Table 6 summarize the performance of different models:
Table 6: Summary table

XGBoost
assessment predict CR predict SRD

cross-validation score 0.9995 0.9934
R-squared(R2) 0.9996 0.9930

MSE 0.0000 0.0595
RMSE 0.0032 0.2439

SVR
assessment predict CR predict SRD

cross-validation score 0.8573 0.9620
R-squared(R2) 0.8418 0.9622

MSE 0.0041 0.3231
RMSE 0.0643 0.5684

A verification data set of 78 data samples are generated to
verify the model. This data set is different from training
data sets and test data sets but within the same range
as shown in Table 4. Note that the verification of the
developed model can be improved with higher number

6
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(a) Error of capture rate prediction
(XGBoost, original data)

(b) Error of SRD prediction
(XGBoost, original data)

(c) error of capture rate prediction
(SVR, original data)

(d) Error of SRD prediction
(SVR, original data)

Figure 6: Plots of errors of model prediction: (a)XGBoost model to predict CR; (b)XGBoost model to predict SRD; (c)SVR model to predict
CR; (d)SVR model to predict SRD.

of data samples. However, the number of data samples
mentioned above are restricted due to the operational
range in which this model is developed. The verification
results of models are shown in Table 7 :

Table 7: Verification result
XGBoost

assessment predict CR predict SRD
R-squared(R2) 0.9170 0.8077

MSE 0.0029 0.4043
RMSE 0.0541 0.6358

SVR
assessment predict CR predict SRD

R-squared(R2) 0.8793 0.8716
MSE 0.0042 0.2700

RMSE 0.0653 0.5196

XGBoost models are efficient as they showed verification
accuracies of 91.7% to predict CR and 82.82% to predict
SRD. These high values of R-squared indicated that
models have generalization ability. The accuracy of the
developed model is close to the accuracy of the simulation
within the range of process variables in which this model
is developed. The precision of the developed model in
all cases or outside the range is a subject of investigation.
The model is available when the input variables are within
the ranges shown in Table 4. For the values of the
variables outside the ranges, the model’s availability is
not investigated. Some observations can be discussed:
(1) In a general machine learning modeling process, the
variables selection is a step after the data collection.
During the data correlation and visualization step, data
should be visualized to explore the trends or relations
between various variables. Then the variables selection is
implemented. In this order variables that are completely
irrelevant or replaceable can be avoided. However, no
data are pre-provided in this study, and it is hard to
generate large data sets as all data are generated by Aspen
HYSYS®. Thus the variables are chosen mainly based on
some research results and previous experience, then data
collection is executed.
(2) Some curves in Figure 5 have fluctuations (Figure

5-(b)) and breakpoints(Figure 5-(c)). That is because
the steady-state simulation is calculated based on first-
principle models which often include several differential
and algebraic equations. The model is unstable
sometimes, consequently, the same inputs may lead to a
bit different outputs.
(3) Although the number of raw data samples is more than
4000, the steps between samples are quite small, which
may not differentiate much. More data samples could help
increase the performance of the model or lead to higher
prediction accuracy in verification.
(4) XGBoost algorithm has been shown to have high
accuracies in a lot of applications. In this study, training
and test data sets are synthetic data generated by the
steady-state simulation. This simulation has a certain
mathematic expression, making the R-squared of the
model 99% possible. The other reasons for this high
accuracy lie in the complexity of the prediction task,
the amount of training data sets, and the possibility of
overfitting.

3.4. Optimization

In this section, optimization of the process operation
conditions is discussed. From the operational point of
view, the goal is to maximize the CR and minimize the
SRD as much as possible. However, the general rule is
that the smaller SRD is usually associated with lower CR.
Therefore, it’s important to make a trade-off. To show this
in mathematical form, the objective goal can be viewed as:

f(x) =
SRD(x)

SRDupperlimit
− CR(x)

CRupperlimit
(9)

where the SRD(x) and CR(x) are the SRD and CR
predicted by the XGBoost model based on the vector x,
which represents the operation conditions. These two
outputs are then scaled, as the CR and SRD are in different
ranges and could not be evaluated at the same level without
scaling.

The process simulation model needs 3.15s to predict CR
and SVR for 1 case. However, it only takes 0.022s and

7
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0.317s for XGBoost and SVR model to predict CR and
SVR of 1318 cases. The computation time is drastically
reduced, which would be beneficial for optimization
implementation. With a swarm of 10 particles, after 1500
times iteration, the minimal value of fitness f(x) is -0.5299.
The operating conditions are: flue gas flow rate of 0.18
kg/s, the lean amine flow rate of 0.46 kg/s, CO2 molar
fraction in the flue gas of 0.2002, lean amine loading of
0.3085, and corresponding CR and SRD is 72.2% and 4.3
MJ/kg respectively. Compared with the base case which
has a CR of 76.3% and SRD of 5.9 MJ/kg, although the
CR was 4.1% lower, the SRD decreased by 1.7 MJ/kg,
which accounts for 28.2% of 5.9 MJ/kg.

4. Conclusions

In this paper, the application of machine learning
techniques such as XGBoost and SVR for the PCC process
model simulation was demonstrated successfully. The
energy efficiency indicators and parameters associated
with the PCC process model were identified, then
machine learning algorithms were applied to build models
to predict CR and SRD. The models were used in
optimization, and adequate operation conditions are
characterized. The data-driven models showed high
accuracy in predicting the capture rate and energy
requirement in the reboiler of the PCC model. The
XGBoost model had the accuracy of 91.7% and 80.8%
for predicting CR and SRD based on the validation data
sets. The SVR model showed 87.9% and 87.2% in
CR and SRD prediction. And the calculation time of
1318 cases for the XGBoost model and SVR model was
0.022 seconds and 0.317 seconds. Compared with the
first-principle-based process model, which needed 3.15
seconds to calculate the parameters of 1 case, the data-
driven models showed improved performance in the time-
efficient aspect. The goal of developing time-efficient
models by machine learning techniques was achieved.
Integrated the data-driven model within optimization, the
ideal operating condition was flue gas flow rate as 0.18
kg/s, lean amine flow rate as 0.46 kg/s, CO2 molar fraction
in flue gas as 0.20, lean amine loading as 0.31. The
corresponding CR and SRD were 72.2% and 4.3 MJ/kg
individually. The CR decreases 4.1% lower and SRD
dwindles 1.7 MJ/kg compared with the base case. Thus,
the machine learning techniques were demonstrated useful
in process optimization and advanced control methods
where faster model predictions are necessary.
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Abstract

In energy production the characterization of the fuel is a key aspect for modelling and optimizing the operation
of a power plant. Near-infrared spectroscopy is a well-established method for characterization of different fuels
and is widely used both in laboratory environments and in power plants for real-time results. It can provide a fast
and accurate estimate of key parameters of the fuel, which for the case of biomass can include moisture content,
heating value, and ash content. These instruments provide a chemical fingerprint of the samples and require a
calibration model to relate that to the parameters of interest.
A near-infrared spectrometer can provide point data whereas a hyperspectral imaging camera allows the
simultaneous acquisition of spatial and spectral information from an object. As a result, an installation above
a conveyor belt can provide a distribution of the spectral data on a plane. This results in a large amount of
data that is difficult to handle with traditional statistical analysis. Furthermore, storage of the data becomes
a key issue, therefore a model to predict the parameters of interest should be able to be updated continu-
ously in an automated way. This makes hyperspectral imaging data a prime candidate for the application
of machine learning techniques. This paper discusses the modelling approach for hyperspectral imaging, fo-
cusing on data analysis and assessment of machine learning approaches for the development of calibration models.

Keywords: machine learning, near-infrared spectroscopy, hyperspectral imaging; calibration models

1. Introduction

In the energy and process industry the character-
ization of the feedstock material is a key aspect
for modelling and optimizing the operation of a
process or power plant. The operating parameters
are continuously adjusted in order to provide output
that meets certain specifications, which can be the
quality of the end product or the power output.
These are dependent on the quality of the feedstock,
as a difference in its key parameters will result in
different requirements for its processing. Detailed
knowledge of the properties of the fuel can be
used to improve the operation of the plant using
feed-forward control approaches. A sensor that can
provide this information is one of the foundations
for a learning system that can support optimal
operation and decision-making.

Near-infrared (NIR) spectroscopy is a well-
established method for characterization of different
fuels and is widely used both in laboratory envi-
ronments and in power plants for real-time results.
The method itself is based on the excitation and
vibration of the molecules, which in turn provides
the chemical information for the material. This
needs to be correlated to the parameters of interest

of the fuel, which is typically done using statistical
analysis. Near-infrared spectroscopy is one of the
technologies used for the development of smart
sensors in the learning system described in Rahman
et al. (2021). Near-infrared spectroscopy has been
widely used in the literature (Tsuchikawa et al.,
2003; Skvaril et al., 2017) as it can provide a fast
and accurate estimate of key parameters of the fuel,
which for the case of biomass can include moisture
content, heating value, and ash content.

Near-infrared spectroscopy can only provide single
point measurements. This information is well suited
for homogeneous mixtures, where it can provide a
good estimate for the parameters of interest of the
entire batch. In recent years, hyperspectral imaging
(HSI), which combines spectral information and
conventional imaging, is also increasingly used for
fuel characterisation. This allows the collection
of spatial data for the near-infrared spectrum and
can be applied in real environments (e.g. above
a conveyor belt) to provide real-time information
about the fuel. The simultaneous acquisition of
spectral and visual information without the need
for synchronization is another advantage, which
also makes the use in real environments more
realistic. In hyperspectral imaging, the instrument
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can acquire images of the sample, as well as spectral
information for each pixel, providing a hypercube
of data. This can provide multiple opportunities,
as discussed by Mäkelä and Geladi (2017), who
used HSI to distinguish different materials (from
different feedstocks or prepared under different
temperatures) and evaluate their homogeneity. An-
other application of HSI in biomass characterization
is for pelleting of biomass feedstocks where the
spatial resolution allows the classification of images
to assess the efficiency of the mixing of different
biomass streams (Gillespie et al., 2016).

Regardless of the method or instrument used to
acquire spectral information for the samples, a
model is required to correlate that information to
the parameters of interest and provide quantitative
information about the parameters of interest. Linear
regression techniques are considered the standard
for quantitative characterization, with Partial
Least Squares Regression (PLSR) being the most
commonly used approach (Skvaril et al., 2017).
Non-linear methods, such as Artificial Neural
Networks (ANNs), have been shown to improve
the results but are more demanding in terms of
computational power. Advances in computing
power have allowed machine learning techniques to
be used to extract information from spectral data,
and recent literature presents results from different
applications.

Machine learning in combination with IR spec-
troscopy has been widely used for classification
purposes. Mancini et al. (2020) used NIR to study
the supply chain for biomass pellets and applied
different classification algorithms to predict pellet
quality. A similar approach was used by Tiitta
et al. (2020) who employed electric impedance
spectroscopy to classify wood chips of different
origin, which can then allow the derivation of more
accurate models for moisture content. Pitak et al.
(2021) focused on the biomass pellet production
process, using machine learning for wavelength
selection and PLS regression for their calibration
model. Tao et al. (2020) obtained IR spectra of
biomass and waste with an attenuated total re-
flectance (ATR) and used ML for classification and
characterization, employing regression techniques.
Ahmed et al. (2018) applied different methods for
the characterization of biomass wood chips using
NIR, namely ANN, Gaussian Process Regression
(GPR), Support Vector Regression (SVR) and
traditional PLSR, with GPR showing the best
results.

The use of hyperspectral imaging results in a larger
amount of data that what is obtained with NIR
and storage of the data becomes a key issue. The
calibration model for hyperspectral imaging should
be able to be updated continuously in an automated
way, which makes hyperspectral imaging data a
prime candidate for the application of machine
learning techniques. Gewali et al. (n.d.) present
a review of the literature in the use of ML for
HSI, primarily for analysis of hyperspectral images
captured from earth observing satellites and aircraft.
They looked into techniques used for classification
of images based on land cover, concluding that

deep learning is a promising approach. For the
estimation physical/chemical parameters related to
agriculture, Bayesian methods were considered to
be more suitable due to their flexibility, ability to
handle uncertainty, and capacity to perform well
with limited data.

This paper discusses the use of hyperspectral imag-
ing and machine learning for biomass characteriza-
tion. The focus is on data analysis and assessment
of machine learning (ML) approaches for the devel-
opment of calibration models. A comparison of dif-
ferent ML approaches for HSI for the prediction of
biomass properties is not available in the literature,
and neither is a comparison of ML with a conven-
tional model to assess when the use of ML is ben-
eficial in such applications. The contribution of the
paper therefore lies in discussing the suitability of
different methods depending on the purpose of the
analysis and the type of data available, as a first step
towards a thorough study of the use of ML for HSI
data analysis in such applications.

2. Methodology

A set of biomass samples was analysed with a hy-
perspectral imaging camera and different machine
learning techniques were used to create a calibration
model. The following sections discuss the methods
used to acquire the data, pre-processing techniques,
and methods used to build calibration models, fol-
lowed by validation and testing of their predictive
capabilities.

2.1. Sample preparation and data acquisition

A set of 100 biomass fuel samples were used in this
study. The spectral data of the samples was obtained
with a push-broom line scanning hyperspectral
imaging Specim FX17e camera (Specim Spectral
Imaging Ltd, Finland). The camera is equipped
with an InGaAs based NIR detector with spectral
range of 900-1700 nm, 224 spectral bands, and 640
pixels over the cross-track field of view (FOV).
The samples were illuminated with six halogen
light sources of 150W and moved on a laboratory
scanning table (20cm x 40cm) at a velocity of
approximately 90mm/s. The acquisition was done
under constant ambient conditions, at frame rate of
300fps and an exposure time of 5ms, in order to
acquire images with the correct aspect ratio. The
setup for data acquisition is shown in Figure 1.

Reflectance calibration was carried out to correct for
background response of the instrument. The dark
reference image (D) was acquired by closing the
shutter of the camera lens and white reference image
(W) was obtained from a 99% reflectance ceramic
tile surface. The reflectance value R was calculated
from the measured signal (S) on a pixel-by-pixel
basis, as shown in equation 1, where i is the pixel
index.

Ri =
Si −Di

W −Di
(1)
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Figure 1: The experimental setup

A hyperspectral image of a biomass sample is
shown in Figure 2. A set of spectral data is acquired
for each pixel of the image. The spectra obtained
from the camera are shown in Figure 3. It should
be noted that the noisy parts of the spectra at the
lower and higher wavelengths that contain no useful
information have been removed in this figure and
for all data before pre-treatment. The reference to
no pre-treatment in the rest of this paper refers to
data in which the noisy parts have been removed.

Figure 2: Hyperspectral image of a biomass sample

Figure 3: Spectra with no pre-treatment

The moisture content in the samples was determined
according to the European standard EN ISO 18134.
The samples were oven dried for 20 hours in 105◦C
and weighed before and after the process. The re-
sulting moisture content range was from 31.0% to
55.8%.

2.2. Data Preprocessing

The spectral data was pretreated to enhance the dif-
ferences among the samples in order to provide a
better calibration model. Noisy parts of the spec-
trum were removed as they contain no useful infor-
mation and can instead confound the model. Two
different pre-processing techniques were applied:
Savitzky-Golay first derivative (SG1) and Standard
Normal Variate (SNV), which were shown to per-
form best in similar samples analysed with NIR
spectroscopy Ahmed et al. (2018). The results were
also compared to those obtained without any pre-
treatment of the data. The pre-treated data was also
scaled in accordance with the requirements of the
data analysis method, using either the mean and
standard deviation or the range of the dataset to ob-
tain a range from 0 to 1.

2.3. Methods for data analysis

In this paper SVR and ANN were compared with
PLSR. The different techniques were implemented
in Python using the Scikit-learn module (Pedregosa
et al., 2011).

SVR is an extension of the Support Vector Machines
(SVM) method for classification problems to solve
regression problems. It can allow the user to
determine the maximum error that is acceptable in
the model and find an appropriate hyperplane to fit
the data. Hyperparameters C, gamma, and epsilon
were adjusted in order to obtain a model that can
provide the best prediction. Three different kernel
functions (linear, polynomial, radial basis function
- RBF) were tested to allow the separation of the
data and allow for a better model to be obtained.
The hyperparameters were tuned using a grid search
with K-fold cross-validation for all kernel functions.

ANNs are widely used for regression problems
and can provide good results when the underlying
relationship between the different parameters is
non-linear. A network with two hidden layers
was used, with 128 nodes in the first layer and 32
nodes in the second layer. A third hidden layer was
not found to improve the results, which were also
similar for 32, 64, and 128 neurons in the hidden
layers. The optimal learning rate was selected
based on the cross-validation results and the epoch
with the lowest error was selected using a callback
function.

PLSR is considered the standard approach for
spectroscopy applications and performs well when
the underlying relationship is linear. Principal
component analysis was performed to select the
number of components that gives the highest
prediction accuracy.

In this work the collected data was split into a train-
ing set of 80 samples and a testing set of 20 samples.
K-fold cross-validation was also performed during
the training to improve the prediction capability
of the models and avoid over-fitting. The optimal
setting for the cross-validation was found to be 15
folds using 10% of the training dataset.
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3. Results and Discussion

The results of the pre-treatment are shown in
Figure 4(a) for the Standard Normal Variate
and in Figure 4(b) for the Savitzky-Golay first
derivative. The setup for SG1 aimed to ensure
enough information was retained in the spectra to
provide a good model and was evaluated based
on the cross-validation results for PLSR. As seen
in figures 3 and 4, there are two clear dips in
the spectra: one at 1180nm and one at 1430nm.
These areas contain much useful information about
the chemical composition of the samples. The
wavelength of 1180nm is the fingerprint of the C-H
stretching overtone, whereas the wavelength of
1430nm corresponds to the O-H overtone. It is this
differentiation in the spectra of the different samples
that can be coupled to the moisture content and be
used to create a robust model.

(a) Spectra with SNV pre-treatment

(b) Spectra with SG1 pre-treatment

Figure 4: Spectra with pretreatment

The pre-treated spectra of the training set were
used to build the calibration models. K-fold cross
validation was employed to increase the predictive
capability of the models. The models were then
evaluated on an unseen test set. The results for
the PLSR, SVR, and ANN regression for the
different pre-treatment approaches are summarized
in Table 1. The evaluation metrics used are the
goodness of fit measure for linear regression R2

and the root mean square error, RMSE, both for

the prediction of the unseen test set. As seen in the
results, both the the Savitzky–Golay 1st derivative
(SG1) and the SNV pre-treatment methods provide
an improvement in terms of fit and error for all
modelling approaches.

Table 1: Results of cross-validated models for different
pre-treatment methods evaluated on the test set

PLSR
Pre-treatment R2 RMSE

None 0.977 1.087
SG1 0.975 1.196
SNV 0.984 0.772

SVR
Pre-treatment R2 RMSE

None 0.919 3.893
SG1 0.980 0.952
SNV 0.968 1.530

ANN
Pre-treatment R2 RMSE

None 0.949 2.433
SG1 0.969 1.49
SNV 0.973 1.312

In the case of PLSR the difference between the
untreated data and the pre-treated data is very small,
which can be attributed to the cleaning of the data
and the removal of the noisy parts of the spectra
before the pre-treatment. In fact, SG1 pre-treatment
performs worse than the untreated data. This is
most likely due to the fact that there is little noise
in the spectra, rendering the treated and untreated
data very similar. It is possible that the window
selected for the derivative was slightly larger than
the optimal. The SG1 setup was evaluated based
on the cross-validation set, and it appears that
the results on the unseen test set point out that a
different setup would be optimal for SG1. However,
this is not possible to know before the models are
tested.

In the case of SVR and ANN, the difference
between the untreated and pre-treated data is much
larger. This is due to the fact that the untreated
data was not normalized for these cases, resulting
in notably worse models than when the data was
pre-treated. For SVR, the best models for each
of the different pre-treatments were selected. The
models with a linear or polynomial kernel were the
best in all cases, whereas the models with the RBF
kernel were sometimes slightly overfitted, despite
the cross-validation. For ANN, the pre-treatment
did not affect model selection as much, and the best
models were not as good as those built with SVR.
Nonetheless, the difference was not very large,
despite the relatively small dataset.



SIMS 63 Trondheim, Norway, September 20-21, 2022

The predicted values of the unseen test set are plot-
ted against the reference values in Figure 5 for the
best models, selected based on the R2 and RMSE
values.

(a) PLSR

(b) SVR

(c) ANN

Figure 5: Predicted vs reference moisture content (MC) of
the unseen test set

These are the SNV pretreatment for PLSR (Fig-
ure 5(a)), SG1 pretreatment with a polynomial ker-
nel for SVR (Figure 5(b)), and SNV pre-treatment
for ANN (Figure 5(c)). It can be seen that the pre-
dictions of both the SVR and the ANN models are
worse than those of the PLSR especially for the
higher moisture content, and this could be addressed
in future work.

4. Conclusion

This paper compared different methods to develop
calibration models for hyperspectral imaging
applied to the characterization of biomass samples.
The HSI technique can provide good predictions of
the moisture content in woody biomass fuel. The
two different preprocessing techniques improved
the results for SVR and ANN, with standard normal
variate performing better than Savitzky-Golay first
derivative in the best models developed with two
out of the three methods. Overall, PLSR provided
the best results, particularly with SNV pre-treatment
of the data. Nonetheless, both SVR with SG1
pre-treatment and ANN with SNV pre-treatment
were able to deliver accurate and robust models. It
is also worth noting that the differences between
SNV and SG1 pre-treatment were not very large
for many of the models, and the simplicity in the
setup of SNV compared to SG1 should be taken into
consideration. When taking into account the time
requirements to train and tune a model, PLSR and
SVR are the best options for this application.

It was noted that in a number of models the results
from the evaluation of the models based on their
performance in cross-validation did not agree with
those of the evaluation based on the test set, with
the two pointing at different model setup. Model
selection has to be based on the performance on the
test set, but since the models will be tuned only with
the cross-validation, it is important to be aware that
the best model might still be somewhat overfitted
with this process. This also points out the usefulness
of a more extensive dataset. Nonetheless, the differ-
ences are very small and all models are providing
acceptable predictions for a real application where
this information can be used for the control of a
power plant.

Further analysis is required to assess whether
different machine learning methods, such as GPR,
can be employed to develop a model with an even
better predictive capability. GPR is based on a
Bayesian approach and as such can also provide
the uncertainty range of the predictions. Taking
into account the uncertainty of the measurements
can provide more information on the suitability
of the different techniques for the development of
more realistic, probabilistic models. An expansion
of the dataset, taking advantage of the range of
measurements obtained with the hyperspectral
imaging camera, can help increase the accuracy of
the models and understand whether the difference in
performance is due to the size of the dataset.
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Nomenclature

ANN Artificial Neural Network
GPR Gaussian Process Regression
HSI HyperSpectral Imaging
MC Moisture Content
ML Machine Learning
NIR Near InfraRed
PLSR Partial Least Squares Regression
RBF Radial Basis Function
SNV Standard Normal Variate
SVM Support Vector Machines
SVR Support Vector Regression
SG1 Savitzky-Golay first derivative
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Abstract

Dynamic models of industrial processes play an instrumental role in the operation of such processes from smart sensors, data
reconciliation, to advanced control. For good performance, a precise model is normally required. The issue of improving
models has received considerable critical attention. In this work, we consider the estimation of model parameters and initial
states of a gas lifting oil well model, followed by filtering of its states. By utilizing information from both first-principle model
and data, the results are presented to show the estimated values and their uncertainties. Julia is the main programming language
used in this study. This research study provided an opportunity to advance the understanding of the optimization and estimation
for the oil well operation.

1. Introduction
As a common statistic method, Bayesian inference has
been used in many scientific fields and industries to
provide estimates for unknown quantities considering
uncertainty. The application of the Bayesian approach
can be classified as batch and sequential according to
the property of the data set. In the case of the
estimation related to batch datasets, all data are collected
at once before processing. Markov chain Monte Carlo
(MCMC) algorithms, as stochastic simulation methods,
are commonly used for the batch case to solve model
uncertainty problems. In the sequential application,
the data arrive sequentially, so the estimation or the
data evolution is required in real-time. The relevant
algorithms for Bayesian sequential updating of probability
distributions include the Kalman Filter (KF) [1], the
Particle Filter (PF) [2], the Ensemble Kalman Filter
(EnKF) [3].
With the information of prior and likelihood, the posterior
distribution can be calculated, which helps gain more
insight into the estimated quantities. In some cases,
the posteriors are simple and can be presented or
approximated as tractable and common distributions.
However, the posterior distribution may be complex
for sophisticated models, for example, the distribution
is multimodal or high dimensional. The MCMC
algorithm provides a solution where the distribution of
the accepted samples converges to the true posterior
distribution in the long run [4]. Compared with
many deterministic approximation methods, the MCMC
algorithm is conceptually easy to adopt for complex
systems.
Although the MCMC algorithm has less requirement
for the system, the algorithm is computationally
slow. Therefore, it was not commonly applied to
oil well systems in early research. Benefiting from
the development of computer technology, a parallel
computing scheme can be used for the MCMC algorithm.

For the dynamically evolving datasets, KF and PF have
been used in the past to solve data reconciliation and
data assimilation problems. Derived KF approaches,
algorithms such as the Extended Kalman Filter (EKF),
the Unscented Kalman Filter (UKF), and the EnKF, solve
the problem where the model is nonlinear. Models and
algorithms are formed in these methods to recursively
update and estimate quantities.
By linearizing the model using differentiation, the
covariance matrices are propagated assuming Gaussian
distribution in EKF. However, the analytical computation
is not feasible for non-Gaussian models or models which
can not be succinctly linearized. In these cases, numerical
strategies can be applied to estimate the system states.
Another approach to solving nonlinear problems is PF.
As a nonparametric approach, PF estimates the belief by
sampling the model output and assigning weights to these
samples. Resampling schemes are used to estimate the
posterior distribution in each iteration. The high weighted
particles are used to design copies and low weighted
particles are rejected [5, 6].
In the EnKF method, stochastic models are used to
calculate the probability distribution and time evolution
of the states. During the initialization, particles are
generated around the initial states and these particles are
designed according to the prior probability distribution.
The term ‘ensemble members’ will be used in this paper
to refer to these particles in the EnKF algorithm. All
ensemble members are propagated and updated during
the iterations. The uncertainty is predicted by calculating
the error covariances. Because only a few ensemble
members play a vital role eventually in the integration
and the weights of most ensemble members become very
small, the accuracy of estimation is related to the ensemble
size [7]. Typically, the number of ensemble members
should be in the range of 50-200 for computing mean and
covariance, and considerably larger for computing higher
order statistics. However, the large ensemble size also
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causes high computational cost. Compared with EKF,
EnKF is easy to be implemented as it does not demand
differentiation. For the sequential filters, EnKF requires
substantially less computational cost than PF.
In the oil well area, MCMC and EnKF have been used in
some research work. One study by Maraggi et al. [8] chose
a Bayesian approach to estimate two parameters of oil
reservoirs, which was simplified as a single dimensionless
equation. Following an adaptative MCMC algorithm,
posterior predictive checks were adopted to examine
the inferences. Uncertainty of the estimated ultimate
recovery was addressed in the study. The convergence
of the chains, acceptance ratio, posterior distributions,
correlation between posterior parameters, the reliability
plot and posterior predictive checks were presented to
evaluate the approach.
Kang et al. [9] applied a similar method to an electric
submersible pump system. With given prior, Bayesian
inference and the MCMC methods were adopted for
parameter estimation. After estimating five parameters,
validation and cross-validation were deployed using two
sets of data to examine the model. Dynamic and
steady-state uncertainty of the model were obtained
via probability density functions using uncertainty
assessment [10]. Autocorrelation was used to evaluate
the samples, and sensitivity analysis was employed for
capturing the region of convergence of the likelihood
function. However, the research study did not take
into account the samples process in much detail. The
convergence of multiple chains was not clearly shown to
provide reliable parameter estimation.
In terms of the application of the EnKF to the oil
well field, a recent study [11] proposed to use principal
component analysis for selecting the initial models for
EnKF, so that fewer ensemble members were needed to
predict production performances of the channel reservoirs.
Meanwhile, the accuracy of the prediction is better than
the prediction using one model when the ensemble size is
the same. With a smaller ensemble size, computational
time decreased significantly. Compared with the original
EnKF, this work with model selection scheme provided
a solution for filtering data of a complex model with
less time. However, the selection of representative initial
models demands empirical information of the system,
for example, permeability distribution in this work. The
selection is the part of the work which belongs to prior
design.
With coupled machine learning and EnKF, a data-driven
method was proposed to estimate the properties of the
reservoir using pressure transient data [12]. Prior to
commencing parameter estimation, the random forest
method was adopted to classify the model using the
discrete linear segment slopes in transition parts. After
deciding which model should be used, the grid search
method was conducted to estimate three hyper-parameters.
With partitioned subspace, a decision tree was designed
to address the optimal partitions. The accuracy of the
optimization was validated by using cross validation.
Once the model and parameters were decided, EnKF was
applied to predict the pressure transients of the water drive
gas reservoir well.
The purpose of this investigation is to estimate parameters
and initial states in the process of a gas lifting oil well
model using a first-principle model and batch data, and
then sequentially estimate the states online. The dominant
noise is Gaussian white noise on the measurements.
MCMC was employed to approximate the posterior
distributions of parameters and initial states in the first

stage. Once the estimates and uncertainty were extracted,
EnKF was carried out to estimate states at each sampling
time. This study provides a solution to advance the
understanding of the uncertainty in a complex system in
real-time.
The overall structure of the study is as follows. Section 2
presents the methodology which is adopted in this work.
The third section introduces the gas lifting oil well model
which is used in this work and explains the procedure of
the simulation. Section 4 validates the performance of
the method, Section 5 provides a discussion of the results,
while conclusions are given in Section 6.

2. Parameter Estimation and States Filtering
In this work, the estimation include two parts: parameters
and initial state estimation, and state estimation. We
used the Metropolis-Hastings (MH) Algorithm to estimate
the distribution of parameters and initial states based on
Bayesian analysis. Once we have found the distribution
of the parameters and initial states, we draw samples from
part of the accepted list for the initialization of the EnKF.

MCMC Parameter distribu�on
  distribu�on EnKF

Prior

Model

Date All 
states

DrawCut burn-in 
period 

Figure 1: Outline of the estimation process.

2.1. Parameter and Initial State Estimation
Among the MCMC algorithms, the MH algorithm is one
of the algorithms which has least requirement of the
posterior and is simple to apply [13]. We use MH here
to estimate the parameters and initial states by accepting
or rejecting proposed samples.
A strong relationship between the accuracy of the MCMC
estimation and the chain length has been reported in the
literature [14]. Similar to most MCMC algorithms, the
step length of MH is a pivotal parameter in the algorithm
and impacts the efficiency of the algorithm. A series of
experiments were run and step length for each quantity
was selected after comparing the results, so that proposed
samples can reach large parameter space and can also
converge to an optimised value.
For each MH iteration, differential equations in the oil
well model need to be solved. Therefore, it takes a long
time to run more than 20 chains with a large number
of iterations, for example, 20 chain with 1000 iterations
for the outputs which contain 3600 samples takes more
than six hours with the processor Intel(R) Core(TM) i7-
10750H CPU @ 2.60GHz 2.59 GHz. To increase the
computational efficiency, the number of chains and the
number of samples for each chain were chosen carefully
by trial and error.
After running the MH algorithm, we have a list of accepted
samples. These samples form a chain. We can check
how the chain explores the parameter space by plotting
these samples. The distribution of these samples can be
used to approximate the distribution of the posterior of the
parameters.
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Algorithm 1: Ensemble Kalman Filter algorithm
Initialization:
Draw samples for initial states, xi

0|0, from Q, i ∈ {1, ..., n}
Calculate the mean of the samples x̂0|0 = 1

n

∑n
i=1 x

i
0|0

Give uncertainty
X0|0 = 1

n−1

∑n
i=1(x

i
0|0 − x̂0|0)(x

i
0|0 − x̂0|0)

T

for k = 1,2,...,N do
Propagation:
xi
k|k−1 = f(xi

k−1|k−1, uk−1, e
i
k−1)

x̂k|k−1 = 1
n

∑n
i=1 x

i
k|k−1

Update:
yik|k−1 = h(xi

k|k−1, uk−1, v
i
k−1)

ŷk|k−1 = 1
n

∑n
i=1 ŷ

i
k|k−1

Zk|k−1 =
1

n−1

∑n
i=1(x

i
k|k−1 − x̂k|k−1)(y

i
k|k−1 − ŷk|k−1)

T

εk|k−1 = 1
n−1

∑n
i=1(y

i
k|k−1− ŷk|k−1)(y

i
k|k−1− ŷk|k−1)

T

Kk = Zk|k−1ε
−1
k|k−1

xi
k|k = xi

k|k−1 +Kk(yk − yik|k−1)

x̂k|k = 1
n

∑n
i=1 x

i
k|k

Xk|k = 1
n−1

∑n
i=1(x

i
k|k − x̂k|k)(x

i
k|k − x̂k|k)

T

end

Finally, a subset Q is prepared to include the estimation
information for the initialization of the estimation of
the state. According to the posterior distribution, Q is
designed to cover the most likely estimation by ignoring
the burn-in, which is the beginning part of the chain before
the chain converges to a certain value.

2.2. State Estimation
The aim of this section is to estimate the model states,
given a first-principle model and a set of measurements
with unknown uncertainties. The data assimilation
method, EnKF, was applied as in Algorithm 1 [7].
The distribution of states at each sampling time were
approximated via a number of ensemble members xi

k. The
superscript shows the number of the ensemble member
and the subscript presents the sampling time. Initial
ensemble members are drawn from the subset Q to include
the prior knowledge. In the EnKF algorithm, previous
studies evaluating the algorithm results observed that the
ensemble size is important [7]. The ensemble size that we
used in the algorithm is n. The covariance of the states at
sampling time k is Xk. The experiment contains N time
steps.
In the propagation stage, the states are forecasted based on
the last states and the dynamic system model. During the
update stage, the estimated outputs are expressed based
on the dynamic system model. e and v are the process
noise and measurement noise with zero means. yk is the
measurement vector which contains noise. The means and
covariance of the states are updated at the end of each time
step. The states of the oil well model can be filtered in real
time.

3. Simulation Study

3.1. Gas Lifting Oil Well Model
The gas lifting oil well model used in this work is based
on previous work [15, 16]. The input of the model is the

valve opening of the gas lift choke valve, u. As one of
the parameters to be estimated, the water cut, WC, is the
volume of water produced compared to the volume of total
liquids produced from an oil well. Other parameters in the
model to be estimated are gas-to-oil ratio, GOR, and the
productivity index, PI [ kg/hr

bar
]. PI is a mathematical means

of expressing the ability of a reservoir to deliver fluids to
the wellbore. All these parameters are dimensionless.

Gathering Manifold
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Compressor

Annulus

Tubing

Oil Reservoir

Gas Distribution Manifold
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water
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Figure 2: Flow chart of an oil field: the blue blocks are the
components of an oil well. The red arrows show the gas flow and
black arrows present the liquid phase flows, which can contain
oil and water. The mass and flow rate are depicted beside the
corresponding components where these states occur in the gas
lifted oil well.

The flow chart in Fig. 2 shows the change of flows
and masses in the gas lifting oil well. m denotes
accumulated mass, and w denotes mass flow rate. A
dot on top of a mass implies the time derivative of
mass. A subscript indicates the phase (g: gas, o:
oil) and location of the various variables. The output
vector is y = {wga, wgp, wop, wwp, Pwf , Pwh, Pa}. Flow
measurements are impacted by bubbles and are not as
reliable as other data such as temperature and pressure.
Pressure transmitters are used to measure the bottom hole
pressure and well flow pressure (Pwf ), the pressure in the
tubing upstream the production choke valve (Pwh), and
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the pressure in the annulus downstream the lift gas choke
valve (Pa). We assume the pressure of the gas in the
gas distribution pipeline (Pc) is a constant as 200 [bar].
In the production process, temperature sensors detect the
temperature in the gas distribution pipeline, the annulus
and the tubing. Because of the small difference between
these temperatures, we assume the temperature is constant
everywhere and all these temperatures are assumed to be
equal to T [K].
Considering the principle of the gas lifted oil well, its
model is designed based on the mass balance of three
states: the mass of gas in the annulus mga, the mass in the
tubing above injection point mgt, and the mass of liquid
in the tubing above injection mlt. After time derivative,
the mass balance is mainly presented as Eq. (1):

ṁga = wga − wginj , (1)

ṁgt = wginj + wgr − wgp,

ṁlt = wlr − wlp,

, where wga is the flow rate of the gas through the gas
lift choke valve which is injected into the annulus. The
flow rates of the lift gas from the annulus and reservoir
to the tubing are wginj and wgr respectively. The flow
rate of produced gas through the production choke valve
is presented as wgp. wlr and wlp are the liquid phase
flow from the reservoir into the well and through the
production choke valve, respectively. The state vector is
x = {mga,mgt,mlt}.

3.2. Simulation Setup
There has been an increased interest in the programming
language Julia [17] in recent years. As a free
language, it has shown rapid advances in the field
of numerical computing. In this work, we adopted
Julia as the main language, especially for the state
estimation part. The parameter and initial state
estimation part is based on the previous work [16].
The Julia packages Plots, StatsP lots, Distributions,
DifferentialEquations, Noise, Random were used
in the this work.
The work began by generating data from the oil well
model with true parameters and initial states, and then
Gaussian noise with zero means was added to the outputs.
The oil well model does not contain process noise. The
noise in the measurements only include measurement
noise. The true parameters are WC = 0.18, P I = 2.4×
104, GOR = 0.15. The true initial states of mga,mgt

and mlt are m1 = 8650,m2 = 3306,m3 = 18250
respectively. The true values were only revealed after
the estimation for evaluation. The information of noise
is not accessible during the experiments. The simulation
will then go on to estimate the parameters and the initial
states, as well as the uncertainty of the model. Once the
distribution of these quantities are found, the states will be
estimated.
The prior of the parameters and initial states were set
as uniform distribution in Eq. (2). The GOR and WC
parameters represent ratios, so they are between 0 and 1.

P (θ,m0 | ui, ye(i,j)) =
B PI ∈ [104, 105], GOR ∈ [0, 1],WC ∈ [0, 1],

m1 ∈ [4000, 10000],m2 ∈ [1000, 5000],

m3 ∈ [1× 104, 2.5× 104]

0 otherwise
(2)
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Figure 3: Estimation of the parameters and the initial states.
The top three rows of plots show the parameter estimates and
the remaining plots present the initial value estimates. The red
vertical lines in the right columns of plots show the true values of
the parameters and initial states.
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In this work, we run 10 chains, and each chain contains
3000 iterations to identify the parameters and initial states
using data with 40 samples. We assume the measurements
are independent and contain white noises which are
normally distributed with zero means, but with different
variances. For every individual measurement, the variance
is assumed to be constant during the experiments. The
process error, eik−1, used at the propagation stage in EnKF
was tuned by trial and error. The measurement noise,
vik−1, used at the update stage was calculated from the
data.

4. Estimate validation
The main aim of this section is to present and analyse the
results of experiments in various ways. To gain insights
into every parameter in the estimation process, we present
plots of individual quantities distributions and chains. The
interactions between every pair parameters are shown in
scatter plots and contour plots. The estimated states are
compared with the true states.

4.1. The Distribution of Quantities and Chains
In order to test the influence of the random initial value of
the MCMC algorithm and check the explored range of the
estimated distribution, we present the plots of the chains
and the distribution for each parameter and initial value,
shown in Fig.3. The plots include the estimations of ten
chains of the MCMC algorithm with 3000 iterations.
The left column of plots show trace plots with
various initial values, which provides information on the
converging speed of the chains. The vertical axis is the
estimated value, and the horizontal axis is the iteration
number. The burn-in periods of these chains are generally
less than 2000. Compared with other chains, WC and m1

took longer time to converge to a certain range. We cut
the burn-in periods and used the last 1000 samples as the
subset Q.
According to these plots, all chains converge to around the
true values after exploring the whole prior range. The end
of the chains overlap each other and fairly smoothly drift
around the optimal estimated value, namely the estimate
uncertainty decreased as the iterations progressed. All
the chains for the same parameters converge to a similar
region and mix well, which indicates convergence is
achieved.
The right column of the figures illustrates the distribution
of each individual estimate. The histograms of the
quantities are drawn based on the accepted lists of all
chains. According to the distribution, the most likely
estimates of these quantities are around the true values.
The MCMC algorithm was able to identify the true values
of the quantities.

4.2. Pair plots of the Distribution of Quantities
Scatter plots and contour plots are shown in Fig.4
to present the relationship between each pair of the
parameters and initial states. According to the top two
rows of plots, the main distribution of PI is between
2.35×104 to 2.50×104. The first and third rows of plots
show that GOR distributes around [0.14, 0.20]. The
samples of WC spread between 0.2 to 0.8. The initial
state estimates are not as converged as the parameter
estimates. Most of m1 samples are between 8000 and
10000. m2 is estimated within [3000, 4000], and the value
of m3 is locate in [1.6, 2]×104. These plots confirm the
estimates in Fig.3. The contour plots in the second column
demonstrate more details in the converging area and show
that some of the posterior distributions are multimodal.
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Figure 4: Estimation of parameters and initial states with 2D plots
in scatter plots and contour plots. The top three rows of plots
show the parameter estimates and the remaining plots present the
initial value estimates. The contour plots are drawn in the range
with minimum and maximum values. The colors of the contour
plots show the density of estimated values. The red curves shows
the estimation at high density, while the blue curves correspond
to the low density contour. For the estimation of parameters, the
converge parts were zoomed in to present the contour clearly.
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Figure 5: Estimation of states. The grey shadows are the estimated states which include 100 estimates for each sampling time. The dark blue
lines are the mean of these ensemble values. The true values of these states are presented as red lines.

4.3. State estimation
We compare the estimated states and the true states in
this subsection. Figure 5 shows the estimation result.
With 1000 samples from the accepted list Q, the EnKF
algorithm is initialised with 100 ensemble members. The
time evolution of these ensemble members are shown as
grey shadows in the plots. The starting points of these
grey shadows indicate the initialisation range of ensemble.
For example, the initial ensemble members of mass in
the annulus is distributed within the range (7000, 10000)
and the initial ensemble members of mass balance for
gas and liquid in tubing are in the ranges (2950, 3550)
and (16800,19400), respectively. The true states were
collected from model simulation without any noise.
According to the result, the mean of all estimated states are
close to the true states. All the ensemble values converge
quickly towards the true states, though some of the initial
values are distributed with a considerable deviation from
the true initial states. Because the estimation of the states
is based on the model and the measurements with noise,
the estimates are less smooth than the true state.
The covariance matrix shows the uncertainty of the
estimation. The uncertainty can also be checked through
the width of the grey shadow. The uncertainty of the
estimates of the mass for the gas and liquid in the tubing
does not change significantly after the input changing at
t = 1, while the uncertainty of the estimates of the
mass for the gas in tubing increases significantly. The
increase of uncertainty results from the propagation of the
error between the estimated output and the measurement.
Compared with the last two states, the first state changes
more noticeable after the input changes.

5. Disscussion
Due to the lack of real data, it is not possible to exam
the method here to a real gas lifting oil well system. In
real life, the model mismatch might lead to undesirable
estimation. Besides, in real oil well systems, most
states and measurements are coupling. We simplified
the problem and assumed the noises of these quantities
are independent, so that the measurement error in the
EnKF algorithm could be easily found by calculating
the variance of the measurement during steady state.
The assumption might lead to some mismatch in the
estimation.
During the data filtering stage, the initial ensemble
contains the prior information. However, it is not
possible to add constraints to the time evolution of these
ensemble. The estimated states are calculated based on the
measurement and the last estimated states. For example,
the mass should be positive all the time according to
physics knowledge, but the EnKF algorithm can not
guarantee that the estimates are always positive. The
shortage of the EnKF algorithm might lead to some

improper estimation.
Another potential problem is that this research study does
not engage with the circumstance where the parameters
change over time. In reality, models are always imperfect
representations of a system, and it may be necessary to
allow for parameters to change over time to achieve the
best possible model fit.

6. Conclusions
The purpose of this study was to investigate the feasibility
of estimating parameters and states of a gas lifting oil
field. In the first stage, the posterior distributions of
the parameters and the initial states were identified using
a MCMC algorithm. Then, we drew samples from a
subset of the posterior distribution for the initialization
of the EnKF and estimated the states. The analysis
of experimental results undertaken here has confirmed
that the proposed solution was able to find the true
values of the unknown quantities with uncertainty during
estimation. The study contributes to our understanding
of the uncertainty in the estimation of the quantities of a
system in real-time. This understanding helps to improve
the gas lifting oil well model and provide estimations
of the process states in the system, why might benefit
the operation and advanced control in real life. Further
research could be conducted to improve the algorithm for
the estimation of changing parameters.
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Abstract 

Sulphide (H2S, HS- and S2-) is an undesired by-product of biogas production processes. This modelling work in 

Aquasim was carried out to study three parallel processes related to sulphide in AD environments: 1) H2S liquid-

gas mass transfer; 2) Acid-base equilibrium; and 3) Sulphide oxidation with three different electron acceptors; 

nitrate, oxygen, and a biotic anode with a given potential. Multiplicative Monod (biotic processes) and Nernst-

Monod kinetics (bioelectrochemical process) provide the basis for the sulphide bio-oxidation processes. At the 

current stage, the model can be used to study sulphide bio-oxidation and the effect of relevant parameters, 

including initial biomass concentration, uptake rates, temperature, and pH. The model can be improved further by 

implementing anaerobic microbial processes as competing reactions. With the proposed improvements, the model 

can be a useful tool for calculating the chemical dosage or electrode potential required for sulphide removal. These 

calculations can be based on both the concentration of H2S(g) in the headspace (ppm) often available at full-scale 

plants and the concentration of sulphide (HS-(liq)) in effluent streams from the plants.  

Keywords: Sulphide oxidation, liquid-gas mass transfer, nitrate, oxygen, bioelectrochemistry 

 

1. Introduction 

Biogas produced through anaerobic digestion (AD) 

contains 30-50 % CO2, 50-70 % CH4 and trace 

gases, including H2S. Depending on the substrate 

composition, normal H2S(g)- concentrations are      

0-10 000 ppm (Angelidaki et al., 2018). Sulphide is 

toxic, odorous, and corrosive, even at low  

concentrations. Different techniques can remove 

sulphide from liquid and gaseous streams, including 

physicochemical and biological methods. Biological 

desulphurisation processes exploit the microbial 

ability to oxidise sulphide with oxygen or nitrate as 

electron acceptors. Bioelectrochemical systems 

(BESs) with a bioanode working as the electron 

acceptor have been examined as an alternative (Sun 

et al., 2009). In these systems, microorganisms work 

as catalysts at the electrodes in oxidation or 

reduction reactions. A solid anodic surface can 

function as an electron acceptor for the electrons 

generated through sulphide oxidation. The electrons 

are transported to the cathode, where reduction 

reactions such as CH4 production from CO2 occur. 

This bioelectrochemical technique can provide a 

chemical-free and environmentally friendly solution 

for sulphide removal if a renewable energy source is 

used to supply electricity.  

 

The processes related to sulphide in AD 

environments are complex and usually involve the 

following main processes: 1) Sulphate bioreduction 

to sulphide; 2) Liquid-gas mass transfer of H2S; 3) 

Acid-base equilibrium of H2S/HS-/S2-; and 4)  

Chemical and biological sulphide oxidation to 

remove sulphide. Barrera et al. (2015) implemented 

the first three processes as an extension of ADM1.  

In our modelling work, the main focus was sulphide 

removal through bio-oxidation (process 4). The  

 

 

primary goal of the model was to develop a simple 

simulation tool for studying sulphide bio-oxidation  

with different electron acceptors and estimating 

H2S(g) based on liquid-gas mass transfer. The 

secondary target was estimating the required 

chemical dosage to reduce the sulphide 

concentration to a specified target concentration.  

The bio-oxidation processes were implemented with 

three different electron acceptors; nitrate, oxygen 

(biotic processes) and a bioanode 

(bioelectrochemical process). At this modelling 

stage, the aim was to study these oxidation processes 

and identify the most critical parameters for further 

model development.  

 

2. Methodology  

The model was developed using Aquasim as a 

simulation tool. The reactor space was defined as a 

modified mixed compartment. The following 

assumptions were made: 1) Sulphide was included 

as a loading rate. The model's primary focus is 

sulphide bio-oxidation processes. Therefore, 

sulphate bioreduction to sulphide was not included; 

2) The microorganisms are assumed to be 

chemolithoautotrophs, capable of gaining energy by 

oxidising inorganic sulphur-containing compounds. 

One microbial group is included for each of the 

sulphide oxidising processes instead of specific 

microbial species; Xeet for electroactive 

microorganisms, Xsob for microorganisms with 

oxygen as the electron acceptor, and Xsnb for 

microorganisms with nitrate as the electron 

acceptor; 3) For all the microbial groups, first-order  

kinetics for decay were assumed valid, as proposed 

by Batstone et al., (2002); 4) Due to the slower 

kinetics compared to biotic oxidation, chemical 
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oxidation is not included; 5) Biotic oxidation of H2S 

is slower compared to oxidation of HS- (Hvitved-

Jacobsen et al., 2013), thereby requiring separate 

rate kinetics. For simplicity, only oxidation of HS- 

was included in the model; 6) It is assumed that the 

microbial culture is adapted to the substrate. The 

growth kinetics only depends on the concentrations 

of the electron donor and acceptor (substrate 

dependence); 7) Only sulphur and sulphate are 

included as oxidation products. Other sulphur 

intermediate products are assumed to have faster 

kinetics; 8) A Nernstian expression can be used to 

model the transfer of electrons from the 

microorganisms to the conductive biofilm on the 

anode surface. This is applicable because the 

transfer is assumed to be reversible and rapid, as 

adapted from a modelling study by Marcus et al. 

(2007). 9) It is assumed that there is no proton 

accumulation in the reactor.  

 

2.1. The reactor vessel and operational parameters 

A virtual full-scale biogas reactor with a total 

volume of 2000 m3 was defined in the model (Figure 

1). A representative initial biogas composition of 60-

70 % CH4, 30-40 % CO2, and 100-10000 ppm H2S 

was considered. The pH range for AD reactors is 

often 6.8 to 8.0. In the model, this range is important 

for estimating H2S(g) in biogas. To estimate the 

H2S-generation with psychrophilic, mesophilic, and 

thermophilic microorganisms, a representative 

temperature range of 15-55 °C was chosen. The pH 

and temperature ranges were used in the acid-base 

equilibrium- and air-water equilibrium calculations 

(3.1.2). In the Aquasim simulations, a representative 

temperature of 308 K and pH of 7.2 were used if not 

stated otherwise. Other relevant parameters used in 

the model are listed in Table 1.   

2.2. Liquid-Gas transfer                                       

The H2S liquid-gas mass transfer was included 

based on the following expression used by Barrera 

et al. (2015): 

𝜌 = 𝑘𝐿𝑎,𝐻2𝑆 ∙ (𝑆𝐻2𝑆 − 𝐾𝐻𝐻2𝑆 ∙ 𝑃𝐻2𝑆)       (1) 

 

Where  𝑘𝐿𝑎: gas transfer coefficient, 𝑆𝐻2𝑆: 

concentration of H2S, 𝑃𝐻2𝑆: partial pressure of H2S, 

and 𝐾𝐻𝐻2𝑆: temperature-dependent Henry's law 

constant calculated with the following equation (Eq. 

2):  

𝐾𝐻_𝐻2𝑆 = 𝑘𝐻0_𝐻2𝑆
∙ 𝑅 ∙ 𝑇 ∙ exp(

𝛥𝐻0
𝑘𝐻𝐻2𝑆

𝑅∙100
∙ (

1

298
−

1

𝑇
))   (2)  

 

Where 𝑘𝐻0_𝐻2𝑆
: Henry's constant at standard 

conditions and 𝑘𝐻0_𝐻2𝑆
: enthalpy of reaction for   

H2S(g) to H2S(liq).  

  

2.3. Liquid-liquid transfer /acid-base equilibrium  

Depending on the pH in the liquid, sulphide can be 

present as H2S, HS-, or S2- (Eq. 3).  

 

           (3)                 

 

The negative logarithm of the first dissociation 

constant (pKa1) is close to 7, whereas a pKa2 from 14 

is reported in the literature (Barrera et al., 2015). 

Therefore, the concentration of S2- is negligible 

within the pH range relevant for AD. Only the first 

dissociation step (H2S/HS-) was included in the 

model. The pKa1-value is calculated as a function of 

temperature, based on Eq. 4 implemented by 

Broderius et al. (1977).  

 

𝑝𝐾𝑎 = 3.122 + 1132/𝑇                     (4) 

 

Eq. 5 represents the expression incorporated for 

sulphide acid-base equilibrium in the model, based 

on the acid-base equilibrium included in ADM1 by 

Batstone et al. (2002).  

              

 𝜌𝐻2𝑆/𝐻𝑆− = 𝐾𝑎,𝐻2𝑆 ∙ 𝑆𝐻2𝑆 − (𝑆𝐻𝑆− ∙ (𝑆𝐻+ + 𝐾𝑎,𝐻2𝑆))(5) 

 

Where  𝜌𝐻2𝑆/𝐻𝑆−: kinetic rate equation for the acid-

base equilibrium, 𝑆𝐻2𝑆 : concentration of H2S, 𝑆𝐻𝑆−: 

concentration of HS-, 𝑆𝐻+: concentration of protons, 

and 𝐾𝑎,𝐻2𝑆 : acidity constant of H2S with 

temperature correction.  

 

2.4. Sulphide oxidation  

The model was developed to predict biological and 

bioelectrochemical sulphide removal. The 

microorganisms oxidise sulphide with three 

different electron acceptors; 1) Nitrate; 2) Oxygen; 

and 3) A bioanode with a given potential (Fig. 2).  

 

 

Table 1: Parameters related to the modelled AD reactor. 

Parameter Value 

Total reactor size [m3] 2000 

Constant bulk liquid [m3] 1600 

Headspace [m3] 400 

Inflow [m3 d-1] 75 

HRT [d] 21 

Figure 1: Illustration of the sulphide related 

processes implemented in the model. 
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In this model, the basis of the growth kinetics is the 

multiplicative Monod established by Bae and 

Rittman (1996). The kinetics display dependence on 

both the electron donor and acceptor concentrations. 

The resulting formula is used to express the uptake 

rate in this model (Eq. 6):  

 

𝜌𝑖 =𝑘𝑚
𝑜 ∙ 𝑋𝑖 ∙

𝑆𝑑

𝐾𝑠_𝑑+𝑆𝑑
∙

𝑆𝑎

𝐾𝑠_𝑎+𝑆𝑎
                         (6) 

 

Where 𝑘𝑚
𝑜 : maximum uptake rate, 𝑋𝑖: concentration 

of active microorganisms, 𝑆𝑎 and 𝑆𝑑 are the 

concentration of the electron acceptor and donor, 

and 𝐾𝑠_𝑎 and  𝐾𝑠_𝑑: corresponding half-saturation 

constants. Sulphide, 𝑆𝐻𝑆−, is the electron donor (𝑆𝑑), 

whereas nitrate, oxygen and the bioanode are the 

electron acceptors (𝑆𝑎). By modifying Eq. 6, the 

following expressions for nitrate (Eq. 7) and oxygen 

(Eq. 8) were implemented in the model.  
 

𝜌1 =𝑘𝑚
𝑜 ∙ 𝑋𝑠𝑛𝑏 ∙

𝑆𝐻𝑆−

𝐾𝑠𝐻𝑆−+𝑆𝐻𝑆
−
∙

𝑆𝑁𝑂3
−

𝐾𝑠𝑁𝑂3
−+𝑆𝑁𝑂3

−
         (7) 

 

𝜌2 =𝑘𝑚
𝑜 ∙ 𝑋𝑠𝑜𝑏 ∙

𝑆𝐻𝑆−

𝐾𝑠𝐻𝑆−+𝑆𝐻𝑆
−
∙

𝑆𝑂2

𝐾𝑠_𝑂2 +𝑆𝑂2
              (8)  

 

To describe the kinetics of a biotic anode, a 

modification of Eq. 6 is required because an 

electrical potential controls the bioelectrochemical 

reaction rate. This is accomplished by implementing 

a Nernst-type equation. Marcus et al. (2007) 

developed a dual-limitation Nernst-Monod kinetic 

expression. This expression was modified to apply 

for bioelectrochemical sulphide oxidation (Eq. 9).  

 

𝜌3 =𝑘𝑚_𝑒𝑒𝑡
𝑜 ∙ 𝑋𝑒𝑒𝑡 ∙

𝑆𝐻𝑆−

𝐾𝑠𝐻𝑆−+𝑆𝐻𝑆−
∙

1

1+exp(−
𝑛𝐹

𝑅𝑇
∙𝜂)
(9) 

 

Where 𝐹: Faradays constant, 𝑛: number of 

electrons transferred to the anode, 𝜂: the local 

potential (Eanode– EKA), Eanode: anode potential. EKA 

corresponds to 𝐾𝑠_𝑎 and can be determined 

experimentally (Markus et al., 2007, Samarakoon 

et al., 2019). In this model, EKA is the reference 

point and was set to 0. Therefore, 𝜂 is considered as 

the anode potential. 

 

 

2.5 Stoichiometry  

The stoichiometry of the relevant reactions depends 

on several factors, including the type of 

microorganisms, the ratio of electron donor to 

electron acceptor, system design and operational 

parameters. The reactions are incorporated as 100 % 

conversion to sulphur or 100 % sulphate. The 

following six stoichiometric equations were 

included in the model:  

 

Nitrate:  

𝐻𝑆− +
2

5
𝑁𝑂3

− +
7

5
𝐻+ → 𝑆𝑜 +

1

5
𝑁2 +

6

5
𝐻2𝑂  (10) 

 

𝐻𝑆− +
8

5
𝑁𝑂3

− +
3

5
𝐻+ → 𝑆𝑂4

2− +
4

5
𝑁2 +

4

5
𝐻2𝑂    (11) 

 

Oxygen: 

𝐻𝑆− +
1

2
𝑂2 +𝐻

+ → 𝑆𝑜 +𝐻2𝑂                        (12)  

 

𝐻𝑆− + 2𝑂2 → 𝑆𝑂4
2− +𝐻+                                (13) 

 

Anode:  

𝐻𝑆− → 𝑆𝑜 +𝐻+ + 2𝑒−                                      (14) 

 

𝐻𝑆− + 4𝐻2𝑂 → 𝑆𝑂4
2− +9𝐻+ + 8𝑒−                 (15)  

 

2.6 Parameters  

Sulphide (𝑆𝐻𝑆−), nitrate (𝑆𝑁𝑂3−), and oxygen (𝑆𝑂2) 

were included as both initial and influent 

concentrations. The operational parameters are 

presented in Table 1. The maximum sulphide uptake 

rate, 𝑘𝑚
𝑜 , is equal to µ𝑚𝑎𝑥/𝑌𝑖, where µ𝑚𝑎𝑥 is the 

maximum microbial growth rate (Batstone et al. 

2002). This rate depends on the microbial group, and 

the values vary in the literature. Other relevant 

parameters were obtained from the literature (Tab. 

2). 

 

2.7 Case study  

A case study was performed to compare bio- 

oxidation of sulphide with the three different 

electron acceptors, and to estimate the dosage and 

time required to reduce the concentration to a 

predefined target concentration. The following base 

conditions were established: 1) Both the initial and 

inflow sulphide concentrations, 𝑆𝐻𝑆−  , are 1.5 mM; 

2) Nitrate and oxygen initial concentrations were 

based on the stoichiometric equations 10 and 12 with 

100 % oxidation to sulphur, corresponding to 0.6 

mM nitrate and 0.75 mM oxygen, and varied 

according to the scenarios described in 3.3; 3) 

Sulphide target concentration was set at 0.1 mM, 

which according to Figure 4a ensures a 𝑃𝐻2𝑆below 

500 ppm with pH 7.2 and 35 °C temperature. The 

reactor pH was constant at 7.2. An initial active 

biomass of 0.1 mM was established in all three cases 

and the  𝑘𝑚
𝑜  was assumed to be 7.5 mole S mole-1 X 

d-1.  

Figure 2: The biotic sulphide oxidation processes 

implemented in the model, with a) nitrate, b) 

oxygen, and c) an anode as the electron acceptors.  

 

c) b) a) 
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 Table 2: Parameters and constants related to the processes in Figure 1 implemented in Aquasim. 

 

3. Results and discussion 

3.1. Identification of key parameters  

For the model's practical application, it is important 

to identify the key parameters which have the 

highest impact on the three most central state 

variables; 1) The H2S-concentration in the 

headspace, 𝑆𝐻2𝑆 ; 2) The concentration of sulphide in 

the liquid, 𝑆𝐻𝑆−; and 3) The concentration of active 

biomass, 𝑋𝑠𝑜𝑏/𝑠𝑛𝑏/𝑒𝑒𝑡 , as a function of growth and 

decay. This was accomplished through both a 

sensitivity analysis and dissociation- and air-water  

equilibrium- calculations. The sensitivity analysis 

was performed with the sensitivity function in 

Aquasim. The dissociation- and equilibrium 

calculations are additional tools for developing the 

model and not a direct part of the model in Aquasim.  

 

3.1.1 Sensitivity analysis                                       

The sensitivity analysis indicates that the  

 

 

concentration of hydrogen sulphide, 𝑆𝐻2𝑆, in the  

headspace displays the highest sensitivity towards 

Henry's law constant, 𝐾𝐻,𝐻2𝑆, followed by the mass 

transfer coefficient, 𝑘𝐿𝑎. 𝐾𝐻,𝐻2𝑆 is dependent on 𝑇, 

whereas  𝑘𝐿𝑎 vary depending on different 

properties, including 𝑇, mixing degree, and liquid 

properties (Yongsiri et al., 2004). With 

multiplicative Monod kinetics, 𝑆𝐻𝑆−  displayed the 

highest sensitivity towards the maximum uptake 

rate, 𝑘𝑚
𝑜 , and low sensitivity towards 𝐾𝑠,𝑛𝑖𝑡𝑟𝑎𝑡𝑒  

𝐾𝑠,𝑠𝑢𝑙𝑝ℎ𝑖𝑑𝑒 , and 𝑇. The 𝑘𝑚
𝑜 -value also exhibited the 

highest impact on 𝑆𝐻𝑆−  with Nernst- Monod 

kinetics, while 𝑆𝐻𝑆− displayed low sensitivity 

towards the anode potential (further discussed in 

chapter 3.2). The concentration of biomass, 𝑋𝑖 , 
presented the highest sensitivity towards 𝑌𝑖 and 𝑘𝑚

𝑜 -

value as expected, in addition to being highly 

dependent on the substrate concentrations. The pH 

Parameter Description  Value  Unit  Reference  

Ks,sulphide,1 Half-saturation constant for sulphide oxidation, 

with nitrate 

4.6∙10-4 mole L-1 Wanga et al., 2010 

Ks,nitrate Half-saturation constant for nitrate 1.0∙10-5 mole L-1 Wanga et al., 2010 

Ks,sulphide,2 Half-saturation constant for sulphide oxidation, 

with oxygen  

1.0∙10-6 mole L-1 Pokorna-Krayzelova 

et al., 2018 

Ks,oxygen Half-saturation constant for oxygen 1.0∙10-4 mole L-1 Pokorna-Krayzelova  

et al., 2018 

Ks,sulphide,3 Half-saturation constant for sulphide oxidation 

with an anode 

7.0∙10-6 mole L-1 Assumed 

Yi Yield of biomass on uptake of sulphide. Used for 

all three types of microbes 

0.03 mole S_X mole S-1 Assumed 

F Faraday's constant  96485 C mole e-1 - 

R Ideal gas constant  8.314  J mole-1 K-1 - 

T Temperature  288-328 K - 

η Local potential  -0.1 to +0.3  V - 

kH0_H2S Henry's constant at standard conditions 9.86∙10-2 M bar-1 Sander, 1999 

kH0_N2 Henry's constant at standard conditions 6.42∙10-4 M bar-1 Sander, 1999 

kH0_CH4 Henry's constant at standard conditions 1.38∙10-3 M bar-1 Sander, 1999 

kH0_CO2 Henry's constant at standard conditions 3.55∙10-2 M bar-1 Sander, 1999 

ΔH0
Ka_H2S Enthalpy of reaction 𝐻𝑆− +𝐻+ → 𝐻2𝑆 21670 J mole-1 Batstone et al., 2002 

ΔH0
Ka_CO2 Enthalpy of reaction    CO2 → 𝐻𝐶𝑂3

− 7646  J mole-1 Batstone  et al., 2002 

ΔH0
KH_H2S Enthalpy of reaction   𝐻2𝑆(𝑙𝑖𝑞) → 𝐻2𝑆(𝑔)   -17459 J mole-1 Sander, 1999 

ΔH0
KH_CO2 Enthalpy of reaction  𝐶𝑂2(𝑙𝑖𝑞) → 𝐶𝑂2(𝑔) -19410 J mole-1 Batstone  et al., 2002 

ΔH0
KH_CH4 Enthalpy of reaction  𝐶𝐻4(𝑙𝑖𝑞) → 𝐶𝐻4(𝑔) -14240 J mole-1 Batstone  et al., 2002 

ΔH0
KH_N2 Enthalpy of reaction  𝑁2(𝑙𝑖𝑞) → 𝑁2(𝑔) -10808 J mole-1 Sander, 1999 

kLa Mass flux coefficient  200 d-1 Batstone  et al., 2002 

kdec Decay rate of sulphide oxidising microbes 0.048 d-1 Sun et al., 2017  
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was not included in the sensitivity analysis due to the 

dependence on the concentration of protons, which 

is a state variable.  

 

The sensitivity analysis revealed that the model is 

sensitive to 𝑘𝑚
𝑜 . This maximum specific uptake rate 

depends on the microbial species (Barrera et al.,  

2015). To study the parameter's effect on the 

sulphide oxidation rate, simulations were performed 

with 𝑘𝑚
𝑜  -values corresponding to a µ𝑚𝑎𝑥 in the 

range of 0.075 d-1 to 1.5 d-1 (Fig. 3). Too low uptake 

rates (Fig. 3: 𝑘𝑚
𝑜 = 2.5 and 5 mole S mole-1 X d-1) 

cause inefficient sulphide removal, sulphide 

accumulation, and potentially high volatilisation of 

H2S(g) with both multiplicative Monod- and Nernst-

Monod kinetics. The effect of the uptake rate is more 

prominent with a lower concentration of active 

biomass (results not included). 

 

The simulation results illustrate that access to a 

microbial group with an efficient uptake rate for 

sulphide increases the system's efficiency. In 

practice, this can be achieved with specialised and 

adapted microbial cultures or by increasing the 

concentration of active biomass.  

 

3.1.2. Acid-base equilibrium and air-water 

equilibrium calculations 

The main purpose of the acid-base equilibrium and 

air-water equilibrium calculations was to study the 

effect of T and pH, which are two important 

operational parameters. The dissociation of 

sulphide (Eq. 3) is highly dependent on pH and 

temperature, as demonstrated in Figure 4. At pH 

6.8 and T = 35 °C, the H2S/HS- - ratio is 50/50. At 

a constant pH, a decrease in T causes an increase in 

the proportion of H2S. In contrast, increasing the 

pH to 8 reduces the proportion of H2S(liq) to less 

than 10 % for the whole temperature range. 

 

 

The partial pressure of H2S(g), 𝑃𝐻2𝑆, was estimated 

with air-water equilibrium calculations for different 

total sulphide concentrations in the liquid phase. The 

calculation method was modified from Hvitved-

Jacobsen et al. (2013) to account for dissociation, 

pH- and temperature dependence. The results 

illustrate that within the operational ranges for AD 

processes, the pH has a more significant impact on 

𝑃𝐻2𝑆 compared to temperature (Fig. 5a and b). As an 

example, the 𝑃𝐻2𝑆 at T = 15 °C is 77 % of the 𝑃𝐻2𝑆 

at T = 55 °C, whereas an increase in pH from 6.8 to 

8 reduces the 𝑃𝐻2𝑆 to 12 % of the 𝑃𝐻2𝑆 at pH 6.8. 

Despite the higher proportion of sulphide present as 

H2S in the liquid phase at lower temperatures, an 

increase in temperature causes an increase in partial 

pressure of H2S in the gas phase. This can be 

attributed to the increase in Henry's law constant, 

𝐾𝐻,𝐻2𝑆, with an increase in temperature. 
Figure 3: Sulphide oxidation with different 

uptake rates, here with nitrate as the electron 

acceptor. Initial biomass: 0.01 mM. Nitrate 

dosed as both initial and continuous supply 

(see discussion in 3.3).  

Figure 4: Equilibrium concentration of H2S 

and HS- as a function of pH and T 

Figure 5: Partial pressure of H2S estimated with air-water 

equilibrium calculations, as a function of a) T and b) pH.  

 

HS- 

a) 

b) 
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Figures 5a and b illustrate that even low total 

sulphide concentrations in the liquid can cause high 

H2S concentrations in biogas. The values should be 

considered maximum levels as the calculation 

assumes that all the H2S in the liquid phase can 

volatilise. Due to different physical phenomena, 

including sulphide precipitation and biological or 

chemical oxidation, the actual values will be lower 

(Hvitved-Jacobsen et al., 2013). However, due to the 

concerns and regulations related to releasing H2S(g), 

this simple method helps predicting the potential 

concentration of H2S in the biogas. 

 

3.2. Bioelectrochemical oxidation and the Nernst-

Monod term 

The anode potential and the number of electrons 

transferred from the microorganisms to the anode 

surface are important parameters in BESs. To study 

the impact of the anode potential, simulations were 

performed with an increase in the local potential 

from -0.1 to +0.3 V (stepsize = 0.05 V) (Fig. 6). By 

convention, n is set to 1, as yield and stoichiometric 

parameters can be defined per electron. The uptake 

rate of sulphide increases with an increase in the 

potential up to a certain threshold (here: 0.1- 0.15 

V). With a local potential of 0.1 V or higher, the 

Nernst-Monod term is close to 1. Consequently, 

increasing the potential further would not improve 

the oxidation rate with the current model 

implementation. With a potential of 0.1 V or higher, 

Nernst-Monod kinetics resembles single Monod 

kinetics, as the uptake rate mainly depends on 

electron donor consumption (substrate 

consumption).   

3.3 Case study: practical application of the model 

The case study illustrates the differences between  

the three bio-oxidation processes. The simulation 

results show that the target concentration is reached 

within 3.9 days with nitrate, 2.4 days with oxygen, 

and 1.7 days with an anode potential of 0.1 V 

(Figures 7a, b, and c) under the given conditions.  

 

 

 

 

The estimated nitrate dosage required to ensure a 

sulphide concentration lower than 0.1 mM in  

continuous operation is an initial addition of  

55.55 kg and a continuous supply of 2.60 kg d-1 with 

the assumed conditions. The corresponding oxygen 

dosage is an initial supply of 35.84 kg and a 

continuous supply of 1.68 kg d-1. However, 

supplying high initial concentrations is unrealistic, 

as the microorganisms can be negatively affected by 

too high dosages of nitrate or oxygen. Therefore, 

simulations were repeated without supplying the 

initial dosage of nitrate or oxygen. The results show 

that a steady-state concentration of sulphide below 

the target concentration of 0.1 mM can be reached in 

65.0 days and 76.1 days with a continuous supply of 

1.68 kg d-1 oxygen and 2.60 kg d-1 nitrate, 

respectively (Fig. 8a and b). However, the required 

time will depend on different parameters, including 

the dosage, the microbial uptake rate (see Fig. 3), 

and the microbial density. By increasing the oxygen 

Figure 7: Estimation of required time until 

the target concentration is reached with a) 

nitrate, b) oxygen, and c) anode as the 

electron acceptors. 

Figure 6: Bioelectrochemical sulphide 

oxidation rate with different local potentials. 

Initial biomass: 0.1 mM.  

 

a) 

b) 

c) 
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dosage and nitrate dosage by a factor of 1.5, the 

target concentration is reached in 21.8 and 22.7 

days, respectively (results not included). This is a 

considerable reduction in the required time to reach 

the target concentration, and it illustrates that the 

supplied dosage has a significant impact on the 

simulation results.  

 

An increased oxidation rate can be obtained by 

increasing the initial biomass concentration, using a 

microbial group with a higher maximum uptake rate, 

or gradually increasing the nitrate or oxygen dosage. 

Repeated simulations showed that by increasing the 

initial biomass from 0.1 to 1 mM, the target 

concentration of 0.1 mM sulphide was reached in 

less than 60 days, with nitrate or oxygen as the 

electron acceptors (results not included). Despite the 

faster sulphide removal obtained, the oxidation rate 

was restricted by the supply of the electron acceptor. 

Alternatively, by increasing the nitrate dosage 

stepwise every fifth day by 0.06 mM (10 % of the 

initial dosage), the target sulphide concentration was 

reached in 29.7 days. The corresponding number of  

days with oxygen (an increase of 0.075 mM every 

fifth day) was 28.7 days (results not included). 

 

This case study illustrates the main advantage of  

developing a simple simulation tool for studying 

bio-oxidation processes and reactor operations. By 

adjusting the parameters in the model according to 

the reactor operation, different strategies could be  

evaluated. Simulation results can be obtained 

quickly without negatively affecting the reactor or 

the AD processes. Obtaining the same results 

experimentally would be costly, time-consuming,  

and potentially lead to reactor failure. An additional 

advantage is that the calculations can be based on 

both the concentration of H2S(g) in the headspace or 

HS-(liq) in the effluent streams from plants.  

  

3.4 Evaluation of the model and further model 

development  

The overall goal of the model is to develop a simple 

tool for estimation of H2S(g) in biogas and to 

estimate the time, chemical dosage, or anode 

potential required to reduce HS-(liq), H2S(liq) and 

H2S(g) to acceptable levels. At this modelling stage, 

a study of the substrate uptake rates and 

identification of the most sensitive parameters were 

accomplished. This initial modelling work provides 

the framework for further development of the model. 

However, certain model limitations have been 

identified at the current stage. To improve the 

model, other anaerobic microbial processes and 

competing reactions should be implemented. These 

processes can affect the oxidation rates through 

competition for substrates and inhibition. The 

proposed improvements would be more realistic, as 

the oxidation processes at the current modelling 

stage are only affected by the substrate 

concentrations, anode potential, and the specific 

microbial activity.  

 

To improve the model implementation of 

bioelectrochemical sulphide oxidation,  

incorporation of different stoichiometry and other 

bioanode-related processes would be valuable. This 

includes biofilm thickness, mass transfer 

limitations, competing reactions at the bioanode 

surface, and electron transfer limitations (due to 

different electron sinks) (Pham et al., 2009). A 

further study of anode potential implementation can 

improve the model, as the anode potential has a 

lower impact on the simulated bioelectrochemical 

sulphide oxidation rate than expected. Additionally, 

this model only considers the bioanodic reactions. 

Sulphide oxidation can contribute positively to 

biocathodic processes such as methane production 

by generating electrons and protons in a BES (Jiang 

et al., 2014; Dykstra et al., 2021). Modelling a 

complete bioelectrochemical reactor would require 

implementation of both the oxidation and the 

reduction processes.  In this modelling work, the 

goal was to study sulphide removal. Therefore, 

only the bioanodic process was studied.   

 

Lastly, different kinetic constants and parameters 

can be found in the literature related to the sulphide 

routes and the specific microbial groups. The 

variation will affect the simulation results. 

Therefore, calibration and validation of the model 

Figure 8: Sulphide removal in continuous 

operation mode with a) nitrate and b) oxygen. 

a) 

b) 
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with data from real plants will improve the model 

further.  

 

4. Conclusion 

The model provides a simple tool in Aquasim for 

studying H2S liquid-gas mass transfer and sulphide 

bio-oxidation with three different electron 

acceptors: 1) Nitrate; 2) Oxygen; and 3) A bioanode 

with a given potential. Multiplicative Monod 

kinetics (nitrate and oxygen) and Nernst-Monod 

kinetics (bioanode) provide the framework for the 

respective biotic sulphide oxidation processes.  

 A sensitivity analysis revealed that the 

model is most sensitive toward the maximum 

microbial uptake rate, 𝑘𝑚
𝑜 . Low 𝑘𝑚

𝑜 -values can result 

in inefficient sulphide removal, accumulation of 

sulphide, and high concentrations of H2S(g). A local 

potential of 0.1-0.15 V is defined as the plateau 

potential with Nernst-Monod kinetics in the current 

study, as further increasing the potential did not 

improve the sulphide oxidation rate.   

At the current stage, the model can be used 

to study the defined processes. However, certain 

model limitations have been identified. Therefore, 

the model needs further improvements to function as 

a simulation tool for studying sulphide-related 

processes in AD and calculate the required dosage 

and oxidation time in full-scale processes.  
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Abstract

The ongoing decarbonization, and the rapid increase in renewable penetration in the electric grid, will demand enhanced
flexible operational schemes of the conventional hydropower plants. This paper explores a grid-connected hydropower plant’s
best-efficiency operating conditions when meeting the renewable energy transition. Power loss models combined with various
voltage control methods are investigated for achieving optimal operation. This simulation study is carried out on a static
Single Machine Infinite Bus (SMIB) environment to perform voltage control comparisons. Simulations show that the plant and
grid power loss models can be utilized in an optimal controller setting to increase the accumulated average efficiency (AAE).
However, optimal controllers had slow prediction times, and therefore a Reinforcement Learning (RL) method, A2C, has been
trained to learn an optimal control policy that maximizes system efficiency. The RL agent supersedes the optimal control
techniques with up to 40 times faster prediction times.

1 Introduction

In an energy mix with intermittent renewable energy
sources such as wind and solar, the flexible operation
of reliable reservoir-based hydropower plants can be
the backbone for energy balance and increased stability
(Pandey et al., 2021)(Abadie et al., 2020). Synchronous
machines have inherent stability characteristics in the form
of, e.g., rotational inertia and damper bars. Stability
characteristics are further enhanced by controllers for
frequency and voltage, e.g., the governor (GOV) and
automatic voltage regulator (AVR) (IEEE Recommended
Practice for Excitation System Models for Power System
Stability Studies, 2016). Together they provide essential
system services (constant frequency and voltage) for the
operation of the electricity grid.
The Transmission System Operator (TSO) is responsible
for the operational security of supply and power
transfer capability while reducing investment costs and
transmission losses (NVE, 2019). The active power
dispatch is correlated to market demand by the TSO,
while the voltage levels are considered more as free
control variables in the power system operation. Through
traditional centralized optimization techniques (Hasan
et al., 2020), e.g., Optimal Power Flow (OPF) (Wang
et al., 2017), grid losses and generation costs can be
minimized with respect to active power production and
terminal voltages (Qiu et al., 2009).
There has also been done much research on decentralized
and distributed control schemes (Molzahn et al.,
2017). This technique solves optimization problems by
considering control of smaller grid sections instead of
the complete system. Another approach for optimal
control is reinforcement learning (RL). RL is a machine
learning approach tailored to learning control policies to
maximize an objective function, often referred to as a
reward function (Buşoniu et al., 2018). Moreover, RL

has been implemented in recent literature, e.g., for finding
feasible grid voltage setpoints (Wang et al., 2020)(Duan
et al., 2020), and energy management systems (Chen et al.,
2021).
The use of power loss models of grid (Kundur, 1994)
and synchronous machines (Bortoni et al., 2020) has the
potential for more efficient voltage control.
This paper presents a simulation study comparing
standard decentralized voltage control methods against
optimal power system controllers. Controller schemes
for efficiency maximization will be formulated and
simulated in a grid-connected single machine infinite
bus (SMIB) environment. Power losses are considered
for the waterway, turbine, generator, and grid. Eight
different controller methods under steady-state operation
are considered. Four traditional primary setpoint control
strategies of the AVR will be investigated. Three
optimization-based controllers will be implemented and
tested for the minimization of (i) generation losses, (ii)
transmission losses, and (iii) overall losses. Finally,
the A2C (Mnih and et al., 2016) reinforcement learning
algorithm will be trained to maximize the system
efficiency (plant and grid). The computational speed of
RL compared to optimal controllers will be evaluated.
The paper is organized as follows. Section 2 introduces
the power loss modeling for hydropower plants, while
Section 3 introduces the different voltage controllers under
study. Section 4 presents the study case and simulation
results.

2 Power and energy loss modeling

In hydropower systems, the potential and kinetic energy in
the water is converted first into mechanical energy before
being converted to electrical energy. The electrical energy
is then transported in cables, lines, and transformers,
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Figure 1: An overview of the SMIB topology and parameters.
Power loss P1 to P7 are indicated close to the respective
component.

which have some power losses. The power losses in
a single machine infinite bus (SMIB) environment are
proposed to be divided into seven different parts, e.g., (P1)
to (P7). These losses are presented from top to bottom
in Figure 1. The hydraulic losses (P1) represent water
conduit friction losses from water movement. Turbine
losses (P2) represent the power loss in the transition from
pressure and kinetic energy to mechanical energy on the
rotor shaft. The generator losses are divided into three
separate categories: stator loss (P3), rotor loss (P4), and
constant losses (P5). Stator loss (P3) is the ohmic losses
RaI

2
a in the armature coils and stray loss. Rotor loss

(P4) is the ohmic loss RfI
2
f from the field and excitation

currents in the excitation circuit. Constant losses (P5)
are friction and windage losses, core loss, and bearing
losses. As long as the grid-connected machine’s voltage
and speed are constant, the constant losses will not change.
Moreover, the transformer losses (P6) consist of constant
and load-dependent losses. Finally, the transmission line
losses (P7) are the ohmic losses in the transmission line.
(Chapman, 2012)

2.1 Synchronous generator loss modeling

The calculation framework that was established in Bortoni
et al. (Bortoni et al., 2020) is used for estimating the
synchronous machine losses. This method extrapolates
the machine losses by using known relations between
armature current Ia, field current If , terminal voltage

Vg , and nominal losses noted with ∗. Stator loss (P3) is
extrapolated from nominal armature and stray losses, P ∗

a

and P ∗
s respectively, as shown in Eq. 1. Armature current

Ia should be known beforehand and is calculated from
Eq. 2, implying that Pg , Qg , and Vg are known.

P stator
loss = (P ∗

a + P ∗
s )

(
Ia
I∗a

)2

(1)

Ia∠−φ =
Pg − jQg

Vg
(2)

Rotor loss (P4) is extrapolated from nominal field, brush,
and excitation losses, P ∗

f , P ∗
br , and P ∗

ex respectively, and
depends on the field current If as shown in Eq. 3. For
estimating the field current at any value of Pg , Qg , and
Vg , the generator’s no-load and short-circuit characteristic
curves are required. These curves are usually provided
by the manufacturer or measured during commissioning
of the machine. The no-load characteristics establish a
relation between the internal emf Eg and field current If ,
usually linear. The short-circuit characteristics relates field
and armature currents and capture saturation in the core.
The saturation can be represented as the Potier reactance
(Xp) and Potier emf (Ep) (Kundur, 1994). To calculate the
field current If , the rotor angle δ and internal emf Eg is
calculated with Eq. 4 (Kundur, 1994) and Eq. 5 (Chapman,
2012), respectively. The Potier voltage angle θ and emf
Ep is calculated similarly through Eq. 6 and 7. Field
current in the rotor circuit can then be estimated using
Eq. 8. The parameters bv , k, Cm, and m are obtained
through curve fitting Eq. 8 to measured values of If in the
short-circuit characteristic of the machine (Karikezi et al.,
2021).

P rotor
loss = (P ∗

f + P ∗
br)

(
If
I∗f

)2

+ P ∗
ex

(
If
I∗f

)
(3)

δ = tan−1

(
Ia(Xq cos(φ)−Ra sin(φ)

Vg + Ia(Xq sin(φ) +Ra cos(φ)

)
(4)

Eg = Vg cos(δ) + IaXd sin(δ + φ) +RaIa cos(δ + φ)
(5)

θ = tan−1

(
Ia(Xp cos(φ)−Ra sin(φ)

Vg + Ia(Xp sin(φ) +Ra cos(φ)

)
(6)

Ep = Vg cos(θ) + IaXp sin(θ + φ) +RaIa cos(θ + φ)
(7)

If =
Eg − Ep

bv
+ k(Ep + CmEm

p ) (8)

Constant losses (P5) is extrapolated from the nominal
core, bearing, friction and windage losses, noted P ∗

c , Pb,
and P ∗

wf , respectively, where the core losses is dependent
on the terminal voltage Vg , as shown in Eq. 9.

P const
loss = P ∗

c

(
Vg

V ∗
g

)2

+ P ∗
b + P ∗

wf (9)

Nominal loss and saturation parameters for this paper’s
study case are displayed in Table 1 together with a short
description of the parameters. The presented values
are utilized for the study case calculations described in
Section 4.

2.2 Hydraulic and turbine loss modeling

Hydraulic losses in the hydropower plant are separated
into two parts, e.g., turbine losses and waterway losses,
(P1) and (P2) in Figure 1 respectively. (P2) can be
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Table 1: General Data for Loss Calculations of 103 MVA
synchronous generator, turbine, and water way

Symbol Description Value

bv Saturation parameter 1.0 [.]
Cm Saturation parameter 0.16 [.]
m Saturation parameter 7 [.]
k Saturation parameter 1.0308 [.]
I∗
a Nominal Armature Current 5406.1 [A]

I∗
f Nominal Field Current 1065 [A]

V ∗
g Nominal Generator Terminal Voltage 1 [pu]

P∗
a Nominal Armature Losses 187.46 [kW]

P∗
s Nominal Stray Losses 89.16 [kW]

P∗
f Nominal Field Current Losses 173.65 [kW]

P∗
br Nominal Brush Losses 2.13 [kW]

P∗
ex Nominal Exciter Losses 15.88 [kW]

P∗
c Nominal Core Losses 211.92 [kW]

P∗
b Bearing Losses 240.9 [kW]

P∗
wf Windage and Friction Losses 172.92 [kW]
q∗w Nominal Water Flow Rate 21.843 [m3/s]
Hgr Gross water head 442 [m]
fp Water way friction coefficient 0.0197 [.]

estimated from Eq. 10. The mechanical rotor power Pm

is the generator output power Pg plus generator rotor,
stator, and constant losses. The hydraulic power Phy is the
input power to the turbine before the conversion between
kinetic/pressure water energy to mechanical energy and is
calculated from Eq. 11.

P turb
loss = Phy − Pm = Pm

(
1

ηturb
− 1

)
(10)

Phy =
Pm

ηturb
(11)

Calculating (P1) is done by solving Eq 12 concerning qw.
The gross power Pgr is the potential power from the water,
assuming no losses, and is shown in Eq. 13. PH

loss is
estimated by the friction loss in the water way, shown in
Eq. 14. ρ is water density in [kg/m3], g is the acceleration
of gravity in [m/s2], Hgr is the gross water head in [m],
Hloss is the head loss from friction [m], and qw is the
water flow rate [m3/s]. Inserting Eq. 11, 13, and 14 into
Eq. 12, yields a third degree polynomial for qw, shown
in Eq. 15. All values are known except for qw, and this
equation can therefore be solved. Assuming qw ∈ [0, q∗w)
only one solution to qw is valid and used for the loss
calculation.

Pgr = PH
loss + Phy (12)

Pgr = ρgHgrqw (13)

PH
loss = ρgHlossqw = ρgfpq

3
w (14)

ρg
(
Hgrqw − fpq

3
w

)
− Pm

ηturb
= 0 (15)

2.3 Efficiency Calculations and AAE

The power loss calculation framework for the hydropower
plant and transmission system has the following workflow.
Firstly, the Active power Pg is defined. Then, the applied
voltage controller determines the reactive power dispatch
Qg , and a power flow calculation is executed. The
generator stator, rotor, and constant losses (P3, P4, P5)
are calculated. Moreover, turbine loss (P2) and waterway
loss (P1) are then calculated. From Pg and Qg , the
transformer loss PT

loss (P6) and transmission loss P l
loss

(P7) are calculated through the Pandapowers power flow
calculation (Thurner et al., 2018). For convenience, grid

losses P grid
loss and plant losses P plant

loss is defined in Eq. 16
and 17, respectively.

P grid
loss = PT

loss + P l
loss (16)

P plant
loss = P stator

loss + P rotor
loss + P const

loss + P turb
loss + PH

loss

(17)
Overall system efficiency calculation is shown in Eq. 18.
The numerator represents the active power reaching the
external grid, while the denominator is the sum of active
power production and losses from (P1) to (P7).

η =
Pg − P grid

loss

Pg + P grid
loss + P plant

loss

(18)

There are different ways of estimating the efficiency of
a time series data set. One method is to average the
efficiencies over the data. Another method proposed
by (Karikezi et al., 2021) is the AAE (Accumulated
Average Efficiency). In a data set of varying active power
production, the AAE is a more accurate representation of
the energy losses of the system compared to averaging
over the efficiencies. Eq. 19 shows how AAE is calculated,
assuming evenly spaced data points. The sum in the
numerator represents the total energy production reaching
the external grid (customers) in the data set. The sum in
the denominator represents the total energy production and
all losses.

ηAAE =

∑N
i=1

[
P

(i)
g − P

grid(i)
loss

]
∑N

i=1

[
P

grid(i)
loss + P

plant(i)
loss + P

(i)
g

] (19)

3 Voltage control methods

The rotor induces an internal emf Eg∠δ, determining
the terminal voltage Vg and how much reactive power
production/consumption the synchronous generator (SG)
has. An approximate relation between the internal voltage
and reactive power production is shown in Eq. 20 (Kundur,
1994).

Qg =
E2

g − EgVg cos δ

Xd
(20)

The excitation system of the SG, depicted in Figure 2
(IEEE Recommended Practice for Excitation System
Models for Power System Stability Studies, 2016),
determines both the terminal voltage and reactive power
production. Transducers measure Vg , Pg , and Qg on
the generator terminal. These signals go through a
voltage compensation block that calculates Vc. In this
paper, the automatic voltage regulator AVR has two
operating modes, indicated by switch SW1 and SW2
in the AVR block. If SW1 is closed, the AVR is
in a voltage setpoint tracking mode. Two different
controller modes are determined from this AVR state:
constant voltage controller (C1) and voltage compensated
controller (C2). Constant voltage control (C1) bypasses
the voltage compensation block in Figure 2, effectively
setting controller parameters Rc and Xc to 0. This mode
controls the generator exciter such that Vg = VREF ,
where VREF is a voltage reference. Controller (C2)
includes the voltage compensation block and is a setpoint
controller that forces the resulting compensated voltage
Vc = VREF .
When SW2 is closed (and SW1 is open) the AVR is in
reactive power setpoint mode. This AVR state can define
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Figure 2: Block diagram of the AVR, exciter, synchronous
machine, and voltage transducer (IEEE Recommended Practice
for Excitation System Models for Power System Stability Studies,
2016).

two controller modes: constant Qg controller (C3) and
constant power factor controller (C4). Controller (C3)
adjusts the excitation current such that the reactive power
production reaches some setpoint value Qg = Qset.
Controller (C4) updates Qset continuously according
to the active power production, such that Qset =
Pg tanφset, where φset is the setpoint phase angle.
Controllers (C1) to (C4) are standard control modes
for the AVR. No information on generator or grid
losses is explicitly used in these controllers. Therefore,
three optimal controllers and one RL controller are
implemented, which produces optimal values of Qset to
the AVR, according to some objective function. The first
optimal controller is an optimal plant efficiency control
(C5) to minimize plant losses. The second optimal
controller is the optimal grid efficiency (C6), which
minimizes grid losses. The third optimal controller is
an optimal system controller (C7), which minimizes the
sum of plant and grid losses. In addition, a reinforcement
learning (RL)-based controller (C8) is implemented to
minimize system losses. All controllers, numbered (C1)
to (C8) is listed in Table 2 with descriptions of controller
objectives and tuned controller parameters.

3.1 Implementation of voltage controllers C1 to C7

Controller (C1) is equal to (C2), with the only difference
being that parameters Rc and Xc are zero for (C1) and
not for (C2). Therefore, the implementation for these two
controllers is equal. In this paper, the generator bus is
modeled as a PQ bus. This means Pg and Qg have to
be specified in the power flow calculation. Converting a
voltage setpoint VREF to a reactive power Qg can be done
through Eq. 21 - 23 and Algorithm 1.
The voltage Vc is adjusted towards a voltage setpoint
VREF and is calculated as the generator terminal voltage
plus the voltage drop over a fictitious compensator
impedance Zc = Rc+jXc (IEEE Recommended Practice
for Excitation System Models for Power System Stability
Studies, 2016). The compensated voltage Vc is expressed
in Eq. 21, where it is assumed that terminal voltage Vg has
an angle of zero.

Vc∠− θc = Vg +
1

Vg
(Pg − jQg)(Rc + jXc) (21)

Separating Eq. 21 into real and imaginary parts results in
Eq. 22 and 23. Assuming steady-state operation, Vc must
be equal to the voltage reference, Vc = VREF . Eq. 21 and

Table 2: Controller overview with a description of the controllers.
Optimized controller parameters Θopt is displayed for controllers
(C1) to (C4). Controller objectives are shown for optimal
controllers (C5) to (C7), and the reward function R for the RL
controller (C8).

Controller
Name

Description Tuned Controller Parameters/
Controller Objective

Const V
(C1)

Setpoint control
of Vg

Θopt ← VREF = 1.02 pu

V-comp
(C2)

Setpoint control
of Vc

Θopt ←


VREF = 1.00pu,

Rc = −0.03pu,
Xc = 0.043pu

Const Q
(C3)

Setpoint control
of Qg

Θopt ←Qset
g = 7.01 Mvar

Const φ
(C4)

Setpoint control
of φ

Θopt ← φ = 0.002 rad

Opt Plant
(C5)

Minimizes plant
losses controlling
Qset

Qset = min
Qset

(
P

plant
loss

)

Opt Grid
(C6)

Minimizes grid
losses controlling
Qset

Qset = min
Qset

(
P

grid
loss

)

Opt Sys
(C7)

Minimizes plant
+ grid losses
controlling Qset

Qset = min
Qset

(
P

grid
loss + P

plant
loss

)

RL control
(C8)

RL control
predicting Qset

for optimal
system efficiency.

R =

(
Pg

Pg+P
gen
loss

+P
grid
loss

)2

22 is a system of two equations with the two unknowns
being the terminal voltage Vg and compensated voltage
angle θc. Solving this system is done iteratively by using
an initial power flow as a guess for Vg , which will be
adjusted such that Vc converges to the reference voltage
VREF . Algorithm 1 shows this procedure.

V 2
g − VgVc cos(θc) + PgRc +QgXc = 0 (22)

VgVc sin(θc) + PgXc −QgRc = 0 (23)

Algorithm 1: Constant V controller (C2 and
C4) at PQ bus.

Data: Q(1)
set = 0 pu, Q

(2)
set = 0.1 pu

Do a power flow with Q
(1)
set and Q

(2)
set to obtain V

(1)
c and

V
(2)
c by solving Eq. 22 and 23

while |Q(2)
set −Q

(1)
set| > 1e−3 do

dQset
dVc

← Q
(2)
set−Q

(1)
set

V
(2)
c −V

(1)
c

Qnew
set ← Q

(2)
set +

dQset
dVc

(VREF − V
(2)
c )

V new
c ← Power flow with Qg = Qg

new
set

V
(1)
c ← V

(2)
c , V

(2)
c ← V new

c

Q
(1)
set ← Q

(2)
set, Q

(2)
set ← Qnew

set

end
Result: Set Qset = Q

(2)
set

Constant reactive power (C3) and constant power factor
controller (C4) have, in essence, similar controller
mechanisms, where a reactive power setpoint from the
generator terminal Qset is determined from the controllers
and applied to the PQ bus directly.
The optimal controllers (C5, C6, and C7) utilize
a minimization algorithm to achieve the controller
objectives presented for each controller in Table 2. The
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Figure 3: The figure presents the workflow diagram of the voltage
controller C8 for calculating the optimal efficiency operation
point Qopt

g through step (1) to (4).

decision variable for the optimization is the reactive power
setpoint Qset.
The workflow diagram for the optimal controllers is
illustrated in Figure 3, where the workflow steps are
noted chronologically from step (1) to (5). The workflow
diagram is explained in the sequel: In a time series
simulation, an active power P (i)

g and external grid voltage
V

(i)
ext is given to the controller. The controller is initialized

(1) by creating a grid copy, and the initial value for Qg is
specified at 0.0. A grid copy is made because the controller
modifies the grid during the minimization of losses, and
these modifications are not wanted in the original grid.
The initial condition, a grid copy, and the objective
function (3) is sent to the minimize_scalar function (2)
from (Virtanen and et al., 2020), and utilizes the brent
method. Step (2) and (3) is done iteratively to calculate
an optimal value of Qopt

g . When the minimization has
converged, the optimal reactive power is bounded between
a minimum and maximum allowed value, dictated by
the capability diagram (4) (IEEE Standard for Salient-
Pole 50 Hz and 60 Hz Synchronous Generators and
Generator/Motors for Hydraulic Turbine Applications
Rated 5 MVA and Above, 2006). The resulting reactive
power value is then applied to the grid (5).

3.2 Reinforcement Learning Controller C8

Controller (C8) is a reactive power setpoint control based
on the reinforcement learning method A2C (Mnih and
et al., 2016). The utilized algorithm is implemented
in StableBaselines 3 (Raffin et al., 2021), and the
training environment for the agent is defined in the
Gym framework (Brockman et al., 2016). The training
environment is defined as a one-step deterministic
environment, where the states S = {Vext, Pg}, and the

Table 3: Tuned hyperparameters of the A2C Algorithm in SB3 on
the Power System Loss Environment.

Hyperparameter Value

Policy Neural Network Size [8, 8]
Value Neural Network Size [8, 8]

Steps before updating 32
Discount Factor γ 1.0

Learning Rate 0.01
Value function coefficient for the loss calculation 0.6

action is A = {Qg}. During training, an episode is
initialized by sampling state values Pg and Vext from
a uniform distribution, where Pg [pu] ∈ [0.2, 1.0] and
Vext [pu] ∈ [0.9, 1.1]. The random sampling causes no
two training episodes to be equal, and the agent should
therefore learn to generalize for all allowed values of Pg

and Vext. Eq. 24 defines the reward function R that is
utilized to find an optimal system control policy for Qset.

R(S,A) =

(
Pg

Pg + P gen
loss + P grid

loss

)2

(24)

After a grid search, the highest resulting reward
determined the A2C hyperparameters, with the results
shown in Table 3. Hyperparameters not displayed in the
table have default values from the SB3 library. Both the
policy and value neural network sizes are relatively small
and shallow. These small networks most likely caused
faster training compared to larger networks. However, a
higher learning rate of 0.1 did not yield improved results.
The discount factor was not part of the search and was
arbitrarily set to 1.0 as it doesn’t affect the training in one-
step environments.

3.3 Parameter tuning of controllers C1 to C4.

As shown in Table 2, each controller (C1) to (C4) have
different controller parameters noted as Θ. To find optimal
parameter setting for each controller, parameters Θ is
defined as a decision variable in an optimization problem,
as shown in Eq. 25. The objective function is to minimize
overall system power losses for each controller as shown
in Eq. 26. The system losses is defined in Eq. 27. Nine
operating points close to the nominal (rated) operation is
used in the objective function to achieve optimal controller
parameters Θopt. Three values of external grid voltage
is chosen, where Vext [pu] = {0.99, 1.0, 1.01}, For
each external grid voltage level, three active power levels
are chosen, where Pg [pu] = {0.9, 0.95, 1.0}. These
operating points is represented as the two summations in
Eq. 26. The optimization results of Θ for each controller
is shown in Table 2 as Θopt.

Θopt = min
Θ

J(Θ) (25)

J(Θ) =

3∑
i=1

3∑
j=1

[
Ploss(P

(i)
g , V

(j)
ext ; Θ)

]
(26)

Ploss(P
(i)
g , V

(j)
ext ; Θ) = P plant

loss + P grid
loss (27)

4 Simulation results of a 103 MVA study case

A SMIB (Single Machine Infinite Bus) testbed with the
presented controllers was established on a grid-connected
103 MVA hydro generator. The system overview is shown
in Figure 1, and system parameters are listed in Table 1.
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4.1 Controller efficiency characteristics

Figure ??hows the controller efficiency characteristics for
a range of active power and external voltage values for
all controllers. Efficiencies are estimated by Eq. 18 for
a range of external voltage (x-axis) and active power (y-
axis) combinations. The Pg and Vext axis each has 30
evenly spaced data points on which the contours are based.
A reactive power dispatch is calculated from the voltage
controllers at each point, followed by a power flow and
efficiency calculation. In addition, the yellow “x” in each
subplot in Figure 4 indicates the Best Efficiency Point
(BEP). BEP is the point where the values of Pg and Vext

yield the highest system efficiency for a given controller.
Moreover, the efficiency value for each BEP is shown in
Table 4.
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Figure 4: Efficiency characteristic plots for the eight presented
controllers. Moreover, the BEP point for each controller is
highlighted.

4.2 Controller performance indicators and data set

Controller performance is evaluated through two
indicators. These are i) the energy losses in the grid,
plant, and system and ii) the voltage variation at the
generator bus. These indicators will be evaluated by
simulating the SMIB environment with an artificially
made data set, which is displayed in Figure 5. In total,
there are 8760 values of Pg and Vext. The data set
is available in (Melfald, n.d.), and was generated by
sampling the active power and external voltage values
from normal distributions. When making the data set,
the average active power value was set to 0.7 pu with a
standard deviation of 0.3, Pg ∼ N (0.7, 0.32). Sampled
values was bounded between 0.3 and 0.9, such that
Pg ∈ [0.3, 0.9]. The average external voltage value was
set to 1.0 pu with a standard deviation of 0.02 with no
bounds, Vext ∼ N (1.0, 0.022). It is assumed to be a
one-hour time-step per data point.

4.3 Energy losses and efficiencies from simulation

The energy losses, and terminal generator voltage,
are obtained from the simulation of the 8760 data
points. Results from the simulation are shown in
Table 4. The grid, plant, and system losses are
calculated from accumulated power losses. A system

Mean Active Power

External Voltage
Probability
Distribution

Active Power Probability Distribution

Mean External Voltage

Figure 5: Data Points used for efficiency comparison between
voltage controllers. (Melfald, n.d.)

energy loss comparison is made with ∆P sys
add . This

variable is obtained by subtracting the system losses of
any controller with the system losses of controller (C7).
This represents additional system losses generated by not
utilizing controller (C7). Similarly, the additional grid
losses ∆P grid

add is comparing the grid losses when using
(C6) against the other controllers. Additional plant losses
∆P plant

add are also compared between controller (C5) and
the rest of the controllers.

4.4 Voltage variation comparisons

The voltage variation on the generator terminal Vg for
different controllers is shown and compared in the box
plot in Figure 6 (a). The box plot shows four properties of
the voltage variation in the study case for each controller.
First, the green horizontal line in each box represents the
median value of the voltages. The box’s upper and lower
vertical boundaries represent the middle 50 percent of the
voltage points, assuming a sorted data set. There is no
box for (C1) because the voltage variation is negligible
for large parts of the data set. The lines stretching out
vertically from the boxes are called “whiskers” and show
the boundaries between the data and outliers, represented
as small circles outside the whiskers. The lower outliers
are defined as data points with voltage values lower than
0.01 % of the data set. Upper outlier data points are values
above 99.9 % of the data set. In addition, arrows to the left
of all boxes and whiskers are displayed with a number.
The arrows and number represent the maximum voltage
variation [%] in the positive and negative direction from
the median voltage in the simulation.
The voltage variation in Figure 6 (a) shows that controllers
(C3, C4, C6, C7, C8) have similar generator voltage
variation throughout the simulation. This similarity
indicates that the reactive power dispatch is similar for
the controllers, which is shown with the reactive power
distributions in Figure 6 (b). On average, the optimal
plant controller (C5) has lower terminal voltage values
during the simulation. The main reason for this is that
the optimal plant operation for the generator is close to
0.2 reactive power consumption, as described by (Karikezi
et al., 2021). This reactive power consumption lowers the
terminal voltage compared to the other controllers with a
higher reactive power dispatch.
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Table 4: Result Data from power flow simulations of the 8760 data points.
Const V V-comp Const Q Const φ Opt Plant Opt Grid Opt Sys RL Agent

C1 C2 C3 C4 C5 C6 C7 C8
AAE [%] 87.6 87.812 87.914 87.936 87.754 87.932 87.937 87.936

Total System Losses [MWh] 70251 69048 68469 68346 69377 68371 68341 68346
Total Grid Losses [MWh] 10925 9983 9410 9405 10614 9378 9404 9394
Total Plant Losses [MWh] 59326 59064 59058 58941 58762 58992 58937 58951

∆P sys
add [MWh] 1910.3 706.5 127.5 5.1 1035.7 29.6 0.0 4.5

∆P grid
add [MWh] 1547.1 605.5 32.4 26.8 1236.1 0.0 25.8 16.1

∆P plant
add [MWh] 563.7 301.5 295.6 178.8 0.0 230.1 174.6 188.9

BEP Efficiency [%] 90.134 90.135 90.309 90.324 90.144 90.300 90.325 90.324
Calculation Speed [steps/s] 12.9 12.7 25.5 32.1 5.6 1.3 0.8 34.2

The constant voltage controllers (C1, C2) have the lowest
voltage variation and, consequently, the highest reactive
power variation. When the external grid voltage Vext

changes, controller (C1) and (C2) force the terminal
voltage towards the voltage setpoint by adjusting the
reactive power dispatch. The reactive power dispatch is
proportional to the voltage difference between Vext and
controller voltage setpoint VREF . It is therefore clear from
Figure 6 (c) that controllers (C1) and (C2) operate less
efficiently compared to the other controllers.

5 Discussion

Figure 4 shows that the active power has the most
significant impact on the system efficiency, with Best
Efficiency Points (BEPs) residing at around 80 MW for
all controllers. However, there is a significant difference
between the BEPs on the Vext axis. All controllers except
(C1) and (C2) prefer higher Vext, likely because of the
lower currents leading to lower ohmic losses.
Controller (C1) and (C2) have, on average, higher
reactive power dispatch because of the additional reactive
compensation needed for constant voltage control,
indicated in Figure 6 (a) and (b). Therefore, the BEPs of
these controllers reside where Vext is close to VREF . With
similar generator and external voltage values, the reactive
power dispatch is close to 0. Lower reactive power flow
has higher efficiencies according to Figure 6 (c).
The additional system losses ∆P sys

add in Table 4 indicates
that the optimal grid controller (C6) has almost the same
performance as the system-wide optimal control (C7).
This indicates that the grid is most sensitive to the reactive
power flow. The optimal plant control (C5) is overall
inefficient. An explanation for this is that the reactive
power dispatch of around -0.2 pu, which negatively affects
the grid efficiency. The saved losses in the plant are
less than the additional grid losses at this reactive power
dispatch level, which is clear from the efficiency curves in
Figure 6 (c).
Both constant voltage controllers (C1 and C2) have the
lowest voltage deviation but at the cost of lower AAE
compared to the other controllers. The constant V control
(C1) has the best performance for limiting the voltage
variation and the worst efficiency. The compensated V
controller (C2) showed some efficiency improvements, but
at the cost of having a higher voltage variation.
Table 4 also shows that the difference between the optimal
system controller (C7) and RL controller (C8) is relatively
small, indicating that the RL agent learned an approximate
optimal control policy. The main difference between (C7)
and (C8) is the calculation speed. The RL agent is a
factor about 40 times faster than (C7). Such a prediction
speed is achieved because the RL agent does not require

an iterative solver to predict Qg , and predicts Qg directly
based on the system states Pg and Vext.

6 Conclusions

This paper has studied eight different voltage control
methods for the best efficiency operation of a grid-
connected hydropower plant. The results are promising
and show that improved efficiency for the overall system,
plant, and grid efficiency is available as more knowledge
on the power losses of the system is provided. Moreover,
results indicate that overall system efficiency increases
for both the optimal controllers (C5) and (C7), and the
RL controller (C8) compared to the traditional control
methods (C1-C4). Combining a hydropower plant loss
model with traditional optimal power flow methods on
the grid side improves the accumulated average efficiency
(AAE) by reducing total power losses and increasing
revenue for plant owners and TSOs. The RL algorithm
A2C has shown to be capable of learning an approximate
optimal system control policy for maximizing system
efficiency. The main difference between (C7) and (C8)
is that (C8) has a significantly faster computational time.
RL can therefore be considered viable for online operation
with time frames of seconds. However, simulations
show that voltage variation on the generator bus is higher
when utilizing controllers for increased system efficiency
compared to voltage setpoint controllers (C1) and (C2).
Future work should focus on expanding the power
system size. In addition, voltage restrictions as part of
the reward/objective functions should be implemented.
Moreover, an in-depth dynamic studies on system stability
criteria must be implemented in further studies.
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Abstract 

 

This work's first aim is to fit the simulated results to pilot plant data from Test Centre Mongstad (TCM) for both 

high and low CO2 exhaust gas inlet concentrations. The next aim is to evaluate whether fitted parameters for one 

scenario (a set of experimental data under specified conditions) give reasonable predictions under other 

conditions. The scenarios at TCM have been simulated in both a rate-based model in Aspen Plus (RateSep) and 

an equilibrium-based model in Aspen HYSYS. The rate-based model’s performance data were fitted by only 

changing the liquid hold-up factor (multiplied with the hold-up estimated by the Bravo/Rocha/Fair correlations) 

to obtain the experimental CO2 removal efficiency. In the equilibrium-based model, a Murphree efficiency (EM) 

was specified for 24 or 18 stages (meter of packing) to fit the CO2 removal efficiency and the temperature profile 

from performance data. The specified EM profiles were then used to fit performance data for other scenarios by 

adjusting only an EM-factor, multiplying all the EM values in an EM profile. The performance (CO2 removal and 

temperature profile) was reasonably simulated for each given scenario for all the models. It is shown in this work 

that the use of the liquid hold-up factor (and not the interfacial area factor) is convenient to fit the rate-based 

model to the pilot plant data. Using fitted parameters at low CO2 inlet concentration to predict performance at 

high concentration needed an adjustment factor (liquid hold-up factor or EM-factor) to obtain correct CO2 removal 

predictions. A liquid hold-up factor of 0.72 and an EM-factor of 1.72 fitted to performance data for high CO2 

concentration at TCM gave reasonable predictions compared to performance data for high CO2 concentration 

from the Esbjerg pilot plant. 

Keywords: CO2, amine, absorption, simulation 

 

1. Introduction 

The CO2 Technology Centre Mongstad (TCM) is the 

world’s largest test facility for CO2 capture 

technology. To test CO2 absorption into amine-

based solvents, there is an absorption column with a 

rectangular cross-section equivalent to a packing 

diameter of 3 meters, and a packing height up to 24 

meters. There have been performed performance 

tests of CO2 absorption from flue gas into 30 wt.%  

monoethanolamine (MEA) in 2013 (Thimsen et al., 

2014; Hamborg et al., 2014) and in 2015 (Gjernes et 

al., 2017; Faramarzi et al., 2017). Figure 1 shows the 

principle of the amine-based CO2 absorption and the 

desorption facility at TCM. In this work, the 

evaluated parameters are especially the total CO2 

capture rate (in % of incoming CO2) in the 

absorption section and the temperature profile from 

top to bottom. 

In earlier work (Sætre, 2016; Øi et al., 2018; 

Fagerheim, 2019; Øi and Fagerheim, 2020), the 

equilibrium models (in Aspen Plus and Aspen 

HYSYS) were fitted to one specific scenario by 

adjusting the Murphree efficiency (EM) for each 

stage, and the rate-based model (in Aspen Plus) was 

fitted to another scenario by changing the interfacial 

area factor. Razi et al. (2013) evaluated different 

correlations in rate-based simulations in Aspen Plus 

for predicting performance from the Esbjerg pilot 

plant. Some sets of correlations gave very good 

predictions, and some sets gave poor predictions of 

CO2 removal and temperature profiles. 

In rate-based models, it is standard to use the 

interfacial area factor to fit the model to performance 

data. In this work, the hold-up factor (multiplied 

with the hold-up estimated by in-built correlations) 

was used for the same purpose.  One of the 

estimation methods in Aspen Plus for liquid hold-up 

is the Bravo/Rocha/Fair model (Rocha, 1992). 

This work is based on the Master Thesis of Njål 

Sæter (2021) and also on earlier work at the 

University of South-Eastern Norway. 

The first aim of this work is to compare results from 

simulations with performance data from TCM for 

CO2 absorption into 30 wt.% MEA using both rate-

based and equilibrium models. The second aim, 

which is specific to this work, is to test whether fitted 

parameters for one scenario (a set of experimental 

data at specified conditions) give reasonable 

predictions under other conditions. Especially it is 

evaluated what adjustment is necessary for using 

mailto:lars.oi@usn.no


SIMS 63  Trondheim, Norway, September 20-21, 2022 

fitted parameters for low CO2 inlet concentrations to 

predict performance at high CO2 inlet concentration. 

 

2. Process simulation models for CO2 

Process simulation tools available for CO2 

absorption processes contain models for 

vapour/liquid equilibrium calculations and efficient 

solvers. The rate-based tools also include models for 

chemical, heat transfer and mass transfer kinetics.  

The commercially available programs Aspen Plus 

and Aspen HYSYS are used here. Both Aspen Plus 

and the new Aspen HYSYS acid gas model use an 

Electrolyte-NRTL equilibrium model based on 

Austgen et al. (1989). Other tools are described in 

Øi and Fagerheim (2020).  

Aspen Plus has a rate-based model to describe the 

reactive absorption processes. The rate-based model 

is based on MERSHQ (material balances, energy 

balances, rate of mass and heat transfer, summation 

of composition, hydraulic equations for pressure 

drop and equilibrium) equations which are used to 

determine molar and energy fluxes transfer across 

the vapour-liquid interfaces. 

The CO2 capture plant at the University of Texas in 

Austin was modelled with ASPEN rates, a second-

generation rate-based multistage separation unit 

operation model in ASPEN Plus. The parameters in 

this file are mainly based on the work of Zhang et al. 

(2009), who fitted Aspen Plus simulations to 

experimental runs at a CO2 absorption pilot plant. 

Different rate-based models have been developed 

for TCM in the Master Thesis works of Desvignes 

(2015), Sætre (2016) and Fagerheim (2019). 

Equilibrium based models assuming equilibrium at 

each stage can be extended by using a Murphree 

efficiency (the ratio of the change in mole fraction 

from a stage to the next divided by the change 

assuming equilibrium). An advantage of using 

Murphree efficiencies compared to rate-based 

simulations is that it is simpler and fewer parameters 

need to be specified.  In the Master Thesis work of 

Zhu (2015) and Sætre (2016), a Murphree efficiency 

for each stage (meter of packing) was estimated for 

one set (scenario) of TCM data (Hamborg et al., 

2014). A good agreement between the measured and 

simulated temperature profile was obtained using 

different fitted Murphree efficiencies for each stage. 

Luo et al. (2009) tested Aspen RadFrac, ProTreat, 

ProMax, Aspen RateSep, CHEMASIM from BASF 

and CO2SIM from SINTEF/NTNU by comparing 

with pilot plant data. The result was that all models 

could fit the CO2 capture rate, but the temperature 

and concentration profiles were not well predicted. 

When comparing Aspen HYSYS and Aspen Plus, Øi 

(2012) claimed that there were only slight 

differences between the tested equilibrium models. 

A rate-based and equilibrium-based model with 

estimated Murphree efficiencies gave similar 

results. In the work by Øi et al. (2018), different 

models were compared for 4 scenarios from TCM at 

low CO2 input concentrations (3-4 vol-%). 5 

scenarios were compared. The results from these 

comparisons showed that the equilibrium and rate-

based models performed equally well in both fitting 

performance data and in predicting performance at 

changed conditions. 

 

 
Figure 1: Simplified process diagram of the amine-based CO2 capture plant at TCM (Hamborg et al., 2014)  
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3. Data and specifications  

3.1. Performance data from TCM 

Performance data with low CO2 inlet concentration 

(3-4 vol-%) has been taken from 5 sets of conditions 

(scenarios) at TCM. They are from campaigns in 

2013 and 2015 for approximately 30 wt.% MEA in 

water. 24 meters of packing height (the maximum 

available) were used in these scenarios.   

The data (mainly conditions of the inlet gas stream 

and the inlet amine stream to the absorption section) 

for the 5 scenarios are listed in Tab. 1. The 5 

scenarios which have been selected in this work are 

named H14 and 6w from 2013 (Hamborg et al., 

2014), 2B5 and Goal1 from 2015 (Gjernes et al. 

2017) and F17 from Faramarzi (2017). The names 

have been used internally at TCM, except for the 

H14 and F17 scenarios, which are named by first 

author’s initial and year. The different scenarios 

cover typical conditions. 17F is at a low liquid to gas 

conditions, Goal1 and H14 are at low temperature, 

2B5 is standard conditions and 6w is at a high liquid 

to gas ratio.   

Performance data with high CO2 inlet concentration 

for 6 scenarios are specified in Tab. 2 (Sæter, 2021). 

The original data are taken from Shah et al. (2018).  

These data are from a test campaign with high CO2 

inlet concentration (13.5 vol-%) from a Residue 

Fluidized Catalytic Cracker (RFCC) at Mongstad. 

The data are from a campaign called SRD because 

the purpose was to evaluate the specific reboiler duty 

under different conditions. The main differences 

between the scenarios are mainly due to different 

liquid to gas ratios.  

 

 
Table 1: Input data for simulations of TCM conditions with low CO2 inlet concentrations (3-4 vol-%). 

Key inputs 
Case 

17F Goal1 H14 2B5 6w 

Lean amin loading (mole 
CO2/moleMEA)  0.20 0.20 0.23 0.23 0.25 

Lean amin flowrate (kg/hr) 57434 44391 54900 49485 54915 

MEA weight% (without CO2) 31.0 32.3 30.0 31.6 30.4 

Flue gas flowrate (kg/hr) 72389 57157 57300 57193 56788 
Flue gas pressure (bara) 1.0313 1.0313 1.0313 1.0313 1.0313 
Lean amine pressure (bara) 1.0630 1.0630 1.0630 1.0630 1.0630 

Flue gas temperature (°C) 29.8 25.0 25.0 28.2 25.0 

Lean amin temperature (°C) 37.0 28.6 36.5 36.8 36.9 

CO2 removal (%)      

Test result 83.5 90.1 90 87.3 79 

 
Table 2: Key input data and test results for the TCM SRD test cases (high CO2 inlet concentration). 

Key inputs 
Case 

6c 6a 8a 5c 3 4 

 Lean amin loading (mole CO2/moleMEA)  
0.16 0.19 0.199 0.204 0.251 0.273 

Lean amine flowrate (kg/hr) 99670 114873 120360 116455 136867 160821 
Flue gas flowrate (Smr/hr) 33908 33900 33934 33918 33699 33874 

Flue gas flowrate used (for simplicity) (kg/hr) 43500 43500 43500 43500 43250 43500 

Mass ratio lean amine / flue gas 
2.29 2.64 2.77 2.68 3.16 3.70 

Measured CO2 removal efficiency (%) 
88.3 87.3 87.4 87.3 88.1 85.9 

 
      

 
Table 3: Key input data and test results for Campaign 4 

test cases with high CO2 inlet concentration (13.5 vol-%) 

Key Inputs 
Case 

1A-1 1C 1D 2B 
 Lean amin loading (mole 

CO2/moleMEA)  0.215 0.29 0.318 0.266 

Lean amine flowrate (kg/hr) 120100 200500 200600 165600 

Flue gas flowrate used (for 
simplicity) (kg/hr) 43500 43500 43500 43500 

Measured CO2 removal 
efficiency (%) 90.1 89.7 78.7 89.4 

     

 

The temperature was measured at different locations 

at the same column height for each meter of packing, 

and the different locations were named A, B, C and 

D.  For the H14 and F17 scenarios, a mean value for 

each meter of packing was specified in the 

temperature profile (Hamborg, 2014; Faramarzi 

2017). 

Data for Campaign 4 from TCM are given in Tab. 3. 

The original data are from Fosbøl et al. (2019). The 

campaign had the aim of studying lean vapor 

compression (LVC), but only standard regeneration 

cases were used as scenarios in this study.  

 

3.2. Specifications for the Equilibrium Based 

Simulation Tools  
The Acid Gas model, which is the recommended 

equilibrium model in the last Aspen HYSYS 

version, was used. This is now based on the 

Electrolyte-NRTL model (Austgen et al., 1989), 

while earlier versions of Aspen HYSYS used other 

models. The work of Fagerheim (2019) used the 
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Kent Eisenberg (1976) model. When using Aspen 

Plus, the Electrolyte-NRTL (Non-Random-Two-

Liquid) model was used.   

 
Table 4: Murphree efficiency profiles used in this work.   

Stage Zhu Zhu_M 
Zhu_ 

Adjusted 

0.1  

(18 meter) 

1 0.23 0.1805 0.310 0.1 

2 0.2192 0.1720 0.296 0.1 

3 0.2085 0.1636 0.281 0.1 

4 0.1977 0.1551 0.267 0.1 

5 0.1869 0.1466 0.252 0.1 

6 0.18 0.1412 0.243 0.1 

7 0.1762 0.1382 0.238 0.1 

8 0.1546 0.1213 0.209 0.1 

9 0.1438 0.1128 0.194 0.1 

10 0.1331 0.1044 0.180 0.1 

11 0.1223 0.0960 0.165 0.1 

12 0.1115 0.0875 0.150 0.1 

13 0.1007 0.0790 0.136 0.1 

14 0.09 0.0706 0.121 0.1 

15 0.01 0.0078 0.013 0.1 

16 0.01 0.0078 0.013 0.1 

17 0.01 0.0078 0.013 0.1 

18 0.01 0.0078 0.013 0.1 

19 0.01      

20 0.01      

21 0.01      

22 0.01      

23 0.01      

24 0.01      

 

In the Master Thesis work of Zhu (2015), a 

Murphree efficiency for each of the 24 stages (meter 

of packing) was estimated for the TCM data set 

(Hamborg et al., 2014). The simplest approach for 

fitting the EM profile to the temperature profile was 

a constant EM for every stage (Zhu, 2015). 

Fagerheim (2019) fitted several EM profiles to the 

performance data. The Zhu profile has EM = 0.01 on 

the 10 lowest stages. These profiles were specified 

in both the Aspen HYSYS and Aspen Plus 

simulation tools. The different EM profiles used in 

this work are presented in Tab. 4. 

The Zhu profile is from Zhu (2015). The Zhu_M 

profile is an adjusted Zhu profile developed by Sæter 

(2021). The Zhu_Adjusted profile is developed to fit 

both CO2 capture efficiency and the temperature 

profile data from the SRD case 4.  

 

3.3. Specifications for the Rate-Based Tool 

The specifications in the rate-based Aspen Plus 

simulation tool at TCM have been developed for 

several years, and different versions have been used 

(Desvignes, 2015; Sætre, 2016). Most of these 

specifications are based on the work by Zhang et al. 

(2009). Detailed documentation of the rate-based 

model can be found in the Aspen Plus program 

documentation. The interfacial area factor was kept 

constant (as 1.0) in this work. The hold-up factor 

was varied. The main specifications for the rate 

based model is given in Tab. 5.  

 
Table 5: Main input to rate-based model (Sæter, 2021). 

 
 

4. Results and discussion  

 

4.1. General Results 

The results shown for each model in the scenario 

figures is the temperature profile. The model 

parameters (in the case of the rate-based model, the 

hold-up factor (one parameter)) is adjusted to 

achieve the specified capture rate. In the case of 

using an EM profile, all the EM values were 

multiplied with an EM-factor (one parameter).  

 

4.2. Scenario H14 with equilibrium model  

The results from Øi and Fagerheim (2020) are based 

on the Kent Eisenberg equilibrium model. This work 

is based on the electrolyte-NRTL model. The 

temperature profiles for the H14 data in Tab. 2 were 

calculated in Øi and Fagerheim by fitting the EM-

factor in the simulations to achieve the experimental 

CO2 removal. The resulting temperature profiles 

using the same EM profiles and EM-factors are shown 

in Fig. 2.     

The verification shows that the models in this work 

give approximately the same results as Øi and 

Fagerheim (2020) using different equilibrium 

models.   
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Figure 2: Comparison of measured temperatures for plant 

data scenario H14 and equilibrium based simulated 

temperature profiles. 

 

4.3. Scenario H14 with rate-based model 

The results in Fig. 3 verifies the simulation of the 

rate-based model. The interfacial area factor is 1.0, 

and for this model the hold-up factor is not tuned 

(equals 1.0). The difference can be explained by Øi 

and Fagerheim (2020) using the BRF-1985 model 

and in this work, the BRF-1992 (Bravo et al, 1992) 

is used. 

 
Figure 3: Comparison of measured temperatures for plant 

data scenario H14 and rate-based simulated temperature 

profiles. 

 

4.4. Scenario 2B5 

The rate-based simulations were fitted to the data 

from Scenario 2B5.  The scenario is for standard 

conditions at low CO2 input concentration.   

Fig. 4 shows the tuned rate-based model fitted to the 

CO2 capture rate for the 2B5 conditions.  The 

interfacial area factor is kept at 1.0, while the hold-

up factor is adjusted to 1.6.    

When fitting the 5 low CO2 inlet concentration 

scenarios, the rate-based adjusted factors (either 

interfacial area factor or hold-up factor) had to be 

adjusted more than the EM-factor for the 

equilibrium-based models. This was also a general 

result in Øi and Fagerheim (2020). Especially the 

H14 and the 6w scenarios are difficult to fit in the 

rate-based model by adjusting the interfacial area 

factor.    

 

 
Figure 4: Comparison of measured temperatures for plant 

data scenario 2B5 and rate-based simulated temperature 

profiles. 

 

4.5. Scenario SRD Case 4 

The 6 scenarios for high CO2 inlet concentration 

scenarios specified in Tab. 2 were fitted in the rate-

based model by adjusting the hold-up factor and in 

the equilibrium model by adjusting the EM-factor. 

The hold-up factor was adjusted to values between 

0.3 and 1.3. The EM-factor was adjusted to values 

between 1.33 and 2.05. 

All the rate-based scenarios were fitted using 30 wt-

% MEA in the input data. Scenario 8a and 3 

probably had slightly different MEA concentrations, 

28.0 and 30.2 respectively (Sæter, 2021).  This 

resulted in hold-up factors 0.6 and 0.84 with a mean 

value of 0.72. The value of 0.72 is selected as the 

hold-up factor for later predictions.  

Fig. 5 shows measured and calculated temperatures 

for Case 4. (CO2 removal equals test results for all 

calculations) 

The fit is very good when the adjustment factors are 

used to fit the experimental data. The temperature 

profiles for rate-based and equilibrium simulations 

are very similar. In this case, it was tried to adjust 

the interfacial area factor to fit the CO2 removal rate, 

and this was not achievable. Because this was the 

case also for some of the 5 cases for low CO2 inlet 

concentration, adjusting of the hold-up factor was 

used in this work. 

 

4.6. Scenarios from Campaign 4   

The 4 scenarios for high CO2 inlet concentration 

specified in Tab. 3 were fitted in the rate-based 

model by adjusting the hold-up factor and in the 

equilibrium model by adjusting the EM-factor. The 

hold-up factor was adjusted to values between 0.2 

and 0.85. The EM-factor was adjusted to values 

between 1.72 and 3.4.   

For comparison, the highest (Case 1C) and lowest 

(Case 1A-1) temperature profiles from the rate-

based model calculations are included with dotted 

lines in Fig. 6, together with the results from the 

HYSYS EM model. The comparison shows that the 

two models agree very well for all four cases. 
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Figure 5: Calculated (equilibrium based and rate-based) 

and measured temperatures for SRD case 4. 

 

 
Figure 6: Calculated temperatures for the selected 

Campaign 4 test cases with the HYSYS EM model using 

the Zhu-M profile as a basis. The rate-based model 

calculations for cases 1C and 1A-1 are included for 

comparison. 

 

The Zhu EM profile with an EM-factor of 1.72 is 

found to give a good fit to CO2 removal efficiency 

as indicated in Fig. 6. The value of 1.72 is selected 

as the EM-factor for later predictions in this work. 

 

4.7. Esbjerg cases (4 Cases)  

Experimental data were compared to rate-based and 

equilibrium-based simulations. The purpose of this 

subsection is to find out whether rate-based and 

equilibrium-based models fitted to TCM conditions 

are able to predict CO2 removal rate and 

temperatures at Esbjerg conditions. 

 

Table 6: Key input data from Esbjerg test cases and 

CO2 removal results. 

             Key inputs 
Case 

E-1 E-2 E-3 E-4 

 Lean amin loading (mol CO2 / mol 
MEA) 

0.29 0.258 0.222 0.181 

Lean amine flowrate (m3/hr)) 24000 21000 18000 15000 

Flue gas flowrate (Nm3/hr) 4952 4975 4999 4999 

Mass flow ratio lean amine /flue 
gas 

3.78 3.30 2.83 2.36 

CO2 removal (%)     

Test result 88 90 88 87 

Rate-based (lhuf= 0.72) 86.7 88.7 88.8 86.7 

 

For the rate-based model with hold-up factor 0.72, 

the predicted CO2 removal rates are given in Tab. 6. 

The CO2 removal predictions for all 4 cases are very 

good. 

 

 
Figure 7: Rate based calculated temperatures compared 

with measurements for the Esbjerg cases. (Liquid hold-up 

factor 0.72 for all calculations). 

 

Rate-based simulation results of the temperature 

profiles are presented in Fig. 7. The predictions of 

the temperature profiles are very good for case E-1 

and E-2 but not so good for E-3 and E-4. 

For the equilibrium-based model with the “Adjusted 

Zhu model”, the predicted CO2 removal rates were 

86.1, 89.5, 91.8 and 93.4 and should be compared 

with the experimental values in Tab. 6. The 

predictions for E-1 and E-2 are very good. The 

predictions are not especially good for E-3 and E-4. 

Predictions of the temperature profiles for case E-1 

and E-2 are given in Fig. 8 and 9. The differences in 

the top and bottom can be explained by the 

definitions of simulated temperatures and also the 

measurement location at top and bottom conditions. 

As for the rate-based models, the predictions are 

very good.  The temperature profiles from the 

equilibrium-based models for E-3 and E-4 (not 

shown here) are very similar to the rate-based 

temperature profiles.  

For the cases E-3 and E-4, the efficiency was 

overpredicted (or the EM values were overpredicted). 

This overprediction can be explained by stating that 

Case 3 and 4 were from cases with low amine rate 

and high rich amine concentrations.  At these 

conditions it is expected that the Murphree 

efficiencies will be reduced.  The rate-based model 

probably has this efficiency decrease as an 

integrated part of the model. 

 

4.8. General discussion  

The results from this and earlier work show that it is 

possible to fit both CO2 removal rate and the 

temperature profile using either a rate-based or an 

equilibrium-based model.  A model based on other 

conditions can in most cases be fitted to new 

conditions by adjusting only one parameter.  This 
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can be the interfacial area factor or the liquid hold-

up factor in a rate-based model or an EM-factor 

(adjusting all the stage efficiencies in an EM profile) 

for an equilibrium-based model. 

When trying to use a model fitted at a low CO2 inlet 

concentration to predict CO2 removal rate at a high 

CO2 inlet concentration, both the rate-based and the 

equilibrium-based models had to be heavily 

adjusted. 

 
Figure 8: Calculated temperatures compared with 

measurements for the Esbjerg Case 1 (EM-factor 1.72). 

 

 
Figure 9. Calculated temperatures compared with 

measurements for the Esbjerg Case 2 (EM-factor 1.72). 

 

The rate-based model fitted at TCM conditions for 

high CO2 inlet concentration was able to predict the 

Esbjerg conditions very well.  For some cases, also 

the equilibrium-based model was able to predict the 

Esbjerg conditions well. When the lean amine 

flowrate and the lean amine loading changed much, 

the predictions based on the equilibrium-based 

model were not good.   The dependence of lean 

amine loading and lean amine flowrate was better 

predicted by the rate-based model.  These 

dependencies are probably modelled reasonably in 

the rate-based model and not at all in the 

equilibrium-based model in this work. 

In Øi et al. (2018) and in Øi and Fagerheim (2020) 

it was found that at their conditions (low inlet CO2 

concentration) the equilibrium-based models and 

rate-based models performed about equally well. 

This work indicates that for predicting performance 

at very different conditions, a rate-based model 

performs better. As stated in Øi and Fagerheim 

(2020), when the knowledge of the factors used in 

rate-based simulations becomes better known, the 

rate-based models can probably be made more 

predictive. 

 

5. Conclusions 

Performance data at TCM have been simulated in 

both a rate-based model in Aspen Plus (RateSep) 

and an equilibrium-based model in Aspen HYSYS. 

The rate-based model’s performance data were fitted 

by only changing the liquid hold-up factor to obtain 

the experimental CO2 removal efficiency.   In the 

equilibrium-based model, a Murphree efficiency 

was specified to fit the CO2 removal efficiency and 

the temperature profile. The specified EM profiles 

were then used to fit performance data for other 

scenarios by adjusting only an EM-factor. The 

performance (CO2 removal and temperature profile) 

was reasonably simulated for each given scenario 

for all the models. It is shown in this work that the 

use of the liquid hold-up factor (and not the 

interfacial area factor) is convenient to fit the rate-

based model to performance data. Using fitted 

parameters at low concentration to predict 

performance at high inlet CO2-concentration 

conditions needed an adjustment factor (liquid hold-

up factor or EM-factor) to obtain correct CO2 

removal predictions. A liquid hold-up factor of 0.72 

and an EM-factor of 1.72 fitted to performance data 

for high CO2 concentration at TCM gave reasonable 

predictions compared to performance data for high 

CO2 concentration from the Esbjerg pilot plant. 

This work indicate that it is not expected that models 

fitted to performance data can be used to predict 

performance at very different conditions. It is 

however showed that adjusting only one parameter 

in either a rate-based or an equilibrium based model 

can give a good fit.  
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Abstract 

 

Ethylene is the most produced organic substance in the world and is a pillar in the chemical process industry. The 

production pathway is energy intensive and has a corresponding high carbon footprint. This work explores, 

simulates, and presents the possibility of reforming the fuel gas of a steam cracking furnace. Currently, methane 

(CH4) and hydrogen (H2) from the cracking furnace outlet makes up the fuel source. If H2 produced by 

reformation of the current fuel can cover the energy demand of the steam cracking furnace, it can drastically 

reduce the CO2 emissions.  

Keywords:     Decarbonizing, ethylene, steam cracking, reforming, fuel substitution, hydrogen production, ATR, 

Aspen HYSYS  

 

1. Introduction 

Cracking of hydrocarbons is the dominating 

ethylene production method. The highly 

endothermic reaction requires high temperatures to 

produce the desired products. Combustion of fossil 

fuel to produce the heat adds to the emissions and 

energy demand, resulting in 1-2 tons of CO2 for 

every ton of produced ethylene. The combustion of 

fossil fuels to supply the steam cracking process, 

resulted in an emission of 200 million tons of CO2 

in 2000 and 300 million tons CO2 in 2019 (Ren et 

al., 2008; Amghizar et al., 2020). With the Paris 

agreement from 2015, and the national goals of 

Norway towards a greener society, the exploration 

of different CO2 reduction methods has become 

necessary.  

Decarbonizing and/or reduction of the energy 

consumption in the industrial sector is a necessity to 

reach the climate goals of Norway. The possibilities 

are numerous in the refinery sector and can be 

divided into seven categories, namely fuel 

substitution, feedstock substitution, process 

intensification and optimization, recycling, product 

solution, energy recovery and Carbon Capture and 

Storage (CCS) or re-use (Negri and Lighart, 2021).  

Industrial GreenTech (IGT) has a vision of making 

the industrial region in Grenland climate neutral by 

2040 and have mapped out the current emission 

status and suggested some reduction possibilities. 

One of the suggested methods for evaluation is 

replacing the fuel to the crackers at INEOS. If this 

fuel gas is reformed to pure hydrogen, it can 

potentially reduce the current emissions of CO2 

(Aas et al., 2020).  

A steam cracker with ethane as feedstock, such as 

INEOS, has a product stream consisting mainly of 

ethylene, unconverted ethane, hydrogen, methane 

and some amount ethyne, propane, propene, 

propadiene, butane, butene, butadiene, pyrgas, and 

fuel oil (Ullmann's Encyclopedia of Industrial 

Chemistry, 1988). INEOS has ethylene as their most 

important product and the separated methane and 

hydrogen is burned in the cracker as fuel. The outlet 

of the combusted fuel is primarily H2O and CO2 and 

is usually utilized for heating or steam export before 

being emitted to the atmosphere.  

When producing hydrogen from hydrocarbon 

sources, the production pathway is most commonly 

dived into 3 sections. First a section to produce 

syngas, short for synthesis gas, which in this context 

refers to a mixture of H2 and CO. The syngas can 

originate from both natural gas, heavier 

hydrocarbons or coal. Depending on application and 

the following process, the syngas is sent for 

processing to second section. This processing can be 

water-gas-shift (WGS) reaction, CO removal, or 

other treatments to obtain the desired composition 

and/or CO/H2 ratios. The third section relates to 

reach the specifications of the H2, regarding purity 

and content of different contaminations (Moulijn et 

al., 2013). 

Mature methods for H2 production originating from 

hydrocarbons is Steam Methane Reforming (SMR), 

Partial Oxidation (POX), Catalytic Partial Oxidation 

(POX) and Auto Thermal Reforming (ATR). 

Among more advanced, novel and/or promising 

methods for H2 production originating from 

hydrocarbons is methane pyrolysis, integrated 

membrane reactors, integrated sorption-enhanced 
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systems, chemical looping variations and electric 

reforming (Wismann et al., 2019; Basile et al., 2015; 

Voldsund et al., 2016).  

 

2. Process Description 

The reforming method utilized in this work is ATR, 

which is a highly developed and well-tested 

technology. ATR utilize O2 and the production of 

the O2 contributes to a higher production cost of the 

hydrogen. Even so, it is regarded as a more attractive 

option due to the planned construction of water 

electrolysis at Herøya Industry Park, close to the 

INEOS production plant (INOVYN, 2021; Krohn-

Fagervoll, 2020). This opens the opportunity to 

purchase O2 at a lower cost.  

ATR is a combination of SMR and POX, where the 

reactor consists of a burner, a combustion section, 

and a catalyst bed section. The system is simulated 

in Aspen HYSYS v12 with various configurations, 

and partly maximized for hydrogen production. An 

ATR system along with the primary occurring 

reactions is illustrated in Figure 1. The methane is fed 

into the top section along with steam and oxygen. 

The reaction between CH4 and O2 is exothermic. 

The surplus heat is utilized in the endothermic 

section in the catalytic bed. This combination of 

reactions is making the reactor self-supplied with 

energy (Nielsen and Christiansen, 2011). 

 

 
 
Figure 1:  Illustration of an ATR based on a figure from 

Rostrup-Nielsen and Christiansen(2011). From Rustad 

(2021) 

 

Compared to a fired furnace (SMR) the ATR is a 

system with reduced size and complexity. With no 

external heat supply required, the fuel cost to the 

reformer will disappear and lead to a reduction in the 

CO2 emission. Another advantage is that the ATR 

needs less water than an SMR. This is because the 

high temperature in an ATR leads to a high methane 

conversion. Additionally, oxygen helps with the 

prohibition of soot formation (Baltrusaitis and 

Luyben, 2015). There is a balance between the inlet 

oxygen flow rate and the temperature in the ATR, 

where more oxygen will lead to higher temperature. 

However, the temperature is limited by material and 

construction cost.  

 

3. Simulations 

The specifications and input to the simulation is 

based on several previous studies and literature 

(Moulijn et al., 2013; Nielsen and Christiansen, 

2011; Jakobsen, 2016; Soltani et al., 2014; Chen et 

al., 2010). Additionally, some input has been based 

on assumptions and simplifications.  

All the simulations use the Peng Robinson equation 

of state. The pressure-drop over every heat 

exchanger is set to 10 kPa and there is assumed not 

to be a pressure drop in the reactors. There is also 

assumed no heat loss in the system and the adiabatic 

efficiency of the compressor is 75 %. All the reactors 

are simulated as Gibbs reactors (minimizing the 

Gibbs free energy). There is also assumed to be no 

build-up in the system. The initial separation step is 

suggested to be a membrane that separates out 95 

mol% of the inlet hydrogen prior to the reforming 

system to a purity of 100 %. This is simulated as a 

component splitter. The component splitter is also 

used for simulating the CO2 separation and the H2 

purification. The component splitters are merely to 

exemplify the possibility of different separation 

steps. 

 

3.1. Burner comparison 

The main goal of this project is to investigate if there 

are enough energy to cover the requirement of a 

steam cracker with reformed fuel. The natural 

starting point is to determine how much hydrogen is 

the minimum to keep the same production rate of 

ethylene. The current energy supply is combustion 

of the methane and the hydrogen that are products of 

the cracker. The amount of CH4 and H2 that is 

burned is the total amount of these components 

exiting the cracker. A typical amount is 5.5 wt% 

CH4 and 4.0 wt% H2 in the exit gas of the cracking 

furnace (Mathisen, 2021). This is in the same range 

as a standard steam cracker for ethylene production 

with ethane as feed (Ullmann, 1988) and is therefore 

assumed to be comparable with the actual 

composition at INEOS. The comparison is 

illustrated in Figure 2. 

 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 
Figure 2: Flowsheet from Aspen HYSYS simulation of 

burners. Left is Burner 1 and right is Burner 2. From 

Rustad (2021) 

 

An inlet flow of 150 ton ethane per hour will result 

in a flow of 514.2 kmole/h CH4 and 2976.3 kmole/h 

H2 on a molar basis. To simplify and to make the 

comparison on the same terms is two burners 

simulated in Aspen HYSYS. Burner 1 has pure 

hydrogen (100 mole%) as fuel and Burner 2 has a 

mix of hydrogen (14.73 mole%) and methane (85.27 

mole%) as fuel. Both are combusted in air with a 

flow rate that gives 100 % conversion of the fuel, 

and both burners have the same inlet and outlet 

pressure and temperature. Burner 1 has a flow rate 

of 423 kmole/h, corresponding to the flow of 

hydrogen that enters the burner after reformation in 

Case 0 (base case, presented in 3.2). Burner 2 has a 

flow rate of 3491 kmole/h, corresponding to the flow 

of CH4 and H2 that exits the steam cracker (and is 

the inflow to the reforming process). Burner 1 and 

Burner 2 has a heat flow of -6.935e*108 kJ/h and - 

7.478*108 kJ/h, respectively. The negative sign 

indicating that heat is going out. 

 

3.2. Case 0 Base case 

A snapshot of the base case simulation from Aspen 

HYSYS is presented in Fig. 3. The feed to the 

system is “Inlet flow, CH4 and H2” with a flow rate 

of 514.2 kmole/h CH4 and 2976.3 kmole/h H2. This 

is fed into a membrane where 95 mol% of the H2 is 

separated out and sent directly to the burner. The 

retentate side of the membrane is mixed with steam 

with a ST/C ratio of 1.62 and compressed to 2300 

kPa. The compressed flow is heated to 650 ℃ before 

entering the ATR. O2 is added to the ATR with a 

O2/C ratio of 0.6, and the occurring reactions are 

highly exothermic, eliminating the need of external 

energy. The ATR outlet temperature is 1050 ℃ and 

the stream is partly utilized to heat the inlet flow to 

the ATR. The outlet of the ATR is cooled before 

being fed to two WGS reactors. One high 

temperature water-gas-shift (HT-WGS) and one low 

temperature water-gas-shift (LT-WGS) with the 

inlet temperature at 300 ℃ and 175 ℃, respectively. 

The WGS reaction is slightly exothermic, and the 

process stream must be cooled both before and after 

the reactors.  

 

 
Figure 3: Flowsheet for Base Case. From Rustad (2021) 

 

After the WGS reactors there are two separation 

processes simulated as component splitters. The first 

separates out 90 mol% of the CO2 to a purity of 

99.55 mol% and the second one separates out 90 

mol% of the H2 to a purity of 96.8 mol%. The two 

flows of hydrogen are sent to a burner. The 

combustion receives stoichiometric amount of air, 

and the outlet stream of the burner is mainly water 

and nitrogen. The energy released from the 

combustion process (“Burner” in Figure 3) is 

representing the energy supplied to the steam 

cracking furnace 

 

3.3. Case 1 Recycle stream 

Case 1 has all the equal input parameters as Case 0 

with one exception, being the gas exiting the H2 
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purification unit is recycled back and enters along 

with the steam prior to compression. The stream 

consists of approximately 60 mol% H2O, 27 mol% 

H2, 1 mol% CO2 and minor amounts of CO and 

unconverted CH4. The flow amounts to 624.4 

kmole/h. A snapshot of the simulation is presented 

in Figure 4. Recycling of this stream leads to a few 

observations. One being the reduced flow of inlet 

water, from 835 to 450.6 kmole/h, while remaining 

the ST/C ratio of 1.62. This is due to the content of 

water in the recycle. This will also result in a lower 

temperature at the ATR outlet which generally 

relates to lower conversion of methane. This can be 

seen from the increased flow of methane, from 

approximately 3 to 12 kmole/h. This can be 

compensated by increasing the inlet temperature of 

the inlet flow(s) or  by increasing the flow of oxygen. 

 

 
Figure 4: Case 1 Implementing a recycle. From Rustad 

(2021) 

 

An optimization of the process is not completed at 

this stage for this case. The process flow in the 

system from the compressor and for all following the 

units is increased, and the result is a need for 

equipment and vessels with higher capacity and 

therefore higher cost. However, valuable H2 will be 

fed back into the system causing the overall 

hydrogen production to increase.  

 

3.4. Case 2 Additional inlet stream 

Neither Case 0 nor Case 1 fulfilled the required 

amount of hydrogen to satisfy the desired energy 

supply. There are multiple approaches to increase 

the amount of hydrogen to the burner. The chosen 

approach was to have an additional inflow of ethane 

to the reforming system. The ethane is assumed to 

be available on site or easy to purchase since this is 

the raw material to the cracker. More specifically, 

the ethane is added between the membrane and the 

compressor, together with the recycle stream. This 

can be seen from Figure 5. The ethane flow was 

adjusted until the desired flow of hydrogen to the 

burner was reached. Note that this both increases the 

steam and oxygen consumption, as discussed in the 

following chapters. If all ratios, temperatures, and 

pressures from the base case are kept constant, the 

inflow of ethane is adjusted to approximately 40 

kmole/h.  

 

 
Figure 5: Case 2 Adding ethane to the process. From 

Rustad (2021) 

 

3.5. Case 3 Adding CO2  

The main advantage of the ATR process is its self-

supply of thermal energy. However, there are some 

challenges related to this reforming method. The 

temperature in the reactor may exceed the limits of 

the material and/or lead to total combustion. In the 

previous cases (Case 0, 1, and 2) this temperature 

was altered by selecting an appropriate ST/C and 

O2/C ratio. More steam or less oxygen leads to a 

lower temperature and vice versa. The optimum is a 

tradeoff between conversion, consumption and cost, 

but that is not pursued here. Reforming by CO2 is 

referred to as dry reforming and has received some 

attention in literature, both encouraging and 

constructive. It is regarded as an unfavorable option 

compared to other methods available (Oyama et al., 

2012). It is in this work chosen to add a CO2 flow as 

an example. 

 

3.6. Case 4 Replacing HT-and LT WGS with MT-

WGS 

Replacing two reactors of high and low temperature 

with one medium temperature reactor has obvious 

advantages, considering the reduction in number of 

units. Regarding hydrogen production, an MT-WGS 

reactor is an attractive solution, because it 

potentially reduces the required steam to the process. 

It is more challenging to develop a catalyst which 

functions adequately in the whole interval, being 

active in the lower region and stable in the higher 

region. However, the advances in catalyst 

technology have made the MT-WGS the preferred 

solution when producing hydrogen. (Moulijn et al., 

2013) 

The MT-WGS reactor is illustrated in Figure 6 and 

has an inlet temperature of 225 ℃. The outlet 

temperature increases to 366 ℃. This is an increase 
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of 141℃ compared with the increase in HT and LT 

in Case 0 of 121.8 and 45.3 ℃, respectively. 

 

 
Figure 6: Case 4 Replacing HT-and LT WGS with MT- 

WGS. From Rustad (2021) 

 

4. Comparisons 

Using Case studies in Aspen HYSYS is a method 

that can be used to analyze the effect of a parameter 

variation in a process. This is done by choosing an 

independent variable which is varied within a 

chosen interval, and with a chosen step size. The 

dependent variables of interest are selected and there 

is only one independent variable that varies at the 

time. The input and results from Case studies of 

Case 2 are presented.  

The ST/C ratio was varied from 0.5 to 5.0, 

corresponding to an inlet flow of water in the range 

of 300 to 3000 kmole/h. The result was that 

increased ratio led to a decrease in the outlet 

temperature of the ATR. Not surprisingly did it also 

lead to an increase in the energy stream to the heat 

exchanger prior to the ATR (E-102), because of a 

higher flow. The outlet molar composition flow of 

H2, H2O and CO2 increased, while for CO it 

decreased. The flow of CH4 and C2H6 only changed 

slightly, while the O2 remained at zero. 

The O2/C ratio was varied from 0.2 to 1.0, 

corresponding to 120 to 600 kmole/h of O2. This 

ratio should be one of the last parameters to be 

optimized due to the fact that it depends on the 

pressure, temperature and the ST/C ratio. (de Souza, 

2015) Too much oxygen could also lead to total 

combustion which will result in a lower hydrogen 

production and temperature above material 

restrictions. The increase in the O2/C ratio gave an 

increase in the outlet temperature of the ATR (725 

to 1936 ℃). The energy stream to E-102 remained 

constant because the identical flow was risen to the 

identical temperature throughout the case study. The 

outlet molar composition changes after all the CH4 

is consumed. This happened at an O2 flow of 375 

kmole/h (which is a O2/C ratio of 0.635). Until that 

point is there an increase in CO and a decrease in 

CO2. Hydrogen reaches its highest fraction when the 

flow of O2 is at 315 kmole/h (which is a O2/C ratio 

of 0.53). The composition of H2O decreases until it 

turns before the flow of O2 reached 300 kmole/h. 

The case study for the pressure in the ATR was 

conducted by reusing the ATR in the Case 2 and 

complete this study without the upstream and 

downstream part. The case study involves a pressure 

from 2000 to 10000 kPa. The result was that an 

increase in pressure gave an increase in temperature. 

The outlet molar composition has less H2 and CO 

and more H2O. CH4 increased slightly and CO2 

degreased slightly. 

The case study for the temperature of oxygen to the 

ATR was in the interval of 20 to 750 ℃. The 

increase in temperature of O2 also increased the 

outlet temperature of the ATR (from 1050 to 1161 

℃). This caused the outlet molar composition to 

have more CO and less CO2, a slight increase in the 

H2O content and decrease in H2, while CH4 did not 

change substantially, and the oxygen and ethane 

remained unchanged. 

The case study for the inlet temperature to the HT-

WGS was conducted between 250 and 450 ℃. Not 

surprisingly did the outlet temperature increase 

along with the inlet temperature. It also showed that 

outlet CO and H2O molar composition increased, 

and CO2 and H2 decreased. CH4 (inert), C2H6 

(inert) and O2 remained constant. The molar H2/CO 

ratio in the outlet got lower when the temperature 

got higher with 13.3 at 300 ℃ and 10.7 at 350 ℃. 

The same trend lines can be observed when 

increasing the inlet temperature for the LT-WGS in 

the range from 150 to 250 ℃. The H2/CO ratio 

decreased from 14.1 at 175 ℃ to 95.2 at 200 ℃. 

The case study for varying the flow of oxygen (and 

nitrogen) was varying from 1000 to 3000 kmole/h. 

Heat is released and is representing the energy 

supply to the ethane cracking furnace, meaning that 

the highest absolute value of the heat flow is desired. 

This value is at 2201 kmole/h of oxygen, in the case 

study this is exactly stoichiometrically. Before the 

amount reaches the stoichiometric amount there is a 

descending flow of H2 and CO. When the flow 

surpasses the stoichiometric amount of O2, the H2 

and CO are stable at zero, while the molar 

composition of CO2 and H2O decreases and oxygen 

increases. 

The case study varying the temperature into the ATR 

varied in the range of 600 to 800 ℃. Increased 

temperature leads naturally to a higher heat flow to 

the heat exchanger before the reformer. Keeping all 

other variables constant, it is observed that increased 

temperature leads to increased CO and H2O 

composition in the ATR outlet, and a decrease for 

H2 and CO2. This might appear unfavorable but the 

increase in the CO results in higher possible 

conversion in the following WGS reactors. The 

overall molar flow of the hydrogen increases. 

Tab.1 presents a summary of the effects on outlet 

flow of CO2 and the overall H2 production. The 
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base case simulation had a molar flow of 524 

kmole/h of CO2 and 4450 kmole/h of H2. The 

numbers presented in the table are in a range, 

representing the lowest and highest values achieved 

within the limits used in the corresponding case 

study and again is the recycle not attached. The 

pressure in the ATR was analyzed by reusing the 

reactor in Aspen HYSYS, eliminating the possibility 

to see the CO2 and H2 molar flow rates directly. The 

interval given in the table is therefore the minimum 

and maximum found when manually testing various 

pressures in the interval of 100 to 5000 kPa. 

 

 

Table 1: Summary of CO2 outlet flow and H2 production for the various case studies. From Rustad (2021) 

Variables 

CO2 

outlet flow 

[kmole/h] 

H2 production 

[kmole/h] Note 

ST/C-ratio 361.3-535.7 4258-4614 

Higher ratio results in  

higher CO2 and H2 molar  

flows 

O2/C-ratio 235.1-534.1 3747-4464 

Higher ratios result in  

higher CO2. H2 production  

peaks when O2/C is 0.57 

Inlet temp. 

HT- 

and 

LT-WGS 

HT: 

526.0-516.3 

LT: 

504.5–528.0 

HT: 

4444–4451 

LT: 

4434-4453 

Increasing temperature  

results in degreasing flows  

of CO2 and H2 

Inlet temp. 

MT-WGS 
386.9-419.9 4227–4252 

Increasing temperature  

results in degreasing flows  

of CO2 and H2 

Pressure ATR 522.7-525.8 4432-4457 

Increasing pressure results  

in degreasing flow of CO2  

and H2 

Inlet temp. 

ATR 
523.0–525.0 4445-4455 

Increasing temperature  

results in increase in flow  

of CO2 and H2 

Inlet temp. 

of O2 to ATR 
524.0–524.9 4450-4454 

Increasing temperature  

results in slightly increase  

in flow of CO2 and H2 

Flow of CO2 to 

ATR 
420.4-581.4 4182-4222 

Increasing flow results in  

increase in flow of CO2  

and decrease in flow of H2 

 

As can be seen from Tab.1 hydrogen production is 

favored at high ST/C ratio, O2/C ratio of 0.57, low 

inlet temperatures to the WGS reactors, low 

pressure, low flow of CO2 and high temperature in 

the ATR. A ‘perfect’ system has minimum amount 

of CO2 produced and maximum amount of H2 

produced. 

 

4.1. Evaluation and discussion 

The most important output of each simulation is the 

energy requirement for the ethane steam cracking 

furnace. Case 2 has enough energy to meet this 

requirement. However, it is highly advantageous 

that the process operates economically, in a sense 

that consumption of ethane and oxygen is at 

minimum, as this is purchased. The increase in flow 

throughout the system will also be a determining 

factor when sizing the equipment, which will affect 

the investment cost. So, there will be a tradeoff 

between efficiency, amount produced, operational 

cost and capital cost.  

The selection of optimal operation conditions in an 

overall sense is not possible to complete properly 

when the cost is not a part of the equation and only 

one parameter is evaluated at the time. Nevertheless, 

there are some parameters that are more 

advantageous to promote than others. CH4 and 

ethane conversion, H2 and CO2 production, as well 

as the possibility of steam export. This system will 

by no means be completely optimized, neither for 

production or conversion, nor for cost. This is a 

feasibility study and an investigation of the 

possibility to implement a reforming process for a 

cracking production plant, such as INEOS. The 

focus will therefore be on high hydrogen production. 

But there are some advantages and disadvantages 

related to all the cases described and the main ones 

are summarized in  

Table 2. 
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From Tab.1 and Tab.2 it is observable that some 

choices for further work are more appealing than 

others. Case 2 and 4 are the ones that overall comes 

out on the winning side of the selection. Both may 

accomplish a satisfactory production of hydrogen, 

both consists of well tested technologies that are 

ready for implementation, and both have potential 

for further optimization along with their possible 

steam export. The hydrogen production is likely to 

increase when optimal conditions are chosen.  

To summarize what favors conversion of 

hydrocarbons and production of hydrogen, the 

following points as seen from the simulations, case 

studies, and literature research. The trend lines are  

in agreement with previous studies (Nielsen and 

Christiansen, 2011; Baltrusaitis and Luyben, 2015; 

Rashid, 2019; Jakobsen, 2016; Souza et al., 2015).  

 

Table 2: Main advantages and disadvantages for the simulated cases (Case 0 - 4). From Rustad (2021) 

Cases Main advantages Main disadvantages 

Case 0 
Lowest complexity Does not produce enough H2 

Low utilization of resources 

Case 1 
Increased utilization of resources 

Higher H2 production (less lost) 

Does not produce enough H2 

Case 2 Produce enough hydrogen Higher flow throughout the system 

Case 3 
Produce enough hydrogen 

Easier temperature control 

Lower conversion 

Case 4 

One less reactor and heat 

exchanger 

Lower H2 production (but can be  

compensated with ethane inflow) 

Higher flow throughout the system 

 

Low pressure. It should be as low as possible and is 

generally limited by the downstream purification 

steps, the volumetric flow through the system 

(which affect the dimensions), and carbon 

formation.  

High temperatures, both in the inlet and outlet of the 

ATR are generally limited by the material and the 

risk of total combustion.  

High ST/C ratio. The steam contributes to higher 

hydrogen production, as well as reduction of coke 

formation. The downside is increased energy 

requirement (because the temperature drops with an 

increase of steam) and the flow through the system. 

O2/C ratio gave varying results and highly affects 

the outlet temperature. Keeping a ST/C ratio of 1.62 

was the highest fraction of H2 in the outlet when the 

O2/C ratio was 0.53. The optimum ratio is affected 

by the inlet temperature, ST/C ratio and pressure, 

and should therefore be the last parameter to be 

optimized. This is not evaluated further but a ST/C 

ratio in the range 0.5-0.6 should be adequate for this 

purpose. 

Low inlet temperature to the WGS reactors should 

be as low as possible within the limits of the catalyst 

and the dew point of the inlet gas. The energy out of 

the burner (to the cracking furnace) is maximized 

when the inlet is combusted stoichiometrically. 

 

4.2. Case 5 Partly maximized for H2 production 

Case 5 has its starting point from Case 2 and the goal 

is to increase the H2 production. The snapshot from 

Aspen HYSYS is identical to Case 2 (Figure 5). Since 

the CO2 separation and H2 purification is not 

decided, and absorption with MDEA and PSA is 

considered as the state-of-the-art technology the 

pressure is not reduced further. The reduction would 

improve the production rate but since there is likely 

to be a pressure requirement down the process line it 

is kept the same. The ST/C ratio is increased to 2, 

which is the highest value within the normal 

operating condition of an ATR. The inlet 

temperature to the ATR is risen from 650 to 750 ℃, 

and not higher due to assumed material and 

corrosion restrictions. Lastly is a case study to find 

the optimal O2/C ratio for this system and the peak 

in hydrogen production is when the flow of O2 is 

310 kmole/h, which corresponds to a ratio of 0.52, 

slightly lower than the one observed for Case 2 

(0.53). It should be noted that the amount and the 

composition in the recycle steam changes when 

parameter changes, causing some small variations in 

the ratios. Next is that the inlet temperature to the 

HT- and LT-WGS reactors are kept at the (normal) 

minimum of 300 and 175 ℃, respectively. It is not 

unlikely that these temperatures can be even lower 

in the near future, if the catalyst development 

continues. The hydrogen produced in this system 

amounts to 4659 kmole/h H2, exceeding the amount 

that in section 6.1 was stated as the minimum (4565 

kmole/h) if the same ethylene production rate were 

to be kept. When burned stoichiometrically the 

energy supply to the cracker is 7.615*108 kJ/h. This 

is above what is necessary and can be reduced by 

reducing the ethane feed again. 

If the ethane is reduced to 22 kmole/h (keeping 

temperature and ratios the same) the hydrogen to the 

burner will be 4571 kmole/h. This is a sufficient 

amount and the energy from the burner to the cracker 

will be 7.485*108 kJ/h. An initial calculation of 

steam export of case 5 was found to be 21 MW. Case 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

5 is an attractive solution.  It is recommended to 

develop this alternative further. 

 

5. Conclusion 

The main goal of this work was to investigate if fuel 

replacement by reforming the current fuel to only 

hydrogen can cover the energy demand in a steam 

cracking furnace for ethylene production.  

The selected method for hydrogen production was 

an autothermal reforming process (ATR) with 

integrated pre-combustion CO2 capture. The 

process is simulated in Aspen HYSYS and partly 

maximized for the hydrogen production. Five 

different configurations and nine case studies were 

examined for optimization.  

The result was a system with a pressure of 2290 kPa 

(in the ATR), Steam/Carbon-ratio of 2, O2/C-ratio 

of 0.52, and an inlet temperature to the ATR of 750 

℃. The inlet temperature to the high and low-

temperature water-gas-shift reactors was 300 ℃ and 

175 ℃, respectively. The inlet flow was 514 

kmole/h methane and 2976 kmole/h hydrogen, 

where 95 mol-% of the hydrogen is separated prior 

to the reformation process.  

To cover the gap between the simulated and desired 

flow of hydrogen, an inlet flow of ethane was added 

to the process. By adding only 22 kmole/h of ethane, 

a sufficient amount of hydrogen flow was reached. 

Potential steam export was found to be 21 MW, 

excluding the heat required for a CO2 and H2 

separation unit.  

Fuel replacement in industrial furnaces can have a 

significant impact towards decarbonization of 

ethylene production. Reforming traditional fuels 

containing hydrocarbons to hydrogen is shown to 

have potential. 
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Abstract 

 

Application of membrane technologies in biorefinery processes has been studied for some time. The 

heterogenous nature of biorefinery steams, however, results in unideal performance of membrane systems and 

considerable fouling of membranes, which is decreasing the efficiency of separation. As a part of BioSPRINT 

project, this study focuses on application of separating monomeric sugars from the hemicelluloses fraction of 

lignocellulosic biomass, where pressure-driven nanofiltration with several diafiltration stages has been proposed 

for the separation task. Diafiltration is required to overcome the decreased separation efficiency when the 

retentate concentrations and viscosity increases. A lumped parameter dynamical model of the diafiltration plant 

is applied. The key model parameters are identified from experimental data from a laboratory membrane unit to 

reflect the considered biorefinery process. The model is then simulated to study the sensitivity of the uncertain 

model parameters (related to membrane fouling, solute concentrations, viscosity, and mass transfer coefficients) 

to the diafiltration plant performance (product purity, operation time). The model is implemented in the 

MATLAB®/Simulink environment. The simulation results are expected to identify potential sources of scale-up 

challenges in biorefinery-related membrane applications. The developed dynamic model also allows to 

investigate different operational strategies of diafiltration plants in the future. 

 

1. Introduction 

In order to mitigate the global challenges related to 

the environmental impact and climate change, the 

bio-based economy drives to substitute fossil-based 

fuels and chemicals with their more sustainable, 

bio-based counterparts (European Commission and 

Directorate-General for Research and Innovation, 

2017). Chemical industries are energy-intensive 

and mostly relied on fossil-based petrochemical 

feedstocks; the use of biomass as a feedstock for 

intermediate chemicals production can be seen as a 

major shift toward more sustainable production 

(Fiorentino et al., 2019). From the potential raw 

materials, lignocellulosic biomass has a great 

potential having a good availability and being a 

non-food biomass. 

In the BioSPRINT project,1 the hemicellulosic 

fraction of lignocellulosic biomass is valorized into 

furan-based polymers. The hemicelluloses are 

heterogenous polysaccharides comprising a range 

of sugar monomers, such as xylose, glucose, 

arabinose, mannose etc. However, in biomass side 

streams from different biorefineries (e.g., pulping, 

steam explosion or fermentation), the 

hemicelluloses are in a water-solute mixture also 

 
1 https://www.biosprint-project.eu/ 

containing impurities such as short-chain acids, 

degradation products, phenolic compounds, and 

soluble inorganic species. In catalytic conversion, 

these can have considerable interactions with the 

catalyst. Thus, efficient purification of 

hemicellulosic sugars is needed prior to the 

catalytic conversion steps to produce bio-based 

chemicals. 

Membrane technologies have been proposed for 

different kinds of biorefinery applications (Abels et 

al., 2013). Applicability studies of nanofiltration 

(NF), reverse osmosis (RO) and ultrafiltration (UF) 

membranes for lignocellulosic hydrolysates 

includes examples such as fractionating 

hemicelluloses from pulp mill process waters 

(Krawczyk, 2013), concentration and purification 

of lignin from pulping liquors (Jönsson et al., 

2008), and development of purification cascades 

for the Organosolv process (Nitzsche et al., 2022). 

Some of the results have also been transferred to 

the pre-industrial scale (Nguyen et al., 2016). 

Diafiltration is a membrane purification 

technology, where the retentate (stream that the 

membrane rejects) is diluted to overcome the 

decreased separation efficiency when the retentate 

viscosity increases, and thus enables further 

removal of the impurities to the permeate (stream 

https://www.biosprint-project.eu/
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that passes the membrane) (Doran, 2013; Nguyen 

et al., 2016). 

Process modeling typically plays an important role 

in process design and scale-up. In the case of 

membrane systems, the scale-up is governed by 

permeate flux values, which affect the separation 

efficiency, purity of product stream and required 

membrane surface area (sizing). The membrane 

fouling, which is accumulation of material to 

membrane surfaces and pores thus decreasing the 

permeate flux, is another important factor in 

process design. Theoretical analysis cannot offer 

tools to predict all of the aspects (Doran, 2013). For 

instance, (Nguyen et al., 2016) stated that the pilot-

scale membranes may have 30—45% lower water 

permeability than observed in laboratory membrane 

units. Thus, the mathematical modeling of 

diafiltration processes has focused, for example, on 

studying intermittent diluent addition scenarios in 

different levels of details (Wang et al., 2008; Tan 

and Franzreb, 2022), prediction of fouling 

dynamics (López-Murillo et al., 2021), or 

integrated process and control design (Hunter, 

2000; Yee et al., 2012; Saltık et al., 2017). 

This study takes the first steps related to the 

integrated process and control design of a 

diafiltration plant processing hemicelluloses from 

lignocellulosic biomass. A dynamical mass-balance 

based model of the diafiltration plant is 

implemented, the key model parameters are 

identified from laboratory membrane experiments 

and the scaled-up purification step of the 

biorefinery process is simulated. The simulations in 

this study focus on assessing the uncertainty of 

laboratory data derived model parameters on a 

selected design criterion. 

The process model is presented in Section 2 

together with a short description of acquisition of 

the experimental data. Section 3 focuses on the 

parameter estimation of the model and the 

development of a scaled-up simulator. The 

sensitivity of the selected model parameters is 

studied in Section 4, followed by the summary in 

Section 5. 

 

2. Material and methods  

2.1. Simulation model 

A lumped parameter dynamical model of the 

diafiltration plant originated from (Hunter, 2000) is 

applied. The model comprises retentate mass 

balances of component j (see Eq. 1) over 

membrane stage i given in volumetric flows Q and 

concentrations C as weight fractions. Subscripts F, 

DF, P and R stand for feed, diafiltration, permeate 

and retentate, respectively. Fig. 1 illustrates the 

stage i with inputs, outputs and state variables 

given in Eq. 2 and Eq. 3. 

 

 
Figure 1: Model boundaries and variables for a single 

membrane stage. 

The equation set for the case, where the feed flow 

is treated as a degree of freedom, is as follows: 

 

𝜌𝑅,𝑖𝑉𝑖
𝑑𝐶𝑅,𝑖,𝑗

𝑑𝑡
= 𝜌𝐹,𝑖𝑄𝐹,𝑖𝐶𝐹,𝑖,𝑗

+ 𝜌𝐷𝐹,𝑖𝑄𝐷𝐹,𝑖𝐶𝐷𝐹,𝑖,𝑗
− 𝜌𝑃,𝑖𝑄𝑃,𝑖(1 − 𝑅𝑗)𝐶𝑅,𝑖,𝑗
− (𝜌𝐹,𝑖𝑄𝐹,𝑖 + 𝜌𝐷𝐹,𝑖𝑄𝐷𝐹,𝑖
− 𝜌𝑃,𝑖𝑄𝑃,𝑖)𝐶𝑅,𝑖,𝑗 

(1) 

𝑑𝑅𝑆𝑇𝐹,𝑖
𝑑𝑡

= 10−13
𝑘1𝐽𝑖𝐶𝑅,𝑖,𝑓𝑜𝑢𝑙𝜇𝑅,𝑖

𝜌𝑅,𝑖
− 𝑘2𝑅𝑆𝑇𝐹,𝑖 (2) 

𝑑𝑅𝐿𝑇𝐹,𝑖
𝑑𝑡

= 𝑘3𝑅𝑆𝑇𝐹,𝑖 (3) 

𝐽𝑖 =
∆𝑃𝑇𝑀𝑃 − ∆𝜋𝑖
𝜇𝑃,𝑖𝑅𝑡𝑜𝑡,𝑖

 (4) 

𝑅𝑡𝑜𝑡,𝑖 = 𝑅𝑃,𝑖 + 10
13(𝑅𝑆𝑇𝐹,𝑖 + 𝑅𝐿𝑇𝐹,𝑖) (5) 

 

𝑅𝑃,𝑖 = 𝑚𝑎𝑥

{
 
 

 
 

∆𝑃𝑇𝑀𝑃 − ∆𝜋𝑖

𝜇𝑃,𝑖𝐾𝑚,𝑖𝑙𝑛 (
𝐶𝑔𝑒𝑙,𝑖

𝐶𝑅,𝑖,𝑓𝑜𝑢𝑙
)
− 𝑅𝑚

0 }
 
 

 
 

 
(6) 

 

Where 𝜌𝑅,𝑖  is the retentate stream density in stage i, 

𝑉𝑖 is the stage volume, 𝜌𝐹,𝑖 , 𝜌𝐷𝐹,𝑖, 𝜌𝑃,𝑖 are the 

stream densities and 𝑅𝑗 is the retention coefficient 

for component j. In Eq. 2, the short-term fouling 

(𝑅𝑆𝑇𝐹,𝑖) is given as a function of permeate flux 𝐽𝑖, 

concentration of fouling components (𝐶𝑅,𝑖,𝑓𝑜𝑢𝑙), 

dynamic viscosity of the retentate stream (𝜇𝑅,𝑖) and 

density (𝜌𝑅,𝑖). The two parameters 𝑘1 and 𝑘2 

determine the rate of change. The long-term fouling 

(Eq. 3) is dependent on the short-term fouling via 

the parameter 𝑘3. 

The total permeate flux (𝐽𝑖) in Eq. 4 is dependent 

on the trans-membrane pressure (∆𝑃𝑇𝑀𝑃), the 

osmotic pressure (∆𝜋𝑖), the permeate stream 

viscosity (𝜇𝑃,𝑖), and the total membrane resistance 

(𝑅𝑡𝑜𝑡,𝑖, Eq. 5), which is a sum of the above fouling 

terms together with the concentration polarization 

resistance (𝑅𝑃, Eq. 6). 𝑅𝑃 is given as a function of 

∆𝑃𝑇𝑀𝑃, 𝜇𝑃,𝑖 , mass-transfer coefficient (𝐾𝑚,𝑖), 
threshold for fouling components concentration 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

(𝐶𝑔𝑒𝑙,𝑖), and constant membrane resistance (𝑅𝑚). 

However, in this study a negligible osmotic 

pressure is assumed due to the low feed flow and 

working in narrow volumetric reduction ratio. 

Finally, by multiplying the permeate flux with the 

membrane cross-sectional area (𝐴𝑖), the permeate 

flow is attained. In addition, the model 

implementation involves a perfectly mixed buffer 

tank for the purified stream (Eq. 7) and first-order 

dynamics for the diafiltration addition based on the 

permeate flux of the previous stage (Eq. 8). In the 

simulations, the inlet mass flow (�̇�𝐵,𝑗,𝑖𝑛) to the 

buffer tank is the final retentate stream and no 

outflow from the buffer tank is assumed. Thus, Eq. 

7 simplifies into an integral. 

 
𝑑�̇�𝐵,𝑗

𝑑𝑡
= �̇�𝐵,𝑗,𝑖𝑛 − �̇�𝐵,𝑗,𝑜𝑢𝑡 

(7) 

𝐺(𝑠) =
𝑄𝐷𝐹,𝑖+1
𝑄𝑃,𝑖

=
1

0.95𝑠 + 1
 

(8) 

 

Other assumptions related to the diafiltration 

simulation model are as follows: 

• No hydraulic losses along the flow direction. 

• Stream consists of monomeric sugars, impurity 

components (small-chain acids and 

degradation products), phenolic compounds 

(lignin) and inorganics mixed to water. 

• Only sugar and phenolic concentrations 

contribute to fouling (𝐶𝑅,𝑖,𝑓𝑜𝑢𝑙). 

• The water content of the feed and permeate 

streams are high, thus the density and dynamic 

viscosity are equal to water at 25°C. 

• The changes in the dynamic viscosity of 

retentate streams (𝜇𝑅,𝑖) are assumed to follow 

the relation for aqueous solution of glucose 

given in (Converti et al., 1999). 

• Retention coefficients 𝑅𝑗 do not change in the 

studied range of flows, concentrations, and 

operation conditions. 

• The model parameters 𝑘1, 𝑘2, 𝑘3, 𝐾𝑚, 𝑅𝑚 and 

𝐶𝑔𝑒𝑙  are similar for all stages i.  

The stage model was implemented as a Matlab® 

function and extended to the diafiltration plant 

model in Simulink where several stage models can 

be connected to each other and solved 

simultaneously. In order to improve the numerical 

performance of the simulator, the exponential 

factors were used in Eq. 2 and Eq. 5. This allowed 

to balance the amplitudes of the derivatives during 

the numerical integration, where in total 52 

ordinary differential equations were solved 

simultaneously. The initial states were zero, 

corresponding a start-up of a membrane system 

initially filled with water only. The ‘ode45’ 

variable-step solver was used in these simulations. 

 

 

2.2 Experimental data 

The laboratory-scale batch membrane filtration unit 

CELFA P-28 (CM-Celfa Membrantechnik AG, 

Switzerland) was used in the experiments with a 

commercially available thin film composite NF 

membrane. The experimental conditions 

correspond to the cross-flow velocity of 0.63 m/s 

and trans-membrane pressure of 19 kPa. The 

permeate flux values were recorded during the 

batch trial with a duration of 120 minutes, when the 

system was tested with a lignocellulosic 

hydrolysate comprising different sugar monomers, 

short-chain acids and degradation products, soluble 

phenols, and inorganic compounds. The unit was 

also run with pure water before and after the 

experiments to evaluate the flux degradation and 

calculating the model parameter 𝑅𝑚 analytically. 

The average values of the permeate flux in four 

consecutive experiments were used in the 

parameter estimation in Section 3. The experiments 

were conducted in a concentration mode, but due to 

the low flux values, and the unavailability of 

reliable and frequent concentration measurements, 

it was assumed that the feed concentrations in the 

experiments are constant. 

 

3. Parameter estimation and scale-up 

The three fouling parameters 𝑘1, 𝑘2, 𝑘3 and the 

mass-transfer coefficient 𝐾𝑚 were estimated based 

on the flux behavior in a lab-scale unit. The model 

identification assumed a spiral-wound membrane 

leaf with similar cross-flow velocity as in the 

laboratory experiments. According to (Roy et al., 

2015), the leaf area of 1 m2 and the channel height 

of 0.7 mm was chosen for a single leaf. These 

results in a feed flowrate of 1.58 m3/h (0.00044 

m3/s). 

The optimization of the parameters was conducted 

with the Nelder-Mead Simplex Method using 

Matlab® function ‘fminsearch’. Fig. 2 shows the 

observed and modelled permeate flux given as a 

volumetric flow per unit area. 

 

 
Figure 2: Permeate flux. 
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The estimated parameters are given in Tab. 1. 

Other model parameters are listed in Tab. 2. The 

lumped retention coefficients for sugars, impurities 

and inorganics are selected based on the 

experimental results and the retention coefficient of 

phenols is assumed to follow the sugar retention for 

simplicity.   

Finally, the system was scaled-up for the feed flow 

value of 20,000 m3/h. The total membrane area was 

selected to be near the minimal feed flow rate of 60 

L/h for each leaf to minimize the effect of osmotic 

pressure in NF (Roy et al., 2015). Seven 

diafiltration stages with identical membrane areas 

and cross-membrane pressures were assumed to the 

scaled-up plant configuration. 

 
Table 1: Estimated model parameters. 

Km*10-5 

[m/s] 

k1*1024 

[s/m4] 

k2*10-3 

[1/s] 

k3*10-4 

[1/s] 

7.54 1.74 1.81 5.36 

 
Table 2: Other model parameters. 

Parameter Value Unit Note 

A 330 m2  

ΔPTMP 19 kPa  

ρP 997.05 g/L Equal to water in 25°C 

ρR 997.05 g/L Equal to water in 25°C 

Cgel 0.15 - Estimated from 

(Doran, 2013) 

μP 889.1 mPas Equal to water in 25°C 

Rm 3*1013 1/m  

Rsugars 0.93 - 

Retention coefficients 
Rimpurities 0.22 - 

Rphenols 0.93 - 

Rinorganics 0.67 - 

QF,1 0.0056 m3/s Plant feed flow 

Csugars 80 g/L 

Feed concentrations 
Cimpurities 20 g/L 

Cphenols 7.04 g/L 

Cinorganics 0.97 g/L 

 

4. Sensitivity analysis 

Even the continuous membrane systems are 

actually operated in a batchwise-continuous 

manner, as the static operation cannot be achieved 

due to the progressive membrane fouling, requiring 

periodic production breaks for cleaning (Hunter, 

2000). Thus, it is assumed that in the simulated 

biorefinery case, two operational boundaries hold; 

(1) The sugar purity in the buffer tank need always 

to be over 80% to be viable in downstream 

conversion steps, and (2) the maximum running 

time of diafiltration plant is 8 hours before service 

(cleaning).  

By simulating the system with the feed 

concentrations shown in Tab. 2, these thresholds 

are barely met. Fig. 3 shows the buffer purity as a 

function time, closing to value of 80% after 8 hours 

(480 minutes). The model was then simulated to 

study the sensitivity of uncertain model parameters 

(related to membrane fouling, solute 

concentrations, viscosity, and mass transfer 

coefficients) to the diafiltration plant performance 

by recording the operation time, where the purity 

threshold was violated.  

 

 
Figure 2: Base case simulation of a diafiltration plant. 

From top to bottom, sugar purity in buffer tank, total 

permeate flow, and product flow to the buffer tank, 

respectively. 

In total, 33 simulations were performed by varying 

model parameters one-at-a-time in different extent. 

Tab. 3 presents qualitatively the direction of change 

(in product purity) and quantitatively the 

operational time, where the above-mentioned purity 

threshold was not met in the simulation. It can be 

seen that most of the parameters have only a small 

effect on this criterion; Even changes ±50% in Km, 

Rm or Cgel show no effect on the selected criterion. 

Less surprisingly, the three fouling parameters (𝑘1, 

𝑘2, 𝑘3) show more sensitivity to the selected 

criterion. ρR was only simulated with slightly 

higher values (up to +5%) as it can be expected that 

the stream density cannot exceed substantially 

higher values due to low permeate fluxes and 

diafiltration water addition. μR shows a moderate 

effect only after an increment of over 30% in its 

value. This kind of an increment in a stream 

dynamic viscosity is not expected unless the stream 

contains longer hydrocarbons (such as oligomeric 

sugars, alcohols), which is not the case with the 

studied stream. 
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Table 3: Direction of change in product purity and the time of threshold violation (in minutes). The target operation time for 

the diafiltration plant was 480 minutes. 

Parameter -50% -25% -15% +5% +15% +25% +30% +50% 

ρR    ↑     

μR    ↓ ↓ ↓ 466  

Rm ↓  ↓   ↑  ↑ 

Km ↓ ↓       

Cgel ↓ ↓ ↓  ↑ ↑   

k1    ↑   ↓ 466 401 

k2 299 454 ↓   ↑   

k3  ↑    ↓ 471  

Cphenols ↑ ↑ ↑  ↓ 463  336 

 

The solute feed concentration changes were 

simulated by adjusting the ratio of impurities and 

phenolic compounds, and this way keeping the 

initial stream purity at constant value. As the 

retention coefficient of phenols is equal to that of 

sugars, the higher amount of phenols in the feed 

stream make the purification less efficient. This can 

also be seen in the results presented in Table 3, 

where the increment of phenol concentration quite 

easily results in a violation of the purity threshold. 

Thus, in the case of inhomogeneous diafiltration 

feedstock composition, the dimensioning should be 

made for the worst-case scenario, i.e., for the high 

phenolic concentration. Otherwise, too optimistic 

performance of the membrane system is expected, 

having a considerable effect on the operational and 

cleaning cycles. 

Km, Rm or Cgel are all related to the fixed membrane 

resistance and the concentration polarization 

fouling in the applied model (Eq. 6). It has been 

reported that the concentration polarization is the 

major fouling mechanism in these kinds of real 

hydrolysate streams, contributing 71—82% to the 

total resistance (Nitzsche et al., 2021). Hence, the 

negligible sensitivity in these simulation results 

indicate that the applied model cannot adequately 

represent the concentration polarization behavior 

and the fouling is dominated by the short-term and 

long-term fouling instead (Eq. 2 and Eq. 3). 

According to the simulation results (Tab. 3), the 

fouling parameters related to the short-term and 

long-term fouling (𝑘1, 𝑘2, 𝑘3) require quite 

significant changes before the purity threshold is 

compromised. By looking at Eq. 2, it can be 

observed that the parameter 𝑘1 should be the most 

dominant as it initializes the dynamic fouling 

effects. Indeed, around 30% larger value for 𝑘1 

results in a shortened operation time. The effect of 

parameter 𝑘2 is opposite; it is a negative gain term 

for the short-term fouling (see Eq. 2) and thus a 

smaller value accelerates the fouling, whereas a 

larger value mitigates the fouling dynamics. 

Finally, parameter 𝑘3 basically describes the shift 

from short-term fouling to long-term fouling and it 

takes of around +30% change in the parameter 

value to deteriorate the diafiltration process outside 

of the performance criteria. 

Fig. 3 presents the product purity as a function of 

time for the base case (thick dash-dotted line) and 

for the simulations with changes in parameters 𝑘1, 

𝑘2, 𝑘3 (thin gray lines). Obviously, three of the 

parameter combinations provide improved 

performance (as also qualitatively shown in Tab. 

3), where the purity target is still clearly exceeded 

at time 480 minutes. For these cases, the total 

permeate flow at the end of simulation is slightly 

over 10 m3/h, whereas for the base case, the total 

permeate flow was 8.93 m3/h. Hence, even the 

modest changes in the flux values correspond to the 

increased availability of the membrane plant, 

decreased membrane area requirements, or 

increased throughput. 

On the other hand, the worst simulated case (𝑘2 

−50%) shows the total permeate flow of 6.3 m3/h at 

the end of simulation. At the time of product purity 

violation (t = 299 minutes), the permeate flux in 

this case was around 8 m3/h. It is known that the 

flux degradation of 30—45% can be expected 

during the scale-up of membranes (Nguyen et al., 

2016). In the simulated cases, the total permeate 

flow between the best and the worst cases was 

around −37%. Hence, the parameter ranges of the 

fouling parameters used may reflect the uncertainty 

related to the scale-up. 

 

 
Figure 3: Envelope of diafiltration plant product purity in 

the simulated fouling scenarios. 
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5. Summary 

This study presented the development of a dynamic 

simulation model describing a diafiltration system 

for hemicellulose purification in a biorefinery 

process. The key model parameters related to the 

membrane fouling were estimated based on 

experimental data from a laboratory membrane 

unit. The model was then scaled-up to reflect an 

industrial scale system. 

Since the model is governed by high number of 

model parameters, this study focused on assessing 

the sensitivity of selected model parameters to 

operational aspect of the diafiltration plant. The 

simulation results showed that the expected range 

of uncertainty in many of the studied parameters 

had a sufficiently small effect on the process 

(dynamic) performance. This was unexpected 

especially for the parameters related to the 

concentration polarization behavior. However, the 

fouling parameters, together with the feed stream 

concentrations, showed an important effect on the 

product purity and operational time of the 

diafiltration plant. 

The overall feasibility of such a diafiltration plant 

depends not only on the factors studied in these 

simulations. For example, recovery of valuable 

compounds can limit the process design; in the 

studied case, the monomeric sugars are not rejected 

completely (Rsugars = 0.93), therefore causing a loss 

of sugars to the permeate streams. The model 

should be accompanied with permeate mass 

balances to explore these in detail. These would 

also allow to implement calculation of trans-

membrane pressure losses due to osmotic pressure 

(see e.g. (Nguyen et al., 2016)) and this way 

probably enhance the modeling of the 

concentration polarization behavior. 

Evaluation of economic performance of a 

diafiltration plant requires more detailed 

specifications on membrane module configurations 

and cleaning intervals. For instance, tubular 

modules instead of spiral-wound modules are more 

preferable if frequent cleaning is required, but they 

have lower packing density (Doran, 2013). In 

addition, energy costs need to be assessed. They are 

related to pumping costs of streams and 

diafiltration water and the need to maintain 

transmembrane pressure throughout the system. 

The developed dynamic model allows to study 

different process configurations (number of stages, 

recycle flows, diafiltration strategies) and can be 

utilized in integrated process and control design in 

the future. It should be noted that the solver 

selection for this simulation model requires extra 

care for example in controllability studies, where 

new membrane modules or diafiltration feeds are 

started during the operation, thus creating 

discontinuities to the simulation. 

 

Acknowledgements 

This project has received funding from the Bio-

based Industries Joint Undertaking (JU) under the 

European Union’s Horizon 2020 research and 

innovation program under grant agreement no. 

887226. The JU receives support from the 

European Union’s Horizon 2020 research and 

innovation program and the Bio-based Industries 

Consortium. 

 

References 
 
Abels, C., Carstensen, F. and Wessling, M. (2013) ‘Membrane 

processes in biorefinery applications’, Journal of Membrane 

Science, 444, pp. 285–317. doi: 10.1016/j.memsci.2013.05.030. 
Converti, A., Zilli, M., Arni, S., Di Felice, R. and Del Borghi, 

M.  (1999) ‘Estimation of viscosity of highly viscous 

fermentation media containing one or more solutes’, 
Biochemical Engineering Journal, 4(1), pp. 81–85. doi: 

10.1016/S1369-703X(99)00028-5. 

Doran, P.M. (2013) ‘Chapter 11 - Unit Operations’, in P.M. 
Doran (ed.) Bioprocess Engineering Principles. 2nd edn. 

London: Academic Press, pp. 445–595. doi: 10.1016/B978-0-

12-220851-5.00011-3. 
European Commission and Directorate-General for Research 

and Innovation (2017) Review of the 2012 European 

Bioeconomy Strategy. 
https://data.europa.eu/doi/10.2777/086770 (Accessed: 4 July 

2022). 
Fiorentino, G., Zucaro, A. and Ulgiati, S. (2019) ‘Towards an 

energy efficient chemistry. Switching from fossil to bio-based 

products in a life cycle perspective’, Energy, 170, pp. 720–729. 

doi: 10.1016/j.energy.2018.12.206. 

Hunter, T.J. (2000) ‘Dynamics and control of multistage 

membrane plants’. Doctoral thesis. University of Canterbury. 
Available at: https://doi.org/10.26021/2835. 

Jönsson, A.-S., Nordin, A.-K. and Wallberg, O. (2008) 

‘Concentration and purification of lignin in hardwood kraft 
pulping liquor by ultrafiltration and nanofiltration’, Chemical 

Engineering Research and Design, 86(11), pp. 1271–1280. doi: 

10.1016/j.cherd.2008.06.003. 
Krawczyk, H. (2013) Separation of Biomass Components by 

Membrane Filtration - Process Development for Hemicellulose 

Recovery. Doctoral Thesis. Lund University. Available at: 
https://portal.research.lu.se/ws/files/5705805/3990689.pdf. 

López-Murillo, L.H., Grisales-Díaz, V.H., Pinelo, M. and Prado-

Rubio, O.A. (2021) ‘Ultrafiltration intensification by dynamic 
operation: Insights from hybrid modeling’, Chemical 

Engineering and Processing - Process Intensification, 169, p. 

108618. doi: 10.1016/j.cep.2021.108618. 

Nguyen, D.T.N.N., Lameloise, M.-L., Guiga, W., Lewandowski, 

R., Bouix, M. and Fargues, C. (2016) ‘Optimization and 

modeling of diananofiltration process for the detoxification of 
ligno-cellulosic hydrolysates - Study at pre-industrial scale’, 

Journal of Membrane Science, 512, pp. 111–121. doi: 

10.1016/j.memsci.2016.04.008. 
Nitzsche, R., Köchermann, J., Gröngröft, A. and Kraume, M. 

(2021) ‘Nanofiltration of Organosolv Hemicellulose 

Hydrolyzate: Influence of Hydrothermal Pretreatment and 
Membrane Characteristics on Filtration Performance and 

Fouling’, Industrial & Engineering Chemistry Research, 60(2), 

pp. 916–930. doi: 10.1021/acs.iecr.0c03256. 
Nitzsche, R., Etzold, H., Verges, M., Gröngröft, A. and Kraume, 

M. (2022) ‘Demonstration and Assessment of Purification 

Cascades for the Separation and Valorization of Hemicellulose 
from Organosolv Beechwood Hydrolyzates’, Membranes, 12(1), 

p. 82. doi: 10.3390/membranes12010082. 

Roy, Y., Sharqawy, M.H. and Lienhard, J.H. (2015) ‘Modeling 

of flat-sheet and spiral-wound nanofiltration configurations and 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

its application in seawater nanofiltration’, Journal of Membrane 
Science, 493, pp. 360–372. doi: 10.1016/j.memsci.2015.06.030. 

Saltık, M.B., Özkan, L., Jacobs, M. and van der Padt, A. (2017) 

‘Dynamic modeling of ultrafiltration membranes for whey 
separation processes’, Computers & Chemical Engineering, 99, 

pp. 280–295. doi: 10.1016/j.compchemeng.2017.01.035. 

Tan, R. and Franzreb, M. (2022) ‘Simulation-based evaluation 
of single pass continuous diafiltration with alternating permeate 

flow direction’, Separation and Purification Technology, 282, p. 

119987. doi: 10.1016/j.seppur.2021.119987. 

Wang, L., Yang, G., Xing, W. and Xu, N. (2008) ‘Mathematic 

model of the yield for diafiltration processes’, Separation and 

Purification Technology, 59(2), pp. 206–213. doi: 

10.1016/j.seppur.2007.06.007. 
Yee, K.W.K., Bao, J. and Wiley, D.E. (2012) ‘Dynamic 

operability analysis of an industrial membrane separation 

process’, Chemical Engineering Science, 71, pp. 85–96. doi: 
10.1016/j.ces.2011.11.046.

 

 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 

Simulation-Based Life Cycle Assessment for Office Building 

Façade: A Case Study of the Leadenhall Building in London 
 

Tahmineh Akbarinejad Khameneh a,*, Zahir Barahmand b, Gamunu Samarakoon b 

  
a Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 

b Department of Process, Energy and Environmental Technology, University of South-Eastern Norway 

Tahmineh.akbarinejad@ntnu.no 

 

Abstract 

 

High-rise glazing systems are among the most important components affecting energy efficiency. Through the 

lens of Life Cycle Assessment, glass has always been an unlikely material for large buildings due to its 

considerable energy consumption throughout the pre-use and post-use phases. Moreover, the use of high-tech 

materials has a negative impact on the environment. Therefore, the present study aims to assess a comparative life 

cycle of four different glazing system technologies (BIPV, smart glass, low-E, and double glazing) representing 

the most used commercial high potential glazing systems. The next step has been optimized for the Leadenhall 

iconic tower as the case study. In this analysis, energy simulation is combined with life cycle assessment to 

investigate the environmental impacts. ZEB-COM tool, Rhino®, and Grasshopper® have been used to calculate 

emissions, 3D modeling, and energy modeling, respectively. The results reveal that BIPV achieved 37% of total 

energy-saving and stood first. A hybrid solution (two glazing systems) has been proposed to eliminate negative 

aspects and increase livability. Although it can generate almost 30% less energy than the complete BIPV 

installation, with a specific design by the authors, it can cover aesthetic concerns in this system and compensates 

for 27% of the total energy demand of the Leadenhall project. 

 

Keywords:     life cycle assessment, glazing system, comparative analysis, Leadenhall building, high-rise, 

 

1 Introduction 

Climate change has become one of the most crucial 

global concerns (O’Neill et al., 2021). The 

construction industry is a big energy user with 

significant environmental consequences which are 

not negligible (Stegou-Sagia et al., 2007). Saving 

energy, particularly in buildings, is worthy of 

attention (Hee et al., 2015). In developed countries, 

residential and commercial building energy use 

accounts for 20–40% of total final energy 

consumption in the country (Pérez-Lombard et al., 

2008). These energies are primarily utilized for 

residential space heating, cooling, and lighting for 

commercial buildings. In a building, the energy 

efficiency is influenced by its envelope, particularly 

its windows (Lee et al., 2013). Buelow-Huebe 

(2001) reported that a window is responsible for 20–

40% of a building's lost energy. The minimum size 

of a building's window is required to restrict heat 

gain or loss (Buelow-Huebe, 2001). 

On the other hand, a window enables natural light to 

enter a building. Furthermore, studies have proved 

the health benefits of natural sunlight and a view of 

the outdoors (Chang & Chen, 2005; Hee et al., 

2015). The net energy gain from glazing and 

windows in buildings is determined by thermal and 

total solar energy transmittance. Therefore, picking 

optimal glazing systems or windows for a specific 

case regarding energy efficiency is challenging 

(Nielsen et al., 2001). 

On the one hand, industrial development and 

increased housing and construction requirements led 

to skyscrapers' use (Ahmad et al., 2017). On the 

other hand, with global warming and the depletion 

of fossil fuels, interest in zero-energy buildings is 

increasing (Bravo-Hidalgo & Baez-Hernandez, 

2019). In the next 20 years, the global market for 

zero-energy buildings is expected to overgrow, 

worth nearly $1.3 billion in 2035 (Cao et al., 2016). 

Advanced glazing systems have become an urgent 

requirement for high-rise office buildings to 

minimize energy consumption and adapt to external 

environmental conditions (He et al., 2019). 

Using glazing technologies as building facades are 

becoming more popular (Rezaei et al., 2017). In a 

building, thermal comfort, light comfort, and skin 

health are all intimately tied to windows (Edlich et 

al., 2004). Furthermore, glazing systems provide 

acoustic comfort, vision, ventilation (Park & Kim, 

2015), and photoprotection (Tuchinda et al., 2006). 
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Because of these critical roles, windows must be 

designed and selected based on various factors, 

notably energy efficiency and visual comfort.  

There are different approaches to classifying glazing 

systems. The glazing system, for example, can be 

classified into conventional glazing systems, 

advanced glazing materials and coatings, and smart 

(intelligent) technologies (Rezaei et al., 2017). 

LCA is a widely used tool for comparing the 

environmental impacts of products or systems to 

assist decision-makers in selecting the most 

sustainable alternative (Elkhayat et al., 2020). 

Therefore, this study uses Life Cycle Assessment 

(LCA) methodology to investigate and compare the 

total environmental impacts of the four glazing 

systems in a commercial high-rise. For a sustainable 

building design, the starting point is a global "view" 

of the building's efficiency associated with all 

phases of a product's life cycle, including sourcing 

raw materials, processing these resources, 

producing, distributing, using, maintaining, and 

repairing the product, reselling or recycling them 

and disposal (Hernandez et al., 2019).  

Through a comparative analysis, the present study 

aims to make a simulation-based life cycle 

assessment of four different glazing system 

technologies: conventional double glazing as the 

base case, passive Low-E glazing, Building-

Integrated Photovoltaic (BIPV), and electrochromic 

smart glazing. These technologies are among the 

most worldwide used commercial high potential 

glazing systems. As the case study, these 

assessments are investigated for London's iconic 

commercial high-rise, the Leadenhall building. In 

this integrated approach, energy simulation is 

combined with life cycle assessment to investigate 

the environmental impacts.  

The LCA results will determine which system has 

the lowest energy use and environmental impacts to 

support building designers and decision-makers in 

choosing the most environmentally friendly glazing 

system for their office buildings. 

2 Methodology 

The life cycle assessment methodology is generally 

broken down into four steps (Hernandez et al., 

2019): goals and scope definition, Life Cycle 

Inventory (LCI) analysis, Life Cycle Impact 

Assessment (LCIA), and interpretation of the 

results. This comparative LCA analysis is 

accomplished according to the ISO14040:2006 

guidelines and framework  (2006a, 2006b), and 

(IEA) guidelines related to PV and BIPV, and the 

Norwegian Zero Emission Building (ZEB).  

2.1  Goals and scope definitions 

This comparative LCA study aims to find and 

contrast the environmental impacts of four different 

glazing systems to determine which glazing system's 

life cycle has the lowest energy use and 

environmental impacts for the case of a commercial 

high-rise in London. The Leadenhall building, 

known as  Cheesegrater (Booth, 2014), launched in 

2014, has 225 meters in height. As a result, it will 

aid in developing solutions to reduce the 

environmental impact of glazing systems. The life 

cycle impact data and analysis are supposed to assist 

architects and decision-makers in prioritizing the 

most environmentally friendly glazing system for 

high-rise office buildings.  

The LCA evaluated the environmental impacts of 

the glazing system over its pre-use phase 

(manufacturing and construction) and use phase. 

ZEB Tool provided the LCI data associated with 

material extraction and manufacturing steps, and the 

Grasshopper®  with Honeybee® plug-in calculated 

the BIPV energy produced and overall building’s 

energy demand in the used-phase in Rhino®. 

Figure 1: Specifications and descriptions for the alternatives 
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The scenarios are chosen by comparing the three 

major glazing system categories: passive, active, and 

BIPV, with a conventional double glazing system as 

the base case. Each class represents the most widely 

used commercial glazing technology for office 

building facades worldwide.  

2.1.1  Functional unit 

Defining a Functional Unit (FU) is crucial for 

developing and modeling a product system in Life 

Cycle Assessment (LCA). (Arzoumanidis et al. 

(2019) defined the functional unit as “a quantified 

description of the function of a product that serves 

as the reference basis for all calculations regarding 

impact assessment.”  

The present study considered the functional unit of 

the case study (the Leadenhall building) and four 

glazing systems alternatives (Fig. 1) as followings.   

 Case study: the Leadenhall building in London. 

This 48-story building has 225 meters in height, 

57,000 m² gross area, and a 75,000 m² façade 

area with a curtain wall glazing system. The 

service life of this project is considered 60-years 

with eight working hours per day (Young et al., 

2013). 

 Current façade (base case): double glazed clear 

insulating glass is assumed for the base case. The 

declared unit for processed glass is 1 m2 of glass. 

Each 1 m2 of double-pane insulating glass is 15.6 

kg. The thickness of each pane is 3 mm (see Fig. 

1).  

 Alternative 1: passive Low-E coating. The 

declared unit for processed glass is one m2 of 

glass. Each 1 m2 pane weighs 7.5 kg, assuming a 

glass density of 2,500 kg/m3 and thickness of 3 

mm. For a double unit, the specific weight is 15 

kg (see Fig. 1). 

 Alternative 2: electrochromic insulating glass 

unit. The declared unit for each with 1 m2 of 

triple-pane glass is 17 kg. The thickness of each 

pane is provided in Fig. 3. 

 Alternative 3: semi-transparent BIPV. The 

functional unit for LCA of  BIPVs is 2 m2 and 19 

kg. Due to the lack of compiled data from the 

manufacturing companies, the U.S. Energy 

Information Administration (EIA) was used. 

Furthermore, the degradation rate was assumed to be 

0.7% per year. Transportation of all alternatives was 

considered 1000 km to the site (for example, 

Germany) by long trucks and 300 km for machinery 

on-site.  

2.1.2  System boundaries 

LCA's system boundary has been considered from 

cradle to site, and replacement contains the product 

stage and construction process stage, and use stage 

(A1-A5, B4, and B6). All alternatives are assumed 

to have the same production process as clear glass. 

Material extraction, manufacture, transportation, 

and on-site installation are part of the glazing 

system's pre-use phase. Only the operational 

processes were addressed during the usage phase. In 

this work, the service life of all alternatives is 

considered 60 years. Acidification, eutrophication, 

Global Warming Potential (GWP), Non-Renewable 

Energy (NRE), Ozone layer Depletion (OD), and 

terrestrial acidification and/or nitrification are the 

six impact categories studied because of their 

significance where (Elkhayat et al., 2020) define for 

each as the following.  

2.1.3 Use‑phase energy inputs 

Grasshopper® plug-in is used to calculate BIPV’s 

power generation. The simulations showed that the 

possible annual power generation is about 3,654 

MWh/yr with a maximum efficiency of 19%. 

Alternatively, the energy generation in the 

building’s use phase can be estimated by simple 

calculations. In the first step, finding approximate 

sunny hours in London is necessary. The monthly 

average daily sunny hours for five consecutive years 

were used to achieve this approximation. The 

average sunny hour is 4.4 hours per day. In 

calculations, 4 hours of sunlight per day is assumed. 

Considering 250 watt LG panel, each panel’s 

nominal daily power generation can be calculated as 

1 kWh/day (250 watts x 4.4 hours). Considering 

75,000 m2 usable façade area to install 2x1 meter 

panels, the annual possible power generation with 

17% efficiency is about 2,556 MWh per year which 

is considerably lower than the results from the 

Grasshopper® simulation. In the LCA calculation, 

the power calculated by Grasshopper® has been 

employed. On the other hand, the Grasshopper-

Honeybee® plug-in was utilized to estimate the 

average annual energy demand of the Leadenhall 

building.  

2.1.4 Assumptions and limitations 

The assumptions used in this comparative LCA 

analysis were chosen to simplify assessing 

environmental impacts and directly compare the 

three alternatives with the base case (clear double 

glazing system). The lifespan of buildings and 

transportation distances were considered to be 

constant. It is also assumed that all glazing systems 

are manufactured with the same process and 

location. As mentioned earlier, only the outer skin of 

the double façade was studied with the same framing 

in all alternatives. The dimensions of all glazing 

systems are considered the same. The materials with 

no effect on the LCA were not considered. Tab. 1 

summarizes each of the scope definitions and 

assumptions. 
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Table 1: Summary of scope definition and assumptions 

Functional unit 
48-story (225 m) commercial high-rise in London with 57,000 m2 heated floor, 

75,000 m2 façade area, and 60 years of service life. 

System boundary 

Pre-use and use stages of the life cycle and associated transportation, including A1-

A5, B4, and B6 

Environmental inputs: natural resources and energies 

Environmental outputs: emissions 

Impact categories 
Acidification, eutrophication, global warming potential, nonrenewable energy, 

ozone layer depletion, and terrestrial acidification/nitrification 

Tools ZEB Tool, Rhino®, Grasshopper® ( Honeybee®  and Ladybug® plug-ins) 

Major assumptions 

Assuming the same framing for all alternatives. 

Leadenhall building has a double-skin façade. Therefore, it was assumed that in all 

alternatives, the inner façade is the same, and only the glass of the outer façade is 

changing. The degradation rate was assumed to be 0.7% per year. BIPV panel 

dimension 2x1 meter with an efficiency of 17 %. Energy savings of Low-E and 

smart glass in the use phase were considered 5%, and 10%, respectively. 

Distances/methods of 

transportation 

1,000 km to the site for all glazing systems by long trucks. 

300 km for machinery on-site. 

 
Table 2: Sources of used EPD data 

Alternatives GWP (kgCO2eq/m2) Sources 

Double glazing 39.6 ASTM-EPD149 

Low-E 13.7 ASTM-EPD149 

Smart glass 7.43E+01 4787287780.101.1 Sage Glass 

BIPV 2.79E+02 S-P-01817 Userhuus 

 

2.2 Inventory Analysis 

This inventory analysis phase analyzes and 

quantifies the environmental inputs and outputs 

associated with glazing system scenarios, 

considering the FU system limits and assumptions. 

The input energy, raw materials, output emissions, 

and solid waste for each stage of the life cycle of the 

scenario were analyzed. ZEB Tool’s database was 

considered the primary source. ZEB Tool delivers 

extensive global and regional datasets that allow 

flow models to reflect integrated supply chains 

accurately and account for differences in the nation's 

glazing system.  

2.2.1 Material inputs 

The life cycle of glazing systems was assessed, 

starting with the extraction of raw materials (the 

"cradle"), followed by the use phase. Because float 

glass is the primary component of every Insulating 

Glass Unit (IGU), all glazing systems begin with the 

same production process. Then, specific 

manufacturing processes for each glazing system are 

used to create the IGU, mounted on a building 

façade at the end. Due to the comparative objective, 

the materials without effect on the LCA were not 

considered.  

2.2.2 EPDs and Databases for LCI 

The alternative EPDs listed in Tab. 2 were manually 

inserted into the ZEB Tool database. The functional 

unit and scope for all alternatives are 1 m2 and A1-

A3, respectively.  

 

 

2.3 The case study 

The Leadenhall Building (Fig. 2) is an iconic 

skyscraper in London that is 225 meters (738 ft) tall 

and 48 stories. It was launched in July 2014 and was 

Figure 2: The Leadenhall Building ( right photo: (Esper, 

2007), and the left photo: (Howarth, 2014)) 
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designed by Rogers Stirk Harbour and Partners. 

Since this project's sightline is never in shadows, the 

morphology of Leadenhall could be a proper case 

study for this paper's purpose (Krolikowski et al., 

2017). The general information about the building is 

elucidated in Tab. 3.  

Table 3: The Leadenhall Building’s overall information 

Alternative name: Cheesegrater 

Location: London, UK 

Building function: Office 

Height: 225 m (48 stories) 

Heated floor area: 57,000 m² 

Floors below ground: 4 

Gross internal area: 84,424 m² 

Façade area 75,000 m² 

3 Results and discussion 

In the present study, ZEB Tool is used to assess 

environmental impacts. Demand for lighting and 

equipment was set based on projected realistic use 

for a normalized operation period. The results show 

a correspondence between calculated and measured 

energy for the double-glazing, smart glass, and Low-

E. However, BIPV performed differently by 

delivering 3,654 MWh/yr. However, there is 

considerable uncertainty in the estimated power 

generation. Furthermore, some factors have not been 

fully verified and may not be reliable for concrete 

conclusions. To optimize the energy use and 

delivered energy, several adjustments have already 

been made, such as: 

 The BIPV market reports a variety of efficiencies 

between 5-19%. This study has chosen a 

relatively high-performance panel to get a more 

acceptable and feasible result.   

 Considering the amount of energy saved during 

the operation of the ZEB Tool for Low-E and 

Smart Glass, this energy has been considered the 

on-site power production in the simulation. 

Fig. 3 illustrates the comparison of GWP for each 

alternative, and by far, the highest belongs to BIPV 

with more than three times greater than others. At 

the same time, other alternatives with different 

specifications have almost identical impacts. 

However, there is a positive correlation between the 

technologies used in glazing systems and the total 

GWPs. Fig. 4 provides a phase-wise comparison of 

emissions in all the alternatives. Most other options' 

emissions come from A1-A3 (production) and B4 

(replacement), and emissions in other phases are 

negligible.  

Emissions related to material extraction and 

production, including related materials, are 

illustrated in Fig. 5. As seen, the CO2 emission of the 

BIPV is significantly higher than other alternatives. 

Because BIPV has a higher specific weight and more 

components than other alternatives. The same 

information for the construction phase is provided in 

Fig. 6, indicating that the carbon emission of 

transportation in all alternatives is higher than 

installation in the construction phase. This emission 

showed a correlation with the weight of their 

materials. 

 

 

Figure 3: Total GWP for different alternatives 

 
Figure 4: Total GWP per Step for all alternatives 

 
Figure 5: Production step’s GWP CO2e emissions 

 
Figure 6: Construction step’s GWP CO2e emissions 
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3.1  Energy Demand 

According to initial energy analyses in 

Grasshopper® with Honeybee® plug-in, the 

Leadenhall Energy Usage Intensity (EUI) calculated 

62.5 Wh per square meter. The current building's 

average annual energy consumption is 9816000 

(62.5 (Wh) x 8 (working hours) x 340 (working 

day))  kWh/yr for all different purposes such as 

lighting, cooling, heating, and electricity for 

electrical equipment. It is assumed that the total 

energy demand includes 18% for lighting, 18% for 

heating, 4 % for cooling, and 60% for electricity. 

Using the Grasshopper-Ladybug® plug-in, the daily 

radiation (kWh/m2/day) in a vertical surface (façade) 

has been calculated. As discussed, the Ladybug® 

plug-in result has shown that about 37,500 panels 

can provide 37.2% of the building's annual energy. 

It should be noted that each panel’s surface area 

modeled in Rhino® is 2 square meters (2x1 panels). 

As presented in Fig. 7, in a building with smart glass 

(electrochromic), the energy demand is the lowest 

because it allows occupants to beneficiate from 

natural light without suffering from glare or heat. In 

contrast, BIPV consumes the highest energy due to 

less radiance and natural light, forcing occupants to 

have more lighting and heating energy. On the other 

hand, Low-E positively affects energy demand 

compared to fully transparent double glazing 

systems. As discussed earlier, only BIPV has this 

advantage in energy production and produces a 

considerable amount of energy (37% of its energy 

demand) on site. The negative values for smart glass 

and Low-E represent the energy saving effect in the 

building. Smart glazing technology performs more 

efficiently than other alternatives.  

 

 
Figure 7: Leadenhall building’s comparison of energy 

demand and production/saving in different alternatives 

Fig. 7 proves that a conventional glazing system 

needs the highest energy compared to other 

alternatives. Because not only does it have the 

second-highest energy demand, but also it has no 

savings or energy production. BIPV shows the best 

performance in total energy demand due to its 

significant electric energy generation, and the 

building's net energy for one year of operation is the 

lowest.  

More detail, the proportion of electricity from the 

building’s energy demand in all alternatives is the 

highest (more than 50% of their total demand). 

Because the electrical consumption of the equipment 

is independent of the glazing type, BIPV passes the 

lowest sunlight among all alternatives. Therefore, as 

one of the main disadvantages, this scenario needs 

considerably higher energy demand for lighting. 

While in other scenarios, there is a minor deviation.  

According to the result, around 40% saving in the 

annual energy demand of the Leadenhall building 

can be achieved. Moreover, due to a lower U-value 

than a regular glazing system, the BIPV leads to 

substantial energy savings and reduced pollutant 

sources (Olivieri et al., 2014). However, other 

negative aspects include a lack of aesthetic added 

value, radiation loss, and a darker view. 

Therefore, in the continuation of this study, the LCA 

of the proposed scenario (hybrid scenario) using a 

multi-parameter optimization process to decrease 

the negative aspects of BIPV from an architectural 

point of view is studied.  

3.2  Hybrid Scenario 

There is a possibility to optimize the BIPV façade 

and reduce the disadvantages. Some BIPVs were 

replaced by clear double glazing in the proposed 

hybrid scenario. As seen in Fig. 8, dividing each 

floor’s glazing into three sections, the middle section 

of the BIPV scenario can be replaced by a clear 

double glazing window. Therefore, the view at eye 

level is preserved in the hybrid scenario. In most 

office spaces, desks mostly block the lower section, 

which causes a minor problem for people. This LCA 

and energy demand approach shows almost 30 % 

less carbon emission in the product and use stage. It 

also produced 70% of the energy, generating full 

BIPV glazing. Fig. 9 compares the GWP of the 

hybrid scenario with other alternatives.  

 
Figure 9: Total GWP for different alternatives 
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Figure 8: left: the conceptual cross-section of BIPV and 

clear glazing glass in eye-line borrowed from (Nagy et 

al., 2016) , and right: suggested hybrid scenario 

configuration arrangement. 
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4 Conclusion 

The present study investigates the LCA of four 

scenarios representing the most widely used 

commercial high-potential glazing systems. The 

conventional double glazing system showed the 

lowest GWP in the LCA study. The energy analysis 

was carried out to understand how these glazing 

systems' energy savings in the use phase could offset 

the initial energy consumption in the pre-use step for 

raw materials extraction, transportation, production, 

and installation. Due to the generated electricity, the 

BIPV achieved a 37% saving in required total 

energy, which puts it first as the most energy-saving 

system. A hybrid glass construction system has been 

proposed due to some negative aspects of using 

BIPVs from an architectural point of view. Although 

it can generate 30% less energy than the full BIPV 

scenario, it covers aesthetic concerns in this system 

and compensates for 27% of the total energy demand 

of the project. However, Low-E and smart glass 

consumed more energy in the pre-use phase than the 

conventional glazing system; their energy savings in 

the use phase (5%, 10%) could offset these initial 

consumptions to achieve lower total energy 

consumption values. This study had limitations due 

to the lack of technical data from suppliers and 

software databases. As a future study, it is suggested 

that applying different climates, considering 

economic aspects, extending boundaries, and 

assessing the environmental impacts under 

uncertainty would be appropriate starting points. 
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Abstract 

 

Density and viscosity data are essential in designing process equipment and process simulations in the amine-

based CO2 capture process. In literature, semi-empirical and empirical correlations for density and viscosity were 

fitted to measured data available in the literature and the goodness of fit by calculating Average Absolute Relative 

Deviations (AARDs %) were examined. The correlations based on excess properties give insights on 

intermolecular interactions and packing efficiency in multicomponent liquid mixtures.                                         

In this study, correlations for density, excess density (𝜌𝐸, 𝑙𝑛(𝜌𝐸)) viscosity and excess viscosity (𝜂𝐸, 𝑙𝑛(𝜂𝐸)) 

were examined for binary aqueous mixtures (Monoethylethanolamine) EMEA (1) + H2O (2) and 

(Monoethylethanolamine) EMEA (1) + (Diethylethanol amine) DEEA (2) to represent the measured density and 

viscosity. The Redlich and Kister type polynomials were used to fit the excess properties and the goodness of fit 

was determined by calculating AARD%. The fitted experimental data at different mole fractions and temperatures 

were able to acquire a good accuracy. Highest deviation for density correlations of EMEA + DEEA mixtures was 

observed with AARD 0.135 % and AMD 2.98 kg·m-3. For the EMEA + H2O mixtures, the highest deviation was 

observed with AARD 0.23 % and AMD 8.38 kg·m-3. Viscosity correlations showed a highest deviation for the 

EMEA + DEEA mixtures in which AARD was 5.2 % and AMD was 1.2 mPa·s. For the EMEA + H2O mixtures, 

the highest deviation observed with AARD was 1.1% and AMD was 0.75 mPa·s.  

McAllister’s kinematic viscosity model is a semi-empirical model based on Eyring’s theory for viscosity. The 

kinematic viscosity data were fitted to McAllister’s three-body model to investigate whether the suggested 

intermolecular interactions in the model are capable of describing the nature of the binary mixtures. The results 

indicated a good agreement between data and model with accuracies R2 = 0.99 and AARD 2% for EMEA + DEEA 

mixtures and AARD 6% for EMEA + H2O mixtures.   

Keywords:     correlations, density, viscosity 

 

1. Introduction 

Amine-based CO2 capture is a matured technology 

that has been adopted to remove CO2 and H2S from 

natural gas. The aqueous solvents of MEA (Mono-

ethanolamine), MDEA (Methyldiethanolamine), 

and DEA (Diethanolamine) are proven solvents for 

gas purification. There are advantages and 

disadvantages of using these amines, and none of 

them are perfect to use in post-combustion CO2 

capture. Solvents with characteristics such as higher 

CO2 loading capacity and lower heat of reaction 

enable the applicability of using this technology for 

post-combustion CO2 capture. As a result, new 

amines and blends of existing amines are 

continuously examined to find a solvent that can 

give higher CO2 capture efficiency at a low rate of 

use of energy. The physicochemical properties are 

measured to support further research in CO2 capture. 

 

2. Literature    

Density and viscosity data are essential in designing 

process equipment and performing process 

simulations in the amine-based CO2 capture process. 

Semi-empirical and empirical correlations for 

density and viscosity were fitted to measured data 

that are available in literature and the goodness of 

the fit was examined by calculating relative 

deviation. The correlations based on excess 

properties give insights into intermolecular 

interactions and packing efficiency in 

multicomponent liquid mixtures. In a binary liquid 

mixture, excess molar volume 𝑉𝐸 rises mainly due 

to the difference in intermolecular interaction 

between unlike molecules compared to the 

intermolecular interaction present in pure 

components, and differences in size and shapes of 

molecules that affect the packing efficiency in the 

mixture (Mahajan and Mirgane 2013). The positive 
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deviation for  𝑉𝐸 are responsible for having weak 

dipole-dipole interactions among the unlike 

molecules while negative deviations are responsible 

for charge transfer, H-bonds and other complex 

forming interactions. The negative 𝑉𝐸 can also be a 

result of the fitting of component molecules of the 

mixture due to the structural differences of size and 

shape. The viscosity deviation or excess viscosity 𝜂𝐸 

calculated using [measured] mixture and pure liquid 

viscosities can provide similar information as 𝑉𝐸 for 

the intermolecular interactions (Fort and Moore 

1966). There, positive 𝜂𝐸 indicates stronger 

intermolecular interactions like H-bonds while 

negative 𝜂𝐸 indicates weak dipolar interactions.  

Eyring’s viscosity model, which is based on 

Eyring’s theory of absolute reaction rate provides a 

mechanism to explain the viscosity of liquids 

(Eyring 1936). The excess free energy of activation 

for viscous flow Δ𝐺𝐸∗ defined for mixtures provides 

information of the nature of intermolecular 

interactions similar to 𝑉𝐸 and 𝜂𝐸 (Meyer et al., 

1971) in which positive Δ𝐺𝐸∗ indicates stronger 

intermolecular interactions like H-bonds while 

negative Δ𝐺𝐸∗ indicates weak dipolar interactions. 

McAllister (1960) developed a model to predict 

kinematic viscosity using Eyring’s approach for 

binary mixtures. There different types of molecular 

interactions were considered in the model 

development. The relevant parameters in model can 

be estimated by regression. 

Correlations based on Redlich-Kister type 

polynomial (Redlich and Kister 1948) is a 

commonly used approach to represent measured 

density and viscosity for binary mixtures. The 

calculated excess properties such as excess molar 

volume 𝑉𝐸  and excess viscosity 𝜂𝐸 are fitted to a 

Redlich-Kister type polynomial and relevant 

parameters are found by minimizing the deviation 

between predictions and data. Karunarathne et al. 

(2020) reviewed the developed correlations for 

MEA (Monoethanolamine) + H2O + CO2 mixture 

and discussed the accuracies of predictions by 

comparing different data sets. 

This study discusses several approaches to develop 

correlations for density and viscosity of 

Monoethylethanolamine EMEA (1) + 

Diethylethanol amine DEEA (2) and 

Monoethylethanolamine EMEA (1) + H2O (2) 

mixtures. The correlations were evaluated for the 

accuracy of data fit by calculating different 

statistical quantities such as average absolute 

relative deviation AARD and absolute maximum 

deviation AMD. Measured densities and viscosities 

for EMEA + DEEA and EMEA + H2O mixtures for 

this study were taken from published data by Chen 

et al. (2016). 

 

 

 

3. Methodology  

Several approaches have been considered for the 

fitting of measured data to density and viscosity 

correlations. For the density, [four corrections] were 

considered as shown from (1) to (6). Equation (1) is 

an analogous correlation proposed for density based 

on the viscosity correlation proposed by Heric and 

Brewer (1967). The parameter 𝐴𝑖 is further 

correlated to the temperature of the mixture through 

a linear relation of 𝐴𝑖 = 𝑎𝑖1 + 𝑎𝑖2𝑇. Equation (2) 

was proposed by Aronu et al. (2012) to represent the 

density of aqueous amino acid salt and amine amino 

acid salt solutions. Equations (3) and (4) were based 

on the excess density 𝜌𝐸 in which excess properties 

are represented by Redlich and Kister type 

polynomials with temperature dependent 

parameters. Equations (5) and (6) considered natural 

logarithm of excess density 𝑙𝑛(𝜌𝐸) and Redlich and 

Kister type polynomials with temperature dependent 

parameters were adopted to fit the calculated 𝑙𝑛(𝜌𝐸) 

as described in (6).  

 
𝑙𝑛(𝜌) = 𝑥1𝑙𝑛(𝜌1) + 𝑥2𝑙𝑛(𝜌2) + 𝑥1𝑙𝑛(𝑀1)

+ 𝑥2𝑙𝑛(𝑀2)
− 𝑙𝑛(𝑥1𝑀1 + 𝑥2𝑀2)

+ 𝑥1𝑥2 [∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑛

𝑖=0

] 

(1) 

 

𝜌 = (𝐴0 +
𝐴1𝑥2

𝑇
) 𝑒𝑥𝑝 (

𝐴2

𝑇2
+

𝐴3𝑥1

𝑇
+ 𝐴4 (

𝑥1

𝑇
)

2

) (2) 

 

𝜌𝐸 = 𝜌 − ∑ 𝑥𝑖𝜌𝑖

𝑛

𝑖=1

 (3) 

𝜌𝐸 = 𝑥1𝑥2 [∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑛

𝑖=0

] (4) 

𝑙𝑛(𝜌𝐸) = 𝑙𝑛(𝜌) − ∑ 𝑥𝑖𝑙𝑛(𝜌𝑖)

𝑛

𝑖=1

 (5) 

𝑙𝑛(𝜌𝐸) = 𝑥1𝑥2 [∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑛

𝑖=0

] (6) 

Four correlations for dynamic viscosity have been 

considered as illustrated from (7) to (12). Equation 

(7) is proposed for viscosity by Heric and Brewer 

(1967). A correlation developed by Aronu et al. 

(2012) in (8) was adopted as it does not require any 

pure component viscosities to calculate mixture 

viscosity. For (9) and (10), excess viscosity or 

viscosity deviation 𝜂𝐸 was calculated from pure 

component viscosities and Redlich and Kister type 

polynomials with temperature dependent parameters 

were proposed to represent 𝜂𝐸. The natural 

logarithm of excess viscosity 𝑙𝑛(𝜂𝐸) and Redlich 

and Kister type polynomials with temperature 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

dependent parameters were adopted to fit the 

calculated 𝑙𝑛(𝜂𝐸) as described in (11) and (12).  

The kinematic viscosities of EMEA (1) + DEEA (2) 

and EMEA (1) + H2O (2) mixtures were calculated 

using measured dynamic viscosities and densities. 

McAllister (1960) model was fitted to the range of 

mole fractions of 𝑥1 from 0 to 1 and temperatures 

from 293.15 K to 333.15 K. Equations from (13) to 

(17) described the McAllister model in which the 

enthalpies and entropies were found using 

regression.  

 
𝑙𝑛(𝜂) = 𝑥1𝑙𝑛(𝜂1) + 𝑥2𝑙𝑛(𝜂2) + 𝑥1𝑙𝑛(𝑀1)

+ 𝑥2𝑙𝑛(𝑀2)
− 𝑙𝑛(𝑥1𝑀1 + 𝑥2𝑀2)

+ 𝑥1𝑥2 [∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑛

𝑖=0

] 

(7) 

𝜂 = (1 +
𝐴0𝑥1

𝑇
+

𝐴1𝑥1𝑥2
2

𝑇2 ) 𝑒𝑥𝑝 (𝐴2 +
𝐴4

𝑇

+
𝐴5

𝑇3 +
𝐴6𝑥1𝑥2

𝑇4 ) 

(8) 

𝜂𝐸 = 𝜂 − ∑ 𝑥𝑖𝜂𝑖

𝑛

𝑖=1

 (9) 

𝜂𝐸 = 𝑥1𝑥2 [∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑛

𝑖=0

] (10) 

 

𝑙𝑛(𝜂𝐸) = 𝑙𝑛(𝜂) − ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖)

𝑛

𝑖=1

 (11) 

 

𝑙𝑛(𝜂𝐸) = 𝑥1𝑥2 [∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑛

𝑖=0

] (12) 
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𝑀2
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) 

(13) 
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∗ 𝑅𝑇⁄  (17) 

  

𝐴𝐴𝑅𝐷 =
100%

𝐷
∑ |

𝐴𝑖
𝑚 − 𝐴𝑖

𝑐

𝐴𝑖
𝑚 |

𝐷

𝑖=1

 (18) 

  

  

𝐴𝑀𝐷 =  𝑀𝐴𝑋|𝐴𝑖
𝑚 − 𝐴𝑖

𝑐| (19) 

 

4. Results and Discussion 

4.1. Density correlations 

The density correlations from (1) to (6) have been 

fitted for the measured densities for EMEA+DEEA 

and EMEA + H2O binary mixtures. Tab. 1 

summarized the calculated AARD (%) and AMD 

(kg·m-3) for the different correlations. Fig. 1 and 2 

illustrate the accuracy of fitting (1) and (2) into the 

measured densities and both correlations showed 

acceptable accuracies of EMEA + DEEA and 

EMEA + H2O mixtures. For EMEA + H2O, the 

deviations are relatively higher compared to EMEA 

+ DEEA mixtures. The density correlation from 

Aronu et al. (2012) showed a highest AMD of 2.98 

kg·m-3 at 𝑥1 = 0 and temperature 333.15 K for 

EMEA + DEEA and AMD of 8.38 kg·m-3 at 𝑥1 = 0 

and temperature 293.15 K for EMEA + H2O 

mixtures respectively. The correlations (3,4) and 

(5,6) were fitted and parameters were found at each 

temperature level. This led to higher fitting 

accuracies as listed in Tab. 1. The estimated 

parameters for the correlations are given in Tab. 2 

and 3. 

Figure 1: Density of EMEA + DEEA mixtures. 

Measured: 293.15 K, ‘x’; 303.15 K, ‘○’; 313.15 K, ‘Δ’; 

323.15 K, ‘◊’; 333.15 K, ‘□’. Correlation: Equation (1) 

‘___’, Equation (2) ‘_ _ _’.  
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Figure 2: Density of EMEA + H2O mixtures. Measured: 

293.15 K, ‘x’; 303.15 K, ‘○’; 313.15 K, ‘Δ’; 323.15 K, 

‘◊’; 333.15 K, ‘□’. Correlation: Equation (1) ‘___’, 

Equation (2) ‘_ _ _’.  

 

4.2. Viscosity correlations 

Viscosity correlations showed from (7) to (12) were 

fitted into the measured viscosities of EMEA + 

DEEA and EMEA + H2O mixtures. The accuracy of 

the fit was examined using calculated AARD (%) 

and AMD (mPa·s) as listed in Tab. 4. A comparison 

between correlation (7) and (8) for the viscosities of 

EMEA + DEEA mixtures is illustrated in Fig. 3. 

Correlation (7) was able to represent measured data 

with acceptable fitting accuracies as given in Tab. 4. 

Correlation (8) showed a relatively high AARD (%) 

of 5.2. The deviation between measured data and (8) 

is high as demonstrated in Fig. 4 and AMD is 1.2 

mPa·s at 𝑥1 = 1 and temperature 293.15 K. For the 

EMEA + H2O mixtures, (7) gives an acceptable 

accuracy for the data fit as shown in Tab. 4. The 

correlation (8) was not appropriate for EMEA + H2O 

mixtures as it gave a higher AARD (%). For the 

correlations (9,10) and (11,12), measured viscosities 

were fitted and parameters were found at each 

temperature level. As a result, higher accuracies 

were obtained as given in Tab. 4. This is a result of 

the simplification of the complexity of the 

correlations and at the same time correlation had to 

be fitted into a relatively small data set compared to 

the previous scenarios.   

Figure 3: Viscosity of EMEA + DEEA mixtures. 

Measured: 293.15 K, ‘x’; 303.15 K, ‘○’; 313.15 K, ‘Δ’; 

323.15 K, ‘◊’; 333.15 K, ‘□’. Correlation: Equation (7) 

‘___’, Equation (8) ‘_ _ _’.  

 

Figure 4: Viscosity of EMEA + H2O mixtures. 

Measured: 293.15 K, ‘x’; 303.15 K, ‘○’; 313.15 K, ‘Δ’; 

323.15 K, ‘◊’; 333.15 K, ‘□’. Correlation: Equation (7) 

‘___’.  

 

 

Table 1: Calculated AARD (%) and AMD (kg·m-3) for different density correlations and mixtures. 

Correlation 
AARD (%) AMD (kg·m-3) 

EMEA + DEEA EMEA + H2O EMEA + DEEA EMEA + H2O 

Equation (1) 0.012 0.127 0.37 3.03 

Equation (2) 0.135 0.23 2.98 8.38 

Equation (3) & (4) 1.85×10-6 1.04 ×10-11 1.2x10-6 8.2x10-11 

Equation (5) & (6) 0.09 8.3 ×10-15 9.1x10-5 1.3x10-16 

4.3. McAllister model for kinematic viscosity 

McAllister model was fitted to calculated kinematic 

viscosities from measured dynamic viscosity and 

density data for EMEA + DEEA and EMEA + H2O 

mixtures for the mole fraction range from 0 to 1 and 

temperature from 293.15 K to 333.15 K. Fig. 5 

compares the fitted McAllister model with 

kinematic viscosity data for EMEA + DEEA 

mixtures. The accuracy of the fitting is acceptable as 

it showed AARD (%) of 1.9 and AMD of 4.3×10-7 

m2·s-1 at 𝑥1 = 1 and temperature of 293.15 K. For 

the EMEA + H2O mixtures, the deviations are higher 
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as AARD (%) of 5.9 and AMD of 2.8×10-6 m2·s-1 at 

𝑥1 = 0.8 and temperature of 293.15 K. Fig. 6 

compares the fitted McAllister model with 

kinematic viscosity data for EMEA + H2O mixtures 

and local maximums for kinematic viscosities at 

different temperature levels were observed around 

mole fraction 𝑥1 = 0.5. 

 

Figure 5: Kinematic viscosity of EMEA + DEEA 

mixtures. Measured: 293.15 K, ‘x’; 303.15 K, ‘○’; 

313.15 K, ‘Δ’; 323.15 K, ‘◊’; 333.15 K, ‘□’. 

Correlation: Equation (13) ‘___’. 

 

Tab. 7 lists the estimated enthalpies and entropies 

for the viscous flow from the McAllister model from 

(13) to (17). This approach enables to fit the model 

to the complete temperature interval rather than 

fitting the model and estimating parameters at 

different temperature levels. Then this model can 

easily be implemented in a computer program to 

estimate kinematic viscosities for unmeasured mole 

fractions and temperatures.  

 

 
 

Figure 6: Kinematic viscosity of EMEA + H2O 

mixtures. Measured: 293.15 K, ‘x’; 303.15 K, ‘○’; 

313.15 K, ‘Δ’; 323.15 K, ‘◊’; 333.15 K, ‘□’. 

Correlation: Equation (13) ‘___’. 

 

 

 

Table 2: Estimated parameters for (1) and (2) for EMEA + DEEA and EMEA + H2O mixtures. 

Parameters 
Equation (1) 

EMEA + DEEA EMEA + H2O 

𝐴0 𝑎0,1 = 0.0323 𝑎0,1 = 1.433 

𝑎0,2 = 1.80 × 10−5 𝑎0,2 = −9.982 × 10−4 

𝐴1 𝑎1,1 = −0.0472 𝑎1,1 = −0.9877 

𝑎1,2 = 1.734 × 10−4 𝑎1,2 = 12.1 × 10−4 

𝐴2 𝑎2,1 = −0.0741 𝑎2,1 = 0.8215 

𝑎2,2 = 2.41 × 10−4 𝑎2,2 = −14.45 × 10−4 

Parameters 
Equation (2) 

EMEA + DEEA EMEA + H2O 

𝐴0 756.4 712.5 

𝐴1 2334 1.08 × 105 

𝐴2 1.22 × 104 −6221 

𝐴3 17.04 58.13 

𝐴4 −413.2 1.10 × 104 

 

 

 

Table 3: Estimated parameters for (3-4) and (5-6) for EMEA + DEEA and EMEA + H2O mixtures. 

𝐓/𝐊 
EMEA + DEEA for Equation (3-4) 

𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

293.15 -0.4543 0.9649 -4.3077 -220.741 1.0024 618.5851 

303.15 -0.6092 -5.3242 -0.4388 23.6887 1.0971 0.9997 

313.15 0.5983 3.9766 0.6330 -0.4727 0.8590 0.3681 

323.15 -0.0575 3.6604 1.3813 2.1979 1.4297 1.0157 

333.15 -0.1798 1.4632 4.3446 15.4171 3.7869 2.1474 
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𝐓/𝐊 EMEA + H2O Equation (3-4) 

𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

293.15 -23.478 -21.8423 59.9364 -41.852 24.3164 -15.812 

303.15 -31.131 -15.3706 53.4441 -37.049 21.8259 -13.9841 

313.15 -43.1324 2.0342 51.4202 -55.204 21.1892 -21.4963 

323.15 -52.0017 9.7800 23.5946 -9.9850 10.1867 -3.5205 

333.15 -61.211 4.3467 14.7591 10.9855 -2.7181 3.4607 

𝐓/𝐊 
EMEA + DEEA for Equation (5-6) 

𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

293.15 0.01534 0.0020 -0.4258 -0.2184 1.0525 0.6052 

303.15 0.0154 0.0020 -0.4236 -02155 1.0584 0.6132 

313.15 0.0163 0.0020 -0.4106 -0.2134 1.0289 0.6116 

323.15 0.0158 0.0021 -0.4152 -0.2110 1.0435 0.6116 

333.15 0.01581 0.0021 -0.4130 -0.2067 1.0486 0.6236 

𝐓/𝐊 
EMEA + H2O Equation (5-6) 

𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

293.15 -0.0210 -0.0163 0.0611 -0.2523 0.0247 0.5137 

303.15 -0.0288 -0.0100 0.0550 -0.2478 0.0224 0.5154 

313.15 -0.0412 0.0077 0.0054 -0.2674 0.0216 0.5107 

323.15 -0.0505 0.0152 0.0253 -0.2121 0.01213 0.5031 

333.15 -0.1783 -0.0094 3.2896 0.3112 -8.1848 -0.7458 

 

 

Table 4: Calculated AARD (%) and AMD (mPa·s) for different viscosity correlations and mixtures. 

Correlation 
AARD (%) AMD (mPa·s) 

EMEA + DEEA EMEA + H2O EMEA + DEEA EMEA + H2O 

Equation (7) 0.4 1.1 0.1 0.75 

Equation (8) 5.2 - 1.2 - 

Equation (9) & (10) 1×10-6 8×10-12 2.5×10-6 1.6×10-10 

Equation (11) & (12) 1×10-4 6×10-12 6.6×10-7 1.5×10-11 

 

 

Table 5: Estimated parameters for (7) and (8) for EMEA + DEEA and EMEA + H2O mixtures. 

Parameters 
Equation (7) 

EMEA + DEEA EMEA + H2O 

𝐴0 𝑎0,1 = −0.03826 𝑎0,1 = 31.37 

𝑎0,2 = 7.24 × 10−4 𝑎0,2 = −0.0742 

𝐴1 𝑎1,1 = −1.243 𝑎1,1 = −21.55 

𝑎1,2 = 33.23 × 10−4 𝑎1,2 = 0.0527 

𝐴2 𝑎2,1 = 0.2905 𝑎2,1 = 7.403 

𝑎2,2 = −10.58 × 10−4 𝑎2,2 = −0.0149 

Parameters 
Equation (8) 

EMEA + DEEA 

𝐴0 633.1 

𝐴1 0.3369 

𝐴2 −16.81 

𝐴3 3343 

𝐴4 0.724 

𝐴5 0.0539 

 

 

 

 

 

 

 

 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

Table 6: Estimated parameters for (9-10) and (11-12) for EMEA + DEEA and EMEA + H2O mixtures. 

𝐓/𝐊 
EMEA + DEEA for Equation (9-10) 

𝐴0 𝐴1 𝐴2 𝐴3 

293.15 -4.7227 -3.0143 -1.2044 0.8790 

303.15 -2.2813 -1.5235 -0.7812 0.0651 

313.15 -1.6719 -1.1849 -0.9115 -0.5859 

323.15 -0.5898 -0.3581 -0.3581 0.0977 

333.15 -0.4102 -0.4362 -0.1628 0.4883 

𝐓/𝐊 
EMEA + H2O Equation (9-10) 

𝐴0 𝐴1 𝐴2 𝐴3 

293.15 100.3320 -26.2695 -94.2383 92.6758 

303.15 54.7930 -7.0247 -44.3034 32.3893 

313.15 31.8516 -6.0026 -23.8932 20.3776 

323.15 19.8906 -6.8229 -12.8906 20.5729 

333.15 12.4609 -2.7344 -5.2734 8.9844 

𝐓/𝐊 
EMEA + DEEA for Equation (11-12) 

𝐴0 𝐴1 𝐴2 𝐴3 

293.15 0.1449 -0.2919 -0.0011 0.1276 

303.15 0.1630 -0.2461 -0.02023 0.04032 

313.15 0.0878 -0.2493 -0.0837 -0.0785 

323.15 0.1951 -0.1457 -0.0730 0.0682 

333.15 0.1650 -0.2096 -0.0276 0.2274 

𝐓/𝐊 
EMEA + H2O Equation (11-12) 

𝐴0 𝐴1 𝐴2 𝐴3 

293.15 8.5296 -5.4086 2.8146 -0.7541 

303.15 7.6668 -4.4286 2.6108 -1.2722 

313.15 6.8749 -4.1453 2.2607 -0.9154 

323.15 6.2346 -4.0936 2.0644 0.4892 

333.15 5.5350 -3.3344 2.3431 -0.3038 

 

Table 7: Estimated enthalpies and entropies for the viscous flow. 

Mixture ∆𝐇∗/ kJ·mol-1 ∆𝐒∗/ J·mol-1·K-1 

EMEA + DEEA 

Δ𝐻1
∗ = 30.25 ΔS1

∗ = 35.0 

Δ𝐻12
∗ = 30.0 ΔS12

∗ = 26.5 

Δ𝐻21
∗ = 26.4 ΔS21

∗ = 25.3 

Δ𝐻2
∗ = 23.45 ΔS2

∗ = 18.8 

EMEA + H2O 

Δ𝐻1
∗ = 30.35 ΔS1

∗ = 35.04 

Δ𝐻12
∗ = 31.6 ΔS12

∗ = 40.8 

Δ𝐻21
∗ = 54.5 ΔS21

∗ = 97.3 

Δ𝐻2
∗ = 15.4 ΔS2

∗ = 20.6 

 

 

5. Conclusions 

This work presents developed correlations to 

represent measured densities and viscosities of 

EMEA + DEEA and EMEA + H2O mixtures. 

Further, the study discusses the applicability of 

McAllister’s kinematic viscosity model for the 

kinematic viscosities of EMEA + DEEA and EMEA 

+ H2O mixtures. Developed correlations showed 

acceptable accuracies in data fitting in which for the 

density, correlations from (3) to (6) showed a very 

low deviation from measured data. This is mainly 

because the data were fitted into the correlation at 

different temperature levels and the number of data 

points for the fitting was small compared to the 

fitting for (1) and (2). The highest deviation for 

density correlations for the EMEA + DEEA 

mixtures was observed for (2) in which AARD (%) 

was 0.135 and AMD was 2.98 kg·m-3. For the 

EMEA + H2O mixtures, the highest deviation was 

observed for (2) in which AARD (%) was 0.23 and 

AMD was 8.38 kg·m-3. 

Proposed correlations for the viscosity of EMEA + 

DEEA and EMEA + H2O mixtures showed 

acceptable accuracies for the fitting and correlations 

can be used in engineering applications. Equations 

(7) and (8) have parameters to correlate the effect of 

temperature on viscosity of the mixtures that do not 

have in (9) to (12). Equations from (9) to (12) were 

fitted at different temperature levels into the 

correction. Consequently, that led to high accuracies 

in data fitting.  Viscosity correlations indicated the 

highest deviation for the EMEA + DEEA mixtures 
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for (8), where AARD (%) was 5.2 and AMD was 1.2 

mPa·s. The McAllister model was able to represent 

kinematic viscosities for both EMEA + DEEA and 

EMEA + H2O mixtures with acceptable accuracies. 

The calculated enthalpies and entropies for the 

viscous flow enable the use of the model at different 

temperatures and mole fractions.  

In future work, suggestions are to develop new semi-

empirical and empirical correlations for measured 

densities and viscosities to reduce the complexity of 

the corrections and acquire higher accuracies. 

 

Nomenclature 

 

Letters Description Units 

𝐴𝑖 Parameters  

𝐴𝑖
𝑚 Measured property 𝑘𝑔 ∙ 𝑚−3 or 

𝑃𝑎 ∙ 𝑠 

𝐴𝑖
𝑐 Calculated property 𝑘𝑔 ∙ 𝑚−3 or 

𝑃𝑎 ∙ 𝑠 

ℎ Planck‘s constant 𝑚2 ∙ 𝑘𝑔 ∙ 𝑠−1 

𝐻 Enthalpy of viscous 

flow 

𝑘𝐽 ∙ 𝑚𝑜𝑙−1 

𝑀 Molecular weight 𝑘𝑔 ∙ 𝑚𝑜𝑙−1 

𝑁 Avogadro’s number 𝑚𝑜𝑙−1 

𝑅 Universal gas 

constant 
𝐽 ∙ 𝑚𝑜𝑙−1

∙ 𝐾−1 

𝑆 Entropy of viscous 

flow 

𝑘𝐽 ∙ 𝑚𝑜𝑙−1

∙ 𝐾−1 

𝑇 Temperature 𝐾 

𝑥𝑖 Mole fraction - 

𝜌 Density 𝑘𝑔 ∙ 𝑚−3 

𝜌𝐸 Excess density 𝑘𝑔 ∙ 𝑚−3 

𝜂 Dynamic viscosity 𝑃𝑎 ∙ 𝑠 

𝜂𝐸 Excess viscosity 𝑃𝑎 ∙ 𝑠 

𝜈 Kinematic viscosity 𝑚2 ∙ 𝑠−1 
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Abstract 

 

In order to reduce global CO2 emissions, CO2 capture based on absorption in an amine/water mixture is an 

established method.  To develop such processes, correct physicochemical properties like densities and viscosities 

are important.  

The first objective of this work is to explore mathematical correlations for fitting viscosity data for aqueous 

Monoethanolamine (MEA) and Methyldiethanolamine (MDEA). A second objective is to evaluate the prediction 

of viscosity based on parameters independent of viscosity measurements. 

13 developed correlations have been evaluated by comparing the maximum deviation of fitted models to the 

measured property, and by determining the average absolute relative deviation (AARD%). Python 3.6, MATLAB 

R2020b and Excel were used as the tools for regression.  

The results indicated that viscosity for aqueous amines was better correlated by Eyring’s viscosity model based 

on NRTL (Non-Random-Two Liquid model) rather than a Redlich-Kister correlation. The achieved AARD% of 

aqueous MEA were 2.39 for Redlich-Kister, 1.87 for Eyring-NRTL and 1.88 for the segment-based Eyring-NRTL 

model. The same trend was achieved for aqueous MDEA with AARD% of 3.04, 2.23 and 1.88 for different 

approaches.   

The possibility of using data from vapor/liquid equilibrium parameters to predict viscosity in MEA/water and 

MDEA/water was evaluated. Using parameters in the equilibrium model NRTL from the simulation program 

Aspen HYSYS in a model from Karunarathne indicated that it is possible to predict viscosity reasonably well 

without experimental viscosity data.    

Keywords:     density, viscosity, Eyring’s viscosity model 
 

1. Introduction 

Physicochemical properties of liquid amine 

mixtures have been studied as they are highly 

important in designing process equipment like 

absorption and desorption columns, heat exchangers 

and reboilers in the post-combustion CO2 capture 

process. Viscosity is a highly influential physical 

property on both hydrodynamics and the mass 

transfer phenomenon in the absorption column. 

Viscosity appears in most of the mass transfer 

correlations for random and structures packings and 

heat transfer correlations for the heat exchangers. 

The measured viscosity data are fitted to semi-

empirical and empirical mathematical expressions to 

calculate values for unmeasured conditions.  

Eyring’s viscosity model provides a theoretical 

background for viscosity by considering the motions 

of molecules from one place to another vacant 

position. The energy that needs to be overcome for 

such a motion is known as the free energy of 

activation for viscous flow ∆𝐺∗ (potential-energy 

barrier). Eyring developed the following equation 

for liquid viscosity (Bird et al., 2002; Eyring, 1936): 

 

𝜂 =
ℎ𝑁𝐴

𝑉
𝑒𝑥𝑝 (

Δ𝐺∗

𝑅𝑇
) (1) 

Where, 𝜂, 𝑉, ℎ, Δ𝐺∗, 𝑁𝐴, 𝑅, 𝑇 are dynamic viscosity, 

molar volume, Planck‘s constant, free energy of 

activation for viscous flow, Avogadro’s number, 

universal gas constant and temperature respectively.  

 

Wu (1986) discussed an overview of the evolution 

of models for predicting the viscosity of liquid 

mixtures and the connection between the excess free 

energy of activation for viscous flows ∆𝐺𝐸∗and 

Gibbs free energy of mixing ∆𝐺. Martins et al. 

(2000) discussed the applicability of the UNIQUAC 

model along with Eyring’s viscosity model for 

multicomponent liquid mixtures. In addition to the 

size and shape parameters for each pure component, 

the model requires only two adjustable parameters 
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per binary system that can be determined by 

measured viscosities (Martins et al., 2001). Cao et 

al. (1992) developed a model for viscosity of pure 

liquids and liquid mixtures based on statistical 

thermodynamics, local compositions, and Eyring’s 

absolute rate theory. A further developed model was 

discussed by Cao et al. (1993) in which the 

molecular size was introduced to the model. The 

new model can predict both viscosity and activity 

coefficients of liquid mixtures and it was named as 

viscosity-thermodynamic model (UNIMOD). 

Weirong and Lempe (2006) combined cubic 

equations of states with Eyring’s viscosity model to 

calculate viscosities in liquid mixtures. The different 

mixing rules of van Laar-type (VL) and Redlich-

Kister-type (RK) were adopted for the comparison. 

Novak (2003) presented a model based on Eyring 

viscosity model and the NRTL model for describing 

deviations from ideal mixtures. The viscosity model 

was presented and evaluated using data from 

polymer-solvent systems. An extended work from 

Novak et al. (2004) transformed the original 

component-based Eyring-NRTL viscosity model 

into a segment-based Eyring-NRTL viscosity model 

for polymer-solvent and polymer-polymer systems 

that provided a more physically realistic model for 

large molecules. Matin et al. (2013) examined the 

use of an Electrolyte-NRTL model for the prediction 

of the viscosity of CO2-loaded aqueous amine 

solutions. The study revealed that the Gibbs free 

energy of mixing as the appropriate thermodynamic 

quantity to replace the activation energy term for 

viscous in Eyring’s viscosity model for liquid 

mixtures.  

This work discussed several approaches to represent 

viscosities of binary aqueous amine mixtures of 

Monoethanolamine (MEA) and 

Methyldiethanolamine (MDEA) that were measured 

at different amine mole fractions and temperatures. 

The measured viscosities are available in the 

literature from our previous works (Karunarathne et 

al., 2020(a); Karunarathne et al., 2020(b)). There, 

the applicability of Eyring’s viscosity model along 

with Redlich and Kister type polynomial for the 

excess free energy for viscous flow have been 

examined to represent viscosities.  

In this study, Redlich-Kister, Eyring-NRTL, 

segment-based Eyring-NRTL and Eyring’s 

viscosity model were adopted to represent measured 

viscosities. Different tools in Python 3.6, MATLAB 

R2020b and Excel were used as the tools for 

regression and the results were compared. This work 

confirmed the accuracies reported in the literature by 

performing the curve fitting through different tools 

in the Python program. Further, it discusses the 

applicability of NRTL (non-random two liquid) 

model based on vapor-liquid equilibrium (VLE) 

data. The proposed parameters for the NRTL model 

in Aspen Plus were used along with the correlation 

discussed in (Karunarathne and Øi, 2019). Finally, 

the segment-based Eyring-NRTL model was 

adopted to represent mixture viscosities and relevant 

fitting parameters were estimated by minimizing the 

error between correlated and measured viscosities.  

 

2. Methodology  

Eyring’s viscosity model shown in (1) is applied for 

the binary mixtures to represent the viscosities. Then 

a new term called excess free energy of activation 

for viscous flows ∆𝐺𝐸∗ is defined as in (2).  

 

𝑙𝑛(𝜂𝑉) = ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖𝑉𝑖
0) +

Δ𝐺𝐸∗

𝑅𝑇

𝑖=2

𝑖=1

 (2) 

 

A Redlich and Kister type polynomial can be fitted 

to represent Δ𝐺𝐸∗ as shown in (3). 

 

Δ𝐺𝐸∗

𝑅𝑇
= 𝑥1𝑥2 ∑ 𝐶𝑖(1 − 2𝑥2)𝑖

𝑖=2

𝑖=1

 

𝐶𝑖 = 𝑎𝑖 + 𝑏𝑖(𝑇) 

(3) 

 

The NRTL model provides an expression for the 

excess Gibbs free energy of mixing 𝛥𝐺𝐸 as shown 

in (4). The model parameters are found by fitting the 

calculated partial pressures through the model into 

the measured partial pressures in experiments.  

 

𝛥𝐺𝐸

𝑅𝑇
= 𝑥1𝑥2 (

𝐺21
  𝜏21

 

𝑥1 + 𝑥2𝐺21
 +

𝐺12
 𝜏12

 

𝑥1𝐺12
 + 𝑥2

) (4) 

 

𝐺𝑖𝑗 = exp (−𝛼𝑖𝑗 ∙ 𝜏𝑖𝑗) (5) 

 

𝜏𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗

𝑇
+ 𝑒𝑖𝑗 ln 𝑇 + 𝑓𝑖𝑗𝑇 (6) 

 

𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗(𝑇 − 273.15𝐾) (7) 

 

In this study, model parameters for the MEA + H2O 

and MDEA + H2O were taken from Aspen Plus. The 

correlation proposed in (8) was adopted to calculate 

𝛥𝐺𝐸∗ and use in (2) to recalculate mixture viscosities 

at different amine mole fractions and temperatures. 

A detailed discussion of developing (8) can be found 

in (Karunarathne and Øi, 2019) in which the 

parameters for 𝛥𝐺𝐸 were taken from (Schmidt et al., 

2007) for MEA + H2O mixtures. 

 

−𝛥𝐺𝐸

𝛥𝐺𝐸∗
= 𝑎 + 𝑏 ∙ 𝑥1 ∙ 𝑇 + 𝑐 ∙ 𝑇2 (8) 

 

The segment-based Eyring-NRTL model proposed 

by Novak et al. (2004) was adopted to fit the 

calculated 𝛥𝐺𝐸∗ from Eyring’s viscosity model for 
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MEA + H2O and MDEA + H2O mixtures. The 

modified segment-based Eyring-NRTL model to fit 

𝛥𝐺𝐸∗is shown from (9) to (10). 

 

𝛥𝐺𝐸∗

𝑅𝑇
= �̃�1�̃�2 (

𝐺21
  𝜏21

 

�̃�1 + �̃�2𝐺21
 +

𝐺12
 𝜏12

 

�̃�1𝐺12
 + �̃�2

)

∗ 𝑎 

(9) 

 

�̃�1 =
𝑟1𝑥1

𝑟1𝑥1+𝑟2𝑥2
,  �̃�2 = 1 − �̃�1 (10) 

 

𝐺12 = exp (−𝛼12𝜏12),  𝐺21 =
exp (−𝛼12𝜏21) 

(11) 

 

𝜏12 = 𝑎12 +
𝑏12

𝑇
  ,  𝜏21 = 𝑎21 +

𝑏21

𝑇
 (12) 

 

The proposed models for the viscosities have been 

evaluated through average absolute relative 

deviation and absolute maximum deviation as given 

in (13) and (14).  

 

𝐴𝐴𝑅𝐷 =  
100%

𝑁
∑ |

𝐴𝑖
𝑚 − 𝐴𝑖

𝑐

𝐴𝑖
𝑚 |

𝑁

𝑖=1

 (13) 

 

𝐴𝑀𝐷 = 𝑀𝐴𝑋|𝐴𝑖
𝑚 − 𝐴𝑖

𝑐| (14) 

 

3. Results and Discussion  

3.1. Redlich-Kister polynomials 

The previous work performed by (Karunarathne et 

al., 2020(a)) to adopt Redlich and Kister type 

polynomial to represent calculated 𝛥𝐺𝐸∗ from 

Eyring’s viscosity model for MEA + H2O mixtures 

as given in (3) was validated. Here, the density 

correlation proposed in (Karunarathne et al., 

2020(a)) for MEA + H2O mixtures was used to 

calculate the mixture molar volumes rather than 

using measured densities. The study reveals AARD 

of 2.39% and an AMD of 0.84 mPa·s. A similar 

approach was taken to represent measured 

viscosities of MDEA + H2O mixtures.  

 
Table 1: Parameters for Redlich and Kister polynomial for 

excess free energy of activation for viscous flow of 

MDEA + H2O mixtures. 

Coefficients 

a0 30.45 

a1 -20.4 

a2 5.081 

b0 -0.0684 

b1 0.0444 

b2 -0.00394 

𝑅2 0.998 

 

Tab. 1 illustrates the estimated parameters for the 

Redlich and Kister type polynomial. The calculated 

AARD and AMD are 3% and 7.2 mPa·s respectively 

and that is acceptable. Fig. 1 illustrates the goodness 

of the data fit between calculated and measured 

viscosities at different amine concentrations and 

temperatures for MDEA + H2O mixtures.  

 

 
Figure 1: Comparison of calculated viscosity by Redlich-

Kister polynomial for 𝛥𝐺𝐸∗ with measured viscosity for 

MDEA + H2O mixtures. 

 

3.2. Eyring-NRTL model 

The applicability of NRTL model for 𝛥𝐺𝐸  to 

represent 𝛥𝐺𝐸∗ was discussed for MEA + H2O and 

MDEA + H2O mixtures. Tab. 2 lists the model 

parameters of NRTL model from (4) to (7) provided 

by Aspen Plus and the estimated parameters for 

correlation (8) are given in Tab. 3. The viscosities 

were calculated by (2) using pure liquid densities, 

viscosities and calculated 𝛥𝐺𝐸∗ from (8). The 

calculated AARD and AMD of 1.9% and 1.5 mPa·s 

for MEA + H2O mixtures and 3% and 7.2 mPa·s for 

MDEA + H2O indicated that this approach could 

represent viscosity data with acceptable accuracy.  
 

Table 2: Parameters for the NRTL model from Aspen 

Plus. 

Parameters MEA+H2O MDEA+H2O 

𝐴12 -0.0352 4.75322 

𝐴21 1.1605 -1.79134 

𝐵12 -438.061 159.444 

𝐵21 -110.329 -716.787 

𝐶12 = 𝐶21 0.3 0.1 

𝐷𝑖𝑗  ,𝐸𝑖𝑗  , 𝐹𝑖𝑗 0 0 

 
Table 3: Estimated parameters for correlation (8). 

Coefficients MEA+H2O MDEA+H2O 

𝑎 0.2157 0.1089 

𝑏 0.0001957 0.0004605 

𝑐 -4.674×10-07 -7.107×10-07 

𝑅2 0.8441 0.9989 

 

The deviations are relatively high at lower 

temperatures as shown in Fig. 2 to 5. With the 

increase in temperature, the real mixtures gradually 
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come to a state of ideal mixtures due to the 

weakening of intermolecular interactions among 

unlike molecules.   

 

 
Figure 2: Comparison of calculated 𝛥𝐺𝐸∗ using NRTL 

model and correlation (8) with calculated 𝛥𝐺𝐸∗ from 

measured viscosities and densities for MEA + H2O 

mixtures. 

 

 
Figure 3: Comparison of calculated viscosities using 

NRTL model and correlation (8) with measured 

viscosities for MEA + H2O mixtures. 

 

 
Figure 4: Comparison of calculated 𝛥𝐺𝐸∗ using NRTL 

model and correlation (8) with calculated 𝛥𝐺𝐸∗ from 

measured viscosities and densities for MDEA + H2O 

mixtures. 

 

 
Figure 5: Comparison of calculated viscosities using 

NRTL model and correlation (8) with measured 

viscosities for MDEA + H2O mixtures. 

 

3.3. Segment-based Eyring-NRTL model 

In the fitting of the segment-based model for 

MEA+H2O mixtures, a problem with the relation 

was noticed. The small value of α12 in the parameter 

overview in Tab. 4 essentially renders 𝐺21 and 𝐺12 

redundant, as the (11) reduces to the value of 1. 

 

𝐺12 = exp(0 ∙ 𝜏12) = 1 

𝐺21 = exp(0 ∙ 𝜏21) = 1 
 

The results imply that (9) could be reduced to a 

function without 𝐺21 and 𝐺12, which would exclude 

the nonrandomness parameter (𝛼) from the 

correlation. 

 

𝛥𝐺𝐸∗

𝑅𝑇
= �̃�1�̃�2 (

 𝜏21
 

�̃�1 + �̃�2

+
𝜏12

 

�̃�1 + �̃�2

) ∗ 𝑎 (15) 

 
Table 4: Estimated parameters for Segment-based Eyring-

NRTL correlation for excess free energy of activation for 

viscous flow of MEA + H2O mixtures. 

Parameters MEA +H2O 

a -8.173 

a12 0.2936 

a21 0.3271 

α12 4.56×10-11 

b12 -403.6 

b21 1.712 

r 1.52 

𝑅2 0.995 

 

The formula appeared to work better for Aqueous 

MEA if the entire formula was multiplied by -1, and 

if parameters α12, b12 and r were set to contain 

positive numbers. Resulting in the parameters in 

Table 5 for (9) to (12). 
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Table 5: Estimated parameters for Segment-based Eyring-

NRTL model correlation (improved) for MEA + H2O 

mixtures. 

Parameters MEA +H2O 

a -1 

a12 -14.89 

a21 16.71 

α12 0.041 

b12 4827 

b21 -6891 

r 1.675 

𝑅2 0.998 

 

The alternative correlation gave a high coefficient of 

determination (R2) with the value of 0.998, meaning 

that the fit for excess free energy of activation for 

viscous flow for MEA + H2O mixtures became 

slightly better than with the Redlich-Kister 

correlation. The goodness of the fit for both 𝛥𝐺𝐸∗ 

and measured viscosity can be seen in Fig. 6 and 7 

respectively. Further, calculated AARD and AMD 

were 1.2 % and 1.04 mPa·s respectively.  

 

 
Figure 6: Estimated excess free energy of activation from 

the Segment-based Eyring NRTL model for aqueous 

MEA. 

 

 
Figure 7: Comparison of measured and calculated 

viscosity by the segment-based Eyring-NRTL model for 

aqueous MEA. 

 

The viscosities of MDEA + H2O mixtures were 

found through fitted segment-based Eyring-NRTL 

model for calculated 𝛥𝐺𝐸∗. Relevant density data to 

calculate molar volumes were found from the fitted 

density data into a Redlich and Kister type 

polynomial discussed in Chapter 5.4.1 (Larsen, 

2021). The calculated ∆𝐺𝐸∗ from segment-based 

Eyring-NRTL model shown in Figure 8 considered 

estimated parameters from Tab. 6. The result was 

used to portray the viscosity in Figure 9, where the 

calculated values gave an AARD of 1.9% and an 

AMD of 8.1 mPa·s. 

 
Table 6: Estimated parameters for segment-based Eyring-

NRTL model for excess free energy of activation for 

viscous flow of MDEA + H2O mixtures. 

Parameters MDEA + H2O 

a 1 

a12 -2.504 

a21 -3.817 

α12 -0.101 

b12 1596 

b21 2937 

r 2.349 

𝑅2 0.999 

 

 
Figure 8: Fitted excess free energy of activation from the 

Segment-based Eyring-NRTL model for aqueous MDEA. 

 
Figure 9: Comparison of calculated and measured 

viscosity of aqueous MDEA through the Segment-based 

Eyring-NRTL model. 
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4. Conclusion 

Physicochemical properties are important in 

designing amine-based post combustion CO2 

capture processes as it can affect the mass transfer of 

CO2 and the packing height of absorption/desorption 

columns. In this work, it was also found that 

viscosity seems to have a greater impact than density 

in the CO2 capture process. 

For the models for viscosity for aqueous amines, the 

applied methods of Redlich-Kister, Eyring-NRTL 

and segment-based Eyring-NRTL for ∆𝐺𝐸∗ gave an 

AARD% of 2.39, 1.87 and 1.88 for MEA + H2O 

mixtures respectively. Further, For MDEA + H2O 

mixtures, these approaches were able to represent 

viscosities with an AARD% of 3.04, 2.23 and 1.88 

respectively. The results revealed that the performed 

calculations connected to the NRTL model worked 

better for both mixtures. Eyring’s model was 

connected to a correlation proposed in the literature 

and it showed the feasibility to apply the NRTL 

model and estimated parameters from VLE data in 

Aspen Plus to represent measured viscosities. In the 

segment-based Eyring-NRTL model, the estimation 

of all parameters was made possible by a correction 

factor. As future work, this study could extend to 

examining the applicability of VLE models like 

UNIQUAC and UNIFAC along with Eyring’s 

viscosity model to make predictions for viscosities 

of binary aqueous amine mixtures.  

 

Nomenclature 

Letters Description 

𝐴𝑖
𝑚 Measured property 

𝐴𝑖
𝑐  Calculated property 

∆𝐺 Gibbs free energy of mixing 

∆𝐺𝐸  Excess Gibbs free energy of mixing 

∆𝐺∗ Free energy of activation for viscous flow 

∆𝐺𝐸∗ Excess free energy of activation for 

viscous flow 

ℎ Planck‘s constant 

𝑁𝐴 Avogadro’s number 

𝑟 Average number of segments 

𝑅 Universal gas constant 

𝑇 Temperature 

𝑉 Molar volume 

𝑥𝑖  Mole fraction 

𝑥�̃� Segment of moles 

𝜂 Dynamic viscosity 

𝛼 Non-randomness factor 

𝜏 Interaction energy between different 

species 
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Abstract

Extreme black-swan occurrences like earthquakes, glacial lake outbursts, flash floods, landslides, etc. are important concerns in
Himalayan countries like Nepal, which are highly susceptible, geologically active, and exquisitely fragile. Nepal generates 97
percent of its electricity from hydropower, where 56.08 percent of it is coming from seasonal run-off-river (RoR) hydro plants.
Landslides and mudflows are common in the monsoon, and low discharge is common in the winter season. These RoR plants
must be able to withstand high-impact events like earthquakes and lengthy droughts in order for the Nepalese grid to remain
secure. This study gives a presentation and overview of previously occured natural hazards in Nepal related to hydropower
plants. In particular, the 2014 Sunkoshi landslide and the 2021 Melamchi flood are evaluated as extreme events and their
impacts on hydropower plant has been studied. In addition, an in-depth investigation on a ROR plant is carried out. Moreover,
the water discharge and extreme rainfall peaks in time series data is evaluated using an ARIMA-based model. This paper shows
the feasibility of predicting the energy produced by a run-off river hydropower plant. The purpose is to forecast discharge and
hence the ROR power generation with the aim to facilitate the hydropower operators for their availability declaration which will
again help in the overall energy planning. The results are discussed together with performance metrics, and indicates that the
implemented technique is promising.These predictions can be further used for planning and estimating the power generation
on a more complex level.

1. Introduction

1.1. Background
The electrical power system supports a variety of impor-
tant infrastructures in today’s world, including transporta-
tion, communication, health, and education. Countries, on
the other hand, are subjected to severe exigencies and nat-
ural disasters that directly or indirectly damage electric-
ity systems. The rising expense of power outages caused
by natural disasters or climate fluctuations, as well as the
devastating impact on different fields of security and per-
sonnel security, cannot be overlooked. Power outages
over extended periods of time, substantial and important
equipment failures in the system, cascading failures, load-
shedding, and even system blackouts are all possible out-
comes. For the power system to run smoothly, it is im-
portant to keep the system in balance while keeping its
security and economic limits.
Extreme weather events, as well as climatic differences,
are becoming more common in many countries through-
out the world. As a result, today’s electricity system must
be resilient in this area. Power system engineers face a
difficult task in designing a resilient power system that
can resist climate change and extreme occurrences. Af-
ter all, weather is stochastic, unexpected, and difficult to
anticipate. Figure 1 depicts an overview of climate in-
fluences on the electricity system based on a number of
papers. The globe is currently confronted with the issues
of climate change and global warming; the primary fo-

cus has been on clean energy and the decarbonization of
global energy systems. The movement toward a flexible
electrical system based on renewables is gaining traction
(Mitchell, 2016). Hydropower is the world’s greatest re-
newable energy source, and it contributes significantly to
global power system balance and regulation (Yang et al.,
2018). Hydropower is not only needed for electricity; it
also helps to balance the intermittent renewable energy
supply. The relevance of hydropower to the reliability, sus-
tainability, and economy of energy systems is addressed
in Europe’s 2050 Energy Strategy (Roadmap, 2011). The
backbone for connecting multiple renewable energy sys-
tems is more flexible in a hydro-dominated power system.
However there are still challenges with a power system
that are heavily dependant on hydropower mainly due to
natural events, for instance, scheduling the right amount
of reserve capacity, the possibility of frequency oscilla-
tions in the system, and the overall quality, security, and
dependability of the power system.

1.2. Nepalese Power System and the impacts of natural
disaster
The Nepalese grid, known as the Integrated Nepal Power
System (INPS), is one of the hydro-dominated electric grid
systems in the Himalayan region. Currently, Nepal gener-
ates 97% of total electricity from hydropower; 56.08% of
it from Run-Off-River (RoR) plants. These RoR plants
are subject to a large discharge variation between wet
and dry seasons. Also, the catchment area faces land-
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Figure 1: The figure presents the impact of climatic effects on the electric power system distinguished between climate variations and extreme
events.
a represents climatic variation and their effects on power system
b represents effects of extreme events on power system

slides and heavy mudflow conditions in monsoon, and pro-
longed periods of low discharge in the winter. Typical
generation capacity of a RoR plant is roughly 100% for
6 wet months, when it is most vulnerable to landslides and
floods, 80% for 2 months, 50-30% for 4 months of winter
when any form of energy is highly precious to the liveli-
hood. Therefore, the power system operational security of
the Nepalese grid is heavily dependent on how these RoR
plants respond to winter demands. RoR should safeguard
itself during the monsoon floods and landslides, and be re-
silient to other high impact events such as earthquakes and
prolonged drought. Moreover, concerns with the Nepalese
grid have posed a threat to INPS’s reliability and security.
Until 2017, Nepal was subjected to up to 18 hours of load
shedding during the dry season. Although load shedding
has been officially resolved, there is still a problem with
INPS’ power supply quality and reliability. In INPS, the
existing transmission lines are mostly working at full ca-
pacity. In all existing high voltage lines, there is no suffi-
cient provision for n-1 contingency. As a result of the this
and inappropriate contingency analysis, the INPS reliabil-
ity is compromised.

River flow and hydropower are inextricably linked, and
rainfall has a considerable impact on both. Because rain-
fall is influenced by a multitude of factors, hydropower

generation is highly seasonal. Nepal is also at risk from
earthquakes, flooding, landslides, and a variety of other
natural disasters. In Table 1, the effects of a few natu-
ral risks on Nepal’s power generators and system over the
last decade are presented. It is clear from this table that
the Nepalese power infrastructure is extremely sensitive
to weather and natural disasters.

1.3. Contribution of the work
Having a good grasp of the trends and behavior of river
discharge is critical for an effective power/energy man-
agement, especially in the hydropower-dominated power
system. The amount of rain, temperature, and other envi-
ronmental factors influence how much water is discharged.
Reliably predicting hydropower generation under certain
operational conditions is essential to making the most of
hydropower’s advantages as a clean and inexpensive en-
ergy source. Economic and societal gains can be gained
through its use. It is also possible to perform some
preventative measures if the serious condition is antici-
pated. Consequently, this research focuses on analyzing
the river discharge and hydroelectric output of one of the
hydropower facilities in Nepal. The following points will
serve as a reminder of the study’s contributions during the
discussion:

• Extreme events including floods, landslides, and
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Table 1: Natural hazards in Nepal in the last decade.
Event Major Effect
Flash Flood-Seti River-2012 Damage to infrastructure and livelihood including water supply systems

and electric poles (Ojha, 2018)
Landslide-Jure-2014 Damage of more than 1.5 million USD in Sunkoshi HPP (Liu et al.,

2020)
Earthquake-Gorkha- 2015 Severe damage to infrastructure and livelihood including significant

damage in Sunkoshi HPP (Liu et al., 2020)
Glacial Lake Outburst Flood
(GLOF)- Bhotekoshi- 2016

Damage to infrastructure and livelihood including damage in intake
dam of Upper Bhotekoshi HPP (Action, 2018)

Terai Flood-2017 The financial loss of 584.7 million USD including damages in the en-
ergy sector as well (First Tornado in Nepal – March 2019, 2019)

Tornado-Bara/Parsa-2019 Damage to infrastructure and many livelihoods leaving affected places
without electricity and communication (Service, 2020)

Landslide-Sindhupalchok-2020 Loss of many lives and houses and other infrastructure (Samiti, 2020)
Flash flood-Melamchi-2021 Swept houses, bridges, and severe damage to infrastructure and liveli-

hoods including hydropower plants (Debnath and Mourshed, 2018)

earthquakes have all been researched in relation to
the discharge statistics of the rivers.

• It is the goal of this work to analyze weather, dis-
charge, and extreme events connected to time se-
ries data, and to estimate their effects on power
generation using a modeling approach. The Auto-
Regressive Integrated Moving Average modeling ap-
proach is used for the forecasting of time series data
on discharge and power generation.

1.4. Structure of the paper
This paper opens by describing the setting in which the
study is being conducted, as well as the reasons for doing
so. Section 2 presents the assumptions and strategies uti-
lized to tackle these problems. In the third section, the
study’s results are presented, and the conclusions taken
from them are discussed in Section 4.

2. Methodology
For the investigation of underlying forecasting methods, a
systematic review of published literature’s was conducted.
A number of literature’s have shown that linear time series
models, such as the Auto-Regressive Integrated Moving-
Average (ARIMA) model, are among the most popular
statistical models used to forecast time series based on his-
torical data. It owes its reliability for this sort of data (Deb-
nath and Mourshed, 2018). In (El Desouky and Elkateb,
2000), an Artificial Neural Networks (ANN) and ARIMA
modeling were used to forecast electric load where both
strategies were implemented to reduce forecasting mis-
takes, and they found that both techniques produce lower
errors as compared to similar predictions obtained using
the established time-series method. (Erdogdu, 2007) im-
plemented ARIMA modeling technique for studying en-
ergy demand in Turkey and obtained results with very
small error. Similarly, (Wang et al., 2011) employed a
seasonal decomposition approach with vector regression
to forecast hydropower usage in China and demonstrated
that the method they utilized for time series forecasting
was accurate. Likewise, (Cassiano et al., 2013) established
an ARIMA model for forecasting effluent flow in a hydro-
electric facility in Brazil by merging hierarchical cluster-
ing and Principal Component Analysis (PCA).
Forecasting,in general, refers to making future predictions
based on the analysis of current and historical trends, with
three primary components: input variables (historical and

current data), prediction methods (trend analysis), and out-
put variables (future predictions), as illustrated in Figure 2.

Figure 2: General forecasting model structure.

In this study, the prediction method used is the ARIMA
modeling approach. The input variable is the river dis-
charge (cubic meter per second/cumecs), and the output
variable is the forecasted average discharge values. The
ARIMA modeling technique is one of the efficient time-
series forecasting model for hydropower generation fore-
cast along with the prediction in the river discharge (Pol-
prasert et al., 2021). Hence, the study has considered the
implementation of ARIMA model in case of hydropower
in Nepal which has not been done in the previous litera-
ture. Nepal is a developing country with huge potential in
hydropower generation and it is very important to ensure
a balance between the generation and consumption in or-
der to make the grid secure. This study aims in contribut-
ing to this fact by analyzing ARIMA time-series mod-
eling approach for investigating the behavior of Runoff
River (RoR) hydropower plant subject to seasonal river
discharge and its power generation. This will aid in fur-
ther study of various other hydropower plants in case of
Nepal to ensure power security in INPS.
The ARIMA model has the format of ARIMA (p, d, q),
where p is the Auto-Regressive term, d is the order of dif-
ferencing required for the data to make it stationary and
q is the Moving-Average term. The established model is
identified through the data of sample autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF).
Box and Jenkins presented a complete stepwise approach
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for analysis and forecasting of a time series using ARIMA
models in 1976 (Box et al., 2015). Because of the popu-
larity of its methodology, ARIMA models are frequently
referred to as Box-Jenkins models (Jamil, 2020).
The ARIMA model is a type of Box-Jenkins series analy-
sis. The prediction value is viewed as a function defined by
the time sequence. Integrated autoregressive and moving
average models are used to model the data. These are re-
gression models that include delays in the dependent vari-
able as well as delays in the error term.
The ARIMA (p, d, q) model is decomposed into three parts
(Polprasert et al., 2021).
The part (p) is AR part which represents the dependent
variable regressed on its own lagged values as shown in
equation 1.

Xt = α0 + α1Xt−1 + .....+ αtXt−p + ϵ1 (1)

where,
α0 = constant
Xt = interpreted variable
α1, ..., αt = coefficients or AR model parameters
Xt−p = pre-stage data
t = periodic time
ϵ1 = error term
Similarly, the part (q) is MA part which shows that the re-
gression error is a linear combination of error terms whose
values occurred simultaneously and at various times in the
past as shown in equation 2.

Xt = ut + β1ut−1 + .....+ βqut−q (2)

where,
β1 = coefficient of MA model which is the weight
Xt = interpreted variable
t = periodic time
ut−q = error term
Finally, the part (d) is the I part that indicates that the data
values have been replaced with the difference between
their current values and the previous values.
A general ARIMA model can be written as shown in equa-
tion 3.

Xt = α0 + α1Xt−1 + .....+ αtXt−p + ϵ1

+ut + β1ut−1 + .....+ βqut−q

(3)

Before building ARIMA model, it is necessary to check
the stationarity of the data. The first step is to analyze
the data-time plot to examine whether it is covariance sta-
tionary. The time series is subjected to a unit root test to
determine its stationarity. The unit root test regresses the
time series Xt on its lag value Xt-1, and the results re-
veal the data’s nature in respect of stationarity (First Tor-
nado in Nepal – March 2019, 2019). If the data is non-
stationary, after basic first-order or second-order differenc-
ing, the ARIMA model is still suitable to nonstationary
time series. At this stage, the level of differentiation i.e.,
the number of times the data is differenced for its station-
ary is (d). Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
(Kwiatkowski et al., 1992) test was used in the research
as a unit root test for testing a null hypothesis that the ob-
servable time series is stationary around a deterministic
trend. The KPSS test is a linear regression-based statis-
tical test for determining if a time series is stationary.The
test’s null hypothesis is that the time series is stationary,
whereas the alternative hypothesis is that the time series
has a unit root.(Kwiatkowski et al., 1992)provides a de-
tailed mathematical formulation behind the KPSS test.

The study is carried out using EXPLORATORY tool (Ex-
ploratory, Inc., n.d.).The software builds an ARIMA time
series model and performs forecast based on input time
series data. The model parameters p,d,q are selected on
the basis of ACF and PACF plots. The effectiveness of the
model is observed from three performance metrics: Root
Mean Square Error (RMSE) which gives the root of mean
of squares between the forecasted and actual value, Mean
Absolute Error (MAE) which is the mean of absolute dif-
ferences between forecasted and actual value and Mean
Absolute Percentage Error (MAPE) which is the mean
of absolute differences in percentage of actual value (Ex-
ploratory, Inc., n.d.).

3. Results and Discussion
The efficacy of the presented approach has been tested on
a RoR Hydropower Project test case. The salient features
of the project is shown in table Table 2.

Table 2: Salient features of the test case project
Particulars Features
Location Pyuthan District, Central / West Nepal
Intake River Jhimruk Khola
River Training 2 km Canal, Gabion Mattresses
Dam 300m Curvilinear with desilting basin

and intake, 10,000m3 Concrete
Tunnels Headrace 1100m x 8.5m2, fully lined

Inclined Shaft (45 degree) 280m x 9/3.5m2,
fully lined (Steel, Concrete)

Powerhouse Semi-underground, Steel Trusses,
8m x 20m x 18m

Rated power 12,6 MW
Head 201,5 m
Flowrate 12 m3/s(4m3/s each turbine)
Turbines 3 units, Francis, Kværner
Speed 1000 rpm

The two years daily average discharge and power gener-
ation data collected are presented in Figure 3a. The data
shows the daily variations of average discharge from 2017
to 2019. It is evident that the average discharge shows a
seasonality trend with high discharge during wet seasons
and low discharge in dry months. Moreover, there is an
abundant water supply, typically from July to October.
It can be seen that the hydropower plant can not generate
more than the rated maximum even at the times of max-
imum discharge. However, there is a substantial differ-
ence in the values of maximum and minimum energy pro-
duction, which indicates the significant dependence of hy-
dropower generation on discharge, water quality and oper-
ational constraints.
Ideally, in a hydropower plant, the abundance water sug-
gests high hydropower generation. Therefore, a flat hy-
dropower generation plot with maximum rated value could
be expected during the times of high discharge. But,
contrary to the ideal assumption, it can be observed that
the hydropower generation seems to decrease when the
river discharge spikes as shown in Figure 3b which is a
zoomed in view of Figure 3a. This is because the se-
lected site and the rivers of Nepal in general also face the
challenges of high sediment issues which results in shut
down/rescheduling of the generation units in order to pre-
vent the sediment erosion in a turbine to ensure its dura-
bility when the river discharge increases during monsoon
season. The generation plot is almost flat post monsoon
season as seen in Figure 3b as the sediment is less during
that period.
To understand the correlation between variables and the
trend in decrease/increase of data, the raw data along with
its trend line is illustrated in the following Figure 4.
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(a)

(b)
Figure 3: The figure presents the average discharge and average
generation plot.
(a) represents the overall plot of the input data for two years
(b) represents a zoomed version of (a) from May 2018 for a better
analysis of the plot

The trend change lines represent the points in a year where
the river discharge is either changed to increasing or de-
creasing flow. The major rate of change in the trend line is
observed around September, where the discharge sharply
decreases from that month onward.
The predicted average discharge from ARIMA model as
compared to the actual average discharge is shown in Fig-
ure 5a.
There was a considerable increase in average discharge
around August 2017 as shown in Figure 5b, resulting in
a significant difference between predicted and actual val-
ues. However, the model fit improves significantly after
that, as the predicted and observed values nearly perfectly
overlap.
The performance metrics RMSE, MAE and MAPE from
the study was obtained as shown in Table 3. In general, a
lower value yields a better prediction. It is evident from

Table 3: Performance Metrics
Metric Value
RMSE 8.04
MAE 2.8
MAPE 0.12

the results that the RMSE value (squared error) is signif-
icant larger than the approaches for average error estima-
tions. Since the errors are squared before they are aver-
aged, the RMSE gives a relatively high weight to large er-
rors. The RMSE is most useful when large errors are par-

Figure 4: Change in the Average Discharge Trend.

(a)

(b)
Figure 5: The figure presents the ARIMA model for average dis-
charge.
(a) represents the overall plot of the model for entire input data
(b) represents a zoomed version of (a) for a better analysis of the
model
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ticularly undesirable. From the figures it can be seen that
the difference between actual and forecasted values at the
discharge peaks (rainfall) are significant. Hence, all three
methods should be used together to diagnose the variation
in the errors in a set of the forecasts. As the ROR plant
has large seasonal variation and different magnitude, a mix
of these methods should be considered in the forecasting
evaluation. An ideal model should have the lowest error
metrics. However, the results show a good fit of the devel-
oped model as compared to the previous literature in the
relevant domain (Jamil, 2020), (Polprasert et al., 2021).
Figure 6 shows the short-term forecasting result obtained
from the ARIMA model for average discharge. The fore-
casting for immediate 10 days has been obtained from the
model. In the historical data, average discharge plot during
January-March is almost flat which is reflected in the fore-
casted data for February as well. As the input data for only
two years has been used in the modeling, the forecasted
data tends to follow the trend shown by the historical data.
The model do not seem to forecast the sudden events such
as increment in discharge and the peak it causes. A mini-
mum sample size of 50 is required for a reliable statistical
analysis of a time series using the ARIMA method, which
indicates that data for at least 50 years should be avail-
able (Box and Tiao, 1975).The intent of this work is to
analyze and forecast annual generation based on discharge
and other operation or maintenance variables; which is ex-
pected to show an annual trend but not the monthly or
weekly or daily trend. As the data for large number of
years was not available, the model accuracy is compro-
mised. The model would have been more effective if larger
volume of historical data was available as input for the
model.

Figure 6: The figure represents the forecasting part of average
discharge with ARIMA modeling as seen in bottom right part of
Figure 5(a).

Proper energy planning is a crucial factor to ensure power
security. There are several cases of power cut and unre-
liable power supply due to mismatch in the energy pro-
duction capacity and its consumption. The scenario gets
worse because of evolving climatic variations which has
affected the power systems all over the world. Nepal,
being a rich country in hydropower generation potential,
is also a victim of seasonality leading to frequent power
cuts and low power quality in various parts of the country.
Several studies are being conducted to estimate the power
system parameters subject to changing climatic conditions
but the study in case of Nepal is very limited. Therefore,
as a small step in ensuring power security for INPS, this
study has applied ARIMA forecasting model for varying
seasonal discharge to make it easy for the electricity reg-
ulators to conduct proper energy planning amidst the fluc-

tuating river discharge. The study, till this point, is done
for average river discharge by fitting an ARIMA model.
River discharge is a natural process which can be accu-
rately modeled. Therefore, preliminary investigation to
study and forecast has been obtained in this study. Further,
the implications of weather events on hydropower produc-
tion, as mentioned in Section 1, is yet to be addressed.
Correlating weather events and actual hydropower gener-
ation and its modeling is a complex process as generation
is affected by operational constraints such as operator’s
instructions as well. This is yet to be incorporated in the
model. Although the aim is to incorporate extreme events
such as GLOF, landslide, flooding, etc., the modeling of
these events in relation to a hydropower production is a
complex methodology which is yet to be addressed.
The major challenge during the study was the availability
of the data from hydropower in Nepal. There was lack
of proper record maintenance and also the power plants
were reluctant to provide data. The study was performed
with the daily discharge and generation data for two years.
Results from modelling could be improved if more obser-
vations were available e.g., either hourly data or if data for
a larger period of time was available.

4. Conclusions
This paper presents a study that investigates the histori-
cal and future trends of energy produced by a hydropower
plant of Nepal, taking into account its historical average
discharge conditions. Forecasting studies play a signifi-
cant role in resource planning and management in the fu-
ture. The gathered historical data was statistically ana-
lyzed, and ARIMA modeling was used to forecast Nepal’s
future average discharge impacting hydroelectricity gen-
eration. From the research investigation, it is concluded
that the proposed model can be utilized to better under-
stand the trend in discharge and generation of a ROR hy-
dropower plant and as a reference for energy planning.
However, when utilizing the model to anticipate electricity
generation from green energy, which is based on natural
resources, additional care must be taken because environ-
mental circumstances and climate fluctuation might have
a significant impact.
The major findings of the paper can be summarized as:

• It is evident that ROR hydropower plants have large
natural yearly variations following the rainfall sea-
sons. Future climate variations may further impact
this variation, demanding good statistical models for
discharge and power generation forecasting.

• An effective forecasting model demands more obser-
vations e.g., several years of discharge data to give a
satisfying prediction.

• The ARIMA modeling approach is an effective
method for predicting river discharge. The model
follows the river discharge trend in mostly of the
study and gives a short-term forecasting result. How-
ever, seasonal rainfall peaks are rather challenging to
track.

Future work will focus to enhance the modelling frame-
work and environment. More sophisticated data-driven
models e.g., Long short-term memory (LSTM), and other
artificial neural network and deep learning will be ex-
plored. A novel architecture such as Temporal Fusion
Transformer (TFT) which is also being used in time-series
forecasting and gives globally important variables, sus-
taining temporal patterns and significant events in the
dataset is of interest. The proposed approach can be an
improved decision tool for power producers for planning
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and revenue. In addition, government officials in the en-
ergy industry can make informed energy production de-
cisions and develop a long-term strategic plan to keep up
with economic growth in Nepal.
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Abstract

With the ever-increasing incorporation of wind and solar power in the electric power system, enhanced performance of classical
bulk hydropower plants for robust operation of the power system is required. This current energy transition may cause a rapid
increase in undesirable low-frequency oscillations (LFOs) in modern power system operations. A power system stabilizer
(PSS) located at hydropower plants is one solution to damp such oscillations. This paper presents a new method based on
Long Short-Term Memory (LSTM) neural networks for sine-wave phase shifting to possibly enhance PSS damping. The
proposed controller considers the PSS input and the rotor speed deviation as a damped sinusoidal signal, simplifying PSS
control and real-time optimization of PSSs parameters. Results show that the proposed LSTM architecture is able to learn
multiple damped sine waves with different frequencies and decay rates. Therefore, the proposed controller can operate on the
entire range of LFOs, unlike simple feedforward neural network (FNN) controllers, which can only learn and function on a
single LFO frequency.

1. Introduction
The shift towards a more sustainable energy system
demands increased stability properties from the
hydropower fleet. Power system stabilizers (PSS),
formerly known as supplementary excitation control
systems, were developed to enhance the damping of
low-frequency oscillations (LFOs) and increase power
transfer limits [4, 5, 9–11]. In Norway, it is obligatory
to install PSS on synchronous generators with a capacity
of 30 MW and above (type D) [16]. The first PSSs were
installed in the Nordic power system around 1970 to
reduce power oscillations and increase power exchange
on the interconnections between Norway and Sweden.
PSS design and tuning were re-visited through the 1990s
when the system loading and demand for power exchange
increased, becoming one of the most cost-effective
solutions for enhancing power system stability [12].
Traditionally, PSSs are only tuned and validated during
the commissioning of the machine. These start-up settings
of the PSS have the intention to dampen a wide range
of low-frequency oscillations in the grid system during
operation [18]. However, as the power system develops
and expands with more intermittent energy sources such
as wind and solar, new challenges are introduced to
the operation of the power system. High-impedance
weak grid systems and reductions in short-circuit power
capabilities will transform the grid characteristics and
may adversely affect the damping performance of the
online PSS operation.
Over the past couple of decades, advancements in
machine learning algorithms and computing power have
enabled researchers to explore automatic calibration of
PSS parameters to changing grid conditions [2, 3, 15].
Moreover, [6] proposed two methods to enhance the small-
signal stability of a single-machine infinite bus (SMIB)
system. Firstly, a particle swarm optimization (PSO)

algorithm was used to determine optimal parameters for a
conventional power system stabilizer (CPSS) [8]. CPSS is
a simplified version of the PSS1A type PSS [1]. The PSO
algorithm optimizes the CPSS parameters for a specific
value of the external (Thévenin) impedance connecting the
synchronous machine to the infinite bus. However, PSO
algorithms are computationally expensive and potentially
slow at finding solutions. Hence, a simple feedforward
neural network (FNN) was used to map a range of external
impedance values to the corresponding set of optimized
parameters by the PSO algorithm. The end design is
an auto-tuning system that automatically adjusts CPSS
parameters in response to changes in the external network
impedance.
Secondly, a model-free approach to PSS design was
proposed in [6]. A simple FNN-based PSS, called the sine
shifting neural network (SSNN) controller, was developed
without relying on complex electrical machine theory.
Unlike the first method, which augmented the CPSS with
an auto-tuning system based on artificial neural networks,
the SSNN controller completely replaces the CPSS.
This paper proposes replacing the simple FNN
architecture of the SSNN controller with a more
complex neural network architecture to improve the
stability performance of the PSS when subjected to a
wide range of LFO in the electricity grid. Specifically,
the proposed approach, which is called the Sine Shifting
LSTM (SSLSTM) controller, uses a Long Short-Term
Memory (LSTM) neural network, which is a type of
recurrent neural network (RNN) architecture, to expand
the operational range of the SSNN controller. While the
SSNN controller can only function correctly over a single
LFO frequency, the proposed SSLSTM controller can
operate effectively over a wide range of LFO frequencies
(0.1 to 2.5 Hz) with minimal performance impact.
Moreover, a detailed discussion on best-practice for
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picking training sets and training options is included.
The paper is organized as follows. Section 2 briefly
describes the excitation control system of synchronous
generators and CPSS’s role in the control loop. Section
3 describes the SSNN controller, while section 4 describes
LSTM networks. Section 5 describes the proposed
controller. Simulation and results are presented in Section
6, and results are discussed in Section 7. Finally,
conclusions and future work are given in Section 8.

2. Excitation systems
A typical excitation control system consists of an exciter,
automatic voltage regulater (AVR), and a PSS. The AVR
regulates the generator terminal voltage by controlling
the amount of current supplied to the generator field
winding by the exciter, while the PSS is a feed-forward
supplementary control device. The primary function of
the PSS is to damp generator rotor oscillations (LFO’s)
and enhance both steady-state stability and transient
stability. A well-tuned excitation system provides benefits
such as improved oscillation damping, relay coordination
and enhanced first-swing transient stability. Fig. 1
shows a block diagram of a grid-connected synchronous
generator’s excitation control system. In the figure, the
PSS output VPSS is an auxiliary control signal passed to
the AVR. The AVR input can be expressed as:

∆V∑ = ∆V + VPSS. (1)

Here, the voltage error ∆V is expressed as:

∆V = Vref − Vg. (2)

AVR + Exciter

PSS
Grid

Turbine

Generator

Step-up
Transformer

Figure 1: Block diagram of a grid-connected synchronous
generator’s excitation control system. In the figure, VPSS is
the supplementary control signal, ∆V is the voltage error,
∆E′

q(∆Ef )
is the quadrature component of the transient emf, ∆ω

is the speed deviation, Vref is the reference voltage, and Vg is the
generator terminal voltage [12].

Fig. 2 shows a block diagram of a CPSS. In this figure,
the CPSS is made up of four parts: (a) amplifier gain, (b) a
signal washout high-pass filter, (c) lead elements for phase
compensation, and (d) a limiter. In addition, some CPSS
also include a signal sensor and a low-pass filter stage,
which is not shown in the figure. A common signal used
as input in the CPSS is the speed deviation ∆ω. In most
studies the amplifier gain KPSS and the time constants of
the phase compensation stage are typically tuned to damp
the LFOs. The other parts of the CPSS ensure that it
functions as intended and does not disrupt the AVR action.

Classical tuning and performance evaluation of the PSS
are typically done through phases compensation, root
locus, and time domain analysis [9–11]. In phase
compensation, which is the most widely used approach,
the stabilizer is tuned to compensate for the phase lags
through the generator, the excitation system, and the
power system in such a way that torque changes are in
phase with speed changes.

a b c

d

Max

Min

Figure 2: Block diagram of a conventional PSS (CPSS) [6, 12].

3. Neural Network PSS design
In [6] a Sine Shifting Neural Network (SSNN) Controller
was developed. This approach has been evaluated in this
paper. The SSNN approach is based on the assumption
that the rotor speed deviation ∆ω can be considered a
damped sinusoidal signal. However, the neural network
used to build the controller was trained on a sinusoidal
signal without taking damping into account. That is, the
controller input, the speed deviation ∆ω was expressed as:

∆ω ≈ As sin(ωst). (3)

Here, As and ωs are the amplitude and the frequency of
the sinusoidal signal, respectively. Also, the controller
output was expressed as an identical, phase-shifted sine
wave

∆̂ω ≈ As sin(ωst+ β). (4)

where β is a control variable that represents the desired
phase shift. Ideally, the controller would require only
two inputs: the speed deviation ∆ω and the desired
phase shift β. However, since the SSNN controller was
designed using FNN, which is a simple neural network
architecture without internal memory, additional inputs
were required. The additional inputs are the speed
deviation values at the two previous time steps: ∆ω

∣∣
t=t−1

and ∆ω
∣∣
t=t−2

. Algorithm 1 shows the pseudo-code
for generating the SSNN training data. In essence, the

Algorithm 1 Pseudo-code to generate the training
data set for the SSNN controller [6]. An FNN-based
SSNN requires four inputs.

1: for Every amplitude Ai in A’s range do
2: for Every phase shift βj in β’s range do
3: for each time step tk in one period do
4: SSNN input 1 = βj

5: SSNN input 2 = Ai sin(ωtk)
6: SSNN input 3 = Ai sin(ωtk−1)
7: SSNN input 4 = Ai sin(ωtk−2)
8: SSNN output = Ai sin(ωtk + βj)
9: end for

10: end for
11: end for

additional inputs serve as external memory cells to the
SSNN. However, information stored in these memory
cells is lost as new data is measured, which limits the
functionality of the SSNN. Furthermore, the performance
assessment in [6] showed that under the FNN architecture,
the SSNN performs well only at the frequency at which
it was trained. In addition, a slight attenuation or gain
was observed in the amplitude when β ̸= 0. The
results indicate that a controller based on FNN can only
output the correct amplitude for undamped sine waves.
This is evident from the amplitude of the oscillations
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in the results; until the amplitude decays, the controller
outputs the correct amplitude. For damped sine waves,
the controller outputs the correct amplitude only when
β = 0. Moreover, according to [6], it is practically
impossible to train an FNN to differentiate between sine
waves of different frequencies; training SSNN for more
than one frequency under the FNN architecture results in
a network that performs as if it were trained on the average
of all the frequencies. Consequently, the results in [6]
show the controller’s performance deteriorates rapidly at
all frequencies except for the one for which it was trained.
To correct the amplitude and the phase drift, [6] describes
several approaches. One approach assumes that the
frequency of oscillation is known at the time of the
disturbance and proposes training several SSNNs at
different frequencies and enabling the one that was trained
for the current frequency of the oscillation. However, this
approach of multiple SSNNs is valid only if the oscillation
frequency can be determined in real-time and relatively
fast to avoid degrading the PSS’s initial performance.
In this work, the frequency of oscillations is considered
to be unknown, but it is assumed to be in the range of
0.1 − 5 Hz. If the oscillation frequency is unknown, [6]
proposes using a more complex neural network to correct
the amplitude and the phase drift, namely RNN and the
LSTM architecture.

4. Long Short-Term Memory network
For a better understanding on the underlying architecture
in the proposed method this section describes the Long
Short-Term Memory (LSTM) network. LSTM is an
advanced type of RNN that is capable of learning long-
term dependencies between time steps of time-series data
or any other type of sequential data [7]. Fig. 3 shows a
block diagram of an LSTM cell (left) and LSTM layer
(right). A single LSTM layer can contain N LSTM cells,
where N depends on the length of the longest sequence of
interest. In addition, it is also possible to stack several
LSTM layers in a single neural network architecture to
create deeper LSTM networks.
Furthermore, each LSTM cell consists of three gates: (a)
a Forget gate, which controls what information should be
discarded from the old cell state ct−1, (b) an Update gate,
which controls the flow of new information into the new
cell state ct, and (c) an Output gate, which controls the
value of the next hidden state ht (also called the output
state). At time step t, the cell state ct and the hidden state
ht are expressed as:

ct = ft ⊙ ct−1 + it ⊙ gt (5)

ht = ot ⊙ σtanh(ct). (6)

Here, the symbol ⊙ denotes the Hadamard product
(element-wise multiplication). Moreover, the functions ft,
it and ot are given by:

ft = σsigmoid(Wfxt +Rfht−1 + bf ) (7)

gt = σtanh(Wgxt +Rght−1 + bg) (8)

it = σsigmoid(Wixt +Riht−1 + bi) (9)

ot = σsigmoid(Woxt +Roht−1 + bo). (10)

Here, the matrices W , R, and b represents the learnable
parameters (weights) of the LSTM cell. To view and
analyze the learnable parameters in MATLAB, the neural
network can be imported to the Deep Network Designer
app, which can analyze the network parameters. For
example, Tab. 1 shows the analysis results of an LSTM

LSTM Layer

+

Forget

Input

Output

Cell candidate

LSTM Block
Initial state

LSTM
Block

LSTM
Block

LSTM
Block

LSTM
Block

Final state

C
ell State

a)

b)

c)

Figure 3: An LSTM cell (left) and LSTM layer (right). In
MATLAB, the default activation function for ft, it and ot is
the sigmoid function (represented by green lines), while the
hyperbolic tangent function (tanh is represented by blue lines) is
used for gt [13, 17].

Table 1: Analysis results of an LSTM network with 128 hidden
units using MATLAB’s Deep Network Designer application. The
total learnable parameters in the network is 67.2× 103.

Type Properties
1 Sequence input −

2 LSTM
Weights: 1× 128
Bias: 1× 1

3 Fully Connected
InputWeights: 512× 2
RecurrentWeights: 512× 128
Bias: 512× 1

4 Regression Output −

network with 128 hidden units, where the number of
hidden units refers to the size of the hidden state ht.
Tab. 2 summarizes the hyperparameters of the LSTM
layer. In MATLAB, InputSize is automatically set at
training time. It is typically set to the number of features
in the data set. NumHiddenUnits (the hidden size) is
a hyperparameter that determines how much information
the hidden state can store from previous time steps.
This hyperparameter highly influence SSLSTM prediction
accuracy. OutputMode determines if the layer outputs the
complete sequence or the last time step of the sequence.
Since SSLSTM phase-shift one point at a time, this
parameter is set to ’last’. The last two hyperparameters
are the activation functions used in Equations 6 - 10.

Table 2: Hyperparameters of the LSTM layer.
Hyperparameter Value

1 InputSize auto
2 NumHiddenUnits 128
3 OutputMode last
4 StateActivationFunction tanh
5 GateActivationFunction sigmoid
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5. Sine Shifting LSTM Controller
In this work, a Sine Shifting controller based on LSTM
networks is developed to phase shift the speed deviation
∆ω to some optimal value. In the CPSS structure shown
in Fig. 2 the required phase shift is obtained using two
lead/lag stages. The time constants of these stages are
tuned to produce a control signal that induces positive
damping in the synchronous machine. Moreover, the
proposed SSLSTM controller like the SSNN controller
uses a single control parameter, β , to obtain the required
phase shift. However, in contrast to the SSNN controller
which can only function properly on a single LFO
frequency, SSLSTM can function on the entire range of
LFO frequencies.
The ability of LSTMs to predict discrete sine functions
was studied by [14]. However, in this work it is focused on
phase-shifting rather than forecasting future values. The
objective is to develop a simple controller with only two
control parameters, KPSS to control the gain, and β to
control the phase. It should be pointed out that the optimal
values of KPSS and β are outside the scope of this work
and left for future research.

5.1. Generating the training data sets
Training, validation, and testing data sets are required
to develop the machine learning model. In this study,
different techniques were evaluated to generate the data
sets: (a) an Expanding Window, (b) a Sliding Window, (c)
a Sliding Data, and (d) An Expanding-Sliding Window.
Depending on the technique, training time and model
performance may be adversely affected. Moreover, in
these techniques each predictor has a dimension of 2×W,
where W is the window width (A sequence contains at
least two points, therefore the minimum value of W is
2). However, the window length is fixed to 2 (the number
of features). Unlike the SSNN (Eq. 3 and Eq. 4), the
SSLSTM features e−λtAs sin(ωst) and β include the
Decay constant λ. Also, the targets, e−λtAs sin(ωst+β),
have a fixed dimension of 1× 1.
Fig. 4 shows the Expanding Window method. In this
method, the data sets consist of sequences of varying
width. This method guarantees that targets are generated
for all time steps {t1, t2, ..., tend}. However, this method
will add unnecessary information to all sequences beyond
SN . This implies that any target generated after the first
period will have a predictor pair that contains unnecessary
data points since one sine wave period contains all the
necessary information to learn λ and ω. Hence, a better
solution is to discard these redundant data points to save
memory space, reduce training time, and enhance training
performance.
In Fig. 5 the Sliding Window method is presented. In
this method, the data sets consist of sequences of fixed
width. This method guarantees that enough information
is contained in all predictors when the window width is
greater or equal to N . However, if the window width
is greater or equal to N , then no targets are generated
for time steps that comes before N . Moreover, Fig. 6
shows a comparison between the data sets generated by
the Expanding Window method and the Sliding Window
method. In the figure, no targets were created for t1
and t2 in the Sliding Window method. To create targets
for t1 and t2, either the window width can be reduced
from 4 to 2, or the time steps prior to t0 can be filled
with zeros (pre-padding the data array with zeros).
Fig. 7 shows the Sliding Data method, which is a slight
modification to the Sliding Window method. In this
method, as in the Sliding Window method, the data sets

Window width

Figure 4: (a) The Expanding Window method. In this method,
sequences have a variable length. Also, at some time tn, Sn

contains all previous data points.

Window width

Figure 5: (b) The Sliding Window method. In this method, the
window width is fixed. To illustrate, the window width is set to
two.

consist of sequences of fixed width. However, the data
points slide into the window. This slight modification
guarantees that targets are generated for all time steps,
as in the Expanding Window method. However, this
method pre-pads the window/predictors with zeros, which
results in an inefficient memory allocation for all targets
with predictors length less than the window width. This
is illustrated in Fig. 7 for the first three sequences
{S1, S2, S3}.
Fig. 8 shows the Expanding-Sliding Window method. This
method combines the Expanding Window and Sliding
Window methods to ensure memory-efficient generation
of targets for all time steps. In this study, this approach
proved to be the most effective method for generating the
data sets and was selected to develop the SSLSTM PSS.
Also, it is possible to add redundant data for the first
quarter of the first period using the Expanding Window
method to speed up and improve model training for early
predictions. To illustrate this, Fig. 9 shows a histogram
of a training data set generated by the Expanding-Sliding
Window method for 2.2, 3.2, and 4.2 Hz sine waves. In
addition, the figure illustrates how the Expanding Window
method can be used to add redundant data to the training
data set. However, it is advised not to add too much
redundant data or the model can overfit.
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Figure 6: A comparison between data sets generated by the
Expanding Window and the Sliding Window methods. Each
sample consist of two features and W data points. Where W is
the window width.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

Window width

Figure 7: (c) The Sliding Data method. In this method, the
data points slide into a window with fixed width. Although all
sequences has same number of data points, some might contain
zeros (pre-padding the sequences with zeros before training).

5.2. Neural network architecture of SSLSTM
The proposed neural network architecture of SSLSTM
is shown in Fig. 10 using Deep Network Designer
application in MATLAB. The network layers were
described in Tab. 1. In addition, zscore normalization
option was used in the sequenceInputLayer layer. Also,
the Output mode was set to ’last’ in the LSTM layer to
perform sequence-to-one regression.

5.3. Training options
This section describes MATLAB’s training options used in
this work. Moreover, Tab. 3 lists the training options used
in this study. Apart from the training options shown in the
table, no other changes were made to the default training
options. Throughout this study, the Adam optimizer was
used for training the network. In MATLAB, except for
solverName and Plots, all other options in the table are
considered optional arguments. These arguments can be
categorized based on their function into eight groups:

1st Period 2nd
Period

Window width

Figure 8: (d) The Expanding-Sliding window method. In this
method, the Expanding window and the sliding window methods
are combined to improve the model performance.

(a) Plots and Display options, (b) Mini-Batch options,
(c) Validation options, (d) Solver options, (e) Gradient
Clipping options, (f) Sequence options, (g) Hardware
options, and (h) Checkpoints options.

Table 3: Training Options.
Name Value

1 solverName adam
2 Verbose 0
3 Plots training-progress
4 MaxEpochs 100
5 MiniBatchSize 2048
6 Shuffle every-epoch
7 InitialLearnRate 0.01
8 LearnRateSchedule piecewise
9 LearnRateDropPeriod 1
10 LearnRateDropFactor 0.95
11 GradientThreshold 1
12 SequenceLength longest
13 SequencePaddingDirection left

First, from the Plots and Display options, the option Plots
was set to "training-progress" to visualize the training
progress since it is easier to monitor the training progress
by the accuracy and loss plots of the validation and
training sets. The downside to this is that after training
the network for a long time, it can become difficult to tell
if the metrics are improving or not since the plots do not
automatically scale to the last few training iterations. In
this case, it is best to use Verbose to monitor the training
progress, which displays the training progress metrics in
the command window.
Secondly, under the Mini-Batch options, the number
of Epochs was fixed to a relatively large value when
comparing models with different hyperparameters. In this
work, the value of MaxEpochs typically range from 50
to 500, ensuring that the model does not get stuck in a
local minimum. Moreover, the value of MiniBatchSize is
a trade off between training speed and accuracy. In this
work, the max value of MiniBatchSize was limited by
the GPU memory, while the minimum value was limited
by the available training time. Setting MiniBatchSize
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4.2 Hz
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Figure 9: A histogram of a training data set generated by the
Expanding-Sliding Window method for 2.2, 3.2, and 4.2 Hz. The
redundant data generated by the Expanding window method does
not contain any new information, but it helps improve model
training speed on early targets by exposing the model to the data
more than once during one training epoch.

Figure 10: The proposed architecture of SSLSTM [13]. The
layers are described in Tab. 1.

to a small value increases the training time and the
regularization effect of mini-batches. Thus, the model
generalizes better, resulting in a lower validation’s Root
Mean Square Error (RMSE). In addition, it was observed
that shuffling the training data after each epoch helps to
reduce the validation RMSE. Thus, the option Shuffle was
set to "every-epoch".
Thirdly, for the Solver options the InitialLearnRate,
LearnRateDropPeriod, and LearnRateDropFactor
were set with the options MaxEpochs and taken Shuffle
into account to give the best training performance. The
strategy adopted was to decrease the learning rate for
every few epochs as training data is shuffled. Also, for
Gradient Clipping options, GradientThreshold is set
to 1 instead of "inf" (default) to improve the training
stability at high learning rate. This helps prevent gradient
explosions and speeds up the training process.
Finally, from the Sequence options,
SequencePaddingDirection was set to "left". This
is because any padding done in the final time steps of
the sequence can negatively impact the training process
in a Sequence-to-one regression. For SequenceLength,
the value depends on the method used for generating the

data. When the Expanding Window method was used,
the sequence length was set to "longest". In this case, the
sequences in each mini-batch are padded to the length of
the mini-batch’s longest sequence. However, when the
Sliding Window method is used, the sequence length is
set to the length of the longest possible sequence; it was
set to the length of one period of the lowest frequency of
interest. For example, if the lowest frequency considered
is 0.1 Hz, and the step size is 10−3, then SequenceLength
is set to 104.

6. Results and validation
In order to demonstrate SSLSTM’s ability to learn
multiple frequencies and decay rates, four simulation tests
were conducted for β ∈ {0◦, 45◦, 90◦, 180◦}. In these
tests, the SSLSTM was trained on the data range in Tab. 4
with a step size of 0.5 × 10−2. Fig. 11, 12, 13, and 14
show the results of these tests. In the figures, SSLSTM’s
predictions match the ground truth (the ideal expected
output) over a wide range of β, while SSNN’s predictions
only match when β = 0.

Table 4: Data resolution and range. ω: frequency, λ: decay rate,
A: sine amplitude, β: phase-shift.

Lower bound Upper bound Resolution
ω 2.2 Hz 4.2 Hz 3
λ 0 1 10
A 1× 10−5 0.1 10
β 0◦ 180◦ 9
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Figure 11: SSLSTM performance with β = 0◦.

The equations describing the dynamics of a synchronous
generator during transient operation are quite stiff e.g., fast
changing differential equations. Hence, often small step-
sizes of Ode solvers are desired. In [6] the solver (ode23tb
variable-step) step size was set to 3×10−5. In this work,
it was not possible to generate training data with a step
size of 3 × 10−5 due to limited hardware resources. To
validate and compare the performance of SSLSTM and
SSNN, both models were trained with a step size of 10−3.
Fig. 15 shows the simulation results for SSLSTM and
SSNN when a disturbance occurs after 4s of simulation
time.
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Figure 12: SSLSTM performance with β = 45◦.
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Figure 13: SSLSTM performance with β = 90◦.

7. Discussion
In this work, the neural network architecture and the
training options were tuned to improve the model
performance. These are summarized in Tab. 1, Tab. 2,
and Tab. 3. Nevertheless, training LSTM models is
computationally expensive compared to FNN models
since the predictors of LSTM models are sequences. In
this work, to train and tune the models in a reasonable
amount of time, the training data was generated with the
smallest possible step size and limited to the range of
interest. Although it is possible to reduce the amount of
data generated by increasing the step size to 10−2 and
instead train the model on more frequencies and decay
rates, it would decrease the controller performance on
LFOs in the upper range. For example, a control action
each 0.01s maybe sufficient to damp 0.1 Hz LFOs, but it
might not be sufficient to damp 3 Hz LFOs effectively.
A step size of 10−3 achieves the best possible model
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Figure 14: SSLSTM performance with β = 180◦.

Figure 15: A comparison between SSLSTM and SSNN in
damping the dominant mode of oscillation (3.2 Hz) of the
machine under study. The disturbance occurs after 4s of
simulation time.

accuracy and generalization capability in the range of
interest while keeping model training and tuning time to
a minimum. Also, besides the data resolution and step
size, it is also possible to generate more observations by
generating more periods per sine wave. When generating
targets for the current period, it makes sense to discard
data points from the previous period to save memory
space. Thus, the Sliding Window method is preferred to
generate predictor sequences for targets after the second
period. It is also possible to increase the sliding window
width to include more information in each predictor.
While this would increase the model accuracy at the cost
of increased memory usage, it will not improve the model
generalization capability. Thus, this approach was not
preferred in this work. It is also possible to improve the
model accuracy at the cost of training time by increasing
the number of epochs and reducing the mini-batch size.
In Fig. 11, 12, 13, and 14, SSLSTM’s ability
to learn multiple frequencies and decay rate was
demonstrated. Moreover, In Fig. 15 SSLSTM and SSNN
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performance was compared. Both controllers showed
similar performance, which is to be expected since
both controllers were trained on the LFO’s frequency.
However, SSLSTM shows a slightly worse performance,
this is likely due to SSLSTM’s lower prediction accuracy
compared to SSNN’s accuracy. Although SSLSTM’s
prediction accuracy is lower, it has a better generalization
capability; unlike SSNN, it can phase shift sine waves with
different frequencies and decay rates correctly.

8. Conclusion
In this paper, LSTM networks were used to develop a
new sine-wave phase shifter for stability enhancements
of electric power systems through the PSS. Simulation
results show promising results and the main findings are:

• LSTM networks are capable of learning and tracking
sine waves with multiple frequencies and decay
rates.

• SSLSTM outperforms the SSNN controller at all
frequencies except for the one SSNN was trained to
phase shift.

• Training LSTM networks to learn periodic signals
with a wide range of frequencies entails selecting the
smallest step size to sample the highest frequency of
interest while avoiding increasing the computational
load significantly during model training. Training
LSTM to learn long sequences, such as a 0.1 Hz
LFO with a high sample rate, requires significant
computing power.

• Carefully selecting the best method to generate the
training data set can significantly improve the model
performance.

Suggestions for future work:

• Develop an online adaptive PSS by combining
SSLSTM and auto-tuning algorithms to adjust β and
KPSS during operation.

• Combine LSTM with other neural networks to
improve prediction accuracy and reduce the amount
of data required to train the LSTM network.
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Abstract

Existing thermal condition and indoor air quality have a big impact on our work performance, comfort, and health in an indoor
environment. Apart from many other parameters, door motions and human movements play crucial role in mass and thermal
exchange affecting safety and/or energy management issues in various situations. An isolation room in a hospital setup, for
instance, helps to protect patients and staff against the risk of infection by airborne pathogens. Another example is cold storage
room facilities, where temperature and moisture control are the key parameters for an optimal operation and energy usage.
In this study, we present a transient flow analysis of door motions in indoor environment. The flow physics is resolved by
solving 3D compressible RANS (Reynolds-averaged Navier-Stokes) equations together with the energy and species transport
equations and two-equation turbulence models utilizing an overset mesh strategy to address the rigid body motion of doors in a
relevant fluid domain involving air and sulfur hexafluoride (SF6). Simulations are performed for three different types of doors,
namely a hinged door, a two-way sliding door, and a sliding door considering door opening and closing phases. Transient
flow-field data through the door opening area have been processed and a comparative analysis is performed considering the
mass flux of the constituents, normal velocity, cumulative mass exchange through the different doors.

1. Introduction

We spend the majority of the time in indoor
environment and our work performance, comfort and
health are heavily impacted by the indoor temperature
and air quality. In certain special environments,
such as hospital isolation rooms and clean rooms, it
is particularly important to understand the process of
pollutant transmission. In healthcare settings, isolation
rooms are used to contain infectious patients or to protect
vulnerable patients from infection. On the other hand, in
cold storage room facilities, for instance, the temperature
and moisture control are the key parameters for an optimal
operation and energy usage. These are widely applicable
for industries like food, pharmaceutical, photographic
and more. Multiple coupled interactions, involving heat-
mass-momentum transfer and phase change of constituent
components play important roles during the operating
condition of a cold storage room in such applications.
Among several other factors, infiltration of hot and moist
air through open doors become crucial for the infiltration
load and the performance of buildings. Often, a big
difference in temperature exists between the adjacent
rooms and this may alter due to the door opening. In these
scenarios, understanding of air flow, mass/heat exchange
by the opening of a door is beneficial for control strategies.
The effect of door motion is not only relevant for special
rooms. It is also very relevant for example in educational
and office buildings. It can be realized that the analysis of
the combined effect of human motion along with and the
door openings are necessary often for predicting realistic
situations. In their study, Tang et al. [1] emphasized that
there is likely to be some leakage across the doorway
to a lesser or greater degree as a human moves through

the door at a reasonable walking speed affecting the flow
physics. Shao et al. [2] and Kalliomäki et al. [3] have
drawn similar conclusions in their experimental work. In
the following paragraph, we provide a brief account of
both experimental and numerical studies of the literature
regarding this field.

Several studies show that door opening motion
generates a notable air exchange and airborne contaminant
transfer across a doorway. This effect is especially
notable for a hinged door [1, 3–6]. Also, the effect is
larger when a person passes through a doorway. The
amount of contaminant transfer is influenced by door hold
open time and temperature difference. Tang et al. [7]
investigated a clinical situation where a severe case of
adult chickenpox was managed in a negative pressure
isolation room, with no adjacent anteroom. Previous
studies have also shown that the hinged doors allow
more mass exchange than sliding doors. In the similar
context, Eames et al. [8] have estimated motion and
diffusion of a contaminant in an isolation room, in
the absence of differential pressure. Several authors
performed experimental studies, often with smoke as
tracer fluid or particle generators to simulate transmission,
e.g. small scale model of adjacent rooms [9], connected
rooms [10], clean room with double hinged door [2]. In
this regard, Hathway et al. [11] performed a field and
small scale study of rooms with hinged type doors in
office and hospital settings. They have used water as
the tracer fluid in their small scale model showing that
there exists a linear relationship between time doors are
held open and air volume flux. On the other hand, the
experimental works presented in [3, 12–14] considered
full scale models and realistic setups. In the context of
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the recent pandemic situation, Bhattacharya et al. [15]
investigated positively pressurized room with a physical
model. The goal of their study was to examine the
possibility of the COVID19 virus, contaminating clean
areas due to the door opening and closing motion.
Apart from experimental approach, Computational fluid
dynamics (CFD) simulations are widely used to resolve
detailed, complex flow dynamics associated with the
indoor environment. Numerical approach via CFD
solutions are increasingly used nowadays in design,
optimization of ventilation systems, and the prediction
of air movement in ventilated spaces. Several studies
[4, 16–22] reported CFD analysis of the effect of the door
motion in various scenarios. Among these [18, 19, 22]
analyzed cold storage facilities and Zhang et al. [21]
studied refrigerated vehicles via numerical approach. Note
that the experimental work of Tang et al. [1] revealed that
sliding doors (single or double) are advantages over the
more conventional hinged-door towards general infection
control purposes. However, systemic numerical studies
addressing a comparison of different type of door motions
are not abundant.

In this work, we revisit and explore the effect of
door opening motion considering three different types
of door by numerical approach. To address this, we
solve 3D compressible RANS equations together with the
energy and species transport equations and two-equation
turbulence models are used to account the effects of
turbulence. An overset mesh strategy is utilized to resolve
the rigid body motion of doors in a relevant fluid domain
involving air and SF6 as working fluids. The article is
organized as follows. First, we present the governing
equations and numerical setup for the different cases in
section 2. The description of the problem setup is provided
in section 3, followed by results and discussions in section
4. Finally, the conclusions are drawn in section 5.

2. Method

2.1. Governing equations

The multi-component gas system consisting of air
and SF6 is governed by 3D compressible Navier-
Stokes system of equations together with mass, species
conservation and energy conservation equations. For any
conserved property (ρϕ), the general transport equation
can be expressed as in the following standard notation
[23]:

∂ρϕ

∂t
+

#»∇ · ρϕ #»
V =

#»∇ · Γ #»∇ϕ+ Sϕ, (1)

where ρ is the density,
#»
V is the velocity and Γ is the

diffusion coefficient. The first and second terms in
the left hand side are known as the temporal term and
the advection term respectively. The right hand side
consists of the diffusion term and the generation term
(Sϕ). We solve the unsteady Reynolds averaged Navier-
Stokes (RANS) formulation and Realizable κ − ϵ model
is used for turbulence. The multi-component gas mixture
is assumed to be Newtonian fluid and follow ideal gas
law. The finite volume method (FVM) based commercial
CFD tool StarCCM+ is used to perform the simulations.
An overset mesh strategy is employed to address the
rigid body motion of the doors in the fluid domain. A
background mesh (throughout the computational domain)
and overset mesh (section of domain, including door and

a surrounding region of choice) are generated for this
purpose. The time varying rigid body rotation/translation
motion is applied according to the desired door motion
by setting the motion parameters associated with the
door geometry. The overall setup of the different test
cases is described in section 3. The brief description of
the numerical schemes used in the present study is as
follows. Second order upwind schemes for convection,
hybrid Gauss least-squared gradient method based 2nd
order schemes for diffusion and Venkatakrishnan limiter
function are chosen in solver setup. Second order
implicit scheme (Newmark method) is used for time
integration with a time step ∆t = 0.005 s. Algebraic
Multi-Grid (AMG) techniques are also invoked with
the setup mentioned above. In Star-CCM+, under
physics continua, the following models were chosen:
coupled energy, coupled flow, coupled species, gradients,
ideal gas, implicit unsteady, k-epsilon turbulence, multi-
component gas (with air and SF6 as gas components),
non-reacting, overset conservation, realizable k-epsilon
two-layer, Reynolds-averaged Navier-Stokes, solution
interpolation, three dimensional, turbulent, two-layer all
y+ wall treatment, and wall distance. Standard values
were used for all of these, excluding multi-component gas
composition. The gas mixture composition is assigned as
desired and is given in section 3.

RoomDoor

L

H

W

Figure 1: 3D view of the computational domain.

(a) hinged (b) two-way sliding (c) sliding
Figure 2: Partially opened doors.

Table 1: Dimensions of the model
W (m) L (m) H (m)

Boundary 3.60 3.80 2.75
Outer wall 2.405 2.85 2.6
Inner wall 2.105 2.55 2.45

Two-way sliding door 0.15 0.5 1.98
Single door 0.15 1.00 1.98
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Figure 3: left: mid x-y plane (top view), middle: mid x-z plane (side view), right: presentation grid (y-z plane) at t = 2.0s

Figure 4: Flow visualization of Case-1, left: t =1s, middle: t =2s, right: t =3s.
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Figure 5: Flow visualization of Case-2, left: t =1s, middle: t =2s, right: t =3s.

3. Problem setup

A room with a door and a simplified connected outer
corridor type area is made as computational domain (see
the schematic in figure 1). Table 1 summarizes the Length
(L), Width (W) and Height (H) of different components
of the computational domain. All walls of the room are
considered adiabatic. The initial condition of the fluid
domain is set as: temperature, T = 300K, velocity
field

#»
V = 0, pressure P = 101325Pa, turbulent kinetic

energy k = 1.0e−3 J/kg and turbulent dissipation rate

ϵ = 1.0e−6 m2/s3. The mass fraction of the SF6 in the
outer region is set as YSF6 = 0.00058. This corresponds
to the concentration of SF6 to be 706.2 mg/m3. The room
is considered as filled with pure air and devoid of any SF6

at the initial state. The initial condition of mass fraction of
SF6 is similar to that reported by Chang et al. [4].

In this work, we consider three different type of doors,
namely hinged, two-way sliding (also known as double
sliding) and sliding. Figure 2 shows orientation of the
partially opened doors for all three cases. The door
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Figure 6: Flow visualization of Case-3, left: t =1s, middle: t =2s, right: t =3s.

opening-closing motions are assigned to different types of
doors as follows. For hinged door, we set the opening
with -0.785 radian/s during 0 < t ≤ 2s and closing
with +0.785 radian/s when 2s < t ≤ 4s. In case of the
two-way sliding door, the opening is set to ±0.25 m/s
during the initial 2s and the closing is set for next 2s
with ∓ 0.25 m/s. Similarly, the door motion of sliding
door is set as opening with +0.5 m/s during initial 2s
and closing with -0.5 m/s when 2s < t ≤ 4s. Suitable
user defined field functions are assigned to apply these
door motions and to set initial mass fraction distribution
in the computational domain. Simulations are executed
till the final physical time reaches 4 second for all cases.

The mesh for the simulations consists of a background
mesh and an overset mesh around the moving door.
Additionally, we use refined mesh near the entrance of
the door to resolve the flow physics. Note that the
refinement zone varies depending upon the type of the
door. The background mesh size was set to 20cm, the
overset mesh size was set to 2cm, and the refinement
mesh size was set to 4cm. The background mesh and
the overset mesh region had two prism layers, while the
refinement mesh region had five prism layers. For this,
we have used the "Trimmer" mesh model of StarCCM+.
Figure 3 illustrates the mesh setup for the hinged type
door. The total number of cells (background cells together
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with the cells in the overset region) are 673221, 400539,
and 529740 for hinged door, sliding door and two-way
sliding door respectively. A suitable “derived part” called
presentation grid is generated at the location of door to
record time varying solution data and analyze the mass
exchange through the door opening. This is shown in
figure 3 as an example with hinged door. The presentation
grid contains 20×40 data points for post processing giving
a resolution of ∆y = ∆z ≈ 0.05m.

4. Results and discussions

We define Case-1 as hinged door, Case-2 as two-way
sliding door and Case-3 as sliding door henceforward. We
will present the results of each case with line integral
convolution (LIC) of

#»
V and contour plots of other field

variables mainly in three different planes. As shown
in figure 3, these are the mid x-y plane (top view),
mid x-z plane (side view) and presentation grid (y-z
plane). Figures 4, 5 and 6 are for Case-1, Case-2 and
Case-3 respectively. Note that these plots are presented
systemically as follows: topmost row with LIC of

#»
V (top

view), second row from the top with YSF6 (top view), third
row from the top with contours of YSF6 (side view), second
row from the bottom with contours YSF6 (presentation grid
i.e., door frame) and bottom row with contours of u-
component of

#»
V (presentation grid i.e., door frame).

4.1. Flow evolution and general characteristics for
different types of doors

The time evolution of door opening and closing for
Case-1 is depicted in figure 4. First, it can be clearly seen
from the LIC of

#»
V that quite large vortex structures exist

during the flow evolution. The hinged door makes and
angle of ≈ 45◦ at 1s during the opening phase, ≈ 90◦fully
open at 2s and in the closing phases at 3s it again makes an
angle of ≈ 45◦. The complex, highly three dimensional
shear/mixing layers are clearly seen from the distribution
of mass fraction of SF6 in x-y, x-z and y-z planes revealing
a substantial extent of mixing of SF6 from outside into the
room. The u-component of the velocity field is normal to
the door opening plane. Note that a positive u-component
is associated with the normal velocity field that is entering
to the room. On the other hand, a negative u-component
is associated with the normal velocity field that is leaving
the room. The contours of u-component match well with
the contours of YSF6.

Figure 5 illustrates the flow development of Case-2.
Note that, similar to the hinged door, two-way sliding
door completely opens at 2s and closes at 4s. The door
remains approximately half open at 1s and 3s during the
opening phase and during the closing phase respectively.
Noticeably, the vortex structures are entirely different than
a hinged door. Also, it is clear that the penetration of
mixing due the door induced movements are relatively
less in this case compared to Case-1. Nevertheless,
the contours of YSF6 and u-component of the

#»
V at the

door frame reveal the existing complex three dimensional
nature of the mixing process. One could realize that the
shear-layer instability induced by the door motion in Case-
2 is different than Case-1.

The results for Case-3 are depicted in figure 6. Note
that, due to the existing dimension of the room the

sliding door is not completely open (≈ 80% open). The
mixing behavior shows some two-dimensional nature in
the middle region of the door opening. These can be seen
from the contour structures of YSF6 and u-component of the
velocity (see y-z planes). The three dimensional nature is
visible in the upper and lower parts of the door opening
area. This corroborates the mixing layer behavior visible
at x-y plane (second row from the top of the figure 6).
The contours of u-component of the velocity (positive and
negative patches) are in accordance with the contours of
YSF6.

4.2. Quantitative comparison of different doors

In order to quantify the mass of SF6 exchanged through
the door opening area one need to estimate first the surface
averaged flow rate of SF6,

ṀSF6 =

∫∫
A

(ρYSF6
#»
V · n⃗ dA) (2)

where the A represent the door opening area. The
instantaneous mass of SF6 exchanged can thus be
calculated by MSF6(t) = ṀSF6 dt. The transient data
stored via presentation grid mentioned before is used to
compute this. We compare MSF6(t) and the cumulative
exchange of mass of SF6 exchanged through the door
opening for all cases. Figure 7 shows the instantaneous
exchange of mass of SF6 through the door opening for
each case. The comparison of the cumulative exchange
of mass of SF6 through the door opening is presented in
figure 8.

Table 2: Comparison of mass exchange at t = 4 s.
Cumulative mass of SF6 exchanged

(kg)
Case-1 ≈ 1.30e−4

Case-2 ≈ 2.79e−5

Case-3 ≈ 2.87e−5

It can be seen from figure 7a that during the door
opening phase of Case-1, the mass of SF6 through the
door remains mostly positive meaning the net influx into
the room. On the other hand, during the closing phase
of 2s to 4s the mass exchange changes sign after ≈3.5s.
This passes through an oscillatory behavior around 2.7-
2.8s. In figure 8a, the cumulative exchange of mass of
SF6 reflects these behaviors. The opening phase of the
door opening shows almost linear growth, and a local
saturation of the mass exchange occurs between 2-3s. The
cumulative mass exchange drops to 1.30e−4 kg at 4s after
a global maximum of ≈ 1.52e−4 kg. Case-2 and Case-
3 show local spikes at the instance of change the door
motion from opening to closing direction. Similar spikes
(not shown for brevity) are observed of the average u-
component of the velocity field through the doors at those
instances for Case-2 (0.51 m/s) and Case-3 (−0.044 m/s)
accordingly. Our preliminary mesh dependency study
considering 4cm, 3cm and 2cm refined mesh sizes in the
door interaction zone reproduces this behavior for Case-3.
However, note that a detailed mesh sensitivity analysis is
not performed taking the complete computational domain.
Nevertheless, the behavior of the instantaneous mass
exchange of Case-2 is different than Case-3. During the
door opening phase, we found a relatively smooth non-
linear growth in the cumulative mass exchange for Case-
3. At the final stage (4s), the values for both Case-2 and
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(a) hinged door (b) two-way sliding door (c) sliding door
Figure 7: Comparison of instantaneous exchange of the mass of SF6.

(a) hinged door (b) two-way sliding door (c) sliding door
Figure 8: Comparison of cumulative exchange of mass of SF6.

case-3 yielded comparable magnitudes. However, these
are an order of magnitude lower than Case-1. Table 2
summarizes the cumulative mass exchange of SF6 through
the different doors. Table 3 shows the CPUh required for
each simulation.

Table 3: Computing time
Central Processing Unit hours (CPUh)

Case-1 ≈ 145
Case-2 ≈ 66
Case-3 ≈ 68

5. Conclusions

In this study, we presented a systematic analysis of mass
exchange through the door opening and closing scenarios
for three different types of doors. The complex unsteady
flow physics involves multi-component gaseous system
with rigid body motion of the doors. We solved 3D
compressible RANS equations together with the energy
and species transport equations. The effects of turbulence
are resolved by two-equation turbulence models. An
overset mesh strategy is employed to address the rigid
body motion of doors in a relevant fluid domain consisting
of air and SF6 s working fluids. Simulations are made
until the physical time reaches 4 second. The initial 2s
is meant for door opening while door closing phase is
performed during the last 2s. The detailed flow dynamics
of each test cases have been illustrated with the contours
of flow-field variable. The preliminary findings of the
comparison reveal that under the similar condition the
overall cumulative exchange of mass is SF6 is about an
order of magnitude less for both two-way sliding door
and sliding door when compared with hinged door (≈ 4.6
times less). Matching with previous findings the case with
hinged door is found be associated with most complex 3D

mixing layers with maximum mass exchange. With the
present setup, we observed similar mass exchange for two-
way sliding and sliding door.

The authors would like to emphasise that the
present study lacks comparison and validation of these
preliminary findings with experimental data. We
will consider the limitations of the present study in
our subsequent work. The future work will also
consider systematic numerical analysis of thermal effects,
ventilation strategies, human motion in realistic indoor
environment with different scenarios, different door and
room size ratios.
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Abstract 

 

It takes money, time, and energy to set up an experimental grid to measure the effectiveness of fire suppression 

parameters. Therefore, computational fluid dynamics (CFD) is an alternative in all fields as consequences 

modeling. Fire Dynamic Simulator (FDS) is a CFD software developed by the National Institute of Standards in 

Technology (NIST) to model and generate the results for the spray models. FDS uses Large Eddy Simulation 

(LES) to represent turbulence. The current study utilizes FDS to investigate the extinguishing efficiency of 

sprinkler spray on a general fire. The study focuses on analyzing the effectiveness of suppression parameters 

using complex (polydisperse) in contrast to the simplified (monodisperse) representation of the spray with- and 

without a fire scenario of a 2560 kW propane fire. Measurements were taken by digitally enabled Phase Doppler 

Particle Analyzer (PDPA) to measure the fire suppression parameters such as number concentration, droplet size 

distribution (DSD) & velocity distribution. The measurements were taken 1.5 m downstream of the sprinkler. 

The suppression parameters are compared with monodisperse and polydisperse with and without fire. Thus, the 

suppression parameters have been compared to measure the effect. 

 

1. Introduction 

In domestic and industrial firefighting, the halon was 

widely used as a fire suppression agent for fixed 

installations. The advantage was the ability to 

extinguish fires without destroying the equipment or 

surroundings of the fire. However, this agent was 

banned due to its unfriendly nature to the 

environment. Thus, water was introduced as a fire 

suppression agent. Water mist and deluge (sprinkler) 

systems are vital and economical to use in industry, 

offshore sites, domestic buildings, and other general 

commercial structures. The effectiveness of these 

fire suppression systems is the central topic of 

discussion in the field. 

The effectiveness of the fire suppression systems 

can be done by conducting experiments. However, 

conducting experiments demands funds, time, risk, 

and workforce. Alternatively, the experiments can 

be replaced by Computational Fluid Dynamics 

(CFD) using Fire Dynamic Simulator (FDS) by 

NIST. FDS was designed to simulate thermally 

driven flows within buildings and uses the most 

straightforward rectilinear numerical grid. FDS is a 

Large Eddy Simulation (LES) model and prefers 

uniform meshing. In FDS, the water droplets are 

represented by Lagrangian particles. 

Many research scholars digitally enabled PDPA to 

quantify the effectiveness of the suppression 

parameters. For example, DesJardin et al. (2000) 

studied the effect of water spray suppression on 

large-scale pool fires by modeling in VULCAN 

based on KAMELEON-Fire code. VULCAN uses 

RANS model along with the k-ε turbulence model. 

The water mist spray was modeled in a 3.04 m 

closed entity investigating the temperature. The 

main findings indicate a strong sensitivity of fire 

suppression to initial droplet size, where injection of 

large droplets may cause an increase in overall 

temperature. Myers and Marshall (2016) and Liu et 

al. (2022) developed an Euler-Lagrangian 

representation of sprinkler spray using CFD with the 

results of Ren et al. (2011) and Zhou et al. (2012). 

Further, Liu et al. (2022) modeled hot air jets using 

FDS. Sheppard (2002) conducted full-scale 

experiments on characterizing the suppression 

parameters of spray like water droplet size, droplet 

velocity, and water flux using Particle Image 

Velocimetry (PIV) and Phase Doppler Anemometry 

(PDA) which is also known as Phase Doppler 

Particle Analyzer (PDPA). Bourque and Svirsky 

(2013) verified the inputs from Sheppard (2002) 

using FDS version 6. The main findings were water 

flux, droplet size, and velocity, which showed a 

decent result upon comparison. Sæbø and Wighus 

(2009) studied the droplet size distribution on a 

high-velocity sprinkler and medium-velocity nozzle. 

The full-scale experiment was conducted, and PDA 

and imaging techniques were used to check the 

Volume Median Diameter (VMD). The main 

findings showed that the imaging technique could 
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capture the large droplets in contrast to the PDA 

technique. Lundberg (2015) conducted the full-scale 

experimental characterization study of a sprinkler 

spray at 2.0 bar (g), 5.0 bar (g), and 8.0 bar (g). The 

research provided experimental data on droplet size 

and velocity distribution using shadow-image 

technique. 

The current study utilizes FDS to investigate the 

effect of detailed water spray characteristics in 

contrast to simplified monodisperse droplet size 

distribution for a fire water sprinkler spray. FDS 

uses a combination of log-normal and Rosin-

Rammler droplet size distribution as default. 

However, monodisperse can be selected. Using 

monodisperse droplet size distribution, the 

complexity of the simulation decrease, but the 

physical behavior might not get preserved. The 

current study uses input data from an experimental 

characterization study of a sprinkler spray 

performed by Lundberg (2021). The operating 

pressure is 2.0 bars with a Sauter mean diameter 

(SMD) of 419 μm. The mean diameter is assumed to 

give similar behaviour as the volume median 

diameter in the droplet model in FDS. 

The behavior is presented with and without a fire to 

benchmark the effect of polydisperse in contrast to 

monodisperse droplet size distribution in FDS. 

The fire is a propane fire with a Heat Release Rate 

Per Unit Area (HRRPUA) of 4000 KW/m2 with a 

0.64m2 fire vent area.  

 

2. Methods 

A medium velocity deluge nozzle (Tyco MV34-110) 

with a K-factor of 58.8 L/(min× √bar) is used in the 

current study to represent the sprinkler spray. A line 

1.5 meters perpendicular to the nozzle is used as a 

reference location for the behavior of the sprays. The 

Sauter mean diameter of Lundberg (2021) is used as 

Volume median diameter (VMD) and input to FDS 

as DIAMETER. Figure 1 shows the simulation 

matrix of the study for different scenarios. 

 
Figure 1: Simulation matrix 

FDS utilizes a digital PDPA technique to quantify 

the suppression factors at various levels down the 

sprinkler spray. A rectangular closed entity of 6.0 

m,6.0 m, and 4.0 m compromises the simulation 

domain. In FDS the code was written as follows, 
&MESH IJK= 60,60,40, XB=-3,3, -3,3, 

-2,2. 

The computational domain was discretized 

uniformly of 10 cm cell size. The cell size was 

selected based on the FDS user guide (McGrattan et 

al., 2021). with a fire area of 0.64m2 with a heat 

release rate of 4000 KW/m2. 

2.1. Simulation Parameters 

The simulations were performed using an editable 

".fds" input file in a command prompt in windows. 

The simulation time of 100 seconds was written in 

the line &TIME T_END=100. The simulation time 

was chosen based on result convergence and 

iterations.  

The water spray was inserted into the FDS with an 

offset of 0.30m through Lagrangian particles 

through the line &SPEC ID = WATER 

VAPOUR.OFFSET. The offset distance preserved 

the momentum of the spray.  

The water spray from the Tyco nozzle has a 110-

degree full cone shape giving 55 degrees half cone 

angle. The half cone angle was inserted in FDS by 

the line SPRAY_ANGLE=0,55. 

Since this study does not consider radiation's effect, 

the RADIATION is set FALSE to speed up the 

calculation. 

Since the Lagrangian method represents the spray, 

the number of numerical droplets has to be specified. 

The number for this study was 40000 by the line 

PARTICLES_PER_SECOND=40000. The 

number of droplets/particles was determined by 

recommendations from the user's support of FDS to 

get sufficient resolution of the distributions without 

dramatically increasing the simulation time. 

To represent the spray as a monodisperse spray, an 

extra line where added: MONODISPERSE=.TRUE. 

The polydisperse spray was represented by the 

default model for droplet size distribution, explained 

later in this work. The model input is an average 

droplet diameter and the shape parameters of the 

distribution (𝛾 and 𝜎). The average diameter was set 

to the Sauter mean diameter from Lundberg (2021), 

and the shape parameter was set to default 

(GAMMA_D=2.4). 𝜎 is just a function of 𝛾 (𝜎 =

1.15/𝛾). 

The spray was considered uniformly distributed at 

the offset for all the simulations 

(SPRAY_PATTERN_SHAPE=UNIFROM).  

The primary main input data used in the simulation 

code is mentioned in Table 1. 

 

FDS 

Simulation 

Sprinkler 2.0 

bar with fire 

Sprinkler 2.0 

bar without fire  

Mono-

disperse 

Poly-

disperse 

Mono-

disperse 

Poly-

disperse 
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Table 1: Primary input data used in the simulation code 

OFFSET 0.30 

K_FACTOR 58.8 

OPERATING_PRESSURE 2.0 bar 

SPRAY_ANGLE 0,55 

PARTICLES_PER_SECOND 40000 

SPRAY_PATTERN_SHAPE UNIFORM 

GAMMA_D 2.4 

2.2. Numerical Model 

The FDS uses governing equation upon mass, 

species, and energy transport. The domain was 

created computationally and discretized into 

multiple cells or control volume with a general 

variable ϕ. The airflow, including the thermal 

distribution, is simulated by solving one set of the 

coupled state conservation of mass, momentum, and 

energy (McGrattan et al.,2021.). 

2.2.1. Conservation of Mass 

The mass transport equation is solved using the basic 

predictor-corrector scheme. Conservation of mass 

states the rate of mass storage due to a change in 

density in the control volume, balanced by the net 

rate of mass inflow by convection (Bittern, 2004). 

Equation 1 is the mass conservation equation for 

lumped species (air, fuel, and products). 

 

∂ρ

∂t
(ρZα) + ∇. (ρZα𝐮)

= ∇. (ρDα∇Zα) + ṁα
′′′

+ ṁb,α
′′′  

(1) 

 

On the right-hand side is the addition of mass from 

evaporating droplets or other sub-grid scale 

particles. The bulk density can be found by summing 

all the species 𝜌 = ∑(𝜌𝑍𝛼)𝛼, Obtaining the 

summation equation. 

∂ρ

∂t
+ ∇ ∙ (ρ𝐮) = ṁb

′′′  (2) 

∂ρ

∂t
 

∇ ∙ (ρ𝐮) 𝐮 

Change in 

density for 

time 

Mass 

convection 

Vector 

describing 

velocity in u, v 

& w directions 

2.2.2. Momentum Transport Equation 

The momentum equation is derived from Newton's 

second law summing up all the forces acting on the 

control volume. The turbulence is modeled by LES, 

where Smagorinsky model the sub-grid scales. 

ρ
∂𝐮

∂t
+ ρ(𝐮. ∇)𝐮 + ∇ρ = f + ρg + ∇. τturb

(3) 

  

ρ
∂𝐮

∂t
 

ρ(𝐮. ∇)𝐮 ∇ρ f ρg ∇. τturb 

Mome
ntum 

forces 

Inertia 

forces 

 

Chan
ge in 

press

ure 

External 
force 

vector 

τij

= μ(2Sij

−
2

3
(∇. U̅)δij) 

Press
ure 

&Gra

vity 

Filtered 
turbulen

ce, sub-

grid 
scale 

Reynold

s stress 

2.2.3. Conservation of Energy 

The energy equation evaluates the energy 

accumulation due to internal heat and kinetic energy 

and energy fluxes associated with convection, 

conduction, radiation, the interdiffusion of species, 

and the work done on the gases by viscous stresses 

and body forces (Bitten, 2004). 

∂

∂t
(ρh) + ∇. ρh𝐮 −

∂ρ

∂t
+ 𝐮. ∇ρ = q′′′ −

∇. qr + ∇. k∇T + ∇.∑ h1(ρD)1∇Y11   
(4) 

  

Left Hand Side (L.H.S) Right Hand Side 
(R.H.S) 

𝜕

𝜕𝑡
(𝜌ℎ) + ∇. 𝜌ℎ𝒖

−
𝜕𝜌

𝜕𝑡
+ 𝒖. ∇𝜌 

𝑞′′′ − ∇. 𝑞𝑟 + ∇. 𝑘∇𝑇

+ ∇.∑ℎ1(𝜌𝐷)1∇𝑌1
1

 

The net rate of 

accumulation 

Energy gain or loss 

term to this 

accumulation on the 

left-hand side 

2.2.4. Heat Release Rate 

The heat release per unit volume is defined as 

summing the species' mass production rate times the 

respective heat of formations:  

 

q̇′′′F ≡ ∑ ṁα
′′′∆hf,α

0
α    (5) 

 

2.2.5. Droplet Transport Model 

FDS uses the Lagrangian approach for the droplet 

transport model. The velocity and position of a 

droplet are obtained from the conservation of 

momentum. The trajectory and function of each 

droplet satisfy the following equation:  

d

dt
(m𝐔) = m�⃗� −

1

2
ρCdπr2𝐔2 (6) 

where 𝑼 is the relative motion of the droplet to the 

ambient gas. The drag coefficient 𝐶𝑑, is the function 

of the Reynolds number based on the droplet 

terminal velocity, which is represented by 
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𝐶d = {
24/Re Re < 1

24(0.85 + 0.15Re0.687)/Re 1 < Re < 1000
0.44 Re > 1000

  (7) 

Reynolds number of a droplet is represented by  

 

𝑅𝑒 =
𝜌𝑼𝐷

𝜇
                  (8) 

2.2.6. Droplet Size Distribution Model  

FDS uses numerical droplets representing a 

collection of droplets to calculate the distribution 

pattern. The droplet size distribution is expressed as 

cumulative volume fraction (CVF) and 

characterized by a combination of log-normal and 

Rosin-Rammler distribution. 

 

F(d) =

1

√2π
∫  

d

0

 
1

σ ⋅ d
⋅ e

−
[ln(

d
dm

)]
2

2σ2 dD (d ≤ VMD)

1 − e−0.693 (
d

dm

)
λ

(d > VMD)

 (9) 

 

where 𝑑 is the generic droplet diameter and 𝑑𝑚 is 

the volume median droplet diameter. 𝛾 and 𝜎 are 

empirical constants for curve fitting of distribution 

patterns. 

The median droplet diameter is experimentally 

determined by sprinkler and nozzle orifice diameter, 

operating pressure, and geometry.  

2.2.7. PDPA Model in FDS  

Detailed suppression parameters are taken from 

spray parameters using digital Phase Doppler 

Particle Analysis to provide droplet size distribution, 

number concentration, velocity, and water flux 

distribution. FDS provides the output quantity that is 

available for PDPA. PDPA device output at time t is 

computed as a time integral (McGrattan et al., 2021). 

Figure 2 describes the output quantities of PDPA, 

which have been highlighted. 

 

 
Figure 2: Output quantities for PDPA (McGrattan et al., 

2021). 

2.3. Geometry 

Figure 3 and Figure 4 show the SmokeView image 

of the simulations with a monodisperse and 

polydisperse representation of the droplet size 

distribution, with and without fire. The geometry 

was 6 m in length, 6 m in width, and 4 m in room 

height, and all the boundary was set to open 

boundaries. The propane fire source for the fire 

simulations was appointed to a 0.8 m × 0.8 m area 

in the center of the lower side of the simulation 

domain. The cell size was kept as 10 cm cubes and 

uniform in all the dimensions, as shown in Figure 5. 

The PDPA was aligned at 1.5 m down from the 

sprinkler.  

 
Figure 3: SmokeView monodisperse (top) v polydisperse 

(bottom) with fire. 
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Figure 4: SmokeView monodisperse (top) v polydisperse 

(bottom) without fire. 

 
Figure 5: SmokeView of geometry with 10 cm mesh 

size. 

3. Results and Discussion 

3.2. Droplet Velocity 

The droplet velocity is an important characteristic 

used to determine the suppression parameter. Fire 

plumes have a positive upward velocity where the 

droplets can follow the fire gasses given insufficient 

downwards momentum. This may result in the spray 

unable to penetrate the fire plume and reach the base 

fire. In this present study, there is a comparison 

study made between monodisperse and polydisperse 

with and without fire scenarios. The velocity 

distribution is measured radially using PDPA, 

wherein Figure 6 seems there is no fire, and the 

droplets have a velocity of a maximum of 9.0 m/s for 

monodisperse and 5.0 m/s for polydisperse spray. 

Since droplets may be collapsing in the gas phase, 

the droplet diameter tends to break and loses its 

velocity when reaching 1.5 m down the sprinkler 

nozzle. For the polydisperse spray scenario, the 

velocity peak at the center and both ends at 

approximately 5.0 m/s. Compared to experimental 

results at 1 bar and 500 microns (Bourque and 

Svirsky, 2013), the 400 microns with 2.0 bar seems 

reasonable to the results obtained from the FDS. 

 

 
Figure 6. Velocity distribution, monodisperse and 

polydisperse at 2.0 bar 1.5 m down the sprinkler, without 

fire. 

In a fire scenario, the droplets tend to move upwards 

since the fire plume has an upward velocity as per 

Figure 7, measured at 1.5 m down the sprinkler 

nozzle. The monodisperse and polydisperse spray 

behave similarly since the spray can not oppose the 

velocity of the fire downwardly. The polydisperse 

spray penetrates further in the fire plume but is 

slower in the outer regions of the spray. 

 

 

Figure 7: Velocity distribution, monodisperse and 

polydisperse at 2.0 bar 1.5 m down the sprinkler, with 

fire. 

3.2. Droplet Size Distribution 

By default, the FDS uses Rosin-Rammler and log-

normal distribution. The PDPA considers the 

measurement of diameter as SMD. While there is no 

fire, Figure 8 gives the same output as 419 microns 

radially -1.5 m to +1.5 m, while there is a varied 

droplet size for the polydisperse spray. While 

observing the fire scenario, as per Figure 9, the 

center, about 400 microns for Sauter mean diameter, 

is recorded for polydisperse spray. However, the 

distribution gets minimal at distances further from 
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the center and peaks at the ends. The effect is 

because droplets evaporate due to the fire plume. 

On the other hand, the monodisperse spray records 

reduced droplet size to 215 microns at the center due 

to the fire plume. But it has approximately 400 

microns from -1 m to +1 m and spreads out radially 

from -2 m to +2 m. Thus, the bigger the droplet size, 

the more the probability of fire suppression as it can 

penetrate the fire plume. 

3.3. Number of Droplets 

Sprinkler sprays are composed of a large number of 

droplets. The number of drops without fire in Figure 

10 shows 2.5E6 for the monodisperse spray, which 

radially spread from -1.5 m to +1.5 m. While 

comparing, the number of drops for the polydisperse 

spray is measured as 15E6 at the center. Figure 11 

shows the impact of fire where the polydisperse 

spray reduces at the center, opposite the fire plume. 

Henceforth, the number of droplets on the center is 

close to 500 for monodisperse and 2E6 for 

polydisperse spray.  

 

 
Figure 8: Droplet Size Distribution, monodisperse and 

polydisperse at 2.0 bar 1.5 m down the sprinkler without 

fire. 

 
Figure 9: Droplet Size Distribution, monodisperse and 

polydisperse at 2.0 bar 1.5 m down the sprinkler with 

fire. 

 
Figure 10: Droplet size distribution, monodisperse and 

polydisperse at 2.0 bar 1.5 m down the sprinkler without 

fire. 

 
Figure 11: Droplet size distribution, monodisperse and 

polydisperse at 2.0 bar 1.5 m down the sprinkler with 

fire. 

3.4. Cumulative Distribution Function 

Figure 12 is data from the output of FDS. As 

expected, the CVF (cumulative volume fraction) for 

0.5 reads 419 µm since the FDS diameter input is for 

the median volume fraction. However, the CNF 

(cumulative number fraction) at 419 microns is 0.92. 

 

 
Figure 12: Cumulative distribution function. 

3.5. Accumulated Mass Per Unit Area (AMPUA) 

Figure 13 depicts the AMPUA by time for a 

monodisperse and polydisperse spray with and 

without fire. While observing Figure 13 at 60 

seconds of simulation (one minute), the total mass 

accumulated with fire and without fire for 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

monodisperse and polydisperse is shown in Table 1, 

indicating that evaporation has taken place, and the 

polydisperse distribution has a higher evaporation 

rate. 

Table 2: Accumulated mass flow for one minute with 

mono- and polydisperse distribution with and without 

fire. 

Monodisperse spray without 

fire 
83.1 kg/min 

Polydisperse spray without fire 83.3 kg/min 

Monodisperse spray with fire 69.3 kg/min 

Polydisperse spray with fire 61.7 kg/min 

 
Figure 13: Accumulated mass for mono- and 

polydisperse distributions with and without fire. 

4. Conclusion 

A comparison study is performed using the Fire 

Dynamic Simulator, FDS by NIST. A simple 

rectangular mesh domain is used to simulate the 

behavior of a sprinkler spray with and without a 

propane fire. The purpose of the work is to compare 

the behavior of monodisperse and polydisperse 

sprinkler spray. The investigated suppression 

parameters are droplet velocity, droplet size 

distribution, and the number of droplets. 2.0 bar is 

used to supply water pressure and 40,000 

Lagrangian droplets per second. The velocity model 

predicts that polydisperse spray differs from 

monodisperse spray in a fire. For droplet size 

distribution, monodisperse spray and polydisperse 

spray gives a similar output without fire and with 

fire, a various droplet distribution due to the 

evaporation and breakage of droplets. Finally, 

considering the number of droplets, a distribution 

exists in the measurements without fire, but with 

fire, it has a massive disturbance at the center, which 

proves the impact of fire on water droplets. Thus, 

this study can give the end user an idea for predicting 

fire suppression. 
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Abstract

Due to increasing shares of renewable electricity sources in the grid, thermal power plants need to operate in a more flexible
manner in the future. This will involve more frequent startups, shutdowns, and load changes. A central part of a thermal
power plant analysed in this study is the coal-fired boiler. In a previous study, a first-principle model of a sub-critical coal-
fired boiler has been developed and validated with operational data from a Polish power plant. Based on this model, this
work aims to develop a computationally efficient and sufficiently accurate data-driven model that is easy to implement in new
software. A selection of multi-output algorithms was first compared using nonoptimised parameters, with very few adaptations
to the data set. Then, each algorithm had undergone three different optimisation routines to tune the hyper-parameters. The
results of the nonoptimised models were compared with the optimised ones, and then compared to the reference first-principle
model using the average Mean Absolute Percentage Error as a score. The methods used comprise six base learners and
three algorithms using ensemble methods. The optimisation routines were based on the Powell conjugate direction method,
Bayesian optimisation and evolutionary algorithm. All the data-driven models had shown a lower percentage error than the
first principle model, and optimisation had resulted in improved prediction capacity for every base learner, but not for ensemble
method-based algorithms.

1. Introduction
It is expected that thermal power plants will need to
operate more flexibly in the future due to the increased
share of renewable energy sources in the grid. This
will lead to more frequent startups, shutdowns and load
changes. In order to aid this transition, there is a need for
models that can describe the transient behavior of such
power plants. As a result of the thermal inertia of e.g.
boiler walls and heat exchanger surfaces, the boiler has
a large influence on the dynamic behavior of a power
plant. This unit is therefore an important part of a power
plant model, and the aim of this work is to develop a
computationally efficient and sufficiently accurate boiler
model that is easily implemented in new software.

In the literature, several examples of data-driven
modelling approaches applied to coal-fired power plants
are available. Based on operational data of around 60
variables in a brown coal-fired power plant, Smrekar
et al. developed two artificial neural network (ANN)
models [1]. The aim of the work was to examine the
feasibility of such models for coal-fired power plants.
In Chandrasekharan et al. [2], separate models for
the economizer, drum and superheater were developed
by using a statistical approach based on the response
surface methodology and design of experiments. The
data used for model development was collected from a
210 MW power plant over a 2-3 hour period. In Zhu
et al. [3], a local model network (LMN) was used to
model the boiler-turbine unit of a sub-critical coal-fired
power plant and applied as the prediction model in a
non-linear model predictive controller. The model was
validated with data from a 500 MW unit in China. With

emphasis on cyclic operation, Navarkar et al. [4] built
an ANN model of a coal-fired steam generator based
on 10 years of operational data from a power plant
in the USA. Manaf & Abbas [5] and Oko et al. [6]
both applied non-linear autoregressive with exogenous
input (NLARX) models to coal-fired power plants. In
the former, a complete power plant divided into six
sub-systems was modelled by using data from a 660 MW
power plant. In the latter, the NLARX model was used
to predict drum pressure and level in a sub-critical unit.
The data used for model development were generated
by a validated first-principle model. As indicated by the
literature review, a comparison of several different static
data-driven modelling approaches for a single coal-fired
boiler has not yet been presented. This knowledge gap
will be addressed by this work.

Using data-driven approaches has several advantages:

• It uses real data to make predictions. It makes a
change from the first-principle models paradigm that
simplifications must be made in order to be able to
perform computations;

• It is a very active field of research and there is a big
community of researchers developing and enhancing
the different methods;

• Once a model is trained, it is very fast, within
seconds, to get a prediction;

• The model can be updated by getting more data after
it is trained, so it can have a better predictive ability.

2. Methodology
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Measurements at different stages of a sub-critical
coal-fired boiler at a Polish power plant have been
performed, constituting the data set for this paper. The
same observations are computed using a first principle
model, which constitutes the reference data set. Different
regressors have been chosen to compare to the reference
model : Ordinary Least Square, Elastic Net, Support
Vector Machine, Stochastic Gradient Descent, Nearest
Neighbors, Decision Trees, Random Forest, AdaBoost
and XGBoost. The first six model structures are called
’base learners’ and the other are regressors based on
ensemble methods. The ensemble methods use several
weak learners to improve prediction capacity. These
regressors allow the use of hyper-parameters, i.e.
parameters independent from the observations, and the
value of these are usually to be determined. First, the
regressors are fit to the observations without prior hyper-
parameter optimisation. The Mean Absolute Percentage
Error (MAPE) of each model is kept for comparison.
Then, using different optimisation routines the same
methods are used combined with hyper-parameter
optimisation. As a result, for each algorithm, one
nonoptimised and three optimised models are created.

2.1. Data from industrial boiler
The data from the industrial boiler comprise of 480
observations including 5 inputs and 7 outputs each taken
at a 1-minute interval. A sketch of the coal-fired boiler
considered in this work is shown in Figure 1.

Figure 1: Sub-critical coal-fired boiler considered in this work.
TAH stands for tubed air heater, ECO stands for economizer,
SH stands for superheater and PS stands for platen superheater.
Inputs and outputs, denoted by I and O, are described in Table 1.

The different variables are shown in Table 1. It is
important to note that, for this paper, the time is not
included in the set of inputs. The reason is that including
time in the inputs shifts the analysis into a time-series
analysis, and the target of this paper is to develop a
multi-output model solely dependent on the state of the

boiler. The time-series will be considered for future work.

Table 1: Monitored variables
Inputs Code Unit Bounds
Time None min [0, 480]
feedwater T I0 °C [225, 236]
Pressure in the steam drum I1 MPa [10, 11]
Fuel mass flow rate I2 kg/s [6, 8]
Air flow rate I3 kg/s [54, 65]
feedwater mass flow rate I4 t/s [0, 51]
Outputs
Flue gas T combustion chamber O0 °C [977, 1033]
Water T from ECO2 O1 °C [307, 319]
Steam T I-st stage SH outlet O2 °C [366, 387]
Steam T II-nd stage SH outlet O3 °C [479, 497]
Steam T III-rd stage SH outlet O4 °C [530, 544]
Steam T PS outlet O5 °C [448, 475]
Flue gas T after TAH1 O6 °C [154, 173]

First, the Pearson correlation is calculated for each input
variable. Given x1 and x2 two different variables in a data
set comprising of n observations, it is possible to calculate
the strength of association between these two variables by
computing the Pearson’s coefficient (Equation 1).

r =

∑n
i=1(x1i − x̄1)(x2i − x̄2)√∑
(x1i − x̄1)2

∑
(x2i − x̄2)2

(1)

For readability, the results of the correlation analysis are
displayed in a heatmap in Figure 2. The input names are
coded for visualisation purposes, and their code can be
retrieved from Table 1. The data-driven models usually
perform poorly when the data are not on the same scale,
thus it is needed to have a step of feature scaling, Géron
[7]. Standardisation offers a robust way of scaling the data
by transforming the entire data properties so they follow
an unknown distribution with X ∼ D(0, 1). The formula
used for standard scaling is given in Equation 2.

xi,scaled =
xi − µ

σ
(2)

with µ the mean of the observations and σ the associated
standard deviation.

To assess the performance of the models, it is common
to split the data set into a training set and a test set, Tan
et al. [8]. The reason behind this first split is to keep an
untouched data set. The test set is not used to train the
model, nor to perform hyper-parameter tuning. After the
model has been fit to the training set, it is rated using a
score function calculated on the test set.

2.2. Data-driven modelling techniques
The regressors used to get predictive models are
categorized into two groups: base learners and ensemble
methods. The main difference between a base learner and
one from ensemble method is that the ensemble method
uses several base learners to make predictions, whereas a
base learner is a single model. To assess the performance
of each model the Mean Absolute Percentage Error
(Equation 3) is computed. This choice of score function
is justified by the noisy behaviour of the observations.
The squared error metrics such as Mean Squared Error or
Root Mean Squared Error penalize outliers by squaring the
error, making them very sensitive to noise.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (3)
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with yi the real value and ŷ the predicted value of the ith
observation.

As the model should be a multi-output regressor, there
are actually 7 different MAPE per model. The error is
computed for the 7 outputs, and then averaged to produce
an average MAPE. Calculating the MAPE on the entire
training set is not robust enough, because the model only
sees one set of data, and there is no possibility to know
how the model would behave with other samples from
the same experiment. This is why the performance on the
training set is assessed by implementing cross-validation.
The cross-validation is performed along with K-fold
sampling. Given a data set with n observations, the
K-fold sampling method splits the data set randomly
into k subsets. k − 1 subsets are used for training the
model and one subset acts as a test set. This is repeated
until all the subsets acted once as a test set. Then, the
outcome of the cross-validation is the mean of the k
model scores. Performing cross-validation allows getting
a robust estimation of both the bias and the variance of a
model. The models will be fit to measurements of a real
power plant, and the reference to outperform is a data
set coming from the first principle model. The MAPE
of the reference model compared to the real data model
is 0.716%. All the hyper-parameter initial values are
displayed in Table 2. Except where specified, these values
are the values recommended by default by the different
libraries used. Sci-kit learn is used for every model except
XGBoost, which comes from the homonym library [9].

Table 2: Regressors’ Hyper-parameters initial values
Algorithm Hyper-parameter Value
Elastic Net λ 1

α 0.5
SVR Kernel RBF

σ 1
npredictors·var(X)

L2 penalty 1
ε 0.1

SGD Loss huber
iterations 10000
ϵ 0.1
η adaptative

KNN k 3
weights distance
data structure ball tree
sleaf 30
p 2

Decision Tree criterion absolute error
dmax ∅
ssmin 2
slmin 1
fmax npredictors

Random Forest N 100
criterion absolute error

AdaBoost N 50
η 1

XGBoost N 100
η 0.3
dmax 6
sb_s 1
cols 1
γ 0
cwmin 1
α 0
λ 1

2.2.1. Ordinary Least Square Regression

Given a set of n observations {xi, yi}ni=1, each
observation i comprises a column vector xi of p predictors
such as xi = [x0i, x1i, x2i, ..., xpi]

T and a response y.
The simplest form of linear regression assumes that y is a
function of xi such as

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi (4)

with εi accounting for the variations not explained by the
regression model (bias) and β a column vector of unknown
coefficients with the shape p×1. Finding these coefficients
consists of optimizing a score P . Using the Mean Squared
Error (MSE) as a score function, it is possible to estimate
the unknown coefficients β̂ using the matrix form of the
normal equation displayed in Equation 5, Goodfellow et
al. [10]

β̂ = (XTX)−1XT y (5)

with X =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xp,1 xp,2 . . . xp,n


The normal equation is obtained by minimizing the MSE
in Equation 6

β̂ = argmin
β

1

2n
∥Y −Xβ∥2 (6)

It is one of the simplest regression techniques, but falls
short when the underlying data structure is complex, Zou
and Hastie [11].

2.2.2. Elastic Net Regularisation
The Elastic Net Regularisation is a combination of two
different regularisation techniques, the Least Absolute
Shrinkage and Selection Operator (LASSO) known as
L1 regularisation and the Tikhonov or L2 regularisation.
These regularisation methods add a penalty function to the
loss function in Equation 6. The penalty is based on the L1

and L2 norms. In Equation 7, it is possible to identify on
the right-hand side the first term as the cost function of the
Ordinary Least Square (OLS). The second term and the
third term represent respectively the L1 and L2 penalties.

β̂net = argmin
β

1

2n
∥Y −Xβ∥2 +

λα ∥β∥1 +
1

2
λ(1− α) ∥β∥2

(7)

where λ is a parameter controlling the strength of
regularisation, and α is strictly between 0 and 1. If α = 1,
the elastic net is the same as LASSO and as α tends toward
0, it gets closer to ridge regression. The Elastic Net is the
same as an Ordinary Least Squares when λ = 0.

2.2.3. Support Vector Regression
Support Vector Machine (SVM) was initially used for
classification, transforming a binary classification problem
into a convex optimisation. The main principle behind
SVM is to find a function f(x) within a maximum
deviation ε compared to the real response y. The function
should be as flat as possible. To illustrate this method,
f(x) is given linear, and can be written as in Equation 8,
Vapnik [12].

f(x) =< w, x > +b (8)
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with w a normal vector defining the hyperplane <
w, x >= b
For this case, the problem lies in minimizing the loss
function represented in Equation 9.

argmin
w

1

2
∥w∥2 (9)

with the following constraints to respect

C =

{
yi− < w, xi > −b ≤ ε

< w, xi > +b− yi ≤ ε
(10)

SVM for regression is shortened to SVR in this
study. SVR combined with feature transformation allows
modelling of complex data distribution. The underlying
idea is that if a data structure is not linear in its original
space, it might be linear in another space. The function
used to change the space is a kernel function. Its general
form is written

K(x, u) = ϕ(x) · ϕ(u) (11)

with x and u two independent vectors belonging to the
same space. In the result section, the Radial Basis
Function (RBF) is used as a kernel

KRBF(x, u) = e

(
− ∥x−u∥2

2σ2

)
(12)

σ is a free parameter called the length scale of the kernel.
Its value is

σ =
1

npredictors · var(X)
(13)

In addition, it is possible to add an elastic net
regularisation to the cost function. Smola and Schõlkopf
[13] made a tutorial about SVR, which details the full
scope of this method.

2.2.4. Stochastic Gradient Descent Regression
Stochastic Gradient Descent is initially an iterative method
used in optimisation to find an extremum. It inherits from
Batch Gradient Descent (BGD), with the main difference
that BGD computes the exact gradient of the loss function
based on every single observation. On the other side, SGD
uses an approximated gradient based on one point at a
time. Considering an arbitrary loss function J(θ), it often
takes the form of a sum which can be seen as

J(θ) =
1

n

n∑
i=1

fi(θ) (14)

θ is obtained by iteration

θ := θ − η▽fi(θ) (15)

with fi(θ) a prediction of the ith observation and η the
learning rate of the gradient descent. The parameter η
influences the distance between two steps, if it is too
large the algorithm might never find an optimal solution.
On the other hand, if the learning rate is too small, the
algorithm will be very slow to converge. A common
method is to use an adaptative learning rate which is set
high then decreases as the optimisation converges to a
minimum. SGD Regression uses this optimisation routine
to fit a linear regression. For instance, if the squared error
is used as a loss function, then performing a regression
with SGD-based regression is equivalent to an OLS. The
Huber loss (Equation 16) is a more robust loss function.

It penalizes less the outliers by being quadratic when the
error is smaller than ϵ and linear otherwise, Huber [14].

Jh(θ) =

{
1
2
(y − f(θ))2 for y − f(θ) ≤ ϵ

ϵ · (|(y − f(θ)| − 1
2
ϵ) for y − f(θ) > ϵ

(16)
This method is very suitable for large-scale applications,
but can be slower than BGD for convex functions with a
single minimum, Bottou and Bousquet [15].

2.2.5. Nearest Neighbors Regression
Nearest Neighbors is an algorithm dealing with both
classification and regression. The intuition behind this
algorithm is that if a group of observations is close to
each other, their responses should be close too. Given
a query point q, a k nearest neighbors search consists
of finding the k nearest observations to the query point.
In its naivest implementation, the euclidean distance is
computed using a brute force approach, meaning that the
distance is calculated for each pair of points in the entire
set of observations. It is then possible to generalize this
process to any distance using the Minkowski distance
(Equation 17)

Dmink(x1, x2) =

(
n∑

i=0

(|x1i − x2i|p
) 1

p

(17)

This is very efficient for a small number of observations,
but can reach life span calculation time very quickly as the
size of the data set gets bigger. Instead of computing the
proximity of every single pair of points with a brute force
approach, modifying the data structure before applying
a nearest neighbors search has led to more reasonable
results for higher dimensional or bigger data sets. One
of the data structures speeding up the nearest neighbors
search is the Kd-tree data structure. For n observations
with d dimensions, the ith coordinate is split using the
median value as a separator. It results in two partitions
of the observations, L1 and G1, respectively the values
lower and greater than the median. Then the process is
repeated for the coordinate i + 1 and iterates once for
each dimension. This process goes on until the leaves
of the Kd-tree contain a maximum of sleaf observations.
An improvement of the Kd-Tree is to use round-shaped
leaves instead of rectangles to create clusters. This is
called a ball tree data structure. Andrew Moore [16]
detailed how this data structure is created. As a result
of this new data structure, the nearest neighbors search
on the query point is compared only to a small subset of
observations, lying within the same leaf or surrounding
leaves. For regression, the label assigned to an observation
is based on the weighted mean of the labels of its nearest
neighbors, Pedregosa et al. [17]. The weights are inversely
proportional to the distance between the query point and
the neighbors. The determination of the optimal number
of neighbors k is made by comparing the error of KNN
models with different k values.

2.2.6. Decision Trees
A decision tree is initially a classification algorithm.
It splits the observations into different leaves, just like
Kd-tree. It comprises an initial node, including all the
observations, internal nodes splitting the observation
according to decision rules and leaf nodes, the final leaves
of the tree. The decision criteria to split a node for a
Decision Tree in the case of regression is usually the MSE,
but will be set to MAE for this paper. The observations
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are split such that the MSE within a leaf is minimized,
and simple models can be fit to the different leaves. This
partition continues until there is no possible point to split,
or a termination criterion is reached. Common parameters
to tune include dmax the maximum depth of the tree,
ssmin the minimum number of observations that a node
must contain to split, slmin the minimum number of
observations that a leaf must contain to be considered as
a leaf node and fmaxthe number of predictors to consider
for the best split. Note that the maximum depth of the
tree can be set to none, so that the tree expands until all
leaves are pure. The main advantage of this algorithm,
which is also its main drawback, is its simplicity. It
is very sensitive to the data structure, and adding few
observations can change drastically the structure of the
tree. Thus, this model is associated with high variance and
does not compare well to other more stable algorithms.

2.2.7. Random Forest
In 2001, Breiman [18] formally proposed an extension of
the Decision Tree algorithm. The intuition behind this
improvement is to use several subsets based on the original
database to create different decision trees and then average
their predictions. First, the observations are bagged N
times, creating N random samples with replacement and
N decision trees are fit to the different random samples.
Then the final prediction for an unknown observation x is
the average of the predictions of all the decision trees, such
as

R(x) =
1

N

N∑
i=1

Fi(x) (18)

where Fi is the output of the ith decision tree from the
Random Forest.

This method reduces readability and has a small increase
in the bias, but improves generalisation. Some hyper-
parameters are unique to the forest, but many are shared
between the trees and the forest. For instance, the number
of trees is unique to the forest, but the maximum depth
or the minimum samples split are parameters for the trees
inside the forest.

2.2.8. AdaBoost
Combining several weak learners into a strong learner is
called boosting, and the flagship of this method is the
Adaptative Boosting algorithm, AdaBoost. The AdaBoost
algorithm is very close to a random forest, but instead of
having a uniform average of the decision trees, AdaBoost
keeps weights associated with every single weak learner.
Initially, all the weights are equal, but after each iteration,
the weak learners with the worst performance get an
increased weight. As a result, the algorithm will focus
on minimizing the error on the weak learners with high
weights. AdaBoost for regression, called AdaBoost.R2 is
detailed by Drucker [19].

2.2.9. XGBoost
eXtra Gradient Boosting is one of the best
implementations of gradient boosted trees. It has
actually dominated machine-learning competition for
a long time, and is recognized as one of the most
accurate modeling methods. The main difference between
XGboost and the other gradient boosting techniques
lies in the optimisation of the algorithm structure. For
instance, it treats calculations of base learners in parallel.

Another example of improvement is to use the dmax

as a stopping criterion instead of a score to compute,
reducing the computation time. The hyper-parameters
related to XGBoost are N the number of trees; η the
learning rate or shrinkage factor to apply on the weights;
sb_s the proportion of observations to shuffle and use
from the training set, cols the fraction of predictors to use
within each tree (feature reduction), γ the minimum loss
reduction to split a leaf node, wcmin the minimum weight
instance a child must carry in order to exist, and α and λ
respectively the L1 and L2 regularisation factors. Other
enhancements have been implemented. See Chen and
Guestrin [9] for further details about Extreme Gradient
Boosting.

2.3. Optimisation methods
All the methods evoked in the last sections include
parameters independent from the data. These parameters
are called hyper-parameters, and the optimisation of these
values is still an active research topic. The naivest
approach to optimize them is the brute force approach.
Because it is not very realistic to do an exhaustive
brute force search, a greedy search can be performed on
manually specified values to narrow the search space. This
method is called the Grid Search approach, but it requires
to have an intuition about the parameters optimal values.
The most promising way to find the best parameters is to
use more complex optimisation methods. For this paper,
the cost function is the result of the cross validation on the
training set (Equation 19). It can be calculated given θ, an
unknown vector of hyper-parameters, and F (θ), a model
already fit to a data set.

J(θ) =
1

k

k∑
i=1

1

n

n∑
i=1

∣∣∣∣yi − F k
i (θ)

yi

∣∣∣∣× 100 (19)

Three different optimisation techniques will be used and
compared on different data-driven models.

2.3.1. Powell Method
The Powell Method as stated by Powell in 1964 [20]
is a gradient-free optimisation method derived from the
conjugate direction method. It assumes that by combining
several one-dimensional optimisations, it is possible to
find the optimum of complex multidimensional functions,
The optimisation starts with an initial point x0 and a set
of N guess vectors either manually given or parallel to
each axis. A bi-directional search is performed along each
vector, and a search vector is created based on the result of
the search, which gives another search point. This process
goes on until a criterion is met. The implementation of the
Powell Method is made with SciPy [21].

2.3.2. Bayesian optimisation
The Bayesian optimisation comes from Bayesian
Statistics. In Bayesian statistics, the inference of a
model is a probabilistic approach based on a set of
prior/posterior beliefs about an event. Given the event of
fitting a group of observations X into a specific model,
the prior probability distribution P(θ) is the initial belief
about the distribution of the parameters θ. In the case of
linear regression, the event would be to have the right
distribution of β for X . After collecting new observations,
an updated probability distribution is made based on the
prior and the new observations: the posterior probability
distribution, P (θ|X)

P (θ|X) =
P (X|θ)P (θ)

P (X)
(20)
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with P (X|θ) the likelihood of X and P (X) the marginal
likelihood given by

P (X) =

∫
P (X|θ)P (θ)dθ (21)

The Bayesian optimisation method assumes that the
unknown function is generated with a Gaussian Process.
A Gaussian process is a stochastic process defined by its
mean µ(x) and its covariance k(x, x′).

µ(x) = E|f(x)|,
k(x, x′) = cov(x, x′)

(22)

such that

f(x) ∼ GP(µ(x), k(x, x′)) (23)

For a detailed explanation of how Gaussian Processes
work, see Rasmussen and Williams [22]. After generating
a prior over a Gaussian process, the posterior, also called
acquisition function, is generated. Three main acquisition
functions are mainly used in Bayesian optimisation; the
Probability of Improvement, the Expected improvement
and the Upper/Lower Confidence Bound. For this paper,
the Upper Confidence Bound (UCB) is used as the
acquisition function. Once the UCB function is evaluated,
the next points for optimisation are chosen where the value
of UCB is the highest, ie. where the uncertainty about
the function estimation is at its highest. In the result
section, 100 iterations were made with 5 initial random
guess points. A practical guide for Bayesian optimisation
has been written by Snoek et al. [23]. The Bayesian
optimisation is implemented using the bayes_opt library
[24].

2.3.3. Genetic Algorithm
The Genetic algorithm is a population-based metaheuristic
optimisation method mimicking biological evolution. A
first population p of chromosomes is randomly generated.
Each chromosome comprises ngenes genes. Each gene has
one random value attributed. The population comprises
nchr chromosomes. The cost function J(θ) is calculated
for each chromosome, and a fitness function guides the
evolution of the next population generation. The fitness
function is a positive gain function. In this paper, the
fitness function is the inverse of the cost function. To
generate the next population p + 1, nparents chromosomes
are coupled together, and as a result, a child chromosome
is created. Stronger chromosomes, with better fitness
scores, are more likely to mate. The child is made of genes
from the parents. This mating process is repeated until
the next population is full. However, to avoid losing the
best solutions in the mating process, kelit genes with the
best fitness function output will be kept in the population
p + 1. At last, random mutations can happen during the
process, changing spontaneously the value of one gene.
These mutations have a probability of pmutation to happen
for each chromosome. The implementation of the Genetic
Algorithm is made using PyGAD [25] and the values of
the hyper-parameters are displayed in Table 3.
A detailed review of the Genetic Algorithm has been made
by Katoch et al. [26].

3. Results and discussion
The first step before modeling is to perform the correlation
analysis of the predictors. As shown in Figure 2, the
feedwater temperature has a mild correlation coefficient
with all the other inputs. These coefficients lie within an
interval between [0.38,0.52]. However, the pressure in the

Table 3: Genetic Algorithm Parameters
Parameter Value
ngeneration 20
nparents 4
nchr 8
ngenes npredictors
kelit 1
pmutation 0.1

drum; the fuel mass flow rate; air flow rate and feedwater
mass flow rate are all highly correlated with each other
[0.94,1]. It can be a possible lead for future improvement,
because dropping highly correlated predictors within a
model is usually associated with a low bias drop but a
faster execution.

Figure 2: Pearson’s correlation coefficients heatmap

For this paper, all the inputs, with the exception of time,
are included in the models. Then the data set is split
into a training set and a test set containing respectively
70% and 30% of the observations. The data set is
randomly split into two subsets, therefore all the base
learners do not result in the same outcome if the split
happens in a different way. This is especially true for
ensemble methods, which add even more randomness
using bagging and other stochastic methods. However,
cross-validation and several runs of the algorithms ensure
that the results of this paper come with a minimized
variance. As mentioned in the Methodology section, the
reference model to outperform has a MAPE of 0.716%.
Nonoptimised values are used to assess ’default’ models.
Some minor adaptations have been made. For instance,
KNN uses the best K from the elbow method, and the
SGD regressor minimizes the Huber loss. Table 4 shows
the comparison of the average MAPE for the different
models mentioned in the Methodology section, the hyper-
parameter values associated with each model are in Table
2. Overall, every algorithm outperformed the reference
model, by 15% for the worst performing model and 57%
for the best performing model. The models do have a good
generalisation capacity on the test set, ie. the test error is
smaller than the training error. The two best algorithms
are issued from ensemble methods. It follows a pattern,
which is the more complex the algorithm is, the better the
model prediction capacity will be, except for AdaBoost.
Indeed very simple algorithms like OLS or Elastic Net
are the worst-performing, whereas XGBoost and Random



SIMS 63 Trondheim, Norway, September 20-21, 2022

Forest have the best prediction scores.

Table 4: Nonoptimised prediction models
Model Training MAPE Test MAPE
OLS .472 .429
Elastic Net .634 .609
SVR .391 .361
SGD .473 .437
K-nearest neighbors .340 .324
Decision Tree .393 .370
Random Forest .328 .310
AdaBoost .397 .390
XGBoost .349 .317

Then every model, with the exception of OLS, goes
through 3 different optimisation methods. The result of the
optimisation is shown in Table 5 and the hyper-parameters
values for the optimisation are shown in Table 6. In
general, there is a net improvement after optimisation of
the hyper-parameters. The best improvement was obtained
on the worst-performing model. After optimisation, the
worst-performing algorithm outperformed the reference
by 40% and the best by 58%. It is important to notice
that the strength of regularisation λ is set to 0 after
optimisation, so regularisation is not necessary on the
observations. Fine-tuning the parameters led to a net
improvement of the prediction capacity. However, the
Random Forest and the XGboost did not benefit from the
optimisation. These regressors are generally optimised
by default to general cases and it is possible that the
bounds of hyper-parameters need to be shrunk, especially
for XGBoost regularisation parameters. Out of eight
regressors, only two did not benefit from optimisation.
The Powell methods did not find the best solution in
any cases; Bayesian optimisation 4 solutions; and the
Genetic Algorithm 2. The results do not mean that
Bayesian optimisation is a better optimizer, only that
for this specific ’random state’, it found better solutions.
Another interesting finding is that the genetic algorithm
seems to prioritize solutions close to the given bounds of
the hyper-parameter values.

Figure 3: Univariate Time Serie representation of a Random
Forest prediction of the Steam Temperature at the platen
superheater outlet

These results can be criticized in several ways. Data-
driven approaches come with their unique drawbacks.
Compared to first-principle models, these algorithms are
usually considered as black-box functions. They differ
from the original ’laws’ and must be represented with

Table 5: Nonoptimised and optimised predictions’ MAPE on test
set. NO stands for Not optimised, PWL for Powell method, BO
for Bayesian Optimization and GA for Genetic Algorithm

Model NO PWL BO GA Maximum
gain

Elastic .634 .428 .428 .428 29.77
Net
SVR .361 .301 .300 .299 17.04
SGD .437 .905 .396 .401 9.38
K-nearest .324 .307 .319 .304 6.14
neighbors
Decision .370 .614 .327 .346 11.22
Tree
Random .310 .322 .315 .314 -1.51
Forest
AdaBoost .390 .374 .353 .361 9.41
XGBoost .317 .991 .565 .389 -22.75

Table 6: Regressors’ Hyper-parameters optimised values. NO
stands for Not optimised, PWL for Powell method, BO for
Bayesian Optimization and GA for Genetic Algorithm

Model Param. Bounds PWL BO GA
Elastic λ [0;1] .01 .00 .00
Net α [0;1] .94 .00 .00
SVR σ [0;1] .74 .98 1.00

λ [0;10] 10.00 9.52 10.00
ε [0;5] 1e−2 1e−3 1e−3

SGD λ [0;10] 6.18 .00 .00
ηini [1e−7;2] 1.24 2 2
α [0;1] .69 1 .00
ε [0;1] .76 .36 1

KNN k [2;50] 4 5 2
sleaf [1;100] 99 26 1
p [1;5] 4 4 5

Decision dmax [2;50] 38 6 50
Tree ssmin [0;1[ .11 .00 .00

slmin [0;1[ .17 .00 .00
fmax ]0; 1] .71 1.00 1.00

Random N [10;500] 197 434 500
Forest dmax [2;50] 31 18 50

ssmin [0;1[ 1e−3 .00 .00
AdaBoost N [10;500] 207 126 10

η [1e−7;1.5] .55 2e−3 1e−7

XGBoost N [10;500] 210 494 500
η [1e−3;2] 1.98 1.61 2
dmax [2;50] 49 5 50
sb_s [1e−3;1] .36 .67 1
cols [1e−7;1] 1 .30 1
γ [1;1e4] 1e4 2666 1
cwmin [1;100] 62 57 1
α [0;100] 0 2 0
λ [0;100] 18 46 100

alternative forms. Another main issue is the bias-variance
trade-off. Models depend on the observations they are
trained on, and their capacity of generalisation is what
determines which algorithm is good. If a model strongly
captures the behaviour of a training set, it will probably
perform poorly to predict unknown observations. This
is a situation of low-bias/high-variance. Finding the
right optimum is a complicated task. Also, Data-driven
approaches are often stochastic by nature, and the score
associated with each model should be interpreted as one
value out of an unknown distribution of solutions. The
models are static, as opposed to time-series. It is possible
that taking away the time factor from the equation induces
a higher bias. Using multivariate time-series forecasting
methods is promising and some methods are already
selected for future work, such as SARIMAX, Neural
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Network, SVR and KNN with time. Regarding the
optimisation, the optimisation ran on a restricted number
of runs. Powell method did run until convergence was
met, but Bayesian Optimisation and Genetic algorithm
had limited iterations. It would be possible to change the
termination criterion so that the optimization runs until
there are no significant improvements on the loss function.
This method could give better results, but there is a trade-
off with the execution time. Figure 3 shows the plant
observations compared to the entire set of observations
predicted by a Random Forest. The observation from
the power plant in blue seems a lot like random noise,
and the model captured this noise. This is the most
extreme example from the predictions, but it depicts
probable overfitting. This could be confirmed/infirmed
by predicting a totally new data set from the powerplant.
The main solution to tackle the noise issue is to use time-
series. Indeed the time-series focus on trend, seasonality
and noise while static methods do not interpret noise.
If static regressors are used, applying filters on the
responses, especially low pass filters, might lead to a better
generalization. Filtering data is a ’risky’ process, because
some important information might be lost in the process.

4. Conclusions and further work
A first-principle model with high prediction capacity and
several data-driven models were compared to operational
data from a coal-fired boiler. At first, the data-
driven models were fit to the observation data with few
hyper-parameter adaptations. Then regressors were fit
to the data with optimised parameters using the same
algorithms. The optimizations of these parameters have
been performed with three different methods: Powell
Conjugate Direction, Bayesian Optimisation and Genetic
Algorithm. In general, the simpler models benefited more
from the optimisation than ensemble methods. Data-
Driven models outperformed the first principle model by at
least 15%. Random Forest and XGBoost yielded the best
results with a reduction of the error of 56% and 57% for
nonoptimised models. After optimization, Support Vector
Machine outperformed both with a 58% error reduction.
The high accuracy of this model needs to be confirmed
with other unknown observations, especially because the
models can capture the random noise for outputs. The
’static’ approach should then be compared to the dynamic
one with the use of time-series analysis. Finally, artificial
neural network structures should be added to the model
list for both static and dynamic approaches.
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Abstract 

 

Air-assist atomizers have been widely used in various applications such as the aerospace industry, internal 

combustion engines, molten metal, food processing, etc. The mean drop size for these atomizers was obtained 

through the Shadowgraph imaging technique. This study aims to assess the feasibility of the acoustic 

chemometrics approach for classifying the atomizer types and predicting the mean drop size, such as Sauter mean 

diameter (SMD), for a two-phase spray atomizer employed. The droplet size measurements were carried out at 

three radial locations and one axial location for various air and liquid (water) flow rates. The acoustic signals were 

recorded through two different sensors: accelerometers and microphones. The main objective of this work is to 

implement prediction models for the mean drop sizes (SMD) measured at various locations. The model prediction 

is based on the dimensionless number B, whose unique values correspond to different two-phase flow working 

conditions. This analysis will further cater to the question that whether the acoustics chemometrics approach, 

including Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS-R), is suitable for 

extracting valuable information such as predicting mean drop size (SMD) in two-phase flows through recorded 

acoustic signals.  

Keywords: Acoustic Chemometrics, Multivariate Regression, Principal Component Analysis, Twin-fluid Spray, 

Mean droplet size  

 

1. Introduction 

Multi-phase flows can be found in various industrial 

applications ranging from fuel sprays in IC engines 

to petroleum pipelines. The most occurred case is 

two-phase flows in which gas and liquid interact to 

form various flow patterns generating vibrations and 

flow-based noise. Flow-based vibrations are 

classified into four types, in which acoustic 

resonance (flow-induced pulsations) and turbulent-

induced excitation (FIV) are common in internal 

two-phase flows (Pettigrew and Taylor, 2016). Flow 

classification utilizing vibrations signals is present 

in literature (Miwa, Mori, and Hibiki, 2015). Flow 

rates and the vibration signals recorded using the 

PAT approach (sensors) showed a strong correlation 

(Evans, Blotter and Stephens, 2004). The peak 

frequency of these induced vibrations is 

proportionate to the flow parameters, such as void 

fraction (Ortiz-Vidal, Mureithi and Rodriguez, 

2017). The time and frequency spectrum of the force 

fluctuations in two-phase flow were analyzed 

through flow-induced vibrations (Liu et al., 

2012). Though there are studies related to 

vibration-based analysis for flow classification, 

it lacks study on the effect of flow-induced 

vibrations (FIV) on the flow parameters such as 

local void fraction, interfacial area, and particle size 

distribution. 

The single-phase flow (air only) can significantly 

affect the flow-induced vibrations and the acoustic 

noise. When expanded to high speeds, the jets 

produce shock-associated noise, further 

exacerbating flow-induced vibrations (Tam, 1998). 

The two-phase flow study constituting both 

vibration study for flow-induced vibrations caused 

due to internal flows and acoustic analysis from 

acoustic energy emitted from gas-liquid coaxial 

flows followed by two-phase mixing is still not 

considered. There have been attempts to measure the 

local two-phase flow parameters such as void 

fraction, Sauter mean diameter with flow-induced 

vibrations study (Hibiki and Ishii, 1998), and 

acoustic emission method (Guo et al. 2014). But the 

combination of techniques is still not attempted to 

date. This work applies a united approach, including 

accelerometers for acquiring flow-induced 

vibrations and microphones for obtaining acoustic 

signals. The novelty of this method lies in 

correlating the flow parameter, i.e., Sauter mean 

diameter (SMD), with acquired acoustic data and 
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parameter prediction using PLS-R. The data fusion 

with both techniques (described in the methods 

section) is done in the study to predict the flow 

parameter such as mean droplet size (SMD). The 

dual advantage of this approach is that vibrations, an 

inherent part of fluid flows in piping in industrial 

plants, can be used for both flow parameter 

prediction and dynamic stress analysis to estimate 

fatigue or structural damage.  

 

2. Materials and Methods  

 

The study was conducted utilizing the CMOS-based 

high-speed camera (Photron SA-Z), Nikon macro 

lens (80-200 mm), and Questar long-distance 

microscope (QM1). The rig setup built in-house at 

the process and energy department laboratory was 

used for the experiments. The different atomizers 

configuration with varying cone distances (Lc) and 

similar orifice (throat) diameters (d = 3.0 mm) were 

attached to the lance mounted at the Bosch Rexroth 

traverse system. Fig. 1 shows the airflow patterns for 

three atomizers.  

 

 

Figure 1: Airflow patterns in atomizers with three 

different cone distances (Lc). 

 

Yokogawa Rotamass and Endress Hauser 

Promass 83 (Coriolis type) flowmeter used water 

and air rate measurements. In the test rig (Figure 2), 

the compressor with 7.0 bar (g) capacity was 

employed for the air supply, and the water flow 

supply pump by Froster AS company was used. The 

water flow rate employed was 100, 200 and 300 

kg/h, and the airflow rate employed are 20, 30 and 

40 kg/h. Therefore, nine experiments were done at 

specific air-to-liquid mass ratios (ALR) and Weber 

number (We) based on liquid sheet velocity. The 

range of dimensionless number corresponds to ALR 

and the We number is mentioned in (Sikka, 

Halstensen and Lundberg, 2022)  

ALR  is defined as: 

     𝐴𝐿𝑅 =
𝑚𝑎𝑖𝑟

𝑚𝑙𝑖𝑞𝑢𝑖𝑑
                                                  (1)         

 where mass flow rate in kg/hr. 

 

Weber number is defined as:  

 

    𝑊𝑒 =  
𝜌 𝑈2𝑡

𝜎
                                                      (2)                                                

 

A new dimensionless number (B) (depicted in 

Table 1) was employed, which is defined as: 

 

 𝐵 = 𝑊𝑒 ⋅ 𝐴𝐿𝑅                                                     (3)    

 

The experiments were conducted at STP such that 

fluid physical properties are assumed to be standard 

values. The spray formation in all three different 

cone distance (Lc) atomizers is illustrated in Fig. 2. 

The combined experimental setup for the spray 

imaging/drop size measurements and acoustic 

emission study is depicted in Fig. 3.  

 

 

Figure 2: Images showing the spray pattern for 20 kg/h 

airflow rate at various liquid flow rates and the image 

size scaled (yellow line). 

The acoustic arrangement employed two 

Piezoelectric types, 4518 accelerometers from Bruel 

& Kjær, Denmark, to collect noise/vibration data. 

Acoustic readings were procured using two electret 

condenser type Veco Vansonic PVM-6052-5P382 

omnidirectional microphones (mounted on an arc at 

300 mm from the spray centerline) with a sensitivity 

of -38 dB and signal-to-noise ratio of 58 dB. The 

microphone frequency ranges from 50 Hz to 16 

KHz. The microphones were mounted along the arc 

at θ = 90⁰ and 150⁰ from perpendicular to the nozzle 

axis at R = 100D, termed "far-field" measurements 

(Wong et al., 2020). The vital point is that the 

acoustic data were recorded in a non- anechoic  
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Figure 3: Schematic of the experimental setup for shadowgraphy technique along with the acoustic chemometric.

chamber, affecting the signal through stray noise. A 

data acquisition device (DAQ) from National 

Instruments (USB-6363), a signal amplification 

module, and a personal laptop with an in-house 

LabView interface was employed for signal 

acquisition. LabVIEW-based in-house created 

interface (Halstensen et al., 2019) was used for the 

acoustic chemometrics signal collection and signal 

conditioning. The signal processing was carried out 

on the acquired signal of 8192 recorded samples. 

The time-series signal was multiplied by a window 

(Blackman Harris) to avoid spectral leakage in the 

acoustic spectrum. This signal is finally transformed 

into the frequency domain using Discrete Fourier 

Transform. The Discrete Fourier Transform 

transforms a sequence of  N complex numbers 

{xn}:= x0,x1,...,xn-1 into another sequence of complex 

numbers, {Xk}:= X0,X1,...,XN-1, which is defined by 

equation (4): 

 

𝑋𝑘 =  ∑ 𝑥𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑛−1
𝑛=0  𝑘 = 0, … , 𝑁 − 1         (4)   

           

A more advanced and efficient form of the DFT is 

the Fast Fourier Transform (FFT) (Ifeachor and 

Jervis, 1993), implemented for fast real-time 

calculations 

2.1. Drop Size Measurements 

 

The laser-based shadowgraphy method measured 

the mean drop size with a CMOS high-speed camera   

(Photron SA-Z model). The spray was illuminated 

by dual-cavity ND: YAG Laser (Photonics 

industries DM60-532 DH model) at 532 nm (green 

light). The uniform speckle-free light background 

was achieved with diffuser optics. Questar's long-

distance microscope  (QM1) provides a field of view 

(FOV) of 8.445 mm x 8.445 mm. The ParticleMaster 

software package incorporated in Davis 10.1 version 

(LaVision) is used for droplet sizing. The calibration 

plate provides a depth of field (DOF) of ~17:1. The 

minimum pixel used for particle  

 

 

Figure 4: Schematic of the drop size measurement 

locations for shadowgraphy 

 

detection is 3 pixels (in the area). The images were 

recorded at four locations depicted in Fig. 4 (line 

marked) – each 50 mm apart at the radial axis at 300 

mm downstream from the outlet. Though, 500 

images give convergence for mean droplet sizes. 

However, 1000 images were recorded for each 

measurement location which mitigates the 

measurement uncertainty (<1%). Laser intensity (in 

the current (A)) was set adequately to provide 

uniform background in proportion to the droplet 
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density of the shadowgraph picture. Note that the 

camera pixel resolution allowed for drop size 

measurements of 16−2000 µm. The mean drop size 

(SMD) for different radial locations is shown in Fig. 

5. 

 

 

 

Figure 5: Mean drop size (SMD) for radial locations for 

all atomizers. 

 

3. Results and Discussions 

 

The acoustics spectrum is hard to analyze due to its 

multi-dimensional nature. Principal Component 

Analysis (PCA) is a dimensionality reduction 

technique that simplifies the analysis and reveals 

hidden patterns/structures. PCA projects the data 

into the new orthogonal plane, whose first principal 

component (PC1) is aligned in such a way that 

maximizes the variance. The new mean-centred 

plane is given by scores (T) and loadings (P) and 

residual (E). It is given by  

 

                     𝑋 = 𝑇 𝑃𝑇 + 𝐸                                 (5) 

The Nonlinear Iterative Partial Least Squares 

(NIPALS) algorithm developed (Wold, Esbensen 

and Geladi, 1987) was used for its many advantages. 

The method is unsupervised due to its 

independent Singular Value Decomposition (SVD) 

on the data. 

 

The scores plot (Fig. 6) depicts how the acoustic 

spectrum was segregated as colour clusters for three 

different atomizers based on the tests carried out at 

various fluid flow rates. For the 6mm (Lc) atomizer, 

the maximum variance is in the first principal 

component (PC1) direction. Whereas for the 8 mm 

(Lc) atomizer, cluster points scattered in the PC2 

direction show that PC2 contains valuable 

information.  The loading plot (Fig. 7) shows that the 

information is there in all the frequencies for 

accelerometers, reflecting the PCA classification 

model capability. In contrast, for microphones, 

frequencies recorded are from a narrow spectrum.  

 

 
Figure 6: Score plot t1-t2 for all three atomizers. 

 

The prediction model builds upon the regression-

based method. Partial Least Squares regression 

(PLS-R) is a supervised method used to calibrate the 

predicting models, as explained in the PLS tutorial 

(Geladi and Kowalski, 1986).  

 

 
Figure 7: loadings plot for all the sensors. 

 

PLS-R is a more advanced version of other 

regression techniques like MLR, PCR, etc. The 

robustness lies in the fact that model parameters vary 

little when new calibration samples are taken from 

the population. It builds on two-variable blocks, X 

and Y, representing training data. The NIPALS 

algorithm is used for PLS-R modelling (Halstensen, 

2020). The X data matrix contains the frequency 

spectra in our study, and Y is a vector containing the 

mean drop size (SMD) values for a particular radial 

location. The regression model for mean drop size 

prediction is based on both accelerometers and 

microphone data.  

The acoustic spectra used to calibrate the PLS-

R model was a 162 x 8192 matrix, each sensor 

containing 162 frequency spectra. Each spectrum 

has 2048 frequencies ranging from 0 to 200 KHz for 

each sensor. The test set validation (50% data) was 

performed for alternate data values in the column. 

The root mean squared error of prediction (RMSEP) 

value, RMSEP (%) the slope, and the correlation 

coefficient (R2) (Pearson) are commonly used in 

evaluating the different prediction models.  
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Figure 8: Predicted Vs. Reference (B) value. The target 

line (black) and regression line (red) are indicated. 

The RMSEP is defined as  

RMSEP = 
√𝛴𝑖=1

𝑛  (�̂�𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
2

𝑛
    (3) 

Where i = sample index number, n = total samples, 

RMSEP= Root Mean Squared Error of Prediction. 

The slope of 0.86 matches well with the target slope. 

RMSEP value comes out to be 3.65 with a 

correlation coefficient (R2) value of 0.86 for a 100 

mm location (Fig. 8). The loading weights linked the 

X matrix block to the Y-matrix through weights 

based on acoustic data (Fig. 9). 

 
 

Figure 9: Loading weight plot for all sensors. 

Table 1. Prediction models parameters 

 

SMD 

Location 

Prediction parameters (5 factors) 

Slope RMSEP RMSEP 

(%) 

R2 

Pearson 

0 mm 0.74 7.22 12.2    0.75 

50 mm 0.84 6.93 9.71 0.82 

100 mm 0.86 3.65 9.60 0.86 

150 mm 0.83 12.50 10.4 0.84 

 

The prediction model parameters for all locations 

are given in Table 1.  

 

 
Figure 10: Residual validation variance plot. 

Based on the residual validation variance plot (Fig. 

10), the number of factors optimal for model 

prediction is 5, as Y-variance reduces drastically 

until 5 factors, then slightly decrease with more 

factors involved.  

 

4. Summary  

 

A feasibility study was conducted for the non-

intrusive method using acoustic by applying 

multivariate data analysis techniques. The frequency 

data were recorded through accelerometers and 

microphones. The Principal Component Analysis 

(PCA) model reveals the clusters belonging to twin-

fluid atomizers with the maximum variance in the 

first principal component (PC1) direction and first 

principal component (PC2) for the 6.0 mm cone 

distance (Lc) atomizer and 8.0 mm cone distance 

(Lc) atomizer, respectively. Prediction models based 

on the mean drop size (SMD) were fabricated using 

the Partial Least Squares regression (PLS-R) 

method. The prediction model works best for the 

100 mm radial location as depicted by a low RMSEP 

(%) value of 9.60 and a high correlation coefficient 

(R2) value of 0.86 when validated by test set 

validation. 
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Abstract 

 

Phasepy is a scientifically defined open-source package in python for computational thermodynamics. Phasepy 

indeed calculates the interfacial properties and fluid phases equilibrium using an equation of state. In addition, 

Phasepy enables the scientists to optimize the relevant parameters to the equilibrium of multicomponent vapor-

liquid, liquid-liquid, or vapor-liquid-liquid mixtures. The Phasepy can model the equilibrium in the continuous 

approach (combining a cubic equation of state and a mixing rule) or the discontinuous approach (using a virial 

equation and an activity coefficient model). So, this study is to develop a code in a continuous approach using a 

combination of Soave-Redlich-Kwong (SRK) or Peng Robinson (PR) as the equation of state and quadratic 

mixing rule (QMR) and modified-Huron-Vidal mixing rule (MHV) as the mixing Rule. Although the algorithm 

of the developed model is new, it is tried to utilize the predefined function of Phasepy to calculate fluid phase 

equilibrium and interfacial properties. In fact, the five well-performed previous experimental studies are modeled 

using Phasepy, and in the following, the outputs of the developed models are compared with the relevant 

experimental results. The bubble point features, dew point features, liquid and gas composition, and density of 

multicomponent mixtures are considered parameters in this extended study to evaluate the accuracy of the Phasepy 

function based on experimental results. 

 

1. Introduction 

To study the homogenous and the inhomogeneous 

behavior of fluids it is required to know about 

interfacial properties and fluid phase equilibria. 

These two physical properties enable scientists to 

design a process and an operation. From one side, 

the phase equilibrium discloses the physical 

limitations of a separation process and reveals the 

required stages for reaching equilibrium. On the 

other side, interfacial properties determine the 

efficiency and the size of equipment [1].  
To study the feasibility of a process, firstly the most 

appropriate thermodynamic model for experimental 

data should be selected, and even sometimes 

operations need to optimized. Therefore, it is 

required study equilibrium thermodynamics [2]. 

Studies have shown that finding a perfect model and 

algorithms for computing phase equilibria are the 

most important concern of industries, to the extent 

that, industries prefer to not invest time and money 

in developing a new algorithm for phase equilibrium 

calculations even when it is required [3]. So, we see 

oil and gas industries are still using the classical 

equation of states (EoS). Indeed, developing a new 

algorithm based on contemporary EoS requires 

industries to provide a dissimilar set of parameters. 

In other words, the necessity for developing a more 

precise molecular-based model would increase 

computational expenditures [3], [4].  

Prausnitz et al. [5] and Michelsen and Mollerup [6] 

discussed the fundamental computation for 

calculating phase equilibria in isothermal isobaric 

two-phase flash, liquid-liquid equilibrium, 

heteroazeotropic, bubble points, and dew points. 

Derived solution methods are based on minimizing 

Gibbs free energy of the system or criteria for 

isofugacity. They applied a combination procedure 

of newton methods, successive substitution, and 

second-order minimizations.  

Commercial solutions like Aspen Plus, gPorms, etc. 

are being developed to simulate the process and 

calculate phase equilibria. Although these 

simulators consist some advantages like different 

thermodynamic models, an extended database on 

phase equilibria, and stable manners, some cons 

should be mentioned also, including licenses fee, 

and the limitation of manipulating prefabricated 

processes. In addition, these commercial software 

does not use square gradient theory (SGT) for 

interfacial descriptions. As a theoretical approach, 

SGT in connection with a continuous EoS specifies 

the binodal boundary. Moreover, SGT makes a 

connection between homogenous phase and 

transition zone and as a result characterizes 

interfacial tension, Gibbs energy, and density 

profile. To deal with this type of problems, scientists 

are nominating homemade programs as a reliable 

solution [7]–[10].  



SIMS 63      Trondheim, Norway, September 20-21, 2022 

This study is to use a Python-based module, namely 

Phasepy, to calculate interfacial properties and 

phase equilibrium computation and evaluate how 

much the defined module is applicable for 

calculating thermodynamic properties in 

multicomponent mixtures. Then firstly a short 

description of Phasepy is provided and then it is tried 

to evaluate the accuracy of calculations based on the 

previously performed experimental studies.  

 

2. Theory and Methodology 

Although more than 200 EoS were published by 

1949, Redlich and Kwong made effort to deal with 

the limitations and revive the van der Waals EoS for 

high- and low-density fluids. They proposed 

following EoS [11], [12]: 

𝑃 =
𝑅𝑇

𝑉−𝑏
−  

𝑎𝑐𝛼(𝑇)

𝑉(𝑉+𝑏)
  (1) 

Where:  

𝛼(𝑇) =
𝑎

𝑇0.5   (2) 

𝑎𝑐 =
Ω𝑎𝑅2𝑇𝑐

2.5

𝑃𝑐
   (3) 

𝑏 =
Ω𝑏𝑅T𝑐

P𝑐
   (4) 

Ω𝑎 = 0.4278  and  Ω𝑏 = 0.0867 

Although RK EoS does not posse a considerable 

background theoretically, this model provides 

acceptable results. In the following, Soave presented 

a new version of RK EoS by keeping the RK volume 

functionality and redefining 𝛼 as a function of 

reduced temperature and acentric factor [12].  

𝑃 =
𝑅𝑇

𝑉−𝑏
−  

𝑎𝑐𝛼(𝑇𝑟,𝜔) 

𝑉(𝑉+𝑏)
  (5) 

𝑎𝑐 =
0.42747𝑅2𝑇𝑐

2.5

𝑃𝑐
   (6) 

𝑏 =
0.08664𝑅T𝑐

P𝑐
   (7) 

𝛼(𝑇𝑟 , 𝜔) = [1 + (0.480 + 1.574𝜔 −
0.176𝜔2)(1 −  𝑇𝑟

0.5)]2  (8) 

The SRK now is the most popular EoS in 

hydrocarbon-related industries. Then scientists tried 

to define new temperature model 𝛼(𝑇𝑟 , 𝜔) and 

modify volume dependency of pressure-related 

terms. Peng and Robinson calculated 𝛼(𝑇𝑟 , 𝜔) again 

and modified SRK EoS. PR EoS is: 

𝑃 =
𝑅𝑇

𝑉−𝑏
−  

𝑎𝑐𝛼(𝑇𝑟,𝜔) 

𝑉(𝑉+𝑏)+𝑏(𝑉−𝑏)
  (9) 

𝑎𝑐 =
0.45724𝑅2𝑇𝑐

2.5

𝑃𝑐
   (10) 

𝑏 =
0.07780𝑅T𝑐

P𝑐
   (11) 

𝛼(𝑇𝑟 , 𝜔) = [1 + (0.37464 + 1.54226 −

0.26992𝜔2)(1 −  𝑇𝑟
0.5)]2  (12) 

Theoretically, mixing rules have been developed to 

connect multicomponent mixture parameters to pure 

fluid parameters [12]. Mostly, classical van der 

Waals mixing rules are applied as: 

𝑎 =  ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖𝑗    (13) 

𝑏 =  ∑ ∑ 𝑥𝑖𝑥𝑗𝑏𝑖𝑗    (14) 

𝑐 =  ∑ ∑ 𝑥𝑖𝑥𝑗𝑐𝑖𝑗    (15) 

The volume parameters, 𝑏𝑖𝑗  and  𝑐𝑖𝑗 , are calculated 

with arithmetic mean and for force parameter, 𝑎𝑖𝑗 , 

the geometric mean is utilized. Therefore, phase 

equilibrium can be correlated more accurately [12].  

𝑎𝑖𝑗 =  √𝑎𝑖𝑎𝑗(1 −  𝑘𝑖𝑗)  (16) 

𝑏𝑖𝑗 =
1

2
(𝑏𝑖 +  𝑏𝑗)(1 − 𝛽𝑖𝑗)  (17) 

𝑐𝑖𝑗 =
1

2
(𝑐𝑖 +  𝑐𝑗)(1 − 𝛿𝑖𝑗)  (18) 

Although these modifications can keep the 

concentration-related affinity of the parameters, a 

better modification is required for complex cases 

like supercritical fluid processes.  𝑘𝑖𝑗, 𝛽𝑖𝑗, and 𝛿𝑖𝑗 

are known as the interaction coefficients between 

components i and j. moreover, regression analysis of 

real data or predictive correlations is applied to 

calculate these interaction coefficients. Some other 

studies have tried to understand the logic behind the 

binary interaction coefficient and pure species 

properties [11].  

Phasepy is an open-source, and scientific package 

based on Python which has been developed to 

calculate interfacial properties and phase 

equilibrium. Object-oriented style of Phasepy 

enables users to apply small codes to calculate 

thermodynamics’ properties. By using Phasepy it is 

possible to model a pure fluid or a multicomponent 

mixture fluid based on EoS. Then stability of phase 

equilibrium computation is evaluated. Finally, 

selecting continuous approach provides a possibility 

to investigate interfacial behavior based on SGT 

[10].  

Firstly, the pure components and their properties, 

including critical temperature [K], critical pressure 

[bar], critical compressibility factor, critical volume 

[cm3/mol], and acentric factor should be defined. In 

this way, the component function enables the user to 

define components separately and then the mixture 

and the add_component functions define and 

develop the fluid mixture. The following code script 

shows how to define a three-component mixture of 

Nitrogen, Carbon dioxide, and Methane.  

𝑁2 =  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑛𝑎𝑚𝑒 = ′𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛′, 𝑇𝑐
= 126.2, 𝑃𝑐 = 34, 𝑍𝑐
= 0.289, 𝑉𝑐 = 89.2, 𝑤
= 0.038, 𝐺𝐶 =  {′𝐻2𝑂′: 1}) 

𝐶𝑂2 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑛𝑎𝑚𝑒 =′ 𝑐𝑎𝑟𝑏𝑜𝑛
− 𝑑𝑖𝑜𝑥𝑖𝑑𝑒′, 𝑇𝑐 = 126.2, 𝑃𝑐
= 34, 𝑍𝑐 = 0.289, 𝑉𝑐 = 89.2, 𝑤
= 0.038, 𝐺𝐶 = ′𝐻2𝑂′: 1) 

𝐶𝐻4 =  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑛𝑎𝑚𝑒 = ′𝑚𝑒𝑡ℎ𝑎𝑛′,
𝑇𝑐 = 190.6, 𝑃𝑐 = 45.99,
𝑍𝑐 = 0.286, 𝑉𝑐 = 98.6, 𝑤
= 0.012, 𝐺𝐶 =  {′𝐶𝐻2′: 1, ′𝐶𝐻2′
∶ 1}) 

𝑚𝑖𝑥 =  𝑚𝑖𝑥𝑡𝑢𝑟𝑒(𝑁2, 𝐶𝑂2) 

𝑚𝑖𝑥. 𝑎𝑑𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝐶𝐻4) 

Now the mixture is ready, and a model should be 

selected to compute phase equilibria and interfacial 
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Table 1: Required information for continuous or discontinuous modeling of a multicomponent mixture using 

Phasepy [10]. 

Type of modeling Models Component definition Interaction  

Discontinuous model 𝜙 − 𝛾 ideal gas, Abott Van 

Ness, NRTL, 

Wilson, UNIFAC 

Critical temperature 

Critical pressure 

Critical compressibility  

Activity coefficient models 

need specific interaction 

parameters 

Continuous model 𝜙 − 𝜙 VdW, PR, PR, 

PRSV, RK, RKS, 

Critical temperature 

Critical pressure 

Acentric factor 

Specific activity coefficient 

models  

 

properties. Phasepy has provided two approaches to 

model a mixture. Throughout the 𝜙 − 𝛾 approach, 

firstly, a virial expansion is applied to model the  

vapor phase deviation (𝜙). Then, an activity 

coefficient model like NRTL, modified-UNIFAC,  

wilson, or Redlich-Kister, is utilized to explain 

liquid phase deviation (𝛾).   

𝑚𝑖𝑥. 𝑁𝑅𝑇𝐿(𝑎𝑙𝑝ℎ𝑎, 𝑔, 𝑔1) 

𝑚𝑜𝑑𝑒𝑙 =  𝑣𝑖𝑟𝑖𝑎𝑙𝑔𝑎𝑚𝑚𝑎(𝑚𝑖𝑥, 𝑣𝑖𝑟𝑖𝑎𝑙𝑚𝑜𝑑𝑒𝑙
= ′𝐴𝑏𝑏𝑜𝑡𝑡′, 𝑎𝑐𝑡𝑚𝑜𝑑𝑒𝑙 = ′𝑛𝑟𝑡𝑙′) 

The second approach uses a classical cubic EoS and 

a mixing rule to model the system. EoS functions in 

Phasepy account for van der Waals (vdW), Redlich-

Knowg (RK), Redlich-Knowg-Soave (RKS), Peng-

Robinson (PR), Peng-Robinson-Stryjek-Vera EoS 

(PRSV), and the Pàeloux et al. Moreover, as a 

mixing rule it is possible to apply quadratic mixing 

rule (QMR), modified-Huron-Vidal mixing rule 

(MHV), and Wong-Sandler mixing rule (WS) [10]. 

In essence, by selecting the preferred EoS and the 

appropriate mixing rule, it would be possible to 

calculate interfacial properties and phase 

equilibrium. For instance, based on Peng Robinson 

EoS, NRTL for activity coefficient, and MHV 

mixing rule we can write the following code scripts: 

𝑒𝑜𝑠 =  𝑝𝑟𝑒𝑜𝑠(𝑚𝑖𝑥, ′𝑚ℎ𝑣1_𝑛𝑟𝑡𝑙′) 

For more information about the EoS, mixing rules, 

and activity coefficient following references are 

suggested, [13], [14].  

Tab. 1. presents the required information according 

to the type of modeling, including continuous or 

discontinuous using Phasepy. 

 

3. Phasepy Two-phase equilibrium calculation  

To calculate the isothermal isobaric flash 

composition of a two-phase mixture, Phasepy needs 

to revamp the phase compositions and solve 

Rachford-Rice mass balance continually. Therefore, 

the developer applied accelerated successive 

substitution (ASS) [15] and Halley's method to deal 

with the mentioned difficulties respectively.  

Based on Rachford-Rice mass balance: 

∑
𝑧𝑖(𝐾𝑖 − 1 )

1 + 𝜓(𝐾𝑖 − 1 )

𝑐
𝑖 = 1  =  0 (19) 

𝐾𝑖  =  
𝑥𝑖

𝛼

𝑥
𝑖
𝛽  =  

�̂�𝑖
𝛼

�̂�
𝑖
𝛽  (20) 

𝛼  and 𝛽 represent two phases and 𝜓 depicts the 

fraction of phase 𝛽. In the case of not convergency 

especially in higher pressures, the algorithm is 

altered with a second-order procedure to find the 

minimum Gibbs free energy [10].  

∑ (𝐹𝑖
𝛼𝑙𝑛𝑓𝑖

𝛼𝑐
𝑖 = 1  +  𝐹𝑖

𝛽
𝑙𝑛𝑓𝑖

𝛽
)  (21) 

Where 𝐹 and f̂ refer to the number of the mole and 

effective fugacity respectively, and i is the species 

index. Apart from the flash calculation, Phasepy 

possesses the ability to calculate saturation points. 

Computing bubble points and dew points in a two-

phase vapor-liquid-equilibrium (VLE) is based on 

the suggested method by Mollerup [6]. In this way 

throughout an inner loop phase compositions are 

updated using ASS, and the outer loop utilizes the 

quasi-Newton method to recalculate the pressure or 

the temperature. in the case of slow convergence, 

SciPy optimization routines are applied to solve 

equations 4, and 5 based on the iteration factor K, 

equilibrium constant. 

𝑓𝑖  =  𝑙𝑛𝐾𝑖  +  𝑙𝑛�̂�𝑖
𝑣(𝑦, 𝑇, 𝑃)  −  𝑙𝑛�̂�𝑖

𝑙(𝑦, 𝑇, 𝑃)
 𝑖 =  1, 2, . . . , 𝑐  (22) 

𝑓𝑐+1  =  ∑ (𝑦𝑖
𝑐
𝑖 = 1  −  𝑥𝑖)  (23) 

The author of Phasepy presented Fig. 1 as the 

algorithm of Phasepy in computing bubble points or 

dew points. It is worth saying that the model requires 

the user to guess an initial value for saturation point, 

though the algorithm has ability enough for 

tolerating the initial guesses with large errors.  

 

Figure 1: proposed algorithm for calculating the 

saturation points in Phasepy [10]. 
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The following code scripts show how the saturation 

points or flash points can be calculated.  

𝑓𝑙𝑎𝑠ℎ(𝑥_𝑔𝑢𝑒𝑠𝑠, 𝑦_𝑔𝑢𝑒𝑠𝑠, 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚, 𝑍, 𝑇, 𝑃, 𝑚𝑜𝑑𝑒𝑙) 

𝑏𝑢𝑏𝑏𝑙𝑒𝑇𝑦(𝑦_𝑔𝑢𝑒𝑠𝑠, 𝑇_𝑔𝑢𝑒𝑠𝑠, 𝑋, 𝑃, 𝑚𝑜𝑑𝑒𝑙) 

𝑏𝑢𝑏𝑏𝑙𝑒𝑃𝑦(𝑦_𝑔𝑢𝑒𝑠𝑠, 𝑃_𝑔𝑢𝑒𝑠𝑠, 𝑋, 𝑇, 𝑚𝑜𝑑𝑒𝑙) 

𝑑𝑒𝑤𝑃𝑥(𝑥_𝑔𝑢𝑒𝑠𝑠, 𝑃_𝑔𝑢𝑒𝑠𝑠, 𝑦, 𝑇, 𝑚𝑜𝑑𝑒𝑙) 

𝑑𝑒𝑤𝑇𝑥(𝑥_𝑔𝑢𝑒𝑠𝑠, 𝑇_𝑔𝑢𝑒𝑠𝑠, 𝑦, 𝑃, 𝑚𝑜𝑑𝑒𝑙) 

Where: 

• x_guess(array): mole fraction of phase 1 

(initial guess) 

• y_guess(array): mole fraction of phase 2 

(initial guess) 

• T_guess (float): equilibrium temperature 

[K] (initial guess) 

• P_guess (float): equilibrium pressure [bar] 

(initial guess) 

• equilibrium(string): Two-phase system, 

including ‘LL’ (liquid-liquid) or ‘LV’ 

(liquid-vapor) 

• Z(array): Overall mole fractions of 

components  

• T(float): temperature [K] 

• P(float): Pressure [bar] 

• model(object): prepared model based on 

EoS and mixing rule (eos) 

 

4. Results and Discussion 

To evaluate how much the developed model is 

reliable to predict phase equilibrium three two-

component mixtures at two pressures and two four-

component mixtures are studied and outputs are 

compared with the experimental results.  

In this way, average absolute relative deviation 

(AARD) and absolute maximum deviation (AMD) 

are studies.  

𝐴𝐴𝑅𝐷 =  
1

𝑛
 ∑

|𝐸𝑥𝑝𝑖 − 𝐶𝑎𝑙𝑖|

𝐸𝑥𝑝𝑖

𝑛
𝑖=𝑖  ×  100 (24) 

𝐴𝑀𝐷 =  𝑀𝑎𝑥(|𝐸𝑥𝑝𝑖  −  𝐶𝑎𝑙𝑖|)   (25) 

i = 1, 2, …, n 

Knudsen et. al. [16] investigated the most 

appropriate mixing rule, including the Huron-Vidal 

rule, the MHV-model, the Schwarzentruber - 

Galivel-Solasttouk - Renon rule, and the density-

dependent local composition rule, for SRK EoS. The 

authors showed that the Huron-Vidal rule and 

modified Huron-Vidal rule can be used as the best 

mixing rule. On the other hand, Pedersen et. al. [17] 

also suggested that when the system is only 

containing hydrocarbons and sour gas simple QMR 

can be adequate. Therefore, for binary mixtures, the 

Modified Huron Vidal mixing rule and Quadratic 

Mixing Rule are compared while SRK is used as the 

EoS, and in four-components mixtures, QMR is 

utilized as the mixing rule and two EoS, including 

SRK and PR, are compared.  

Marlus et. al. [18] studied binary mixtures of 

Benzene + Cyclohexane, Benzene + Chlorobenzene, 

and Cyclohexane + Chlorobenzene at the pressure of 

101.5 and 40 kPa. T-x,y diagrams for the mixtures 

are drawn in Fig. 2, 3, 4, and 5.  

 
Figure 2: T-x,y diagram for Benzene (1) + Cyclohexane 

(2) at 40 kPa 

 
Figure 3: T-x,y diagram for Benzene (1) + Cyclohexane 

(2) at 101.3 kPa 

 
Figure 4: T-x,y diagram for Benzene (1) + 

Chlorobenzene (2) at P = 40 kPa, and P = 101.3kPa 

 
Figure 5: T-x,y diagram for Cyclohexane (1) + 

Chlorobenzene (2) at P = 40 kPa, and P = 101.3kPa 

Thomas et. al. [19] experimentally studies the phase 

equilibrium of LNG. The authors indeed performed 

experiments on two different four-component 
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mixtures, and then tried to model the behaviors 

using PR EoS. This study modeled these two 

mixtures using the Phasepy package. P-x-y diagrams 

are shown in Fig. 6 and 7. 

 
Figure 6: P-x,y diagram for CH4 in CH4, C2H6, C3H8, 

and n-C4H10 mixture 

 
Figure 7: P-x,y diagram for CH4 in CH4, C2H6, C3H8, 

and i-C4H10 mixture 

For all modelled mixture, AARD and AMD are 

calculated and shown in Table. 2. Therefore, it is 

possible to compare the consistency of EoS and 

mixing rules for different mixtures.  

Table 2: calculated AARD and AMD for different 

mixtures 

Mixture 
P 

[kPa] 
EoS 

Mix. 

rule 

AARD 

(%) 
AMD 

Benzene + 

Cyclohexane 
40 SRK 

QMR 2.87 0.020 

MHV 3.09 0.021 

Benzene + 

Cyclohexane 
101.3 SRK 

QMR 2.49 0.019 

MHV 2.26 0.019 

Benzene + 

Chlorobenzene 
40 SRK 

QMR 1.42 0.043 

MHV 1.55 0.046 

Benzene + 

Chlorobenzene 
101.3 SRK 

QMR 1.73 0.019 

MHV 1.43 0.021 

Cyclohexane + 

Chlorobenzene 
40 SRK 

QMR 2.93 0.045 

MHV 2.88 0.030 

Cyclohexane + 

Chlorobenzene 
101.3 SRK 

QMR 1.77 0.045 

MHV 2.06 0.043 

CH4, C2H6, 

C3H8, and n-

C4H10 

 
SRK 

QMR 
0.79 0.029 

PR 0.83 0.032 

CH4, C2H6, 

C3H8, and i-

C4H10 

 
SRK 

QMR 
0.30 0.019 

PR 0.53 0.023 

Based on Tab. 2, at the pressure of 40 kPa, SRK-

OMR is the better model to predict the equilibrium 

of the Benzene (1) + Cyclohexane (2) mixture. 

However, at pressure 101.3 kPa, SRK-MHV-Wilson 

is the better model.  

In the case of the Benzene + Chlorobenzene mixture, 

Fig. 4, in lower pressure, SRK-QMR is fitted and 

experimental results are perfectly predicted. 

However, at Pressure 101.3 kPa SRK-MHV_Wilson 

is the better model to predict the system. 

For Cyclohexane + Chlorobenzene mixture as 

shown in Fig. 5, in lower pressure, SRK- 

MHV_Wilson is the better model to be fitted with 

the experimental results. Moreover, at Pressure 

101.3 kPa SRK-QMR and SRK-MHV_Wilson are 

more closed, but, SRK-QMR is the better model. 

Results show that PR and SRK EoS both, are an 

adequate choice for modeling, but in CH4, C2H6, 

C3H8, and i-C4H10 mixture, and, for CH4 in CH4, 

C2H6, C3H8, and n-C4H10 mixture SRK is the 

better EoS for modeling. 

 

5. Conclusion 

Knowing the interfacial properties and fluid phase 

equilibria are required to study the fluid behavior. In 

addition, thermodynamic models enable scientists to 

investigate the feasibility of an operation and 

process. However, finding an appropriate 

thermodynamic model and algorithm for computing 

the phase equilibria and interfacial properties is 

challenging. Although these days some commercial 

software has been developed to solve these 

difficulties, there are still some restrictions, 

including licenses fee, limitations in manipulating 

the defined process and lack of square gradient 

theory (SGT) for interfacial descriptions. Therefore, 

scientists have been provoked to apply alternative 

solutions like homemade programs.  

Phasepy is a scientifically defined open-source 

package in python for computational 

thermodynamics. This package has been developed 

based on the most popular and reliable theories to 

calculate the interfacial properties and phase 

equilibria. The simplicity and accuracy of Phasepy 

enable studies to compare different EoS, mixing 

rules, etc.  

This study tries to evaluate how much the developed 

methods based on Phasepy are able to predict the 

behavior of multicomponent mixtures. In this way, 

four binary mixtures and two four-components 

mixtures are modeled. Then the developed models 

are validated based on the performed experimental 

results. The results depict that Phasepy could be a 

solution for thermodynamic modeling, if an 
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appropriate EoS, mixing rule, and activity 

coefficient model were selected.  
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Abstract 

 

Organic Rankine cycles (ORC) are efficient technologies for waste heat recovery (WHR) at low to mid 

temperatures. For the design of ORC power cycles, several thermodynamic parameters should be considered. A 

challenge related to small scale (<50 kW) ORC cycles is to define the optimal process given frequent variability 

in a heat source. Many relevant applications require robust ORC systems to perform under varying heat source 

loads. This is an area where the body of knowledge must be further developed. 

In this work, the design of small-scale ORC cycles with varying heat source conditions is addressed by means of 

system modelling, simulation, and optimization. A framework is presented that consists of multi-scale 

optimization for the design of small-scale ORC systems considering seasonal and hourly heat source variations. 

The framework is developed as a flexible tool allowing to include fit-for-purpose models of key elements of the 

cycle, such as expander and heat exchanger, to suitably simulate off-design performance. 

The optimization framework has been tested on a case study representing a woodchips-fired micro-cogeneration 

unit via ORC. The case study is representative of an existing unit operating at the Czech Technical University 

(CTU) in Prague. The results indicate that the tool delivers an ORC design that has a 5 % larger accumulated 

power production with the hourly variation of the heat source during one year than the original ORC solely 

optimized at the design heat source condition. The optimal ORC system also shows a 33 % smaller nominal 

capacity and size of heat exchangers than the ORC at the reference design, indicating a potential reduction in the 

capital cost. 

 

1. Introduction 

 

For low temperature heat sources, organic Rankine 

cycles demonstrated to be an advantageous 

technology (Macchi and Astolfi, 2016). When 

considering ORC design, several thermodynamic 

parameters should be considered, as well as a several 

organic working fluids and process configurations. 

Optimization could be performed both on 

thermodynamic and techno-economic parameters 

(Colonna et al., 2015). A main challenge related to 

small scale (<50kW) ORC cycles is to define the 

optimal process design given a specific application 

when there is frequent variability in heat source. 

Many relevant applications will require robust ORC 

systems to perform under varying heat source 

(Petrollese and Cocco, 2019). This is an area where 

the body of knowledge is less developed. 

 

This paper presents a tool under development for the 

design optimization of ORC systems accounting for 

off-design operations. The primary focus will be on 

small scale distributed energy systems. The 

objective of this work is to describe the methodology 

at the basis of the tool and present the first 

implementation, highlighting the expected benefits 

by analyzing a case study. In the future, the tool will 

be further developed along different lines. The off-

design models will be refined to include more 

advanced approaches, potentially validated on 

experimental data. The framework will also include 

multi-scale optimization opportunities, where the 

cycle components design will be optimized together 

with the process. For instance, the aerodynamic 

design of the expander will be embedded into the 

optimization framework. In view of future 

developments, the tool will strive to enable a high 

degree of flexibility. The goal is to ensure the 
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possibility to accommodate modules and layers in a 

simple manner, therefore allowing analyses at the 

requested level of complexity. 

 

The paper is structured as follows. Section 2 

describes the methodology used for the study, 

including the modelling work and optimization 

framework. The section concludes with an overview 

of the case study and boundary conditions for the 

analysis. Section 3 presents the results obtained from 

the given case study. Section 4 outlines the main 

findings. 

 

2. Methodology  

 

2.1. Tool for optimal design of ORC systems for 

small scale distributed energy systems 

 

This study presents the first version of a tool for 

multi-scale design optimization of ORC systems. 

The tool is developed as a flexible platform for 

simulation and optimization. In this first version, the 

tool includes a model for simulation of ORCs as well 

as off-design models for predicting part load 

performances of key elements of the cycle. An 

optimization framework integrates the various 

models allowing to identify a design that results in 

the optimal performance considering all expected 

operating conditions. Future versions of the tool will 

allow for incorporating more advanced off-design 

models, better control structures and modules for 

multi-scale optimization. However, those aspects 

are not part of this study. 

 

The approach used for design optimization is 

depicted in Figure 1. Given an objective function z̅, 

a design is defined in terms of a set of selected 

independent variables (see Table 1). The simulation 

at such design point provides the process 

thermodynamic values of the cycle at design – in 

terms of mass flow rates, temperature and pressure 

levels and also sizes of the heat exchangers. That 

information is used for the off-design simulations 

that will be carried out for each operating conditions 

deemed relevant to describe the operation of the 

ORC. Each simulation returns the value of the 

objective function at the specific conditions. The 

overall objective function is the weighed sum of the 

specific values obtained from the off-design 

simulations. For this study, the main objective 

function was selected to be the accumulated 

produced electric power over the time horizon of 

operation. Such objective function is more suitable 

for systems where power is the main output, while 

our case study will be based on a combined heat and 

power (CHP) unit. However, the focus of this first 

 
1 For the open code and technical documentation, refer to 

https://github.com/RoberAgro/RankineLab  

implementation is to prove the methodology. More 

detailed considerations on relevant objective 

functions will be made in future studies. 

 

 
Figure 1. Flowchart of the optimization framework 

 

2.1.1. Rankine Lab code 

 

The Rankine Lab tool1 (Agromayor and Nord, 2017) 

has been used as model basis for design 

optimization. It is an open-source tool in MATLAB 

that can be used to analyze and optimize Rankine 

cycles. It utilizes a gradient-based optimizer (SQP), 

and several cycle configurations are possible to 

analyze. In this design optimization tool, CoolProp, 

which is also open-source, is applied for 

thermodynamic property calculations during the 

ORC simulation. Various working fluids can be 

chosen within CoolProp and several parameters can 

be tuned to perform a simulation. For working fluids 

that are not supported by CoolProp, RefProp can be 

linked to the Rankine Lab tool via the CoolProp 

interface.  

 

The ORC considered is shown in Figure 2 (note that 

the recuperator is originally included in the Rankine 

Lab tool, but it is not activated for this analysis). The 

working fluid selected is MM 

(hexamethyldisiloxane). For the design 

optimization, 5 decision variables and 8 inequality 

constraints are defined as shown in Table 1 and 

Table 2. The upper and lower bounds of the 

variables are also reported in Table 1. 

 
Figure 2. Process flowsheet of the reference ORC. 

Design 
definition

Off-design 
performance 

1

Off-design 
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Table 1. Optimization variables and related bounds. 

Independent 

variables 

Lower  

bound 

Upper  

bound 

T3 Tflue,min Tflue,supply  

p4 pcycle,min pcycle,max 

h4 hsat(T0) h(T1, p→0). 

p7 ptriple pcycle,max 

h7 hsat(T0) h(1000 K, p→0) 

 
Table 2. Nonlinear optimization constraints. 

Independent variables Value 

ΔT within the evaporator*
 ΔTevap ≥ ΔTevap,min 

ΔT within the condenser* ΔTcond ≥ ΔTcond,min 

Subcooling at pump inlet 
ΔTsub,min ≤ Tsat(p4) - 

T4 ≤ ΔTsub,max 

Superheating at expander inlet 
ΔTsup,min ≤ T7 - 

Tsat(p7) ≤ ΔTsup,max 

Vapor quality within expander qexp ≥ qexp,min 

Expander capacity Wexp ≤ Wexp,max 

Expander inlet temperature T7 ≤ Texp,in,max 

Expander inlet pressure p7≤ pexp,in,max 

Expander outlet pressure T8 ≥ Texp,out,min 

*This constraint is evaluated at each discretization step of 

the heat exchanger 
  

2.1.2. Code for off-design:  

 

The off-design model was based on the work in 

(Riboldi and Nord, 2018) and adapted to an ORC. 

The inputs to the off-design model are the design 

parameters (see those parameters with subscript d in 

the following equations) obtained by the solution of 

Rankine Lab at the design tested. 

The heat recovery unit (HRU) is modelled through 

the relation from Incropera et al. (Incropera et al., 

2007), where the off-design heat transfer coefficient 

is calculated as: 

 

𝑈𝐴 =  𝑈𝐴𝑑 (
�̇�

�̇�𝑑
)

𝛾
(1)  

 

where U is the overall heat transfer coefficient, A is 

the heat transfer area, ṁ is a mass flow rate and γ is 

the exponent of the Reynolds number in the heat 

transfer correlation. γ was set equal to 0.6. Assuming 

a shell and tube heat exchanger configuration, it is 

assumed that the heat transfer inside the tubes is the 

dominating factor (Orlandini et al., 2016). The 

condenser is more simply modelled as a fixed 

pressure component. The performance of the 

expander at off-design conditions is model based on 

the two following equations: 

 

𝐶𝑆 =
�̇�√𝑇𝑖𝑛

√𝑝𝑖𝑛
2 −𝑝𝑜𝑢𝑡

2
(2)  

𝜂𝑇

𝜂𝑇,𝑑
= 2√

𝛥ℎ𝑇,𝑖𝑠,𝑑

𝛥ℎ𝑇,𝑖𝑠
−

𝛥ℎ𝑇,𝑖𝑠,𝑑

𝛥ℎ𝑇,𝑖𝑠
(3)

  

where CS is the constant flow coefficient (a constant 

and determined at design conditions), ṁ is the mass 

flow rate, Tin is the turbine inlet temperature, pin is 

the turbine inlet pressure and pout is the turbine outlet 

pressure, ηT is the isentropic efficiency of the turbine 

at off-design and ΔhT,is is the isentropic enthalpy 

difference due to the expansion in the turbine. The 

former is the Stodola’s cone law and determines the 

mass flow rate of the cycle as a function of inlet 

pressure, outlet pressure and the fluid density at the 

turbine inlet. The latter is the relation proposed by 

Schobeiri (Schobeiri, 2005) to predict the isentropic 

efficiency at part-load. The efficiency of the 

generator is calculated as follows (Haglind and 

Elmegaard, 2009): 

 

𝜂𝑔𝑒𝑛 =
𝑙𝑜𝑎𝑑 ⋅ 𝜂𝑔𝑒𝑛,𝑑

𝑙𝑜𝑎𝑑 ⋅ 𝜂𝑔𝑒𝑛,𝑑 + (1 − 𝜂𝑔𝑒𝑛,𝑑)[(1 − 𝐹𝐶𝑈) + 𝐹𝐶𝑈𝑙𝑜𝑎𝑑2]
(4) 

 

The efficiency of the pumps at off-design is defined 

as a function of the volumetric flow rate, according 

to the relation developed by Veres (Veres, 1994): 

 

𝜂𝑝𝑢𝑚𝑝

𝜂𝑝𝑢𝑚𝑝,𝑑

= −0.029265 (
�̇�

�̇�𝑑

)

3

− 0.14086 (
�̇�

�̇�𝑑

)

3

+0.3096 (
�̇�

�̇�𝑑

)

2

+ 0.86387 (5)

 

 

where ηpump is the isentropic efficiency of the pump 

and �̇� is the volumetric flow rate. 

 

The pressure drops (Δp) are modelled with a 

quadratic dependence from the mass flow rate 

(Lecompte et al., 2013): 

 

𝛥𝑝 = 𝛥𝑝𝑑 (
�̇�

�̇�𝑑
)

2
(6) 

 

where Δp is the pressure drop and ṁ is the mass flow 

rate. 

 

To cope with the different input conditions to the 

ORC, a simple control scheme was implemented. 

The pressure was left varying according to a sliding 

pressure control mode. This is a common control 

scheme in ORC applications (Imran et al., 2020). 

The maximum temperature entering the expander is 

also kept within a maximum threshold while the 

expander outlet pressure was maintained at the 

design value. 

 

 

2.2 Case Study description 

 

The reference case study is biomass-fired micro-

cogeneration of heat and power via ORC. The case 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

study is representative of an existing unit operating 

at the Czech Technical University (CTU) in Prague 

for supplying heat (design 120 kWth) and electricity 

(design 6.2 kWel) to the university research center. 

The working fluid is MM (hexamethyldisiloxane), 

while the expander is a rotary vane expander. The 

unit is woodchips-fired. 

 

2.3 Scenario and boundary conditions 

 

Actual operating data has been provided and used as 

the basis for the analysis. In this study, only the 

variations of the flue gas flow rate were considered, 

and the cycle is simulated to provide the maximum 

power output. This is a simplification as the actual 

ORC is designed to provide both heat and backup 

power. However, the goal of this study was to 

demonstrate the methodology rather than to simulate 

a real system. 

 

Figure 3 shows the variation of flue gas flow rate 

(i.e., the heat source for the ORC) over one year. 

Significant fluctuations can be noticed, resulting in 

the ORC operating frequently far from its design. 

Such design was selected as that at 0.078 kg/s of flue 

gas flow rate and is indicated as 100 % flow rate. 

Figure 4 shows the distribution of flue gas flow rates 

throughout one year.  

 

The low load operation will result in the ORC 

system at the design condition being oversized most 

of the time. Thus, in this work, the ORC system is 

optimized to find the optimal system capacity and 

operating conditions that give the largest power 

production throughout the year. The capacity of the 

ORC system is varied by changing the design flue 

gas flow rate. During this optimization, the excess 

amount of the flue gas over 115 % of its design value 

is assumed to be not utilized in the ORC system. 

 

 
Figure 3. Hourly variation of the heat source (flue gas 

mass flow rate) over a year period at the Czech Technical 

University (CTU) campus. 

 

 
Figure 4. Distribution of the flue gas flow rate at the 

Czech Technical University (CTU) campus (accumulated 

hours for one year of operation). 

The constraint values in Table 2 can be varied 

depending on the assumptions made to analyze an 

ORC system. For example, the practical conditions 

include limitations to the cycle parameters and 

operating conditions that are given by the utilization 

of state-of-the-art equipment.  

 

In this work, however, the ORC is constrained to 

reflect the actual rig conditions considering the 

physical limitations of process equipment and 

working fluids. One example is the cycle is 

restricted to be operated at sub-critical conditions in 

order to prevent any mechanical issues. To avoid the 

thermal degradation of MM, the maximum cycle 

temperature (expander inlet temperature) is also 

limited to 190 °C considering an extra temperature 

margin.  

 
Table 3. Design basis and constraints applied in the MM 

based ORC. 

Design parameters 

and constraints 

Rig  

conditions 

Tflue,supply 1442 °C 

Tflue,min 132 °C 

pcycle,max 10 bara 

pcycle,min 0.01 bara 

ΔTevap,min 50 °C 

ΔTcond,min 2 °C 

ΔTsub,min  9.6 °C 

ΔTsup,min 10 °C 

qexp,min 1 

Wexp,max 15.5 kW 

Texp,in,max 190 °C 

pexp,in,max 8 bara 

pexp,out,min 0.2 bara 
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It is worth noting that the heated cooling water from 

the condenser is utilized as hot water at the CTU 

campus. Thus, the cooling water supply (T10) and 

return temperature (T12) are set to 58 °C and 80 °C 

to meet the hot water specification. Other design 

conditions and constraint values are listed in Table 

3. 

 

3. Results 

 

Figure 5 presents the performance of two different 

designs of the MM based ORC system. One is the 

ORC system optimized for the design flue gas flow 

rate (referred to as design ORC). Based on the ORC 

design, the off-design performance is estimated to 

calculate the accumulated power production per 

year. The other is the ORC system optimized to 

maximize the accumulated power production 

throughout the year while varying the capacity 

(referred to as optimal ORC). The temperature-

enthalpy diagram of the optimal cycle is also 

presented in Figure 6. 

 

The results indicate that the optimal ORC system has 

a 5 % larger accumulated power production 

throughout the year compared to the ORC system at 

the design. As shown in Figure 5, the design ORC 

achieves a lower energy efficiency below 80 % load 

compared to the optimal ORC. Considering the 

frequent low load operation, such lower efficiency 

results in smaller accumulated power production as 

well. Although the ORC at the design outperforms 

at a larger flue gas flow rate of over 80 %, the 

fraction of the occurrence is not significant (see 

Figure 4), thus having a marginal impact on the 

accumulated power production. 

 

Table 4 introduces the operating conditions of the 

two different designs. It is worth noting that the 

optimal ORC has a smaller capacity than the ORC at 

the design. Based on the flow rate of the working 

fluid and the expander power output, the capacity of 

the optimal system is estimated to be around 68 % 

of the ORC at the design. The lower design capacity 

of the ORC system allows the cycle to achieve a 

higher energy efficiency at a lower load where the 

system is operated most of the time span. The 

reduced capacity of the ORC will also decrease the 

capital cost and improve the economic feasibility of 

the small-scale ORC system, which is one of 

potential issues regarding the deployment (Tocci et 

al., 2017).  

 

Although the two different design solutions have a 

relatively large performance difference, some of the 

operating conditions at design point are close to 

identical as indicated in Table 4. The main changes 

are observed on the size of the heat exchangers 

(evaporator and condenser). One of the possible 

reasons will be the limited feasible region that is 

caused by the severe constraints considering the rig 

setup, the low limit of the maximum cycle pressure 

and temperature due to the working fluid 

characteristics, and the warm supply and return 

temperatures of the cooling water.  

 

Relaxation of such constraints and design basis will 

allow this tool to have a wider search space to 

identify improved operating conditions considering 

the off-design performance of the ORC system 

throughout a year. Applying the tool to other case 

studies and heat sources might also result into a 

wider search space. 

 

 
Figure 5. Energy efficiency and the accumulated power 

output of the MM based ORC system with a hourly 

variation of the flue gas flow rate for a full year period 

(Energy efficiency = Wnet/ΔQflue,max). 

 
Table 4. Key parameters of the original design and the 

optimum design accounting for off-design performance 

(the operating conditions that are similar between the two 

designs are presented in italic). 

Parameter Unit Design Optimum 

Waccumulated MWh/yr 37.26 39.44 

mMM kg/s 0.37 0.25 

mCW kg/s 1.56 1.04 

Wnet kW 11.05 7.40 

Wexp kW 11.54 7.73 

Texp_in °C 190 190 

Pexp_in bara 6.42 6.42 

Texp_out °C 164.51 164.51 

Pexp_out bara 0.42 0.42 

UAevap kW/C 0.39 0.26 

ΔTmin,evap °C 69.16 69.16 

UAcond kW/C 17.59 11.79 

ΔTmin,cond °C 2.00 2.00 
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Figure 6. Temperature-enthalpy diagram of the optimal 

ORC. 

4. Summary and Discussions 

 

This work introduces an open-source-based ORC 

design and optimization tool that can reflect off-

design performance. The optimization tool is tested 

by a case study on an ORC unit operating at the 

Czech Technical University (CTU) in Prague for 

supplying heat and electricity to the university 

research center. Actual heat source variations are 

considered for the analysis. The results indicate the 

optimal size of the system is 33 % smaller than the 

original ORC design, which is optimized without 

part-load performance estimation. The accumulated 

power production is also increased with the optimal 

ORC design by 5 %. Further improvements in the 

annual accumulated power production with the 

optimization framework could potentially be 

achieved with relaxed constraints and design basis, 

representing practical conditions. 

 

As a next step, the framework will be further tested 

with different working fluids, heat sources and heat 

sinks. The tool will be updated with improved 

process unit and off-design expander models based 

on experimental data, allowing the framework to be 

capable of robust and practical multi-scale 

optimization. 
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Abstract 

 

Anaerobic granulated biomass-based treatment is a sustainable alternative for municipal wastewater treatment. 

Each granule in the system is comprised of a complex community of anaerobic microorganisms embedded in a 

biofilm matrix. The aim of this work was to implement a biofilm model for simulation of biogas production and 

COD removal as observed in an experimental up-flow anaerobic sludge blanket (UASB) reactor system. 

Additionally, selected scenario simulations were carried out to assess the effect of temperatures (25, 16, and 12 

°C) on granulated anaerobic reactor performance at different organic loading rates. The two main model 

components used are: Dynamic biochemical and physicochemical conversion processes (Anaerobic Digestion 

Model No. 1) and diffusive mass transfer within the granule (biofilm). The model was implemented in AQUASIM 

2.1. Simulations gave insight into non-observables, especially intragranular biomass distribution and substrate 

profiles, which help our understanding of granule formation and evolution. Results reflected observed effluent 

COD concentrations and methane production rates at variable temperatures and reactor loadings. Simulations also 

confirmed observed steady-state reductions in COD removal efficiencies and methane fraction in biogas at 

increasing organic loading rate.  Model simulations also showed intra-granular alkaline pH depth profiles with 

increasing organic loading rate which may explain calcium-based mineral core formation. The biomass 

composition and active regions in granules were not significantly affected by organic loading rate. At steady state, 

organic substrates especially monosaccharides and volatile fatty acids were predicted to degrade approximately 

within the outer 100 μm. In general, the model can be used as a tool to predict and simulate anaerobic granulated 

biofilm system performances in UASB reactor.  

Keywords: Anaerobic granule; Biofilm modelling; Municipal wastewater 

 

1. Introduction 

Mathematical bioprocess modelling is a recognized 

tool for fundamental bioprocess understanding, data 

analysis and hypothesis testing, for design and 

optimization of wastewater treatment processes 

(Henze et al., 2008). Considerable efforts has been 

dedicated for the development of mathematical 

models for anaerobic granular technology, recently 

summarized by  Baeten et al. (2019). Two main 

approaches are used for anaerobic granular 

modelling: The intragranular transport models 

(biofilm models) and the suspended biomass liquid 

phase models using apparent kinetics. Granular 

biofilm models are used for any redox system, while 

the apparent kinetic models are more commonly 

used for anaerobic systems (Baeten et al., 2019). In 

biofilm reactors, substrate transport from the bulk 

liquid into the microbial matrix is normally 

controlled by diffusion. Wanner & Gujer (1986) 

identified several beneficial objectives attainable by 

using biofilm models: Understanding the 

mechanisms fundamental to how a biofilm forms or 

performs; integration of different mechanisms 

occurring at different spatial and temporal scales; 

pre-model the system to generate expected results; 

and evaluating novel process designs. 

The Anaerobic Digestion Model no. 1 (ADM1) is 

recognized as the standard model for conversion of 

organic substrates to biogas in open wastewater and 

biosludge systems (Batstone et al., 2002). 

Bioconversion, physiochemical reactions, and 

interface mass transfer are combined into a model 

comprising the most important state variables and 

processes. In addition, bioconversion parameters 

under typical anaerobic meso- to thermophilic 

conditions are suggested. 

Biofilm models of anaerobic granules under mass 

transfer limitations and single as well as multiple 

limiting substrates are available in the literatures 

(Batstone et al., 2004; Buffière et al., 1995; 

Doloman et al., 2020; Feldman et al., 2017; Flora et 
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al., 1995; Odriozola et al., 2016; Sun et al., 2016). 

Granulated biofilm models have been implemented 

on several platforms, such as AQUASIM (Batstone 

et al., 2004) and MATLAB (Odriozola et al., 2016). 

Extension of the strictly suspended/homogenous 

ADM1 into a biofilm setting require diffusive 

transport for all dissolved components, 

attachment/detachment mechanisms for particulates 

and possibly moderation of kinetic and/or 

stoichiometric coefficients for the growth-related 

conversions. As for the latter, the work of Bakke et 

al. (1984) suggest that conversion kinetics are not 

significantly moderated by a biofilm phenotypic 

growth state, but possibly the stoichiometry due to 

EPS formation and degradation (Kommedal et al., 

2001). Physio-chemical mass transfer parameters 

are available in the physical chemical reference 

literature. 

The aim of this work was to propose a biofilm model 

relevant for an anaerobic granule typical of an up-

flow anaerobic sludge blanket (UASB) reactor 

system. The proposed model was evaluated by 

simulation of experimental observations in a 

laboratory scale UASB reactor receiving strong 

municipal wastewater. Additionally, analyses were 

carried out to assess the effect of temperatures (25, 

16, and 12 °C) on granulated anaerobic reactor 

performance at different organic loadings and 

compare these to experimental results. 

 

2. Methodology  

2.1. Experimental set-up and results 

A long-term operation of up-flow anaerobic sludge 

blanket (UASB) system treating real municipal 

wastewater from IVAR IKS, Norway, at decreasing 

temperatures (25, 16, 12, 8.5, 5.5, and 2.5 °C) and 

variable organic loading rates (OLR) from 1.0 

gCOD·l⁻¹·d⁻¹ up to 15.2 gCOD·l⁻¹·d⁻¹ was 

investigated over 1025 days (Figure 1). Experiments 

were performed in two parallel in-house designed 

laboratory-scale UASB reactors, which were 

operated continuously with hydraulic retention time 

(HRT) of 16.7 h down to 1.1 h. The wastewater may 

be characterized as a municipal wastewater with 

significant contributions from agricultural and food 

industries. The dissolved COD concentrations of 

inlet wastewater during UASB reactor operation 

fluctuated in the range 439 - 1473 mgCODdissolved·l-1 

with the mean concentration being 741±7 

mgCODdissolved·l-1 (±standard error). 

Stable COD removal efficiencies of 50 - 70 % were 

achieved at 25 °C down to 8.5 °C with loading up to 

approximately 15.2 gCOD·l-1·d-1. COD removal 

efficiencies were reduced at temperatures below 8.5 

°C, but significant methane formation was observed 

even at 2.5 °C at reduced loading (up to 5 gCOD·l-

1·d-1). More than 90% of COD removed was 

converted to methane. The overall COD balance 

closed at above 90% of the inlet COD at all 

operating temperatures and OLRs. Temperature 

affected the reactor performances, microbial 

community structure, and the degradation pathway 

of organic matter with acetoclastic methanogen and 

methylotrophic played significant roles (Safitri et 

al., 2022). 

 

Figure 1 The UASB reactors were operated continuously 

over 1025 days by the stepwise increase of OLR at 

decreasing temperatures.  

2.2. Model implementation 

The biomass in UASB systems is in the form of 

compact granules that contain a complex community 

of microorganisms embedded in the extracellular 

polymeric substances (EPS) matrix, i.e., biofilm. 

This presented model used to predict the behavior of 

a granule biofilm representative of the UASB 

reactor described in section 2.1. For simplification, 

scenario analyses were carried out to assess the 

effect of temperatures (25, 16, and 12 °C) on reactor 

performances, as shown in Figure 2. 

 

Figure 2 Simulation scenario in biofilm modelling by the 

stepwise increase of OLR at decreasing temperatures.  

The two main model structures implemented are: 
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processes as described in the Anaerobic Digestion 

Model No. 1 (ADM1) by Batstone et al. (2002) and 

diffusive mass transfer model for granulated 

biomass (the biofilm compartment) based on 

Wanner and Gujer (1986). The biochemical 

conversions included: a. Disintegration of 

particulates to biopolymers (polysaccharides, 

proteins, and lipids); b. hydrolysis of biopolymers to 

sugars, amino acids, and long-chain fatty acids 

(LCFA); c. acidogenesis from sugars and amino 

acids to volatile fatty acids (VFAs) and hydrogen; d. 

acetogenesis of LCFA and VFAs to acetate; and e. 

separate methanogenesis steps from acetate and 

hydrogen/CO2 (Hulshoff Pol et al., 2004). The 

physico-chemical equations describe ion association 

and dissociation, and gas–liquid mass transfer. 

Inhibition kinetics have been integrated in relevant 

biochemical process. 

The diffusion limited biogeochemical model was 

implemented in AQUASIM 2.1 (Reichert, 1994). 

The ADM1 conversions were implemented in the 

biofilm compartment using 20 vertical grid points 

evenly distributed over the biofilm depth. The bulk 

liquid is modelled as a mixed reactor, with liquid 

borne in- and out-fluxes and bulk liquid biochemical 

reactions equal to the biofilm matrix reactions. An 

additional mixed compartment was implemented to 

represent the gas phase, connected by a diffusive 

link to simulate the gaseous transfer of methane, 

carbon dioxide, and hydrogen. Figure 3 presents the 

schematic of the biofilm compartment 

implementation. 

UASB 

reactor

Headspace

Biogas

Effluent

CH4 CO2 H2

kLa

Influent

Qin Sin,i

Gas-liquid transfer

Sliq, i

Sgas, i

Qout Sliq, i

Qout,  gas Sgas, i

 

Figure 3 Schematic representation of anaerobic 

granulated biofilm implementation into ADM1 

Acid-base reactions in the ADM1 model can either 

be implemented as a combination of differential and 

algebraic sets of equations (DAE) or by fast time 

dependent differential equations (DE). The standard 

(commonly available) ADM1 simulators 

implemented for CSTR (using AQUASIM 2.1) use 

the DAE approach. However, herein the acid-base 

biofilm model is implemented by solving individual 

acids and conjugated bases separately, as dynamic 

state variables. All ionic species were implemented 

as differential variables and a pH model construction 

followed a step-by-step procedure based on 

Hofmann et al. (2008). The following Equation 1 for 

calculating hydrogen ion concentration was used:  

𝑆𝐻+ = −
𝜃

2
+

1

2
√𝜃2 + 4𝐾𝑤 (Equation 1) 

where θ is the net charge in the system resulting 

from all acid-bases considered in the model: 

𝜃 = 𝑆𝐶𝐴𝑇 + 𝑆𝑁𝐻4+ + 𝑆𝐻+ −
𝑠𝐴𝐶−
64

−
𝑆𝑃𝑅𝑂−
112

−
𝑆𝐵𝑈−
160

−
𝑆𝑉𝐴−
208

− 𝑆𝐻𝐶𝑂3− −
𝐾𝑤
𝑆𝐻+

+−𝑆𝐴𝑁 

As stated by the Stokes-Einstein equation, the 

diffusion coefficient in water (Daq) depends on 

temperature, both directly and through the effect of 

temperature (T) on the solution viscosity (µ) 

(Cussler, 1984). This temperature dependence of 

aqueous diffusion coefficients can be calculated 

through the relationship in Equation 2.  

𝐷𝑎𝑞∙µ

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (Equation 2) 

The value of the effective diffusion coefficient in the 

biofilm (Daq,e) will be reduced compared to the 

diffusion coefficient in water due to the presence of 

microbial cells, extracellular polymers, and abiotic 

particles or gas bubbles that are trapped in the 

biofilm (Stewart, 2003). This reduction is described 

by the ratio Daq,e/Daq (Equation 3). The diffusion 

coefficients in water (Daq) at 25 °C were taken from 

Cussler (1984) and Stewart (1998). Effective 

diffusivities (Daq,e) used in current biofilm model 

(Table 1) were calculated using Equation 2 and 3 

with correction to 16 and 12 °C. The solution 

viscosity (µ) of water at different temperatures were 

adapted from Coulson & Richardson (1999). 

Table 1 Effective diffusivities used in current biofilm 

model 

Variables Daq,e/Daqa 

Daq,e at different 

temperature  
(x10⁻5 m²∙d⁻¹) 

25 °C  16 °C  12 °C  

Effective diffusivity:     

Amino acids 0.40 2.63 2.05 1.81 
Acetate 0.21 2.20 1.71 1.51 

Butyrate 0.34 2.56 1.99 1.76 

Methane 0.40 5.15 4.02 3.55 
CO2 0.40 6.64 5.18 4.58 

LCFA 0.20 1.62 1.27 1.12 
Hydrogen 0.60 23.33 18.20 16.10 

Cations/anions 0.49 5.00 3.90 3.45 

Ammonia 0.75 10.63 8.29 7.33 
Propionate 0.30 2.75 2.14 1.90 

Soluble inerts 0.10 0.86 0.67 0.59 

Sugar/glucose 0.30 1.74 1.35 1.20 
Valerate 0.30 0.50 0.39 0.35 
aReferences: Cussler (1984) and Stewart (1998) 
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Modified kinetics of the particulate first order 

disintegration constant (kdis), first order hydrolysis 

constant (khyd) and maximum uptake rates (km) at 

different temperatures were retrieved and estimated 

from literatures (Bergland et al., 2015; Donoso-

Bravo et al., 2009; Lohani et al., 2018; Rebac et al., 

1995). The temperature compensated kinetic values 

at 25, 16 and 12 °C were presented in Table 2, taking 

35 °C as the reference condition (Batstone et al., 

2004).  

Table 2 Kinetic parameters kdis, khyd, km with 

temperature 

Process Temperature (°C) 

35 a 25 b 16b 12b 

Disintegration (kdis, d
-1)  0.5 0.24 0.07 0.06 

First order hydrolysis (khyd, d
-1):     

Carbohydrate 106 51 15 13 
Protein 2.7 1.3 0.4 0.3 

Lipid 0.40 0.19 0.06 0.05 

Maximum uptake rates (km, d-1):     
Sugars 150 32 24 24 

Amino acids 250 53 40 40 

Fatty acids 30 6.3 4.8 4.8 
Butyrate 100 67 36 23 

Propionate 65.0 45.5 18.9 10.4 

Acetoclastic methanogens  40.0 27.6 8.0 6.0 
Hydrogenotrophic methanogens 175 120.8 35.0 26.3 

References: 
aRetrieved from Batstone et al. (2004) 
bEstimated from literatures (Bergland et al., 2015; Donoso-Bravo 
et al., 2009; Lohani et al., 2018; Rebac et al., 1995) 

Physico-chemical equilibria are modeled based on 

the law of mass action for aqueous substances and 

by Henry’s law for the solubility of a gas. Table 3 

presents temperature dependent physico-chemical 

processes parameters used in biofilm modelling. 

Detailed calculations and model source file are 

available on request from the authors. 

Table 3 Temperature dependent physico-chemical 

processes parameters 

Description Temperature compensation References 

Acidity constants (Ka): 

CO2  10−6.35𝑒𝑥𝑝 (
7646

100 ∙ 𝑅
∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) Lide (2003) 

 

H2O  10−13.995𝑒𝑥𝑝 (
55900

100 ∙ 𝑅
∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) Lide (2003) 

 

NH4
+  10−9.25𝑒𝑥𝑝(

51965

100 ∙ 𝑅
∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) Lide (2003) 

 

Henry’s law constants (KH): 

CH4  0.00140 ∙ 𝑅 ∙ 𝑇 ∙ 𝑒𝑥𝑝 (
−14240

100 ∙ 𝑅
∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) 

Batstone et 

al. (2002) 

CO2  0.03400 ∙ 𝑅 ∙ 𝑇 ∙ 𝑒𝑥𝑝 (
−7646

100 ∙ 𝑅
∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) 

Batstone et 

al. (2002) 

H2  0.00078 ∙ 𝑅 ∙ 𝑇 ∙ 𝑒𝑥𝑝 (
−4180

100 ∙ 𝑅
∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) Lide (2003) 

Pressure of 

water  
0.0313 ∙ 𝑒𝑥𝑝 (5290 ∙ (

1

𝑇𝑠𝑡𝑑
−
1

𝑇
)) 

Rosen and 
Jeppsson 

(2006) 

 

2.3. Simulation set-up 

The simulated reactor model consisted of a liquid 

(0.8 l) and a gas phase (0.2 l). The biofilm 

compartment corresponded to experimental data 

from this work (Safitri et al., 2022) and consisted of 

approximately 300 ml of granular sludge of an 

average uniform spherical granules with a diameter 

of 2 mm. The number of granules (nsp≈21500) was 

calculated based on the total granule volume. 

Granules were assumed to have no dispersive solid 

transport (rigid biofilm matrix) and no suspended 

solids within biofilm matrix pores (pore volume 

contains only liquid phase). External mass transfer 

limitation was for simplicity reasons neglected (no 

diffusion limitations in the stagnant surface layer). 

Based on the above assumptions, this gave a total 

reactor biofilm surface area of 1.08 m2. Detachment 

of biomass (Equation 4) is based on the non-linear 

biofilm thickness dependency proposed by Stewart 

et al. (1996): 

𝑟𝑑𝑒𝑡 = 𝑘𝑑𝑒𝑡 ∙ 𝐿𝑓
2   (Equation 4) 

where kdet is an empirical detachment coefficient, 

(here: 0.024 kg·m-2·d-1), and Lf is the simulated 

biofilm thickness (m). Biomass density within the 

granules was set at 180 kgCOD·m-3, a typical 

anaerobic granules density based on Batstone and 

Keller (2001).  

Initial conditions were defined for the biofilm matrix 

and the bulk liquid volume as follows: All modelled 

microorganisms were considered to have equal 

initial bulk phase concentrations of 0.05% v/v (9 

kgCOD·m-3) equal to the biomass fractions in the 

biofilm matrix. The initial biofilm thickness was set 

at 0.03 mm and bulk phase initial biomass, initial 

VFAs and pH was chosen among typical observed 

values at 10-5 kgCOD·m-3, 10-6 kgCOD·m-3 and 10-7 

kmol·m-3
, respectively. Approximate steady-state 

pore and bulk liquid concentrations were used as 

initial state variables. Simulation time was limited to 

400 days, with a time resolution of 0.1 d and a 

numerical maximum time step limited to 4000 d. 

2.4. Input characteristics 

The COD influent to the UASB reactor is defined in 

the model as presented in Table 4 and were assumed 

to be primarily polysaccharides, proteins, and fats, 

taking into consideration that IVAR Grødaland 

wastewater treatment plant receives wastewater 

from food, animal, and dairy industries. A feed 

bicarbonate alkalinity of 0.01 M and inorganic 

nitrogen of 0.007 M were used which were in line 

with analysis of the wastewater applied in the UASB 

laboratory experiment. 
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Table 4 COD input used for simulations 

Description Fraction Value Unit 

Amino acid  0.002 0.003 kg COD·m-3 

Acetic acid  0.08 0.1 kg COD·m-3 

Butyrate 0.08 0.1 kg COD·m-3 

Propionate  0.08 0.1 kg COD·m-3 
Valerate 0.08 0.1 kg COD·m-3 

LCFA 0.14 0.175 kg COD·m-3 

Sugar 0.1 0.075 kg COD·m-3 
Soluble inert 0.07 0.088 kg COD·m-3 

Carbohydrate 0.1 0.125 kg COD·m-3 

Protein 0.1 0.15 kg COD·m-3 
Lipid 0.1 0.15 kg COD·m-3 

Particulate inert 0.06 0.075 kg COD·m-3 

Composite/complex 0.005 0.006 kg COD·m-3 

Input total COD 1.00 1.26 kg COD·m-3 

 

3. Results and Discussions 

Figure 4 presents simulated and observed COD 

effluent concentrations of the UASB reactor at 25, 

16 and 12 °C. Simulated dissolved COD effluent 

concentration was close to that observed results 

throughout the whole test period, even though there 

were slightly differences especially at 12 °C. This 

might be interpreted as a to strong temperature 

compensation in the ADM1 model, or a 

change/adaptation in community structure towards 

low mesophilic bacteria.  

 

Figure 4 Simulated (blue dots) and measured (orange 

dots) COD effluent concentration profile in UASB reactor 

Both simulation and experimental results show 

decreasing dissolved COD removal efficiencies at 

steady-state conditions with decreasing 

temperatures, from approximately 65 - 70% at 25 °C 

to around 57 - 66% at 12 °C. The relatively small 

fraction of particles degraded in our simulations (10 

- 24% removal efficiency) indicate hydrolysis to be 

rate-limiting. 

In simulations, methane fractions in the biogas at 

steady-state conditions decreased with increasing 

OLR with the range of 80 - 90% (data not shown), a 

trend that could not be significantly observed in 

experimental data (Safitri et al., 2022). The 

dissolved methane concentrations in the effluent 

(86, 110, and 117 mgCOD∙l-1) were mimicked by the 

simulation result and are in line with theoretical 

value of dissolved methane at 25, 16, and 12 °C, 

respectively (Liu et al., 2014). 

Figure 5 shows simulated and observed methane 

production profile in the UASB reactor at different 

temperatures and loadings. At each temperature, 

methane production increased with the increasing 

OLR, proportional to the amount of organic matter 

removed in the UASB reactors. Methane production 

at 12 °C was comparable in all OLRs to 16 °C, 

indicating that the reduction in operating 

temperature to 12 °C did not negatively affect 

methane production. This implies that the biomass 

has compensated for the temperature reduction by 

adaptation, and the model is overcompensating for 

the temperature reduction as both methane 

production and effluent COD reduction is larger 

than simulated, we assume an early kinetics to be 

overcompensated, like a to low hydrolysis 

coefficient.  

 

Figure 5 Simulated (blue dots) and measured (orange 

dots) methane production profile in UASB reactor 

Considerable pH profile variations (approximately 7 

- 8.3) through the depth of the granule were 

simulated as shown in Figure 6. The interior increase 

in pH inside the granules suggest calcium 

precipitation in the granule core. Amorphous 

CaPO4, CaCO3 and apatite precipitation 

(Ca5(PO4)3OH) is known to stimulate granule 

formation, and could be exploited for phosphorous 

recovery (Cunha et al., 2018). Furthermore, 

simulated pH range in the bulk phase was about 7 

which was comparable to observed pH (data not 

shown). 

Simulated composition of granular sludge active 

biomass fractions for the experimental UASB 
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reactor is presented in Figure 7. Based on these 

results, methane production was mainly performed 

by acetoclastic methanogens at 25 °C, which 

dominated compared to hydrogenotrophic 

methanogens for all selected temperatures. 

However, hydrogenotrophic methanogens appeared 

more dominant at decreasing temperature at 12 °C. 

 

Figure 6 Simulated pH distribution profile along the 

granule in UASB reactor during steady-state conditions at 

different temperatures and OLR 15 gCOD·l-1·d-1. 

Based on the experimental study, temperature 

affected the microbial community structure and the 

degradation pathway of organic matter with 

acetoclastic and methylotrophic methanogens 

played significant roles (Safitri et al., 2022). The 

original ADM1 model did not include 

methylotrophic methanogens which reduces the 

methyl-groups of methylated compounds to 

methane with H2 as electron donor (Söllinger & 

Urich, 2019). Therefore, the simulated values are 

only to be qualitatively interpreted as they are not 

structurally comparable to experimental community 

analysis results. 

 

Figure 7 Simulated active biomass composition of the 

granular sludge of UASB reactor during steady-state 

conditions at different temperatures and OLR 15 gCOD·l-

1·d-1. 

According to simulation results, LCFA degraders 

only accounted for trace quantities of the active 

biomass. This could be explained by too low LCFA 

concentration to sustain biomass. There are 

significant decreases of amino acid degraders. 

However, more than 90% of the influent amino acid 

and LCFA was converted in the reactor at all 

temperatures. There is no significant temperature 

effect on bacterial distribution profile along the 

granule in UASB reactor during steady-state 

conditions. The sugar degraders had the highest 

concentration on the outer layer of granular sludge 

followed by butyrate and valerate degraders, 

hydrogenotrophic and acetoclastic methanogens.  

The high amount of carbohydrates in the 

wastewater, supported these bacterial groups and 

resulted in a high methane concentration in the 

produced biogas. In the granules, the acetate 

degrading biomass peaked approximately 100 μm 

behind the biofilm-bulk boundary. Acetate 

concentrations were at their maximum at the biofilm 

boundary. The delayed front was possibly due to the 

faster growth of the other organisms, and a 

consequent high availability (not concentration) of 

acetate. Monosaccharide and VFA substrates are 

predicted to degrade approximately within the outer 

100 - 200 μm. The granules had generally lower 

intermediate substrate concentrations than the bulk 

phase, indicating no net diffusive force out of the 

biofilm and intermediate reactions are not 

overloaded. 

 

4. Conclusions  

The proposed ADM1-biofilm model reflected the 

key effluent/bulk phase state variables as observed 

in the experimental UASB reactor system fed 

municipal wastewater. Furthermore, the model 

reflected the effect of reduced temperatures on 

overall COD conversion and biogas reactor 

performances at variable organic loading rates. The 

temperature compensation model used herein is too 

strong at 12 °C, maybe due to biomass adaptations. 

Available data are insufficient to validate the intra-

granular state variables, but simulation results 

indicate ideal acid-base chemistry for inorganic 

granule core formation/growth.  
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Abstract 
 

Global warming and associated climate change are ongoing processes worldwide, behind which anthropogenic 

greenhouse gas emissions play the main role. Renewable energy sources integrated in hybrid energy systems 

(HES) are fundamental solutions to meet energy demands in a sustainable manner. Proton exchange membrane 

(PEM) electrolysers and fuel cell stacks can be used as integral components of HES in several applications, for 

instance supplying energy offshore. Due to the integration with irregular renewable energy sources and the 

variability of energy demands, those stacks will be frequently operated at part-load conditions. The novelty of this 

work lies in the incorporation of part-load performance in the models of high-capacity fuel cell and electrolysers 

stacks. A zero-dimensional approach for steady-state behavior was applied to calculate the polarisation and 

performance curves of the system. The determined curves were implemented in an already developed online tool 

for analyzing HES. The computational results from the tool show a great ability of the PEM systems for decreasing 

the carbon intensity of an offshore facility and increase the wind energy integration within the HES. 
 

 

1. Introduction 
 

Throughout last decades, global warming has been 

observed and will continue to cause further long-

term changes in the climate system [1]. This fact 

poses a cross-generational challenge for decreasing 

the greenhouse gas emissions (GHG) worldwide. 

Therefore, various research frontiers encompasses 

novel technologies and energy carriers to limit GHG 

or even completely decarbonize different industrial 

branches. One of the perspective energy carriers is 

hydrogen, which is considered as a key instrument 

for reaching net-zero greenhouse gas emission by 

2050 by European continent according to European 

Union’s Green Deal strategy [2]. Hydrogen-based 

technologies comprise various technologies for heat 

and power production and energy storage [3]. One 

of the emerging industrial applications are hydrogen 

fuel cells (FC) and electrolysers (ELY) stacks 

incorporated in hybrid energy systems (HES). Many 

of the proposed hydrogen-based HES systems are 

reaching commercial maturity [4, 5] while other 

novel layouts are at earlier stage of 

commercialization [6]. Whenever energy intensity 

sectors need to pursue ambitious climate policies, 

like offshore sector in Norway, the hydrogen-based 

solutions tied to renewables has the potential to be 

an effective solution for decarbonizing all related 

activities and ensure more sustainable production 

[7]. 

To address this, a hybrid energy system for stable 

power and heat supply in offshore oil&gas 

installation (HES-OFF) was proposed and 

investigated [8]. HES-OFF integrates offshore wind 

power, onsite gas turbines (GTs) and an energy 

storage system based on PEM fuel cell and 

electrolyser stacks. A previous paper [9] assessed 

the performance of the concept, considering the 

power grid stability and optimal design obtained 

from the optimization framework developed. The 

analysis proved possible larger integration of wind 

capacity in the electric grid without violating the 2% 

grid frequency maximum allowable variation. This 

enables CO2 emissions reduction of up to 36% 

compared to the equivalent standard GT-based 

system. The optimum capacity of ELY and FC 

stacks for reference case were defined as 5.7 and 3.0 

MW, respectively, providing sense of desired PEM 

system capacities in future HES systems offshore. 

Computationally efficient online tool, named HES-

OFF app, allows investigation of various designs of 

the HES-OFF concept [10]. 

Based on the screening of available technologies for 

fuel cell and electrolysers, the PEM technology was 

chosen for HES-OFF, due to the best compactness 

and operation ability during transients [11]. Since 

the stack systems are easily scalable and the 

anticipated capacity falls in the scale of MWs, the 

question arises about the realistic estimation of the 

part-load performance of high-capacity PEM 

systems. Most of the research activities are related 

to specific small-capacity stacks, which were 

mathematically modelled and experimentally tested 

[12, 13]. The case-specific models tuned for 

mailto:marcin.pilarczyk@ntnu.no
mailto:lars.nord@ntnu.no


SIMS 63  Trondheim, Norway, September 20-21, 2022 

 

representation of the given stack require a detailed 

knowledge about the cell architecture, which limits 

the possibility of reusing model in more generic 

conceptual simulations. On the other hand, some 

researchers present more universal models, which 

avoid specification of the cell design. This approach 

can be accomplished by means of 0-D modelling. 

Campanari et al. [14] developed a lumped zero-

dimensional model of the stacks to represent 2 MW 

PEM FC system. The model was developed in 

Aspen Custom Modeler® what allowed to analyse 

the off-design operation, including variations in the 

fuel cell stoichiometry, operating temperature as 

well as the influence of cell performance decay. That 

facilitated tuning and successful validation of the 

model. However, part-load performance of the MW-

scale PEM FC system has not been reported. Paper 

[15] presents a method for reproducing the main 

conversion performance and dynamic features of 

ELY and FC PEM systems. Both investigated 

systems had 100 kW of power capacity and were 

simplified for the integration into an optimisation 

procedure by means of two approximation methods. 

PEM fuel cell and electrolysers stack models are 

also available in commercial simulating software 

libraries such as MATLAB Simscape [16] and 

Thermoflow [17]. However, such library models are 

dedicated for analyses performed within given 

simulation environment and not all details can be 

extracted to determine the required part-load 

performance. 

The performed literature review shows various 

approaches towards modelling of FC and ELY 

systems at different levels of fidelity. The scope of 

this paper was to develop suitable approaches to 

model large-scale FC and ELY systems to be used 

for the analysis of the HES-OFF concept. The 

information provided by manufacturers is normally 

limited to a single operation point, typically full 

load. Therefore, a well-established, 0 - dimensional 

approach to calculate the part-load performance of 

high-capacity PEM systems was developed and 

embedded in the overall modelling framework in 

order to accomplish the planned simulation 

campaign for HES-OFF concept investigation. 

The organization of the paper is as follows. 

A methodology section provides necessary details 

for introducing the developed models. The results 

obtained by the implementation of those models in 

HES-OFF app are then presented. Finally, a short 

conclusion section outlines the main contributions of 

this work. 

 

2. Methodology 
 

Modelling of fuel cell and electrolyser systems is 

a challenging task. Gao et al. [18] outline a general 

classification of the FC/ELY models based on five 

sub-categories: spatial dimension, temporal 

behaviour, the types of equations applied, modelled 

area and phenomena. Before diving into the selected 

approach, an introduction to the HES-OFF concept 

is presented to provide the context for this work. The 

computational tool [10] developed for the analysis 

of the HES-OFF concept encompasses an analysis of 

the HES over its entire lifetime. A 1-hour time 

discretization is applied in order to include the 

irregularity of the wind power. With this time 

interval, the stack systems can be considered as 

operating in steady-state mode since the dynamics of 

PEM FC stacks is characterized by order of minutes 

[15, 19] and PEM ELY by order of seconds [20]. In 

addition, the purpose-built models of FC/ELY 

stacks will represent stacks at the component-level, 

meaning that no physical or spatial approach will be 

used. Therefore, the incorporated equations do not 

represent any phenomena in spatial dimension 

within the stack (such as gas diffusion direction 

through membrane), but only scalar variables 

including cell voltage and cell power [11, 21]. 

According to the previously listed sub-categories, 

the models of both fuel cell and electrolysers stacks 

presented in this work, are characterized by means 

of a zero-dimensional first-principle approach, 

where analytical and semi-empirical equations for 

modelling of static behaviour of single cell/stack are 

used and the electrochemical domain is the 

phenomenon being investigated. The most 

significant equations for operational curves 

calculations are outlined in the following 

subsections. 
 

2.1. High-capacity PEM system architecture 
 

Commonly available information about high-

capacity PEM systems point to their modular 

designs. The single stack, as a basic component, is 

installed into modules, then modules are organized 

into the final system. Exemplary, NEDSTACK 

2 MWe PEM fuel cell system contains 6 modules 

with 4 stacks and each stack comprises 1046 cells 

[22]. This approach is common for MW-scale 

systems [23]. The schematic of the PEM modular 

system is depicted in Figure 1. 
 

 
Figure 1: Organisation of fuel cell stacks in modules. 
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Exact information about the design and 

configuration of stacks and associated balance of 

plant (BoP) components are not publicly available, 

since all manufacturers are cautious about sharing 

sensitive details, and as for now, not many 

commercially installed systems are in regular use. 

Modular design can simplify architecture and reduce 

cost by sharing common BoP between individual 

stacks within modules. On the other hand, the 

control strategy affects the operability of the system 

and development of an appropriate modelling 

approach is not a trivial task. In the case of irregular 

operation, the overarching question is how to load 

individual stacks defining which ones should be 

subjected to load changes, hence to more intense cell 

degradation. At the same time, other stacks can run 

at relatively steady-state conditions. Another crucial 

aspect is the weight and footprint of the system. This 

is the main limitation for designers when it comes to 

offshore applications. This aspect is thoroughly 

discussed in [24]. 

Consideration of complex control strategies and 

system configuration along with the BoP is out of 

the scope of this work. The following approach is 

implemented in analyses accomplished by HES-

OFF tool. The total number of required stacks are 

determined from the desired capacity defined by 

user. Then for given value of power need determined 

from the power balance of HES-OFF system, the 

load is distributed equally to all stacks. In the case 

of very small amount of power supplied to, or drawn 

from the system, only one stack is used to provide 

load as close as possible to the design load 

conditions of singular stack. To the best authors’ 

knowledge, this approach is a good representation of 

real systems, especially when the degradation 

process in not included in the analyses. 
 

2.2. State-of-the-art PEM systems 
 

Currently, the fuel cell manufacturers offer 

customized scalable systems up to a range of several 

MW of output power. As mentioned previously, 

each large-scale PEM system uses a basic singular 

FC stack, which then is stacked to provide higher 

power outputs desired by the customer. The 

performances of some of the commercially available 

FC stacks are listed in Table 1. The performance is 

reported in terms of electrical energy output per unit 

of hydrogen supplied to the FC.  
 

Table 1: PEM fuel cell stacks characteristics. 

Stack/ 

system 

Capacity 

[kWe] 

Perf. @full load 

[MJ/kgH2] [kWh/ 

Nm3
H2] 

PowerCell S3 

stack [25] 
125 56.24a 1.288a 

Nedstack 

MT-FCPP-

500 

626b 

61.02 

56.34b 

1.291 

1.108b 

500 system 

[26] 

Hydrogenics 

1 MWe 

system [27] 

1 000 58.54 1.461 

acalculated by the developed model 
bpeak power 
 

Practically, to replicate accurately a specific stack 

performance is not possible due to lack of 

information. More uncertainties come from the 

given nominal power of the stack system by 

manufacturer. For instance, the total nominal power 

of 500 kWe Nedstack stack is accomplished by 60 

singular smaller stacks (13.6 kWe each) [26]. 

Theoretically, the maximum power is 60 ∙ 13.6 kWe 

= 816 kWe, what is 62.3% more than nominal 

500 kWe. This opens possibility to claim that stacks 

are loaded to values closer to their turndown ratios 

to get higher overall performance. The peak power 

of this system is limited to 626 kWe. Thus, the 

prerequisites behind each specification of particular 

system, known for manufacturer, adds complexity to 

tune up and validate the model. 

A list of commercial high-capacity PEM electrolyser 

systems is shown in Table 2. The performance is 

reported as hydrogen produced per unit of electrical 

energy supplied. 
 

Table 2: PEM electrolyser stacks characteristics. 

Stack/ 

system 

Capacity 

[kWe] 

Perf. @full load 

[kgH2/MJ] [Nm3
H2/ 

kWh] 

NEL MC 

100 unit [20] 
500 181.44 4.53 

H-TEC 

system ME 

450/1400 

[28] 

1000 192.26 4.80 

Hydrogenics 

HyLYZER 

300-30 [29] 

1500 
176.24-

192.26 
4.40-4.80 

 

The performances outlined in Table 2 have been 

extracted from data sheets and represent rough 

estimations of expected performances. 

For this work, the PowerCell S3 stack for FC system 

and NEL MC 100 unit for ELY system have been 

selected. Further literature review has been carried 

out on those stacks to identify appropriate tuning 

parameters. 

Authors assumed the following simplifications and 

assumptions for the models development: 

- Balance of Plant components are not considered. 

Thus, there is no limitations for scaling-up the 

systems’ capacities. 

- The power consumption for BoP is not 

considered (power consumption oscillates 

typically in the range of dozens of kW per 1 MW 

of the stack capacity). 
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- The degradation of the stacks is neglected, 

meaning that the stacks performances at 

Beginning of Life remain constant until End of 

Life performance. 

- The waste heat produced by stacks is not 

harvested. 
 

2.3. Fuel cell stack modelling 
 

To compare and assess the performance of the fuel 

cell stack one needs to know how the operating 

voltage looks like as a function of current drawn 

from the fuel cell. To allow comparison of various 

fuel cells the current density is introduced giving the 

following correlation: 
 

𝑖 = 𝐼 𝐴𝑐𝑒𝑙𝑙⁄  (1) 
 

Where 𝑖 [A/cm2] is the current density, 𝐼 [A] the total 

electrical current produced by fuel cell, 𝐴𝑐𝑒𝑙𝑙 [cm2] 

the surface area of the electrode/electrolyte interface 

where the fuel cell reactions take place. 

The current/voltage density curve (i-V) is called 

polarisation curve and represents the steady-state 

performance of singular fuel cell or entire stack. The 

cell i-V characteristics is an inherent part of PEM 

cell modelling for building a steady state and 

dynamic models of the FC/ELY stacks [30]. 

Having the i-V curve one can easily calculate the 

power curve of the stack, what in turn allow the 

estimation of the part-load performance of the stack. 

The common approach for determination of 

polarisation curve is presented in Spiegel’s book 

[31]. The MATLAB scripts from this book are 

adopted. For the sake of clarity and simplicity, not 

all used correlations are outlined, but only those that 

are were adopted from other literature references 

and thus are crucial for understanding the applied 

approach. For more details, the reader should refer 

to Spiegel’s book or to the other literature references 

such as [32], where all relevant theory is 

comprehensively presented. 

In order to calculate the open circuit voltage and 

associated voltage losses the following assumptions 

are considered: 

- Ideal and uniformly distributed reactant gases. 

- Constant pressure and temperature in the 

FC/ELY gas flow channels. 

- The hydrogen fuel is humidified and the oxidant 

is humidified air. 

- The FC stack is operated at temperature below 

100°C and the reaction product is in liquid phase. 

- Parameters for individual cells can be lumped 

together to represent a fuel cell stack. 

- The electrolyte is not electrically conductive and 

impermeable to gases (no fuel crossovers and 

internal current associated losses). 

- A 100% Faradaic efficiency is assumed. 
 

The polarisation curve is determined calculating the 

operational voltage output of fuel cell and associated 

voltage losses. 

The actual voltage of fuel cell can be calculated 

using the following equation: 
 

𝑉𝑜𝑢𝑡 = 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚𝑖𝑐 + 𝑉𝑐𝑜𝑛𝑐  (2) 
 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡  is given by the Nernst’s equation and 

determines the ideal voltage that a fuel cell can 

deliver at the given conditions. According to [31], 

the equation for PEM fuel cell is expressed as: 
 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = −
𝐺𝑓,𝑙𝑖𝑞

𝑛𝐹
−

𝑅𝑇

𝑛𝐹
𝑙𝑛 (

𝑝𝐻2𝑂

𝑝𝐻2
𝑝𝑂2

1/2
) (3) 

 

Where 𝐺𝑓,𝑙𝑖𝑞 = −228170 J/mol is the Gibbs energy 

of water in liquid form in standard state, 𝑇= 60°C 

the operating temperature of fuel cell stack, 𝑛 the 

number of electrons transferred per mole of reactant 

(for hydrogen oxidation 𝑛 = 2), 𝐹 = 96485 

Coulombs the Faraday's constant, 𝑅 = 8.31446 

J/(mol∙K) the ideal gas constant and 𝑝𝐻2𝑂 , 𝑝𝐻2
, 𝑝𝑂2

 

the partial pressures of water, hydrogen and oxygen, 

respectively, calculated by the correlations 

presented in [31].  

The voltage losses from Eq. (2) can be determined 

by the following equations. The activation losses are 

estimated using the Tafel equation: 
 

𝑉𝑎𝑐𝑡 = −
𝑅𝑇

𝑛𝐹𝛼
𝑙𝑜𝑔 (

𝑖

𝑖𝑜

) (4) 

 

Where 𝛼 = 0.5 is the nondimensional charge 

transfer coefficient and 𝑖𝑜 the exchange-current 

density i.e., the current density at zero overpotential. 

𝑖𝑜 is assumed to be 6.7∙10-5 A/cm2 in accordance 

with the value for a low temperature PEM fuel cell 

published in [33]. The assumed 𝑖𝑜 value complies 

with the Tafel’s equation assumptions that (𝑖 >> 𝑖𝑜). 

The ohmic losses are estimated using Ohm’s law: 
 

𝑉𝑜ℎ𝑚𝑖𝑐 = −𝑖𝑟𝑜ℎ𝑚𝑖𝑐 (5) 
 

Where 𝑟𝑜ℎ𝑚𝑖𝑐  is the area specific ohmic resistance, 

which is constant for a given fuel cell. In this paper 

𝑟𝑜ℎ𝑚𝑖𝑐 = 0.15 Ohm ∙ cm2 is assumed, a figure that 

falls in the range of values seen in the literature [32, 

33]. Based upon tuning the adopted value gave the 

best results. 

The concentration losses can be calculated using the 

following equation [34]: 
 

𝑉𝑐𝑜𝑛𝑐 =
𝑅𝑇

𝑛𝐹
ln (1 −

𝑖

𝑖𝐿

) (6) 

 

Where 𝑖𝐿 is the limiting current density, which is 

assumed to be 0.74 A/cm2. 

The output power of the stack can be determined 

from the following equation: 
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𝑃𝐹𝐶𝑆 = 𝑉𝑜𝑢𝑡 ∙ 𝑖 ∙ 𝐴𝐹𝐶𝑆 (7) 
 

Where 𝐴𝐹𝐶𝑆 is the total active area of the stack. 

According to the datasheet [25], the stack comprises 

455 cells to provide 125 kW of power output. An 

assumed value of 𝑖𝐿 in Eq. (6) and active area of 

single cell of 425 cm2 allowed determining the 

power curve (Fig. 2) representing the PowerCell S3 

stack. The assumed parameters return a power 

density of the stack of 646 mW/cm2, which is in line 

with the range of 500-2500 mW/cm2 of modern 

PEM fuel cell systems [32]. 
 

2.4. Electrolyser stack modelling 
 

Similarly, as for the fuel cell stack, the model 

equations representing the electrolyser stack system 

are programmed in a MATLAB script. The 

methodology for calculating the polarisation and 

power curves and performance remain the same as 

those outlined for the fuel cell stack. The PEM 

electrolyser works opposite to the fuel cell, relying 

on the same mechanisms and phenomena. As it is 

seen in Tribioli et al. [35] the ELY curves can be 

calculated from Eq. (2), in which the voltage losses 

are multiplied by reversed coefficient (i.e. -1). This 

is the simplest approach towards modelling the 

electrolyser stack and is used for reversible stacks 

only (i.e. a stack working both in ELY and FC mode, 

as analysed in [35]). In the case of standalone ELY 

stack the correlations have to capture the 

electrochemical phenomenon during electrolyses 

and for this purpose the following correlation were 

chosen for the electrolyser modelling. 

The actual operating voltage of the ELY system is 

determined using Eq. (2). The terms of the equation 

are determined by correlations presented in [36]. 

The Nernst equation for ELY system is determined 

by the following formula: 
 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = 1.229 − 8.5 ∙ 10−4(𝑇 − 𝑇𝑎) + 

+4.3085 ∙ 10−5𝑇𝑙𝑛 (
 𝑝𝐻2

𝑝𝑂2

1/2

𝑝𝐻2𝑂

) 
(8) 

 

The activation over potential losses is defined by: 

𝑉𝑎𝑐𝑡 = (
𝛼𝐴 + 𝛼𝐶

𝛼𝐴𝛼𝐶

)
𝑅𝑇

𝑛𝐹
𝑙𝑜𝑔 (

𝑖

𝑖𝑜

) (9) 

 

Where 𝛼𝐴 = 0.5 and 𝛼𝐶 = 1.0 are the charge 

transfer coefficients of the anode and cathode, 

respectively. In Eqs. (8)-(9), 𝑇 stands for operating 

temperature of the ELY stack and its value is 

assumed to be 70°C according to [37]. The exchange 

current density 𝑖𝑜 is determined by the following 

correlation [38]: 
 

𝑖𝑜 = 1.08 ∙ 10−17exp (0.086𝑇) (10) 
 

The correlation for the ohmic potential is determined 

by Eq. (5), where 𝑟𝑜ℎ𝑚𝑖𝑐 = 0.238 Ohm ∙ cm2, which 

is representative of the value seen in the Nafion 

membranes at moderate thicknesses according to 

[37]. 

The last term for determination of the operational 

voltage of the electrolysers is the concentration over 

potential losses, which is calculated by the following 

correlation [39]: 
 

𝑉𝑐𝑜𝑛𝑐 = 𝑖 (𝛽1

𝑖

𝑖𝐿

)
𝛽2

 (11) 

 

Where 𝛽2 = 2 is a constant according to [40] and 𝛽1 

is defined by the following correlation: 
 

𝛽1

= {
(8.66 ∙ 10−5𝑇 − 0.068)𝑃𝑥 − 1.6 ∙ 10−4𝑇 + 0.54,   (𝑃𝑥 > 2)

(7.16 ∙ 10−4𝑇 − 0.622)𝑃𝑥 − 1.45 ∙ 10−3𝑇 + 1.68,   (𝑃𝑥 < 2)
 (12) 

 

Where 𝑃𝑥 is expressed as: 
 

𝑃𝑥 =
𝑃𝑂2

0.1173 ∙ 101325
+

𝑃𝑠𝑎𝑡

101325
 (13) 

 

The limiting current density 𝑖𝐿  is assumed to be 

20 A/cm2 [40]. Partial pressure and saturation 

pressure is calculated in the same manner as for FC 

and the correlation are available in the literature 

[31]. The pressure of the produced hydrogen is 

assumed 30 barg according to the data sheet [20]. 

In order to calculate the polarisation and power 

curves, and to determine the part-load performance, 

a number cells equal to 1695 and an area of single 

cell equal to 70 cm2 are selected so to achieve the 

power output of 500 kW. These values are seen in 

the state-of-the-art ELY stacks. 

Equations (1)-(13) are programmed in the 

MATLAB script to calculate the polarisation and 

power curves (Fig. 4). Subsequently, the part load 

performance of the stack can be estimated. 
 

3. Results and discussion  
 

3.1. Part-load performance – fuel cell stack 
 

Fuel cell and electrolyser manufacturers generally 

provide scarce information about the performance of 

their systems. A direct comparison between 

calculated polarisation and power curves with their 

counterparts in datasheets become a cumbersome 

task, partly because of possible lack of compatibility 

between the operation parameters, partly because of 

unknown information such as active area or limiting 

current density. Therefore, the described 

methodology was used for determination of the 

operational curves and part-load performance. Some 

parameters were assumed according to the literature, 

while some others were tuned to match expected 

performance. Figure 2 depicts the determined i-V 

curve and the power curve as a function of current 

density. 
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Figure 2: Polarisation curve (‘voltage’) and power curve 

of the modelled generic 125 kW fuel cell stack. 

The curves appear to be in line with those seen in the 

literature for similar systems, for instance in [25, 

33]. Having power curve as a function of current 

density 𝑖, one can easily determine the actual 

usage/production of hydrogen by FCS/ELY stack 

using the Faraday’s second law of electrolysis given 

by Eq. (14).  

 

∆�̇�𝐻2,𝑟𝑒𝑎𝑐𝑡𝑒𝑑 =
𝑖𝐴

𝑛𝐹
 (14) 

 

Where �̇�𝐻2,𝑟𝑒𝑎𝑐𝑡𝑒𝑑  [mol/s] represents the molar flow 

rate of the hydrogen reacted (consumed or produced 

by the stack system) and 𝐴 [cm2] is the total active 

area of the stack. 

Once the hydrogen consumption is determined, one 

can calculate the part-load performance of the stack 

as a function of the output power. 

Fig. 3 shows that the performance at full load 

(125 kW) is 56.24 MJ/kgH2, which converts to 

1.288 kWh/Nm3. Such value is in line start-of-the-

art stacks, such as those listed in Table 1.  

 

 

Figure 3: Part-load performance of the modelled 125 kW 

fuel cell stack. 

 

The performance increases while decreasing the 

load achieving the maximum at around 20 kW. The 

fuel cell stack is an electrochemical device so its 

efficiency is not limited by Carnot cycle, as it is for 

heat engines. Under those part load conditions the 

voltage losses are smaller, thus the overall 

performance is higher. The performance rapidly 

drops for loads below 20 kW, which is explainable 

by the activation losses. 

 

3.2. Part-load performance – electrolyser 
 

PEM electrolysers are operated typically at higher 

current densities. The calculated polarisation and 

power curves are presented in Fig. 4. The modelled 

voltage and power curves show a rather linear 

characteristic. Using the Faraday’s law (Eq. (14)), it 

is possible to calculate the part-load performance of 

the electrolyser stack. The ELY performance is 

depicted in Fig. 5. 

 

 

Figure 4: Polarisation curve (‘voltage’) and power curve 

of the modelled generic 500 kW electrolyser stack. 

 

 

Figure 5: Part-load performance of the modelled 500 kW 

electrolyser stack. 
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Similarly, to fuel cells, the electrolyser shows 

a performance increase as the load drops. 
 

3.3. Results from HES-OFF app 
 

Analysis of the hybrid energy systems requires 

estimation of performance of their vital components 

under various loads. Once, the FC and ELY part-

load performances are determined and implemented 

in the HES-OFF app, it is possible to investigate 

various layouts and configurations of the hybrid 

system. The default HES-OFF schematic is depicted 

in Fig. 6. 

The offshore installation can be specified by heat 

and power demand in three distinctive stages of life. 

The adopted values for this study are specified in 

Table 4. 
 

 
Figure 6: Schematic of the HES-OFF concept. 

 

Table 4: The offshore installation heat and power 

demands adopted in analyses. 

Stage of 

life 

Offshore installation demands 

Heat [MW] Power [MW] 

Peak 

years 
12.0 35.5 

Mid 

years 
10.0 34.2 

Tail 

years 
7.0 32.9 

 

The HES-OFF app allows to define own values for 

parameters and choose predefined components’ 

models used then in the analyses or just assume the 

predefined default inputs. To demonstrate the HES-

OFF performance the following capacities and 

components have been assumed: single gas turbine 

(LM2500+G4, rated power 32 MW), NREL wind 

turbine model, initial level of hydrogen in the 

storage 80%, wind farm rated power 30 MW, ELY 

rated power 4 MW, FC rated power 5 MW, 

hydrogen storage capacity 23 000 kg. The remaining 

entries were specified according to default values 

predefined in the app. The calculations were 

performed for 1 year of time for each stage of life. 

The results presented in Table 5 outline the 

environmental gains accomplished by HES-OFF 

system in comparison to the case where two gas 

turbines parallel to the same wind farm provide heat 

and power to the offshore facility. 
 

Table 5: HES-OFF environmental performance with 

respect to two gas turbines (GT) tied to wind turbines 

(WT) for a total 30 MW wind farm. 

Stage of 

life 

HES-OFF concept vs. GT + WT 

system 

CO2 emission 

reduction [%] 

Extra wind energy 

integration [%] 

Peak 25.7 3.5 

Mid 27.0 3.8 

Tail 22.8 2.7 
 

As it can be seen from Table 5, the integration of 

hydrogen ELY and FC system along with hydrogen 

storage allows reducing the carbon intensity by 

around 23-27%. A key advantage is the possibility 

to use a single GT with the HES-OFF system. In 

addition, the HES-OFF concept allows a better 

integration of high-capacity wind farm, leading to a 

higher wind energy usage by 2.7 to 3.8% compared 

to a similar system without energy storage. Other 

meaningful results are related to the energy 

delivered or supplied by the PEM systems. The 

exact numbers are listed in Table 6. 
 

Table 6: PEM ELY and FC system energy integrated in 

HES-OFF system. 

Stage of 

life 

FC energy 

[GWhe] 

ELY energy 

[GWhe] 

Peak 2.66 14.47 

Mid 1.17 8.11 

Tail 0.24 4.53 
 

Table 6 shows that ELY system transform more 

electrical energy than FC system. The ELY system 

absorbs surplus power from the wind farm, allowing 

not to dissipate it. The surplus power is converted 

into hydrogen that is stored and later either used in 

the FC stack or in the GT. FC stack system plays as 

a backup power supply when the GT power and 

wind power at given instance cannot meet the 

platform power demand. The difference between the 

ELY and FC energy numbers are due to the 

roundtrip efficiency and to the utilization of part of 

the hydrogen in the GT. For the sake of clarity not 

all results obtained from HES-OFF app are outlined 

in this work. Readers are advised to explore 

independently the capabilities of the online tool to 

get more insight into HES-OFF. 
 

4. Summary and conclusion 
 

Conceptual analyses of new innovative hybrid 

energy systems require sufficiently accurate 

components’ models, which address the simulation 

requirements and produce reasonable outcomes. 

Typically, due to varying heat and power demand of 

the offshore facility and intermittent nature of wind 

energy the components are subjected to part-load 

working conditions. This yields a general need of 

having insights into part-load performances. 

Especially, for novel concepts the deep knowledge 
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about the system architecture and exploitation data 

are not widely available. Therefore, a well-

established methodology was incorporated to 

determine the expected part-load performances of 

the high capacity PEM fuel cell and electrolyser 

systems. Thanks to this approach, the knowledge 

gap for HES-OFF concept has been filled, allowing 

to accomplish more realistic simulations outcomes.  
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Abstract 

 

Modeling transient CO2 two-phase flow in a pipe is essential in studying depressurization mechanisms resulting 

from liquified CO2 accidental release. Generated data from such models predict the released flow characteristics 

and possible propagating fractures. Accordingly, they provide valuable input for risk prevention in designing and 

safely operating CO2 transport pipelines. CO2 depressurization simulation involves fluid-mechanical and 

thermodynamic models, primarily expressed by hyperbolic partial differential equations and an equation of state 

(EOS). Besides, these models are solved with appropriate numerical methods. This paper deals with a drift flux - 

homogeneous equilibrium model (HEM) construction utilizing central-upwind-weighted essentially non-

oscillatory (WENO) numerical schemes to describe two-phase flow during CO2 decompression in a pipe. Rapid 

transition in mass, momentum, and energy at the interface between liquid and vapor phases is assumed in the flow 

HEM. Thus, the two-phase flow is in a thermal, mechanical, and chemical equilibrium. The thermodynamic 

properties are calculated by applying Span-Wagner EOS. The high-resolution second-order central, central-

upwind, and third-order weighted essentially non-oscillatory (WENO) schemes have been executed with the 

HEM, and they effectively captured rapid phase transition. The central-upwind and essentially non-oscillatory 

(ENO) schemes' stencils can be appropriate for constructing a higher-order accuracy central-upwind-WENO 

scheme. This structured scheme uses a smoothness indicator as an alternative to the limiter function. Besides, the 

variables in the cell interface are determined by WENO reconstruction, while central-upwind is used to compute 

the flux properties. 

 

 

1. Introduction 

As long as fossil fuel is the predominant energy 

source, carbon capture and storage (CCS) 

technology should be critical to reducing greenhouse 

gas. CCS is projected to contribute more than 20% 

to CO2 emissions reduction by 2050, as reported by 

the International Energy Agency (IEA) [1]. That 

means above nine gigatons should be captured and 

stored every year. Safe and consistent carbon 

dioxide (CO2) transport from capturing plants to 

storage sites is vital in the CCS process. On- and 

offshore pipelines represent a favorable option for 

transporting large quantities of CO2. However, this 

process raises growing safety concerns as CO2 is 

transported in a high pressurized dense phase and 

involves a significant hazard of pipe failure. 

Pipelines can endanger running-ductile fracture 

from expansion and explosive evaporation waves 

following the rapid phase transition during liquid 

CO2 depressurization [2]. Subsequently, the pipe 

may expose to destructive damage due to the fast 

reduction in temperature during the evaporation 

process. Therefore, estimating the thermodynamic 

state properties during the decompression process is 

crucial for the appropriate design, safe operation, 

and maintenance of CO2 transport pipes. For this 

purpose, transient flow models are required, 

whereby fluid-mechanical and thermodynamic 

models are coupled with appropriate numerical 

methods to resolve these models. These models 

should be validated and corrected by experimental 

data. 

The CO2 pipe's mechanical failure potentially results 

in a release of two-phase flow, following isentropic 

expansion due to pressure decrease. The intensity 

and propagation velocity of downstream two-phase 

flow depends on the upstream expansion waves' 

velocity traveling into superheated liquid. Thus, 

estimating the change in velocities along the pipe is 

essential to predict the release behavior and the pipe 

fracture development. Several models have been 

used to predict state properties during pure or CO2-

rich mixtures depressurization. Elshahomi et al. [3] 

have predicted  CO2 state properties during 

condensation phase transition using ANSYS Fluent, 

CFD procedure. The results had good agreement 
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with previous shock tube experimental data. 

Munkejord et al. [4, 5] have applied two models to 

study the influence of impurities and the initial 

temperature on wave velocity during CO2-rich 

mixture decompression. The homogeneous 

equilibrium model (HEM) and the two-fluid model 

(TFM) were formulated by implementing the multi-

stage centered scheme (MUSTA) simultaneously 

with Soave-Redlich-Kwong and Peng-Robinson 

EOS to calculate the thermodynamical properties. 

The models' calculation findings were contrasted 

with shock tube test results, which demonstrated 

minimal enhancement in TFM predictions against 

HEM. Botros et al. [6] have performed shock tube 

experiments on pure CO2 and compared the results 

with estimations from models built on three 

equations of state: GERG-2008, Peng-Robinson, 

and BWRS. They concluded that only GERG-2008 

corresponded with experimental data. However, the 

inconsistency increased with temperature reduction. 

Morin et al. [7] have presented an approximate 

Riemann solver of Roe for the pipe's CO2 

depressurization. Simulation results demonstrated 

that the central scheme underestimated the pressure 

pulse's maximum amplitude. While the high-

resolution Roe scheme accurately described the 

pulse. A homogeneous relaxation model (HRM) 

with cubic EOS was introduced by Brown et al. [8] 

to describe the released flow resulting from dense 

phase CO2 pipe rupturing. The model was resolved 

by conjugating a semi-discrete Finite Volume 

Method and HLL (Harten-Lax-van Leer) 

approximate Riemann solver. It also showed 

reasonable agreement with the real data from 

rupturing the CO2 pipeline. In this paper a drift flux 

- (HEM) is built utilizing central-upwind-weighted 

essentially non-oscillatory (WENO) numerical 

schemes to illustrate two-phase flow following CO2 

decompression in a pipe. 

 

2. Methodology  

 

This model incorporates the drift-flux model 

(homogeneous equilibrium), Span-Wagner 

Equation of State, and centered-upwind-WENO 

scheme, including the Runge-Kutta fourth-order 

method to describe the transients' characteristics 

during liquid CO2 decompression. The model 

illustrates one component (CO2) with two-phase 

flow inside a horizontal pipe and is assumed to be in 

thermal, mechanical, and chemical equilibrium. i.e., 

the gas and liquid phases have the same temperature 

(T), pressure (P), and chemical potential (𝜇). 

 
𝑇𝑙 = 𝑇𝑔 = 𝑇;   𝑃𝑙 = 𝑃𝑔 = 𝑃;    𝜇𝑙 = 𝜇𝑔 = 𝜇       (1) 

 

 

2.1.  Fluid dynamics in the pipe flow model 

 

Unlike the Drift Flux Model (DFM) in the HEM 

model, the gas and liquid velocity are identical (no 

slip). In addition, the model is one-dimensional due 

to flow in one direction along the pipe. The flow 

variables are averaged over the pipe's cross-section. 

The governing equations are in the form of 

hyperbolic partial differential equations similar to 

Euler's equations for compressible inviscid flow of a 

single fluid and can be described as  

 
𝜕

𝜕𝑡
𝑈 +

𝜕

𝜕𝑥
𝐹 = 0 (2) 

 

where 𝑈 is the vector that contains the conserved 

variables and 𝐹(𝑈) is the flux function: 

 

𝑈 = [𝜌, 𝜌𝑣, 𝐸];   𝐹 =  [𝜌𝑣, 𝜌𝑣2 + 𝑃, 𝑣(𝐸 + 𝑃)]  (3) 

 

Correlated closure laws for the HEM constitute the 

two-phase mixture density 𝜌, the total energy 𝐸, the 

corresponding mixture's specific internal energy 
𝑒𝑚𝑖𝑥 , and the volume fraction relation as follows 

 

𝜌 = 𝛼𝑔𝜌𝑔 + 𝛼𝑙𝜌𝑙 ;              

𝐸 = 𝜌(𝑒 + 0.5𝑣2);                                                   

𝑒 = (𝛼𝑔𝜌𝑔𝑒𝑔 + 𝛼𝑙𝜌𝑙  𝑒𝑙) 𝜌; ⁄                                   (4)  

 𝛼𝑔 + 𝛼𝑙 = 1  

where 𝜌 denotes density, 𝑣 - velocity, 𝐸 – the total 

energy, 𝑒 – specific internal energy,  𝑃 – pressure, 

𝛼𝑖 − volume fraction of the phase 𝑖, and 

subscripts 𝑔 and 𝑙 are gas and liquid phases, 

respectively. For simplicity, the source terms are not 

included, i.e., the heat transfer through the pipe wall, 

wall friction, and the gravitational forces are 

neglected.  Equation (2) can be written in a quasi-

linear form as : 

 
𝑈𝑡 + 𝐴(𝑈)𝑈𝑥 = 0 (5) 

 

where 𝐴(𝑈) =
𝜕𝐹

𝜕𝑈
  is the Jacobian matrix of the 

system. 

 

2.2.  Thermodynamics 

 
A function 𝑃(𝑒, 𝜌) that relates the pressure to the 

internal energy and density is required to complete 

the model. This work uses the Span-Wagner 

Equation of State (SW EOS). It is considered the 

most accurate EOS for CO2 and is based on 

Helmholtz's free energy (HFE) as a function of 

temperature, volume, and the number of moles: A(T, 
V, N). The molar properties of the HFE and the 

volume are 

𝑎 =
𝐴

𝑁
 ;      𝓋 =

𝑉

𝑁
(6) 
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It implies that  𝑎(𝑇, 𝓋). The relation of  𝑎 to the 

other thermodynamic properties can be expressed in 

terms of partial derivatives of the independent 

variable (𝑇, 𝓋). The relation to the pressure, internal 

energy, and entropy are as follows: 

𝑃 = −
𝜕𝑎

𝜕𝓋
 ;                                  

𝑒 = 𝑎 + 𝑇𝑠 = 𝑎 − 𝑇
𝜕𝑎

𝜕𝑇
 ;                                                   (7)                                                               

𝑠 = −
𝜕𝑎

𝜕𝑇
 ;   

 

As the phase transition occurs following adiabatic 

pressure reduction, The molar entropy is conserved. 

The temperature is unknown, and it is required to 

solve one or more linear equations involving e and 
𝓋 to determine its value. SW EOS demonstrates 

explicit expressions for HFE's appropriate partial 

derivatives, allowing for numerically solving for the 

temperature using Newton's method. The initial 

molar volume and internal energy  (𝓋0, 𝑒0) can be 

determined as a function of the known initial 

saturated temperature and pressure (𝑇0, 𝑃0). Then the 

equation involving molar internal energy as a 

function of temperature and molar volume should be 

solved by newton's method iteration  

 

          𝐺(𝑋) =  [𝑒(𝑋) −  𝑒0] = 0;  
         𝑋𝑖+1 =  𝑋𝑖 −  𝐽−1 ∙  𝐺(𝑋)                               (8)  

 

Here 𝑋 signifies the vector (𝑇, 𝓋)𝑇, and 𝐽 =  
𝜕𝑒

𝜕𝑇
  is 

the Jacobian of 𝐺. Then the thermodynamic state is 

determined as a function of 𝑇 and 𝓋  (Mjaavatten, 

2022). 

The speed of sound in the mixture is given as: 

 

        𝑐𝑚 = √
𝓋2

𝑀𝑊
∙ (

𝜕𝑎2

𝜕𝓋2 −
𝜕𝑎2

𝜕𝓋𝜕𝑇
)                            (9) 

 

In addition,  𝜌 =
𝑀𝑊

𝓋
 ; where 𝑀𝑊 is the molecular 

weight (for CO2, 44.01g/mol). 

 

2.3.  Numerical method 
 

Equation (2) can be solved using the finite-volume 

scheme, wherein the domain is discretized into 

subdomains (control volumes). The semi-discrete 

formula (spatial operator discretization) can be 

obtained by Eq. (2) integration: 

          𝐿(𝑈) = −
1

∆𝑥
(𝐹

𝑖+
1

2

− 𝐹
𝑖−

1

2

)                      (10)  

where  𝐿(𝑈) - discretization of the spatial operator;  

𝐹
𝑖+

1

2

  - the flux between cells 𝑖 and 𝑖 + 1. Time 

iteration for the semi-discrete formula is executed 

using the total variation diminishing (TVD) Runge-

Kutta method (RKM). According to Gottlieb et al. 

(1998), this method keeps TVD properties satisfying 

the Courant-Friedrichs-Lewy (CFL) condition. The 

time iterations by fourth-order TVD RCM are 

expressed as (Shu and Osher, 1988) : 

𝑈(1) = 𝑈(0) +
1

2
∆𝑡𝐿(𝑈);                                    (11.1)       

                                            

𝑈(2) =
1

2
𝑈(0) +

1

2
𝑈(1) −

1

4
∆𝑡𝐿(𝑈(0)) +

1

2
∆𝑡𝐿(𝑈(1));                                                            (11.2)  

 

𝑈(3) =
1

9
𝑈(0) +

2

9
𝑈(1) +

2

3
𝑈(2) −

1

9
∆𝑡𝐿(𝑈(0)) −

1

3
∆𝑡𝐿(𝑈(1)) + ∆𝑡𝐿(𝑈(2));                                  (11.3)  

 

𝑈(4) =
1

3
𝑈(1) +

1

3
𝑈(2) +

1

3
𝑈(3) +

1

6
∆𝑡𝐿(𝑈(1)) +

1

6
∆𝑡𝐿(𝑈(3))                                                             (11.4)   

 

where 𝑈(0) and 𝑈(4) are properties at the time n and 

n+1, respectively. Considering the CFL limitation, 

the time step is specified as: 

 

       ∆𝑡 ≤ 𝑐 ∙ (∆𝑥 max{𝜆𝑖} ∀𝑖⁄ )                             (12)  

 

where 𝑐 is the CFL number and 𝜆𝑖 are the 

eigenvalues of the Jacobian matrix: 𝐴(𝑈) =
𝜕𝐹

𝜕𝑈
 . 

It is challenging to discretize precisely the cell 

interface flux function. i.e., The flux  𝐹
𝑖+

1

2

 is 

challenging to determine at the cell interface given 

the values of 𝑈𝑖, 𝑈𝑖+1, 𝑈𝑖
𝑛 , and 𝑈𝑖

𝑛+1. Many 

numerical approaches have been suggested to 

compute 𝐹
𝑖+

1

2

. This work applies the centered-

upwind-WENO scheme (CU-WENO), developed 

by (Welahettige et al., 2022), for the HEM to 

calculate the flux functions by the central-upwind 

scheme while the cell interface properties by WENO 

reconstruction. This formulation seeks to integrate 

the central-upwind features into the WENO scheme, 

which could improve the results' accuracy and 

stability. 

The cell interface flux is computed according to the 

central-upwind expression presented by Kurganov 

et al. (2001). The scheme specifies the local speeds 

on the side of wave propagation's directions 

(discontinuity propagation speeds). Their values are 

equivalent to the maximum and minimum of the 

Jacobian matrix's eigenvalues. The positive and 

negative discontinuity propagation speeds are 

defined as 

 

𝑎
𝑖+

1

2

𝑛,+ = max {

max {𝜆 (𝑈
𝑖+

1

2

𝑛,−)} ,

 max {𝜆 (𝑈
𝑖+

1

2

𝑛,+)} , 0
}                  (13.1)  
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𝑎
𝑖+

1

2

𝑛,− = min {

min {𝜆 (𝑈
𝑖+

1

2

𝑛,−)} ,

min {𝜆 (𝑈
𝑖+

1

2

𝑛,+)} , 0
}  (13.2) 

where 𝜆 denotes the eigenvalues of HEM: 

𝜆 =  {𝑣 + 𝑐𝑚, 𝑣, 𝑣 − 𝑐𝑚}  (13.3) 

Then, for the central-upwind scheme, the high-

resolution numerical flux is expressed as: 

𝐹(𝑈)
𝑖+

1

2

𝑛 =
𝑎

𝑖+
1
2

𝑛,+
 ∙ 𝐹(𝑈

𝑖+
1
2

𝑛,−
) − 𝑎

𝑖+
1
2

𝑛,−
 ∙ 𝐹(𝑈

𝑖+
1
2

𝑛,+
)

𝑎
𝑖+

1
2

𝑛,+
 − 𝑎

𝑖+
1
2

𝑛,− −
𝑎

𝑖+
1 
2

𝑛,+
∙ 𝑎

𝑖+
1
2

𝑛,−
 

𝑎
𝑖+

1
2

𝑛,+
 − 𝑎

𝑖+
1
2

𝑛,− ∙

(𝑈
𝑖+

1

2

𝑛,+ − 𝑈
𝑖+

1

2

𝑛,−)  (14) 

The cell interface properties are calculated by 

applying a fifth-order WENO reconstruction based 

on a third-order ENO stencils approach; for (r)-order 

ENO, (2r-1)-order WENO can be constructed. The 

cell averages calculate the cell interface properties 

in each stencil. So, the negative direction value at the 

cell interface 𝑖 +
1

2
  is given as: 

𝑈
𝑖+

1

2

− = 𝜔0𝑈
𝑖+

1

2

−,0 + 𝜔1𝑈
𝑖+

1

2

−,1 + 𝜔2𝑈
𝑖+

1

2

−,2  (15) 

Here, 𝜔 is a weight function. The sum of weight 

functions is one (𝜔0 + 𝜔1 + 𝜔2 = 1), and they are

calculated as: 

𝜔0 =
𝛼0

𝛼0+𝛼1+𝛼2
; 𝜔1 =

𝛼1

𝛼0+𝛼1+𝛼2
; 

 𝜔2 =
𝛼2

𝛼0+𝛼1+𝛼2
 (16) 

Where 𝛼𝑖 are given as:

𝛼0 =
1

10∙(𝜖+𝛽0)2 ; 𝛼1 =
6

10∙(𝜖+𝛽1)2 ; 

𝛼2 =
3

10∙(𝜖+𝛽2)2  (17) 

Where setting 𝜖 = 10−6 aims to avoid division

by zero. 𝛽 - is a smoothness indicator that 

involves (r-1)-order polynomial function 

𝛽0 =
13

12
(U𝑖−2 − 2U𝑖−1 + U𝑖)2 +

1

4
(U𝑖−2 −

4U𝑖−1 + 3U𝑖)
2;  (18.1)         

𝛽1 =
13

12
(U𝑖−1 − 2U𝑖 + U𝑖+1)2 +

1

4
(U𝑖−1 −

U𝑖+1)2;        (18.2) 

𝛽2 =
13

12
(U𝑖 − 2U𝑖+1 + U𝑖+2)2 +

1

4
(3U𝑖 − 4U𝑖+1 +

U𝑖+2)2  (18.3) 

The positive direction value  𝑈
𝑖+

1

2

+ at the cell 

interface 𝑖 +
1

2
   can be calculated by symmetry. 

3. Results and discussions

Numerical simulations analyzing the transient pipe 

flow behavior during the evaporation of the CO2 

dense phase are presented. The CU-WENO 

numerical schemes resolve hyperbolic conservation 

equations. The fluid dynamics part is combined with 

SW EOS to determine the variations in 

thermodynamic properties. The release incident 

involves the decompression of liquified CO2 in a 

pipe length of 100 m. The initial conditions are: 

pressure (P0) = 7.27 MPa, temperature (T0) = 303.5

K and velocity (v0) = 0 m/s. The simulation sets out

at x = 50 m, t = 0 s after the pipe end ruptures, and 

the liquid CO2 depressurizes to a pressure of 3,67 

MPa.  As a result, a rarefaction wave travels through 

the liquid, causing its expansion to superheated 

liquid. Then, the evaporation wave moves through 

the superheated liquid, leading to its evaporation and 

generating an expanded two-phase mixture 

propagating toward the pipe's end with high 

velocity.  

Figure 1: Schematic drawing shows CO2 depressurization 

in a pipe. 

Figure 2 shows the pressure, mixture velocity, and 

vapor/liquid volume fraction variations along the 

pipe's length. The plots demonstrate calculations for 

1000 cells and 90 ms after the pipe ruptures.  The 

passage of the rarefaction wave begins with the 

gradual liquid expansion corresponding to a pressure 

decrease from about 7.3 to 6.9 MPa and then a steep 

decline to almost 5.1MPa (Figure 2(a)). The 

expanded superheated liquid remains in a metastable 

state at nearly constant pressure (slightly convex 

route), passing about 12.6 m before the pressure 

decreases sharply, indicating rapid evaporation. 
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Figure 2: Change in pressure (a), mixture velocity (b), and 

vapor/liquid volume fraction (c) along the pipe's length 

during 90 ms of liquified CO2 depressurization. 

In addition, the rapid pressure drop results in the 

propagation of expanded fluid with increased 

velocity up to 59.3 m/s. Subsequently, the velocity 

decreases with small fluctuations before its abrupt 

drop once the evaporation wavefront has passed. 

The vapor volume fraction (VVF) has risen in steps 

following the change in the thermodynamic state 

described by the pressure route. As seen in Figure 2 

(c), complete evaporation has not been attained, and 

the third (last) jump in VVF  seems to be related to 

the contact discontinuity wave. 

Particular difficulties were encountered in the model 

implementation when depressurization was chosen 

to lower pressure near the atmospheric conditions. 

The temperature and subsequent calculated pressure 

showed unphysical behavior and may have been 

affected by the simplifying assumptions used in the 

model. In particular, the two-phase mixture velocity 

calculations can be vulnerable in contrast to the two-

fluid model.   The small rapid fluctuations seen in 

pressure and velocity profiles at about 52 and 61 m 

(Figure 2 (a) and (b)) are likely caused by numerical 

computation of the temperature as a function of 

molar internal energy and volume. The intermittent 

fluctuations sites corresponded with the beginning 

of the rapid change in the internal energy (see Figure 

4 (c)), which may produce transient instability in 

temperature calculations. 

Computations have been implemented on grid cells 

between 200 and 2000 to evaluate the convergence 

of the CU-WENO numerical schemes. An 

appropriate numerical method should not create 

additional unreal oscillations as the cells' number 

increases. Figure 3 illustrates the convergence 

results for mixture density (a) and pressure (b) after 

60 ms, implementing various cells' numbers on the 

CU-WENO schemes. As seen in Figure 3, the 

solution converges well as the grid is refined, i.e., as 

the size of the cells shrinks.  

 Figure 3: Grid refinement results for CU-WENO 

numerical schemes' convergence after 60 ms of CO2 

depressurization. (a) for mixture density, and (b) for the 

pressure. 

There are no extra oscillations observed in either 

plot. Instead, the observed small fluctuations on the 
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pressure lines in Figure 3 (b) are flattened due to the 

grid refinement. The diffusivity of results reduces 

with grid refinement, and a grid size of 1500 can be 

recommended for the simulation.  

Figure 4 shows vapor volume fraction (a), mixture 

density (b), and mixture internal energy (c) profiles 

along the pipe's length at different time stamps of 30, 

50, 70, and 100 ms after the rupture. The waves' 

behavior can be described by tracing the changes in 

property profiles. The initial pressure gradient 

promotes the generation of three waves: shock and 

contact discontinuity, traveling in the right direction. 

Besides, an expansion wave moves in the opposite 

left direction.  

In Figure 4 (a), the second and third sharp increases 

in VVF signifies the evaporation wavefront and the 

contact discontinuity, respectively. Additionally, the 

evaporation wavefront propagates towards the left as 

time runs, while the shock and contact surface 

propagate in the right direction. 

Figure 4: The behavior of vapor volume fraction (a), 

mixture density (b), and mixture internal energy (c) along 

the pipe's length during various time intervals and for 1000 

grid cells. 

The velocity profile in Figure 4 (b) demonstrates the 

two-phase mixture movement along the pipe 

towards the vented end. At the same time, the 

velocity peak increases while it moves in the reverse 

direction. However,  the pressure wave behavior 

affects the two-phase mixture velocity after the 

evaporation starts due to the expansion waves' 

sequence propagation with different speeds (see 

Figure 4 (b) and Figure 2 (b)).  

Figure 4 (c) shows that the mixture's internal energy 

rises in the metastable state following the rarefaction 

wave. This trend could be attributed to the liquid 

state transition from saturated to superheated, 

whereby the liquid stores the gained energy during 

its expansion as long as it remains in the metastable 

state. Then the energy is released during the phase 

change process providing the required latent heat of 

vaporization.  

4. Conclusions

Then the energy A homogeneous equilibrium model 

(HEM) for two-phase flow during CO2 

depressurization in a pipe has been developed. The 

model considers equilibrium in pressure, 

temperature, and chemical potential, using SW EOS 

to calculate fluid properties in different 

thermodynamic states. Additionally, the method 

integrates two numerical schemes to use the CU-

WENO scheme, wherein the numerical flux is 

calculated from central-upwind flux and the cell 

interface values from the third-order WENO 

reconstruction.  The aim is to fit the central-upwind 

features in the WENO scheme, which can enhance 

accuracy and stability. The model is able to trace the 
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pressure, two-phase mixture density, and vapor 

volume fraction patterns during the rapid phase 

transition.  In addition, the simulation results 

demonstrate the model's ability to predict the 

rarefaction and evaporation waves' dynamic 

characteristics and the convergence of the CU-

WENO scheme. The numerical method well 

captured the moving discontinuity without blurs, 

and they have a similar pattern as in works done, for 

instance, by Munkejord et al. (2010) and Morin et al. 

(2010). However, the CU-WENO scheme illustrated 

the shock and expansion waves with less sharp edge 

transitions compared to the mentioned studies. 

It is important to mention that the presented model 

does not consider the slip between phases during the 

compression and describes it as a uniform mixture 

pattern inside the pipe. However, the pipe rupture 

could result in a stratified flow pattern whereby the 

phase slip velocities should be considered. 

Additionally, the choice of initial pressure is dictated 

by the depressurization model's characteristics, as 

good predictions have been achieved close to the 

critical point. Further study may consider the 

mentioned remarks in developing pipe CO2 

accidental release models.  
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Abstract

Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive obstructions in the human upper airways
during sleep. Recent estimates from the United States show that the condition impacts 15% to 20% of the adult population.
OSA treatment can be subdivided into surgical and non-surgical approaches. Non-surgical approaches such as continuous
positive airway pressure (CPAP) devices have the highest success rates when used correctly. However, these approaches have
low patient compliance due to the invasive nature of the devices during sleep, leaving surgery as a viable alternative for many.
Predicting the outcome of OSA surgery is difficult due to the complex nature of both the airways and the surgeries themselves.
CFD modeling of the airways is a helpful way to gain valuable insights into the flow structures and the impact of individual
surgeries on the airways. However, CFD is not a viable approach for each patient-specific case due to its time-consuming
nature. A pragmatic model has been created to predict the outcome of OSA surgery on a patient-specific basis to produce
valid surgical estimates fast to be used by non-CFD engineers. The model transforms the human upper airways into a piping
system by applying the hydraulic diameter equation on geometries created from CT scans. This paper aims to validate the use
of the hydraulic diameter given by Dh = 4 · A

Pe
, where A is the cross-sectional area and Pe is the wetted perimeter, on the

complex geometries of the nasal cavity and to provide a novel equation for the hydraulic diameter in the nasal cavity. The
proposed hydraulic diameter equation is given by Dh = CDh · A

Pe
where CDh is the hydraulic diameter coefficient. Airflow

has been simulated through a simplified geometry using CFD to validate the hydraulic diameter and find an updated equation.
Pragmatic model simulations using the hydraulic diameter have been compared to the results from CFD simulations to assess
the pragmatic model’s accuracy. The results showed that the original hydraulic diameter did not give entirely accurate results
and that the novel equation using CDh = 3.71 gave the pragmatic model better accuracy for the validation cases. Tuning the
parameter CDh for flow in an OSA patient’s upper airways, the pragmatic model succeeded in quite accurately reproducing
the area-averaged pressure in the patient’s upper airways.

1. Introduction

Obstructive sleep apnea (OSA) is a sleep disorder
characterized by repeated collapses of the upper airways
during sleep. These collapses obstruct airflow, leading
to loss of oxygen intake and a build-up of CO2, which
can cause daytime symptoms such as drowsiness or loss
of functioning while seemingly getting enough sleep
(Punjabi, 2008). It may cause a stroke or a heart attack
in more severe cases. There are several surgical and non-
surgical treatment options that help to alleviate or remove
OSA entirely. The most common treatment is the non-
surgical use of a sleeping mask which provides a constant
pressurized flow through the airways, removing the
possibility of airway collapse. Of these devices, the most
common one is the continuous positive airway pressure
device (CPAP) which is highly effective when properly
used. However, patient compliance is a prominent issue
with such devices (Sawyer et al., 2011). These factors
leave surgical treatment as a viable option in many cases,
although it is more invasive in the short term. Since
OSA first was described in the middle of the 10th century
(Gharibeh and Mehra, 2010), there have been many
medical advances in surgical treatment options for OSA.
Although significant advances have been made in OSA

treatment, the outcome of surgery is still not entirely
predictable (Kezirian et al., 2004; Friedman et al., 2005).
There have been marginal improvements in some cases,
and in more severe cases, OSA has worsened after surgery.

1.1. Fluid Mechanics in OSA
Computational fluid dynamics (CFD) and widely available
computed tomography (CT) image segmentation tools
have made it possible to create patient-specific 3D models
for airway analyses rapidly (Kim et al., 2013). Fig.
2 shows a 3D model of the human upper airways of
an OSA patient prior to surgery. With appropriate
verification and validation, CFD becomes a great and
trustworthy tool that makes model testing much faster than
its experimental counterpart. Even though computational
capacity has seen exponential growth, detailed CFD
simulations are still computationally expensive. Using
CFD software to acquire accurate and trustworthy results
requires an experienced engineer, making it a less viable
choice for medical doctors to use in patient-specific
cases. The pragmatic simulator developed through Weisz’
specialization project (Weisz, 2021) and further improved
through the same author’s master’s thesis (Weisz, 2022)
is a proposed method for combining the accuracy of CFD
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with low computational cost and user-friendliness.

1.2. Pragmatic Model
The pragmatic model is a proposed 1D flow simulator that
takes in cross-sectional data from the upper airways of a
patient with OSA and converts it into a piping system.
Fig. 3 represents the upper airways of an OSA patient,
while Fig. 4 is a visual representation of the upper airways
as a piping system, used for the pragmatic simulations.
The area-averaged gauge pressure is calculated using the
Bernoulli equation with losses from cross-section to cross-
section (Cengel and Cimbala, 2010). The geometrical
variations in the geometry lead to additional pressure
losses, which are modeled using known relations for pipes
and included in the Bernoulli equation with losses. A
doctor can perform the pragmatic calculations and the
results can give insights into the current state of the
patient’s airways, and further help determine what type of
surgery to perform.

1.3. Hydraulic Diameter
In the pragmatic model described, the unorthodox
transformation of the human upper airway cross-sectional
geometry to a pipe using the hydraulic diameter has been
made. Fig. 1 shows a representation of this transformation
for a cross-section in the nasal cavity which is further
expanded to include the complete upper airways in Fig.
4. Since this is not a common approach, validation
material is challenging to find. As the airway from
the nasopharynx and down has a less complex shape
and only one passage, the hydraulic diameter assumption
is assumed to be accurate for this anatomical region.
Although a validation using the entire geometry would
be beneficial, it would yield patient-specific results and
might not apply to all OSA patients. It would also
be difficult to validate these results since experimental
data for velocity and pressure in OSA patients’ upper
airways are unavailable. This led to the proposal of two
simplified test cases used for simulations with the CFD
tool Ansys Fluent (ANSYS, 2021a). The results led to
a redefinition of the hydraulic diameter for this specific
case after comparison with results from the pragmatic
simulation.

Figure 1: Representation of the conversion from a cross-section
in the nasal cavity to a circle with the hydraulic diameter Dh.

2. Theoretical Background
In this paper, the flow simulations from the pragmatic
model described in this section are validated using
simulations with the commercial CFD software Ansys
Fluent. The two simulators have different sets of
governing equations solved through the simulations. Both
sets of governing equations will be presented in this
section of the paper.

Figure 2: 3D model of the human upper airways adapted from
Jordal’s master’s thesis (Jordal et al., 2017).

2.1. Governing Equations for the Pragmatic Model
The governing equation for the pragmatic model is the
Bernoulli equation with losses used to calculate the
pressure through the human upper airways. The Bernoulli
equation with losses between arbitrary points 1 to 2 along
a streamline is given as (Cengel and Cimbala, 2010):

p1
ρg

+ α1
V 2
1

2g
+ z1 =

p2
ρg

+ α2
V 2
2

2g
+ z2 + hL (1)

where p1 and p2 are the pressures and V1 and V2 are
the velocities at point 1 and 2, respectively. z1 and z2
correspond to the height of each point, while α1 and α2

are the kinetic energy correction factors. ρ is the density
of the fluid and g is the gravitational acceleration. hL is
the loss term which accounts for irreversible losses in the
equation. Through solving (1) for the pressure at point 2
and substituting in an index notation, the pressure is given
as

pi = pi−1+ρ
αi−1V

2
i−1 − αiV

2
i

2
+ρg(zi−1−zi)−ρghL,i,

(2)
where i − 1 and i refer to cross-sections along the
same streamline. This pressure corresponds to the gauge
pressure in the pragmatic model, as the reference pressure
is assumed to be atmospheric.

2.2. Losses
The loss term in equation (1) is comprised of both minor
and major losses, where major losses are frictional losses
and minor losses are caused by losses from geometrical
changes in a pipe (Cengel and Cimbala, 2010, p. 364).
The minor losses in the pragmatic simulator are given by

hL,minor,i =

m∑
j=1

KL,j
V 2
j

2g
, (3)

where j is a geometric component causing a minor loss
in section i of the airways and KL,j is its minor loss
coefficient. The major loss is given by

hL,major,i = fi
Li

Dh,i

V 2
i

2g
, (4)
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Figure 3: Locations of cutplanes used for the extraction of the
area-averaged gauge pressure in the CFD investigation of the
human upper airways (Aasgrav, 2017).

where i is the section of the pipe between cross-sections
i− 1 and i. Li is the length of the section, and Dh,i is its
hydraulic diameter.

2.3. Diffuser Effect
The minor losses in Eq. (3) include losses that occur
due to gradual expansions. Results from the pragmatic
simulations show that additional loss modeling may be
required in these regions. These additional losses due to
flow separation are modeled through a pressure-recovery
coefficient given as (White, 2008, p. 398)

Cp =
pe − pt
p0t − pt

, (5)

where pe and pt are the pressure at the exit and throat of
the diverging nozzle respectively and p0t is the stagnation
pressure at the throat. To include this as an additional loss
it can be solved for pe after obtaining a value for Cp and
adding it to Eq. (2).

2.4. Hydraulic Diameter
The hydraulic diameter is given by the equation

Dh = 4 · A

Pe
, (6)

where A is the cross-sectional area of the geometry and
Pe is the wetted perimeter. In the investigation, a variation
of the hydraulic diameter is proposed, which is given by

Dh = CDh · A

Pe
, (7)

where CDh is the "hydraulic diameter coefficient" which
replaces the constant 4 in the original equation.

2.5. Volumetric Flow Rate

Figure 4: Piping representation of the human upper airways
used for simulations using the pragmatic model. The numbered
locations correspond to the cutplanes in Fig. 3.

The velocity is one of the input variables in Eq. (2)
and therefore needs to be calculated. Since the flow
rate is known, the velocity can be calculated using the
incompressible volumetric flow rate

Q = ViAi = constant. (8)

In this equation Vi is the velocity and Ai is the cross-
sectional area of cross-section i.

2.6. Governing Equations for CFD
In the commercial CFD software Ansys Fluent (ANSYS,
2021a) the Navier Stokes equations are solved on a
discretized mesh using the finite volume method. The
continuity equation and the momentum equation, which
make up the Navier-Stokes equations, are solved for each
cell. Since the Mach number is much lower than 0.3, the
incompressible variants of the equations have been used.
The incompressible continuity equation is given by

∂ui

∂xi
= 0, (9)

where ui is the velocity component in the xi − direction
where i = 1, 2, 3. The incompressible momentum
equation is given by

∂ui

∂t
+ uj

∂ui

∂xj
= fi −

1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
. (10)

fi is the ith component of the gravitational acceleration,
where i = 1, 2, 3. ν is the kinematic viscosity, which is a
constant for this case. Einstein summation is assumed for
equations (9) and (10).

3. Methodology
As mentioned in the introduction, converting two ducts
into one using the hydraulic diameter is not a common
approach. To the knowledge of the authors, this
conversion has not been used for flow calculation using the
proposed method. Therefore, the procedure is explained in
detail in the following section, along with justifications for
the choices made.
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3.1. Numerical Setup
A simple numerical case was chosen to validate the use of
the hydraulic diameter on cross-sections from the human
upper airways. For simplicity, a rectangular duct was
chosen as the foundation of the simplified geometry. With
a duct as the basis a wall was introduced to the geometry
giving the duct a divided geometry, further mimicking
the geometry in the nasal cavity. The separating wall
is the simple geometry’s counterpart to the septum, the
cartilage which divides the nasal passage in the airways
(Matthias, 2007). One of the ducts was created more
narrow than the other because of the prevalence of
deviated septums in OSA cases. A deviated septum is
a deformation of the cartilage and bone wall separating
the nasal passages, which impacts the many functions of
the nasal cavity (Fettman et al., 2009). Therefore, the
variation in geometry between the two passages in the
numerical geometry was implemented to generalize the
test case. Fig. 5 shows the setup and the dimensions of the
different passages. The length of the wall was chosen to
allow the flow to develop while not necessarily becoming
fully developed, as the flow in the nasal cavity does not
become fully developed due to the short entry length and
its varying geometry. Two test cases were chosen since
differences will occur in the various patient-specific upper
airways. Both of the test cases have the same overall
dimensions apart from the leading and trailing ends of the
wall. One numerical case has a wedge at the leading and
trailing ends of the wall, while the other has flat ends.

3.1.1. Wall with Wedged Ends
In the human upper airways, flow separation is likely to
occur at various stages because of the complexity of the
geometry. However, for the simple generalizable case
presented in this paper, investigating a non-separated flow
is of interest, possibly yielding a better base case for future
comparison. To avoid flow separation leading into the
region with two passages, a 10◦ wedge is placed in front of
the wall. The walls on either side are flat, which effectively
leads to an angle of 5◦ for either passage. For a circular
diffuser, flow separation has been found to occur in the
range 1000 ≤ Re ≤ 4000 (Sparrow et al., 2009) giving a
comparable case downstream of the wall. The Reynolds
number of the flow in both of the single duct sections,
prior to and post the separated passages, was Re = 2500.
Although the test case is not circular, it was chosen as a
case with a lower chance of separation than its wedge-less
counterpart. The dimensions of the computational domain
have been taken from the height and width of a nasal cavity
cross-section at its largest point. The left figure in Fig.
1 shows the largest cross-section. The largest section of
the airways was measured using the 3D geometry from
a patient who showed great improvement in OSA post-
surgery. The same geometry used (Aasgrav, 2017).

3.1.2. Wall with Flat Ends
An alternative numerical setup to the wedged setup
presented in the section above was tested. This alternative
setup was proposed to capture flow separation and
recirculation which are likely to occur in the complex
human upper airways (Martonen et al., 2002). The
alternative setup chosen is identical to Fig. 5 apart from
the leading and trailing ends of the separating wall, which
in the alternative case are flat. The alternative setup is
shown in Fig. 6. The flat leading and trailing ends of the
separating wall are hypothesized to cause flow separation
and recirculation, similar to the flow structures found in a
backward-facing step (Lee and Mateescu, 1998). This is

Figure 5: Numerical setup with 10◦ wedges at both ends of the
separating wall.

meant to aid in the validation of the hydraulic diameter by
providing more test data more closely resembling actual
human upper airway flow structures.

Figure 6: Numerical setup where the leading and trailing ends of
the separating wall are flat.

3.2. Inlet and Outlet Boundary Conditions
For both test cases, the boundary conditions at the inlet
and outlet, respectively, were the same. In both cases
air with a kinematic viscosity of ν = 1.6 · 10−5 was
used as the fluid. A fully developed laminar flow was
given as the inlet condition. The fully developed flow
was found by extending the numerical domain prior to the
inlet by an entry length of 800mm, with a uniform flow of
V = 1m/s at the inlet of the extended domain. The entry
length was found using the equation for a nondimensional
hydrodynamic entry length for a laminar flow (Cengel and
Cimbala, 2010, p. 342). The inlet velocity was found by
calculating the Reynolds number using the actual human
upper airway geometry and is based on a flow rate of
250mL/s (Aasgrav, 2017). The outlet condition specified
the gauge pressure and is set to 0 Pa at the end of the
flow domain. The outer and internal separating walls were
treated with no-slip boundary conditions.

3.3. Grid Generation
The mesh for both cases was created using Ansys
Meshing (ANSYS, 2021b), a part of the Ansys simulation
environment, where all of the simulations were carried out.
With the help of the mesh creator and Ansys Workbench
(ANSYS, 2021c), several different grid configurations
were tested to find a grid that would provide a grid-
independent solution. The result from the pragmatic
model simulations was the area-averaged gauge pressure.
This was a natural quantity to check when performing
the mesh independence study. The grid was created by
predetermining the number of subdivisions along the outer
horizontal edges, the horizontal edges along the separating
wall, and the outer vertical edges. To create the mesh,
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the number of division along the outer edges and along
the wall’s edges in the x-direction was set to 300, thus
giving the numerical domain 300 cells in the x-direction.
8 cells were used in the y-direction and 40 cells were
used in the z-direction, both created by setting the number
of divisions along the outer edges in their respective
directions to 8 and 40 respectively. In Ansys Meshing
(ANSYS, 2021b) the behaviour of these sections was set
to "hard" to create a structured mesh mostly containing
hexahedral cells. This meshing scheme made it possible
to generate meshes at different scales with the same
proportions in a controllable way. Different resolutions
for the mesh were created and simulated while controlling
the selected parameter, the gauge pressure. The meshes
with a slightly coarser resolution gave similar pressure
values for the control plane. Therefore, the mesh with a
higher number of cells was chosen for further simulations
since the control parameter remained reasonably constant.
The mesh independence study was only performed on the
numerical domain with a 10◦ wedge. The same grid
generation technique and resolution were applied to the
case with flat wall ends.

3.4. Tuning the Hydraulic Diameter
Altering the hydraulic diameter given by Eq. (6) is
proposed to match the results from the CFD investigations
more accurately. A novel method to tune this parameter
was to define a hydraulic diameter coefficient, CDh .
The hydraulic diameter coefficient replaces the constant,
4, in Eq. (6) to obtain a new equation given by (7)
allowing the possibility to find a coefficient that better
represents the present case. The method involved running
the CFD simulations described in this paper along with
the pragmatic simulations and comparing the results
from both. The pragmatic simulations’ input were the
flow rate, cross-sectional area and the wetted perimeter
from evenly spaced cross-sections along the numerical
geometries. The pragmatic model was modified only
to include the frictional losses introduced through the
major loss term in Eq. (4)when validating the hydraulic
diameter. The hydraulic diameter is present in both
the Reynolds number and the loss term itself, leading
to a negative squared inverse correlation between the
pressure and the hydraulic diameter. This correlation
implies that a decrease in the hydraulic diameter leads to
a decrease in the pressure slope. Pragmatic simulations
were run for hydraulic diameter coefficients in the range
3 ≤ CDh ≤ 4.2 to compare the CFD simulations and
the pragmatic simulations. The residual sum of squares
(RSS)(Wikipedia contributors, 2022) was calculated for
each pragmatic simulation. The equation for RSS is given
by

RSS =
n∑

i=1

(yi − f(xi))
2, (11)

where yi is the ith component of the value to be predicted
(the area-averaged gauge pressure from CFD simulation)
and f(xi) is the ith component of the predicted value (the
area-averaged gauge pressure from the pragmatic model).
The RSS value was calculated using pragmatic and CFD
gauge pressures from the middle of the wall to the end
of the walled section, i.e. 150mm ≤ x ≤ 200mm in
Fig. 5 and Fig. 6. This was done to reduce the impact
of inaccuracies in the error estimation in the entrance
regions of the split geometries. In these regions, deviations
are expected due to the simple nature of the pragmatic
simulations. The hydraulic diameter coefficients could
then be obtained by minimizing the error in this region.

3.5. Minor Losses and Diffuser Effects
With the pragmatic model using loss relations known
from piping systems, the accuracy of these relations is
important. An effect seen in the results of the pragmatic
simulations is a nonphysical pressure recovery where the
human upper airway geometry has an expansion. The
relations for expansions used in the pragmatic model
did not accurately model the pressure difference seen in
the CFD simulations (Weisz, 2022). Therefore, it was
proposed that the effects of flow separation were more
significant than initially thought. To further investigate
this increased flow separation and model it accurately,
the effects were included in the validation simulations
presented in the present paper. This was implemented at
the end of the walled section, where the nasal passages
coincide. The Bernoulli equation with losses Eq. (1)
takes flow separation into account though minor losses
given by Eq. (3). However, the pressure recovery found
through the pragmatic flow simulations was too large. This
occurs when the two passages in the geometry coincide
downstream of the separating wall and there is an increase
in the cross-sectional area for both passages. This effect
can be taken into account through added diffuser losses
for these sections. These losses were calculated using
Eq. (5) by using the CFD gauge pressure to calculate
the pressure recovery coefficient Cp, using Eq. (5). The
exit pressure, pe, in Eq. (5) was the CFD gauge pressure
from the cross-section downstream of the expansion, and
the throat pressure, pt, in Eq. (5) was the gauge pressure
from the cross-section upstream of the same expansion.
The calculated Cp values for the expanding sections were
included in the pragmatic model by solving Eq. (5) for the
exit pressure pe using the area-averaged gauge pressure
from the pragmatic model, pi−1, as the throat pressure,
pt. This was used as pi in the pragmatic model instead
of using Eq. (2) to calculate pi for this section, leading
to a larger, more physically accurate pressure loss in the
relevant region.

3.6. Verification of the Numerical Code
A crucial part of any CFD simulation is verifying the
accuracy of the code used for simulations. In the present
case, this step was done through a simplification of the
numerical domain. The 3D domain was simplified to
a 2D domain with the same height as the 3D domain,
40mm, and long enough for the flow to become fully
developed. The fully developed flow was found by using
a domain which was 7000mm in length, giving the flow
the opportunity to become fully developed. The grid for
the verification case was created using Ansys Meshing
(ANSYS, 2021b), where a structured grid with rectangular
cells was created. The mesh had 1000 cells in the flow
direction, where a bias which decreased the cell size from
the inlet to the outlet was included to achieve similar
cell dimensions as in the 3D case towards the end of the
domain. 40 cells were used in the y-direction with even
spacings. The inlet velocity was chosen to be V = 1m/s
to achieve a Reynolds number of Re = 2500 using the
height of the domain as the length scale and ν = 1.6·10−5

as the kinematic viscosity. The simulations were carried
out using Ansys Fluent (ANSYS, 2021a), using the same
settings as the full 3D simulations. The results from the
verification were compared to the analytical solution of a
plane Poiseuille flow (Cengel and Cimbala, 2010, p. 468).
Fig. 7 compares the two solutions and shows a high degree
of accuracy in the numerical simulations compared to the
analytical solution. Fig. 7 also shows the development of
the flow, at the locations x = 0.05, 2 and 6.9m, where x is
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the downstream distance from the inlet located at x = 0m.
The flow profiles show an expected development with the
flow reaching its fully developed state at x = 6.9m. Since
these results correspond to their analytical counterpart, the
solver was considered an accurate enough standard for
further numerical investigation.
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Figure 7: Fluid flow profiles at the locations 0.05, 2 and 6.9 m
downstream from the inlet. The flow profile reaches the analytical
solution close to the end of the simulation domain, x = 6.9m.
The analytical solution is given for a fully developed plane
Poiseuille flow.

3.7. Pragmatic Simulations
The pragmatic simulations were run using input data
found using the numerical geometries. The area-averaged
gauge pressure was extracted when the CFD simulations
were completed. The pressure was extracted at evenly
spaced cross-sections along the length of the numerical
domain. The pragmatic model’s input for each location
is the cross-sectional area, the perimeter and the flow
rate for the given simulation. The cross-sectional area
and the perimeter of each cross-section were calculated
based on the numerical geometries’ dimensions shown in
Fig. 5 and Fig. 6, the extracted values are shown in
Tab. 1. The flow rate was calculated using the area-
averaged input velocity V = 1m/s. The flow rate could
then be converted into the velocity at the various cross-
sections in the wall-separated region using equation (8).
The pragmatic simulations were then carried out and the
area-averaged gauge pressure from both the pragmatic
simulations and the CFD simulations could be compared.

Table 1: Cross-sectional area and perimeter calculated using
dimensions from Fig. 5 and Fig. 6, where the dimensions at
x = 45mm only apply to the wedged case.

x [mm] A [mm2] Pe [mm]
0 400 100
45 356.36 177.82

150 320 176

4. Results and Discussion
The results from the validation simulations are to be
applied to the pragmatic model to accurately represent the
flow through predicting the area-averaged gauge pressure.
The area-averaged gauge pressure from the pragmatic
simulations and the CFD simulations are compared to
assess the accuracy of the standard hydraulic diameter
Eq. (6) and find an accurate fit for the hydraulic
diameter coefficient CDh in Eq. (7). Fig. 8 and 9

show the results from both simulations along with the
initial pragmatic results using Eq. (6), which are the
uppermost curves The initial results revealed deviations
from the CFD simulations, most notably the slope of
the area-averaged gauge pressure. The slope of the
pragmatic curve was initially too flat and was altered
through varying the hydraulic diameter coefficient CDh .
In the Bernoulli equation with losses (1) the hydraulic
diameter Dh is inversely correlated to the pressure through
its representation in the loss term hL, given by Eq. (4).
However, as the term is negatively signed, the pressure
gradient and the hydraulic diameter become correlated,
leading to predictable changes when tuning the coefficient
CDh . Changing the hydraulic diameter coefficient and
introducing losses from the pressure-recovery coefficient
gave more accurate results when compared to the CFD
simulations. The effects on the pragmatic model from
both of the numerical validation cases are presented and
discussed in the following subsections.

4.1. Wall with Wedged Ends
Fig. 8 shows the results from both the CFD simulations
and the pragmatic simulations in the case where the wedge
is present. The results show an expected decline in
the area-averaged gauge pressure through the geometry.
The pragmatic simulations have a linearly decreasing
pressure in the middle section, where the separating
wall is located, but with varying slopes. The CFD
simulation has a less linear shape in the section with the
separating wall. However, it has a linear trend further
downstream. Compared to the CFD simulations, it has
a slight additional pressure loss as the duct is split up,
and a slight pressure gain at the opposite side. The initial
pragmatic results have similar trends but with inflated
loss values as well as pressure gain. Using the error
minimization approach described in the methodology
section, CDh = 3.73 was found as the optimal hydraulic
diameter coefficient. A visualization of the optimization
is shown in Fig. 10. The pressure-recovery coefficient
was calculated by applying pressure values from the CFD
simulations to Eq. (5). This showed an improvement in
accuracy downstream of the walled section.
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Figure 8: Results from Ansys Fluent and corresponding
pragmatic simulations for simulations with a 10◦ wedge at both
ends of the separating wall. The vertical dotted lines indicate the
wedge locations.

4.2. Wall with Flat Ends
The alternative flow situation used to study the hydraulic
diameter is also investigated. For this case, the separating
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wall has flat ends instead of wedges. The aim of this
was to study the effects of tuning the hydraulic diameter
coefficient, CDh , and comparing it to the wedged case
to find out how the hydraulic diameter coefficient would
deviate from the initial results. This was to study the
reliability and generalizability of the results obtained in
the wedged case. The results from these simulations are
displayed in Fig. 9. Minimizing the RSS value for these
simulations gave CDh = 3.69 as the hydraulic diameter
coefficient with the highest accuracy. Similarly to the
case with 10◦ wedges, applying the increased pressure
recovery coefficient to the pragmatic simulations gave a
result closer to the CFD simulations. Due to the nature
of the geometry with its sudden geometrical changes,
the pragmatic model has sudden pressure changes at the
beginning of the walled section and at the end, with a
pressure loss and a pressure gain respectively. The same
procedure for finding the pressure recovery coefficient was
used. In the case with flat ends, this gave a highly accurate
result. This implies that there is more flow separation in
the non-wedged case. However, this increased accuracy
may be due to the sudden changes, which make the
pressure recovery coefficient from the CFD simulations
easier to find. The increased accuracy using the pressure
recovery coefficient in the wedge versus the non-wedged
case is thus inconclusive. However, the use of a pressure
recovery coefficient in general is promising.
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Figure 9: Results from Ansys Fluent and corresponding
pragmatic simulations for the simulations with flat ends of the
separating wall.
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Figure 10: Calculations of the RSS values for simulations with
and without a 10◦ wedge at the ends of the wall.

4.3. OSA Patient’s Upper Airways Simulations
The aim of finding an improved version of the hydraulic
diameter is to implement the improved version in
the pragmatic model and achieve better results when
simulating the flow the actual upper airways of an OSA
patient. The results of implementing the averaged value of
the two hydraulic diameter coefficients into the pragmatic
model are shown in Fig. 11. In this figure the cutplanes
correspond to the cutplanes from Fig. 3, which indicate
the locations the results from the CFD simulations are
taken from. The cross-sectional area and perimeter used
as input for the pragmatic model have been extracted from
the same 3D model at the numbered locations. The results
with CDh = 3.71 in Eq. (7) only show a marginal
improvement compared to using Eq. (6). The alternative
hydraulic diameter coefficient, CDh , was applied to the
first four cutplanes prior to the coinciding of the nasal
passages indicated by the dashed and dotted line in Fig.
11, the standard hydraulic diameter CDh = 4 was used
downstream of this. Further analyses showed that a more
accurate coefficient for the human upper airways is given
by CDh = 1.80. One of the reasons for this deviation
is that the simple nature of the geometries analysed in
this paper are better modeled by the a value closer to
the original hydraulic diameter. The hydraulic diameter
is meant for square ducts and other simple geometries,
thus increasing the complexity of the geometry requires
decreasing the hydraulic diameter.
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Figure 11: Pragmatic model simulations with cross-sections from
Fig. 2 as input verified using CFD simulation performed through
Aasgrav’s specialization project (Aasgrav, 2017). The dashed and
dotted line indicates where the nasal passages coincide.

5. Conclusions
As a part of creating a pragmatic flow simulator, the
hydraulic diameter is used to transform the human upper
airway geometry into a piping system. A test case has
been created and presented in this paper to determine if
this is a valid assumption to make in the nasal cavity.
The test case used two variations of a simple duct-like
geometry with a single duct to begin with, which goes
over to a split up section with a separating wall between
two passages and a coinciding geometry at the end of the
wall. The simulations were performed assuming a laminar
steady incompressible airflow that with a uniform velocity
of 1m/s at the inlet of the numerical domain. The results
from these simulations showed the expected decline in
the area-averaged gauge pressure over the length of the
geometry. The resulting pressure curve was used as a
basis for comparison to the pragmatic flow simulations.
Pragmatic flow simulations were executed, with the only
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loss contribution being the frictional losses. Comparing
the results to the CFD simulations proved that the pressure
slope generated by the pragmatic simulator was a little
off. Analysing different values of the hydraulic diameter
coefficient CDh for the two test cases presented gave two
slightly different values. The two values were CDh =
3.72 and CDh = 3.69 for the case with and without
a wedge at the leading and trailing ends of the wall
respectively. Averaging the two values and implementing
the new equation is given by Dh = 3.71 · A

Pe
into

the pragmatic model hardly improved its accuracy for
flow in the upper airways of an OSA patient. However,
CDh = 1.80 in the pragmatic model proved to give good
agreement of the pressure with the CFD results. This
investigation proved that the accuracy of the pragmatic
simulations could be improved by altering the hydraulic
diameter coefficient CDh . To conclude, the coefficients
found in this study did not provide accurate results on
the actual human upper airway, but imply that altering the
hydraulic diameter can lead better accuracy. This implies
that the redefinition of the hydraulic diameter proposed in
this study can be used as an optimization parameter in the
pragmatic model.
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Abstract

Steam reforming is a promising route to convert natural gas into syngas - a mixture of H2 and CO, used as a feed stock
e.g. for ammonia, methanol and Fischer-Tropsch synthesis processes. For the industrial application of steam reforming, a
detailed understanding of the process is a prerequisite. Models that capture the detailed homogeneous and heterogeneous
reaction kinetics and the comprehensive transport processes as well as their interaction have the potential to optimize the
catalytic process without expensive experimental campaigns. In the present work, a one-dimensional model, LOGEcat is used
to carry out a detailed investigation considering a multi-step reaction mechanism for modeling steam reforming of methane
over nickel-based catalyst. The model is computationally cost effective due to the reduction in dimensionality, in contrast to
experimental investigations which are not always feasible or 2D/3D simulations which are computationally expensive. The 1D
tool is based on a series of perfectly stirred reactors (PSR) and is applicable to the simulation of all standard after-treatment
catalytic processes of combustion exhaust gas as well as other chemical processes involving heterogeneous catalysis such as the
Sabatier process. We have applied the model to perform the simulations for various reactor conditions in terms of parameters
such as temperature, pressure, velocity and steam-to-carbon (S/C) ratio. Several chemical reaction terms have been analyzed
and the results are compared with 2D simulation and experimental reference data. We note a very good agreement of the
various profiles produced with the cost-effective reduced order model in comparison to the reference data.

Keywords: Nickel-based catalyst; One-dimensional modeling; Methane; Steam reforming;

1. Introduction
Steam reforming of hydrocarbons is a crucial chemical
process [1, 2] providing synthesis gas (H2 and CO) which
plays a key role as a feedstock in many catalytic processes,
for example, synthesis of methanol, oxo-synthesis, and
Fischer-Tropsch synthesis [3]. The produced synthesis
gas, hydrogen, is used in the manufacturing of ammonia
[3]. The most prominent and widely used industrial
steam reforming process is the methane or gas (natural)
reforming. This is one of the most efficient technologies
for hydrogen and synthesis gas production from fossil
fuels in large scale facilities reaching yields close to the
thermodynamic equilibrium [2, 3]. Thus, conventional
steam reformers deliver high concentrations of hydrogen
at high fuel conversion rates [4], however, this process is
disadvantageous in small scale operation units because of
the highly endothermic reactions and the requirement of
efficient external energy supply.
Thermodynamics control the products of the reaction and
favour the formation of methane at lower temperature
along with hydrogen at higher ones. Steam reforming of
methane accompanied by water-gas shift reactions on a
Ni/MgAl2O4 catalyst by intrinsic rate equations derived
from a Langmuir-Hinshelwood mechanism is described
in [5]. Recently, a catalytic sequence for reactions of
CH4 with CO2 and H2O on Ni/MgO catalysts has been
postulated in [6] and a microkinetic model for steam
reforming reactions over a Ni/MgAl2O4 catalyst has
been proposed in [7] by reactions for CO2 reforming of

methane and deactivation by carbon formation.
Due to the potential to reduce the cost of synthesis
gas production and environmental concerns, partial
oxidation over noble metal catalysts [8–11] as well
as CO2 reforming [12–14] of natural gas to synthesis
gas have attained much interest. The sequence and
interaction of the reaction routes have been considered in
several investigations in order to understand the reaction
mechanism of synthesis gas formation from methane.
Earlier, a direct catalytic partial oxidation route has
been followed [11], however, in later studies the overall
conversion is realized in a two-step process (indirect route)
[8–10, 15]. In [11, 15–17], steps for steam reforming for
the catalytic partial oxidation of methane over platinum
and rhodium are published. The reaction kinetics of
methane steam reforming over nickel catalyst has been
extensively investigated experimentally and theoretically
in [18, 19].
All the investigations discussed above are either
performed experimentally (not always feasible) or
using 2D/3D tools which are computationally expensive
specially when the full reaction mechanism is included.
The computational cost increases drastically with
increasing number of species and alternatives need to
be explored in order to capture the flow physics and
chemistry at a reduced cost. A good strategy is to reduce
the reaction mechanism or dimensionality from 2D/3D to
1D which are time efficient alternatives and are suitably
applicable to catalyst simulations.
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In this paper, selecting the latter approach (reduction in
dimensions) a one-dimensional model which is discussed
in next section, has been elaborated to test the steam
reforming of methane over nickel/alumina monoliths in
the temperature interval of 900-1350 K. The results are
compared with the data available in the literature, for the
2D simulations as well as experiments. Note that this
work forms the basis for further detailed investigations
presented in our recent study [20].

2. Model Description
The one-dimensional model, LOGEcat [21] is used for the
simulations presented in this paper. The model is based
on the single-channel 1D catalyst model and is applicable
to the simulation of all standard after-treatment catalytic
processes of combustion exhaust gas, for example, three-
way catalyst (TWC), diesel oxidation catalysts (DOC),
NOx storage and reduction (NSR) catalysts and selective
catalytic reduction (SCR) catalysts.
The model has been successfully applied and tested
in previous studies [20, 22]. However, a detailed
investigation of the steam reforming of methane over
nickel has not been done in any of the previous studies.
So, here we aim to analyze the case considered in a general
and detailed way in order to check the predictability of
model and to know how far the one-dimensional model
can capture the flow physics and the chemistry involved
with it.
Now, we discuss the modeling of the conservation and
flow equations for the readability of this paper. A number
of representative channels are used to model the three-
way catalytic converter. The gas and surface properties are
calculated as a function of axial distance in these channels
and also, the heat conduction between the channels is
modeled. In contrast, no radial heat conduction between
the channels is considered in case of a single-channel
(discussed below) set-up representing the whole catalyst
using one channel.

2.1. Single Channel Model
Figure 1 shows the single channel which is divided into a
finite number of cells with ∆x as their length. Each cell is
treated as a perfectly stirred reactor (PSR) and the pressure
gradient along with inhomogeneity of the mixture can be
neglected as the diameter of the catalytic channel is small.
A thin layer represented by a separate pore gas zone close
to the wall is used to model the external diffusion and this
pore layer is depicted by the area between the bulk gas and
the washcoat as shown in the figure.
The model used to carry out the simulations is the
part of the LOGEsoft software suite [21] for chemical
reaction calculation. The conservation equations (next
section) for gas species mass fraction, gas enthalpy,
surface temperature, pore layer gas species mass fraction,
and surface site fractions are solved in each PSR. These
equations are solved for each time step and additionally,
the 1D Navier-Stokes equations for pressure as well as
flow velocity are solved over all cells by an operator
splitting method.

2.1.1. Conservation Equations

Assuming constant pressure during the time step ∆t in the
operator splitting loop, the bulk gas in each cell is modeled
by a PSR. The mass transfer coefficient accounts for the
species transport between bulk gas and pore volume layer
and the conservation equation for bulk gas species mass
fraction is given as,

ρ
∂Yi,g

∂t
=

(ρv)inA

Vg
(Yi,in − Yi,g) +Wiωi,g

− P∆x

Vg
WiKmkm,i(Ci,g − Ci,p)

+ Yi,g
P∆x

Vg

Ng∑
j=1

WjKmkm,j(Cj,g − Cj,p)

(1)

The subscript g denotes the bulk gas, in the inflow from
the upstream cell and p gas in the pore layer. Yi,g is the
mass fraction of species i, Vg is the gas volume in the
current cell, wi,g is the species source term for gas phase
reaction, Km is the tunable parameter for the overall mass
transfer, km,i is the conservation mass transfer coefficient
of species i, Ci,g is the concentration of species i in the
bulk gas, and Ci,p is the concentration of species i in the
pore layer and P is the geometric wetted perimeter of the
channel. For more details we refer the reader to [21].
The pore volume layer considers gas phase as well as
surface reactions which further includes diffusion into
the pores and the conservation equation of the gas phase
species is given as,

ρp,l
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+WiKe
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Nsurf∑
m=1

Am

Vp,l
ωj,m

+Di
Cj,p,l − Cj,p,l+1

Wl+1,l

Am

Vp,l

]
(2)

In the above equation, VP,l is the gas volume of the
pore volume layer in washcoat layer l in the current
cell, wi,P,l is the species source term for gas phase
reactions in the pore layer in washcoat layer l, Nsurf is
the number of different surface materials present in the
catalytic converter (usually 1), Am is the catalytic surface
area in the current cell, ke is the tunning parameter for the
overall reaction efficiency. The parameter Di accounts for
an additional term for diffusion through multiple washcoat
layers and is appropriate diffusion coefficient for species i,
the subscript l is the current washcoat layer, wl+1,l is the
radial distance through the washcoat calculated as (wl+1−
wl)/2 for diffusion between washcoat layer l and l + 1.
Note that the source term for bulk gas species transport
into the washcoat in only used for the first washcoat layer
(denoted as |l=1).
Next, the conservation equation for surface species site
fraction is given as,

∂θi,n
∂t

= σi,nKe
ωi,n

τn
(3)

Θi,n indicates the site fraction of species i at site n, τn
is the site density, wi,n is the species source term from
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Figure 1: Schematic illustration of the modeling approach

reactions at site n and σi,n is the site occupancy number
of species i at site n.
The heat transport by convection and molecular transport
is taken into account by the bulk energy (specific enthalpy)
conservation equation given as,

∂hg

∂t
= −KhhT

P∆x

mg
(Tg − Tw) +

(ρv)inA

mg
(hin − hg)

+
P∆x

mg

Ng∑
j=1

WjKmkm,j(Cj,g

− Cj,p)(hg − hj,g←→p)

(4)

In equation 4, hg is the bulk gas specific enthalpy, hT is
the convective heat transfer coefficient between bulk gas
and surface, Tg is the bulk gas temperature, Tw the pore
layer temperature, hin is the specific enthalpy of the gas
from the upstream cell and hj,g↪→p the specific enthalpy
of species j transported between the bulk gas and the
pore layer. The bulk gas enthalpy is used in case of the
species being transported from the bulk gas and pore layer
enthalpy is used if it is transported to the bulk gas.
The pore layer temperature is assumed to be homogeneous
for the substrate as well as for the gas and the pressure is
assumed constant in the pore layer. The kinetic energy
due to gas movement is neglected. Considering these
assumptions, the conservation equation for the surface
temperature is given as,
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∂Tw
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)
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(5)

where, Vs is the volume of the solid wall material
(washcoat and substrate) in the current cell, Cp,s is the
specific heat capacity of the solid material at constant
pressure, Cp,P is the specific heat capacity in the pore
volume layer at constant pressure and Kh is a tunable
parameter for the heat transfer. Hence, the above equation
accounts for heat conduction along the channel, heat
convection/ diffusion to the bulk gas, molecular heat
transport as well as heat released by reactions. ks,l
is the thermal conductivity of washcoat layer l and for
single washcoat pore diffusion is mimicked by the tunable
parameter ke. The washcoat diffusion for the surface
temperature is also included in case if there are multiple
washcoats. Additionally, heat flow term is used to account
for heat losses through the material and the catalyst at the
periphery of the substrate.
The heat and mass transfer coefficients, hT and km,i,
used in the conservation equations are calculated from the
Nusselt and Sherwood numbers [23]. For simultaneously
developing velocity, concentration and thermal boundary
layer flow, the correlations for Sherwood and Nusselt
numbers are used as [24],

Shi(x) =
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(7)
Here, Di is the species diffusion coefficient for species
i, Dτ is the thermal diffusion coefficient, v is the fluid
velocity along the channel and ShT,∞ and NuT,∞ are the
asymptotic Sherwood and Nusselt numbers, respectively,
for constant flux boundary conditions (their values are
taken from [25]). The Schmidt number for species i, Sci
and the Prandtl number, Pr are given as,

SCi =
µi

ρDi
(8)
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Pr =
cpµ

kg
(9)

where, µi is the dynamic viscosity, Di is the diffusion
coefficient of species i, Cp is the heat capacity at constant
pressure, µ is the dynamic viscosity and kg is the thermal
conductivity of the gas.

2.1.2. Flow equations
With the assumption that the flow is in steady state, the
conservation equations are given as,

∂(ρv)

∂x
= −Aw,G

mg

Ng∑
i=1

Wikm,i(Ci,g − Ci,p) (10)

∂(ρv2)

∂x
+

∂p

∂x
= −fF

2
(ρv)|v| p

A
(11)

as mass and momentum equations, respectively. In the
above equations, A is the cross-sectional channel area.
The friction factor, fF for laminar and fully developed
flow is given as,

fF =
16

Re
=

16µ

ρvdh
(12)

For more details related to the model and the derivations
for the equations, we refer the reader to [21].

3. Surface reaction mechanism
We have used the reaction mechanism from [3] which
contains 6 gas-phase and 13 surface species in total. The
reaction mechanism consists of 42 reactions. The reaction
mechanism indicates that adsorbed carbon species (CH,
CH2, CH3 etc) formed from activated methane reacts with
adsorbed atomic oxygen O(s), formed from the adsorption
of oxygen or from the decomposition of water and CO2,
and produce carbon oxide. The mechanism also comprises
the reactions of partial oxidation and steam reforming of
methane and is based on the key reaction intermediate
- adsorbed atomic oxygen O(s). For the details of the
reaction mechanism, we refer the reader to [3].
Note that the sticking coefficients are used as kinetic data
for the adsorption of reactants and products (H2, O2,
CH4, H2O, CO, CO2) given in the reaction mechanism.

3.1. Thermodynamic Consistency
The equilibrium of a chemical reaction is given as,

∑
i

v′ikAi

kfk

⇄
krk

∑
i

v′′ikAi (13)

and is defined by the thermodynamic properties of the
participating species. In terms of equilibrium constant,
Kpk, the equilibrium activities, ai, obey the expression,

Kpk =
∏
i

(aeq
i )vik = exp

(
− ∆kG

0

RT

)
(14)

vik = vik′ − vik′ is the stoichiometric coefficient, R gas
constant and T temperature. The change of free enthalpy
at normal pressure p0 is given as,

∆kG
0 =

∑
i

vikG
0
i (T ) (15)

The activation can be approximated by their partial
pressure in case of gases and by coverage in case of surface
species. Considering the dependence of the heat capacity
on temperature by a forth-order polynomial and standard

enthalpies and entropies of formation, in that case the
standard free enthalpies can be expressed in terms of seven
coefficients,

(16)G0
i (T ) = a0,i + a1,iT + a2,iT

2 + a3,iT
3

+ a4,iT
4 + a5,iT

5 + a6,iT lnT

The rate coefficients for the forward and the reverse
reaction must obey the below equation to predict the
equilibrium correctly,

kfk
krk

= Kpk

∏
i

(c0i )
vik (17)

where, ci are reference concentrations at normal pressure.
Nonetheless, the forward and the reverse reactions
are defined separately with their own rate laws due
to the problems encountered in setting up a reaction
mechanism. It is difficult to define the thermodynamic
data for intermediate surface species. The thermodynamic
consistency is ensured in a sense that the thermodynamic
equilibrium of the participating gas-phase species is
matched for a range of temperatures, while writing all
reversible reactions as pairs of independent forward and
backward reactions. The thermodynamic data of the
intermediate species is, therefore not needed for the
evaluation of the reaction rates [3]. We do not aim to cover
the more details in this section and hence leave this to the
readers interest. Note that the reaction mechanism and the
thermodynamic data for all the species used in the present
study are taken from [26].

4. Simulation Set-up
The simulation set-up used for the present study follows
from [3]. The investigation is extended for different
reactor conditions in terms of parameters, such as,
temperature, S/C ratio, flow rate and pressure. Analysis is
done for four different temperatures, T=920, 1020, 1120,
and 1220 K while keeping all other parameters (S/C, ḟ
and P) constant. Similarly, the S/C ratio is varied as
S/C=1.9, 2.77, and 3.67, flow rate as ḟ=296, 593 and 1186
mL/min and pressure as P=1, 10 and 100 atm with other
parameters fixed.
We have considered a single channel being 3.0 × 10−2

m in length with a catalyst radius of 7.5 × 10−3 m (640
cpsi) and it is uniformly divided into 25 cells. One layer
of washcoat is used for the simulations. The overall heat
transfer efficiency factor, mass transfer efficiency factor
and efficiency factors for surface chemistry are taken as
unity. The surface site density, τ for Ni is 2.6 × 10−5

mol/m2 [2]. The surface area per catalyst length is used as
6.9× 10−2 m2/m. 75% Argon dilution is used.

5. Results
The model explained above is used to perform the
simulations of steam reforming of methane over a nickel
catalyst and all the kinetic parameters are taken from [3].
Some of the important terms encountered in chemical
reaction engineering are conversion, selectivity and yield
which are discussed in the following section. It is
important to check these quantities to observe if the system
is consistent. The variation of these quantities are shown
with different temperature. The conversion describes the
ratio of how much of a reactant has reacted and lies
between zero and one. The yield shows the formation of a
desired product and it also falls in between zero and one.
The selectivity defines the ratio of the desired product to



SIMS 63 Trondheim, Norway, September 20-21, 2022

Figure 2: Methane and water conversion as a function of
temperature for S/C=2.77 and 75% Ar along with the reference
data.

the undesired products. The formulas for these quantities
are given where they are first discussed in the section.
Figure 2 shows the conversion of methane and water as
a function of temperature along with the reference data.
The conversion is calculated as, Xi = yi,o − yi,e/yi,o.
The simulations are performed for fixed S/C ratio as 2.77
and 75% Argon dilution. The 1D simulation results
using LOGEcat model are in very good agreement with
the experimental and simulation results from [3]. It is
observed that the thermodynamic equilibrium is attained at
the higher temperatures. However, at higher temperature
the simulation results, both from LOGEcat model as well
as 2D reference data, deviates from the experimental data.

Figure 3: CO Selectivity variation with temperature in methane
steam reforming for S/C=2.77 and 75% Ar along with the
reference data.

The CO selectivity variation with temperature in methane
steam reforming for fixed S/C ratio is shown in Figure 3
along with the reference simulation and experimental
data. The selectivity for CO is calculated as, SCO =
XCO/XCO +XCO2 +XCH4 and we observe a very
good agreement for the 1D LOGEcat model results with
[3].
Figure 4 illustrates the H2/CO ratio variation with the
temperature in methane steam reforming for S/C ratio
2.77 and 75% Argon along with the reference results. As
explained in [3], the over-prediction of the H2/CO ratio in
comparison to the experimental measurements at the given
S/C ratio might be due to the underestimation of water-
gas shift reaction at low temperature in the 2D as well as
1D model. The H2/CO ratio for simulation, Maiers 2D
simulation as well as results from 1D model, is higher

Figure 4: H2/CO ratio variation with temperature in methane
steam reforming for S/C=2.77 and 75% Ar along with the
reference data.

Figure 5: (a) Methane and (b) water concentration along the
reactor for T=920 K.

compared to the equilibrium calculation at temperature
≤ 1000K. The 1D results lie in between the experimental
and simulation results from [3]. Nevertheless, it is
worth noticing that the 1D model capture this profile,
qualitatively as well as quantitatively very well.
Further, the variation of concentration for reactants and
products along with the axial distance/ length of the
reactor is shown in Figure 5 and 6. The simulation
results are shown for T=920K. These figures show that the
reactants (Figure 5), methane and water, are being used
in the first few seconds, i.e., within 2s. Then the thermal
equilibrium is reached and no change in the concentration
can be observed after 2s but the simulations do run a little
longer in order to make sure that steady state is reached.
Similarly, the formation of products (Figure 6), H2, CO,
CO2, takes place within first few seconds and then it
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Figure 6: (a) CO, (b) H2 and (c) CO2 concentration along the
reactor for T=920 K.

ceases. We expect this behaviour as the endothermic
reactions are dominant on the catalytic surface in the initial
phase which cause the major changes in concentration
of different species only in the beginning and then the
system attains thermal equilibrium. However, if we
observe these concentration plots at higher temperature
(not shown in this paper due to limited space), it takes
slightly longer to reach steady state and hence, it depends
on the temperature.

In Figure 7, the methane and water conversion is shown as
a function of temperature for fixed S/C ratio (S/C=3) along
with the reference data. The figure captures the conversion
behaviour for a wide range of temperature, Tϵ[600, 1300]
in order to check the predictability of the 1D model
for higher temperature. The 1D simulation results are
in good agreement with the reference 2D simulations
and experiments for the entire temperature range. The
reference data is available only for methane conversion,
however, we have also shown the water conversion for the
given temperature range for our simulation set-up.

Figure 7: Methane and water conversion as a function of
temperature for S/C=3 along with the reference data.

6. Conclusions
This paper presents the kinetics of the steam reforming
of methane over nickel catalyst using a one-dimensional
tool, LOGEcat. The results are compared with literature
[3] and the investigation is carried out for different
temperatures. Various quantities, such as, selectivity, yield
and conversion has been discussed.
The results show that the conversion, selectivity, H2/CO
ratio for temperature ϵ [920,1020,1120,1220] K are in very
good agreement with the reference data considered for the
comparison purpose. This proves the capability of the
model to capture the basic flow physics and the chemistry
and hence, the model can be used in multiple directions
for further investigations at a reduced computational cost.

Acknowledgment
The authors thank the Graduate Research School (GRS) of
the BTU Cottbus-Senftenberg for the financial support.

References
[1] B. T. Schädel, M. Duisberg, and O. Deutschmann, “Steam

reforming of methane, ethane, propane, butane, and natural
gas over a rhodium-based catalyst,” Catalysis Today.,
vol. 142, pp. 42–51, 2009.

[2] J. R. Rostrup-Nielsen, In: Anderson JR, Boudart M
(eds) Catalytic steam reforming in catalysis—science and
technology. Berlin: Springer-Verlag, 1984.

[3] L. Maier, B. Schädel, K. H. Delgado, S. Tischer, and
O. Deutschmann, “Steam Reforming of Methane Over
Nickel: Development of a Multi-Step Surface Reaction
Mechanism,” Topics in Catalysis., vol. 54, pp. 845–858,
2011.

[4] B. C. Michael, A. Donazzi, and L. D. Schmidt, “Effects
of H2O and CO2 addition in catalytic partial oxidation of
methane on Rh,” Journal of Catalysis., vol. 265, pp. 117–
129, 2009.

[5] R. Quiceno, O. Deutschmann, J. Warnatz, and J. Pérez-
Ramírez, “Modelling of the high-temperature catalytic
partial oxidation of methane over platinum gauze. Detailed
gas-phase and surface chemistries coupled with 3D flow
field simulations,” Applied Catalysis A., vol. 303, pp. 166–
176, 2006.

[6] J. Wei and E. Iglesia, “Isotopic and kinetic assessment of
the mechanism of reactions of CH4 with CO2 or H2O to
form synthesis gas and carbon on nickel catalysts,” Journal
of Catalysis., vol. 224, pp. 370–383, 2004.

[7] L. M. Aparicio, “Transient Isotopic Studies and
Microkinetic Modeling of Methane Reforming over Nickel
Catalysts,” Journal of Catalysis., vol. 165, pp. 262–274,
1997.

[8] D. Dissanayake, M. P. Rosynek, K. C. C. Kharas, and
J. H. Lunsford, “Partial Oxidation of Methane to Carbon



SIMS 63 Trondheim, Norway, September 20-21, 2022

Monoxide and Hydrogen over a Ni/Al2O3 Catalyst,”
Catalysis Today., vol. 132, pp. 117–127, 1991.

[9] W. J. M. Vermeiren, E. Blomsma, and P. A. Jacobs,
“Catalytic and thermodynamic approach of the
oxyreforming reaction of methane,” Catalysis Today.,
vol. 13, pp. 427–436, 1992.

[10] S. Hannemann, J. D. Grunwaldt, N. van Vegten, A. Baiker,
P. Boye, and C. G. Schroer, “Distinct Spatial Changes
of the Catalyst Structure inside a Fixed-Bed Microreactor
during the Partial Oxidation of Methane over Rh/Al2O3,”
Catalysis Today., vol. 126, p. 54, 2007.

[11] D. A. Hickman and L. D. Schmidt, “Steps in CH4
oxidation on Pt and Rh surfaces: High-temperature reactor
simulations,” American Institute of Chemical Engineers
AIChE., vol. 39, pp. 1164–1177, 1993.

[12] A. M. Gadalla and M. E. Sommer, “Carbon dioxide
reforming of methane on nickel catalysts,” Chemical
Engineering Science., vol. 44, pp. 2825–2829, 1989.

[13] Z. W. Liu, H. S. Roh, and K. W. Jun, “Important factors
on carbon dioxide reforming of methane over nickel-
based catalysts,” Journal of Industrial and Engineering
Chemistry., vol. 9, pp. 753–761, 2003.

[14] M. C. J. Bradford and M. A. Vannice, “Catalytic reforming
of methane with carbon dioxide over nickel catalysts II.
Reaction kinetics,” Applied Catalysis A: General., vol. 142,
pp. 97–122, 1996.

[15] R. Schwiedernoch, S. Tischer, C. Correa, and
O. Deutschmann, “Experimental and Numerical Study
of the Transient Behavior of a Catalytic Partial Oxidation
Monolith,” Chemical Engineering Science., vol. 58(3),
pp. 633–642, 2003.

[16] O. Deutschmann and L. Schmidt, “Modeling the partial
oxidation of methane in a short-contact-time reactor,”
American Institute of Chemical Engineers AIChE., vol. 44,
pp. 2465–2477, 1998.

[17] A. B. Mhadeshwar and D. G. J. Vlachos, “Hierarchical
Multiscale Mechanism Development for Methane Partial
Oxidation and Reforming and for Thermal Decomposition
of Oxygenates on Rh,” The Journal of Physical Chemistry:
B., vol. 109(35), pp. 16819–16835, 2005.

[18] J. Xu and G. F. Froment, “Methane steam reforming,
methanation and water-gas shift: I. Intrinsic kinetics,”
American Institute of Chemical Engineers AIChE., vol. 35,
pp. 88–96, 1989.

[19] J. R. Rostrup-Nielsen and J. H. B. Hansen, “CO2-
Reforming of Methane over Transition Metals,” Journal of
Catalysis., vol. 144, pp. 38–49, 1993.

[20] Rakhi., , V. Günther, J. Richter, and F. Mauss,
“Steam reforming of methane over nickel catalyst using
a one-dimensional model,” International Journal of
Environmental Science., vol. 5(1), pp. 1–32, 2022.

[21] “LOGEsoft v1.10.” www.logesoft.com, 2008.
[22] K. Fröjd and F. Mauss, “A Three-Parameter Transient 1D

Catalyst Model,” SAE International Journal of Engines.,
vol. 4 (1), pp. 1747–1763, 2011.

[23] F. Incopera, D. DeWitt, T. Bergman, and S. Lavine,
“Fundamentals of Heat and Mass Transfer 6E,” 2006.

[24] K. Ramanathan, V. Balakotaiah, and D. West, “Light-
off criterion and transient analysis of catalytic monoliths,”
Chemical Engineering Science., vol. 58, pp. 1381–1405,
2003.

[25] H. Santos and M. Costa, “Modelling transport phenomena
and chemical reactions in automotive three-way catalytic
converters,” Chemical Engineering Journal., vol. 148,
pp. 173–183, 2009.

[26] D. Schmider, L. Maier, and O. Deutschmann, “Reaction
Kinetics of CO and CO2 Methanation over nickel,”
Engineering Chemistry Research., vol. 60, pp. 5792–5805,
2021.



SIMS 63 Trondheim, Norway, September 20-21, 2022

CFD modeling of the transport of human respiratory droplets in
an indoor environment

Ole Martinius Harket Norbeck a,∗, Oda Martine Sundsdal a, Suresh Kumar Nambully b, Arnab
Chaudhuri a

a Department of Civil Engineering and Energy Technology, OsloMet – Oslo Metropolitan University, Oslo, Norway
b Convergent Science GmbH, Linz

∗olenorbeck@hotmail.com

Abstract

For the last couple of years, the world has faced the global pandemic COVID-19. The viral transmission could occur via
different modes like large respiratory droplets, direct contact with contaminated surfaces and airborne microdroplets or aerosol.
This work revisits and focuses on human cough, and breathing sequence together with cough in confined spaces. We consider
the Eulerian dispersion medium as a multicomponent ideal gas mixture consisting of oxygen, nitrogen and water vapor and
the Lagrangian dispersed phase of human cough/breathe is modeled as pure liquid water. The unsteady complex flow is
resolved with an advanced three-dimensional multiphase flow solver utilizing adaptive mesh refinement (AMR). A simplified
rectangular block with a rectangular mouth area is considered to mimic human beings to inject exhaled gas and liquid droplets
associated with cough and or breathing instances. The evaporation model is switched off for the particles of diameter less
than 5 µm to resolve the dynamics of the airborne particles. The results clearly demonstrate the efficacy of the novel approach
toward gaining more knowledge about viral transmission in indoor environments.

1. Introduction
We are all affected by the ongoing global pandemic,
COVID 19 (alternatively called SARS-CoV-2). The
serious repercussions following the pandemic have caused
communities all over the world to shut down and create
a new way of living. The pandemic has highlighted the
importance of mitigation procedures concerning the viral
spread from humans. Since the beginning of the pandemic,
scientists all around the world have shifted their priorities,
resulting in a significant surge in research within this field.

Viral transmission takes place in a variety of ways,
including inhalation of very fine airborne droplets and
aerosols, through droplets and particles depositing on
exposed mucous membranes in the mouth, nose, and eyes,
and by being in contact with surfaces containing infectious
virus. During breathing, talking, singing, coughing,
or sneezing, an infected person exhales particles that
could be contagious to others. Apart from experimental
approaches, Computational fluid dynamics (CFD) has
proven to be an effective tool for detailed realistic
analysis and eventually plausible design of mitigation
measures for indoor environments. One needs to carefully
consider several parameters like the local airflow, source
proximity, droplet dispersion/evaporation, air change per
hour and relative humidity to understand the physics and
design such preventive measures. However, resolving
the 3D complex flow dynamics of the involved physics
is computationally challenging with a high CPU cost.
Since the beginning of the pandemic many research
articles reported CFD-based analysis of human sneezing
[1–3], coughing, breathing, talking [2, 4–12] in various
social setups to address the plausible mechanism of

viral transmission, social distancing, risk assessments and
measures of mitigation. CFD studies in this context mostly
used Eulerian-Lagrangian numerical approach to resolve
the multiphase flow physics of the governing equations. In
a very recent review article [13], an insightful overview of
CFD approaches related to respiratory events in buildings
towards modeling the airborne and aerosol pathogen
transmission is presented highlighting the efficacy of the
CFD tool together with the uncertainties and limitations
to resolve such complex flow physics. In their study
Dbouk and Drikakis [2] and Feng et al. [10] investigated
the influence of wind and relative humidity related to
human coughs. An increase in droplet sizes can occur
due to hygroscopic growth effects which can cause
increased deposition fraction on both humans and ground
[10]. Gomez et al. [14] mentioned the importance of
considering the effects of droplet interactions, especially
for the high droplet concentration via scale resolved
simulations like large eddy simulation (LES). The studies
presented in [15–17] investigated cough instances with
LES. Liu et al. [18] performed LES in a restaurant
set up highlighting the spatial map of airborne infection
risk which revealed the existence of a high aerosol
exposure index connected to the reported infection pattern.
Burgmann and Janoske [19] presented a study of the
transmission of aerosols in a classroom and mentioned
the effective application of the air purifier in addition to
window ventilation. Both mathematical (Wells–Riley) and
numerical (CFD) approaches have been used by Foster
and Kinzel [20]. In this regard, Wang et al. [21] also
used a coupled CFD and Wells-Riley model to predict
the infection probability for passengers on long-distance
trains.
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The design of ventilation systems is critical to reduce
the risk, and many studies [9, 22–24] dealt with the
ventilation efficiency, ACH, air filters, and usage of
UVC light in different indoor environments. A literature
study reported in [25] focused on the existing ventilation
strategies of school classrooms. They mentioned that
neither natural nor mixing mechanical ventilation are
fully capable of dealing with long-range and short-range
airborne transmissions, and states that health-based design
is required compared to comfort-based design. Their study
reported the potential of personalized ventilation systems
for the protection of the occupants.

Despite an outpouring of new research articles
emerging during the present pandemic, detailed studies
of a more realistic combination of human respiratory
droplet-producing instances are not abundant. Keeping
social distance is challenging in an elevator setup and
addressed in studies presented in [5, 6, 9, 11] considering
human coughs and breathing events. However, a realistic
combination of breathing and cough instances are not
considered in these studies. Another important issue is to
resolve the smaller respiratory particles (post evaporation)
which contribute to forming aerosol particles. For
example, Arpino et al. [26] used the Eulerian-Lagrangian
model to study non-isothermal aerosol airborne dispersion
in a passenger car cabin. They have considered the
post-evaporation number and volume distributions in
their simulation. Here we attempt to revisit human
cough and breathing events in an elevator, considering
the Eulerian dispersion medium as a multicomponent
ideal gas mixture consisting of O2, N2 and H2O and
pure liquid water as the Lagrangian dispersed phase of
human cough/breathe. A three-dimensional AMR-based
multiphase flow solver (CONVERGE 3.0) [27] is used
to resolve the complex unsteady flow dynamics. Some
preliminary results using this solver are reported in [28]
revealing the effect of relative humidity with fixed air
change per hour in an elevator setup for a human cough
instance. In this work, we considered a simplified human
model and realistic respiratory events of a human cough
and breathing sequence in an elevator setup. To resolve
the microdroplets after evaporation we set a cutoff particle
diameter of 5 µm to switch off evaporation models which
effectively mimics the aerosol particles in reality. It
is reported in various studies that droplets smaller than
approximately 5 µm in diameter can remain airborne for a
long time, potentially carrying infectious viruses [29, 30].
The article is organized as follows. In section 2, we
present the Eulerian-Lagrangian numerical approach. The
computational setup for the different cases is presented in
section 3. This is followed by the results and discussion in
section 4. Finally, the conclusions are drawn in section 5.

2. Method
The unsteady flow dynamics during instances like
breathing, coughing, sneezing, talking or singing in
an indoor environment essentially involves fundamental
mass, momentum and energy transfer in a multi-
component gaseous dispersion medium together with
coupled interaction with the dispersed phase arising from
aerosol-producing processes. The dispersion medium
consisting of oxygen, nitrogen and water vapor, is
governed by the 3D compressible Navier-Stokes system
of equations together with mass conservation, species
conservation, and energy conservation equations. We
solve the unsteady Reynolds averaged Navier-Stokes
(RANS) formulation and the effects of turbulence are

resolved by the Realizable κ − ϵ model. The multi-
component dispersion medium is assumed to follow the
ideal gas law and the fluid is considered a Newtonian
fluid. A Lagrangian approach is adopted for the dispersed
liquid phase. The equation of motion is solved for this,
considering the drag force and gravity source terms as
well as buoyancy and temperature effects. Furthermore,
droplet evaporation, droplet collisions, droplet turbulent
dispersion, droplet-wall interactions, and droplet breakups
are also considered. The detail of the governing equations
is not presented here for brevity. We briefly summarize the
numerical procedure below.

A three-dimensional finite volume method (FVM) and
AMR-based multiphase flow solver (CONVERGE 3.0)
is used for this purpose. The predictor-corrector-based
Pressure Implicit with the Splitting of Operator (PISO)
algorithm is chosen as the solution procedure for the
momentum equation and subsequently other transport
equations. The solver is based on a collocated finite
volume approach together with a Rhie-Chow interpolation
scheme to eliminate checker-boarding issues. A 2nd
order central scheme is chosen for convective terms which
switch to a 1st order upwind scheme with a step limiter
to address the non-monotonic behavior for the convective
fluxes. On the other hand, the diffusive terms are handled
with a 2nd order central scheme. Point-wise successive
over-relaxation (SOR) algorithm-based linear solver is
used for each governing equation and a first-order implicit
Euler scheme is used for time advancement. For the
discrete phase, virtual injectors are defined to mimic the
droplet-producing instances like breathing and coughing
in this work (see figure 2). In accordance with previous
studies in the literature, suitable size distributions, injected
liquid mass [31, 32] and injection velocity signals are
utilized in those instances. For the cough, Rosin-Rammler
size distribution, and for breathing, a user-defined log-
normal size distribution is employed for the injection of
the liquid phase.

Figure 1: Computational domain of the elevator setup.
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Cone angle of 30◦

Figure 2: The mouth boundary of the standing human.

Figure 3: Velocity profiles for breathing signal and cough
instance.

3. Problem setup
In this study, we focus on realistic combinations of
breathing and cough instances in a confined space. The
simulations are performed on a model of an elevator setup
(see figure 1), with a base grid of 0.1 m resulting in a cell
count of 8911 without embedding or AMR. The air supply
and exhaust are placed in the center of the elevator ceiling,
each with an area of 0.5 m2. Air is supplied to the elevator
with a supply temperature of 18 ◦C and relative humidity
of 50 %, which is specified in terms of N2, O2 and
H2O, with fractions of 0.760775, 0.231109, and 0.008116
respectively. The airflow rate of the supply air is 270 m3/h
which is equivalent to an air velocity of 0.15 m/s. The
simplified model of a standing human is considered with a
surface area of 1.9 m2 and a height of 1.75 m. The mouth
is modeled as a rectangle with dimensions of 0.028 m ×
0.0088 m. Figure 2 shows the mouth boundary and the
virtual nozzle for the injection of the dispersed phase. The
cough and breath are considered as a multiphase mixture
consisting of liquid water and air (O2 +N2) ejected from
the mouth through the virtual nozzle, with a specified
cone angle of 30 ◦ for breathing and 40 ◦ for the cough.
The turbulence intensity and length scale at the air supply
inlet is set to 2 % and 0.003 m respectively, while for
the mouth boundary these are assigned as 9.9 % and
0.0011 m respectively. The length scales are 7 % of the
hydraulic diameter of corresponding inflow boundaries, as
recommended by [33]. The Rosin-Rammler distribution
for the cough is assigned with a sauter mean diameter
of 73 µm and shape-parameter n=8. On the other hand,
the size distribution for breathing particles is based on a
log-normal distribution with a mean diameter of 5 µm.
The injected droplets are represented by parcels, which
is a collection of identical drops with the same properties

(same mass, radius etc.), table 1 summarizes the input data
for the cough and breathing.

Figure 4: Mesh resolution near the wall boundaries and AMR-
based resolution near the mouth at 2 s.

Table 1: Overview of input data
Cough
Total injected mass 7. 7 mg
Number of parcels 3500
Velocity 10 m/s
Spray cone angle 40 ◦

Duration of injection 0.12 s
Sauter mean diameter (SMD) 73 µm
Breathing
Total injected mass 0.033 mg
Number of parcels 1600
Velocity 1 m/s
Spray cone angle 30 ◦

Duration of injection 2.5 s
Diameter range 0.3-15 µm
Spray model
Evaporation Frossling
Collision and coalescence O’Rourke
Wall interaction O’Rourke film splash
Droplet breakup KH-RT
Simulation parameters
Simulation time 20 s
Initial time step 1-e06 s
Convection CFL limit 1
Diffusion CFL limit 2
Mach CFL limit 500
KH ≡ Kelvin-Helmholtz and RT ≡ Rayleigh- Taylor

We first simulate a single cough instance (Case-1)
followed by a realistic breathing (exhale-inhale) sequence
embedded with a cough instance (Case-2). Figure
3 illustrates the velocity boundary conditions of the
complete signal. Finally, in Case-3, a user-defined
function is set to switch off evaporation models when
the particle diameter is < 5µm. Simulations are
performed till the final physical time reaches 20 seconds
for all cases. The flow solver is equipped with AMR
functionality which efficiently reduces the computational
cost by automatically applying higher mesh resolution in
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Figure 5: Steady state precursor simulations: streamlines flooded
with velocity magnitude.

desired regions where flow-field variations are high while
keeping the mesh resolution low elsewhere. The AMR is
invoked using a velocity scalar and a passive scalar criteria
in CONVERGE. Figure 4 depicts the near wall fixed mesh
refinement and AMR-based mesh near the mouth region.
For the mouth boundary, we have used an embedding of
10 with a scaling of 5, while for the rest of the boundaries
an embedding and scaling of 2 is implemented.

4. Results and Discussions
The transient simulations of the test cases are performed
with an initial state of established ventilated space inside
the elevator. To achieve this, a precursor steady-state
simulation is performed with the desired air supply
conditions at the inlet boundary of the computational
domain. The simulation is performed until a steady
average velocity at the outlet boundary is reached starting
from an initially stagnant space. For this steady
state simulation, the mouth boundary is considered an
impermeable wall. A flow visualisation is presented in
figure 5 for this. The wall y+ values lie in the range
of log-layer (not shown) and can be considered sufficient
for the two-equation turbulence model equipped with wall
functions.

4.1. Single cough
In Case-1, we simulate a single cough instance starting at
the beginning. The evolution of the dispersed phase has
been illustrated in figure 6. Note that the droplets of the
dispersed phase are colored with droplet radius. In this
case, we allowed droplets to evaporate completely. It is
clear from the colored droplets that the heavier droplets
are falling at a faster rate. Noticeably, the dynamics of
the droplets depend on the RH and existing airflow pattern
in the elevator. A reduction in the mean diameter of
the distribution of the evaporating and falling droplets is
predicted by the solution (see figure 7). The velocity
magnitude reduces to ≈0.5 m/s from the cough injection
velocity of 10 m/s. From the dynamics of the droplet and
wall film accumulation we noticed that it takes ≈11 s for
all the droplets to reach the floor. This is consistent with
the acceptable ranges of the evaporation-falling curves

mentioned by Xie et al. [34]. Experimental data are
required for additional validation. However, the solver has
been validated by other studies with similar applications
[15–17]. The extent of the spread of the droplet particles
under 50 % RH is found to be ≈0.5 m far from the mouth
location in front of the human being.

4.2. Breathing and cough
Although the solution of Case-1 can be considered
as a verification of the solution procedure, a realistic
respiratory signal should consider background breathing
instances. In Case-2, we introduce this with a signal as
shown in figure 3. Note that a background breathing with
exhale-inhale of 5 s is set for this. A single cough is
set to occur at 7.51 s during the last phase of the second
exhale of the breathing sequence. Two different virtual
nozzles are assigned to realize this background breathing
signal together with the single cough (figure 2). The
time evolution of the droplet dynamics is shown in figure
8. Note that the exhaled breathing particles completely
evaporate within a very short time. From previous
literature, it can be realized that the micro-droplets of
diameter less than 5 µm may remain airborne for a
significant amount of time and travel a longer distance. To
account for this, a user-defined function is implemented to
switch off the evaporation for particle diameters below 5
µm. In Case-3, we simulate the same respiratory signal
as Case-2 together with this evaporation cutoff. The gas
phase velocity distribution is shown in figure 9. Note that
the cough jet velocity decreases rapidly from 10 m/s at the
mouth to a low range ≈ 1 m/s very close to the mouth
region. The dynamics of the dispersed phase clearly
reveal the breathing and coughing particles. Note that
the droplets are colored by their size. The violet-colored
droplets are arising from the breathing sequence while
larger particles are associated with the cough instance. At
a later stage, (see figure 10) the dispersion of the droplets
in the elevator is dramatically different compared to that
predicted in Case-1. The liquid particles reach the east,
south and bottom walls as well as the human body surface.
The smaller droplets (diameter <5 µm) now represent the
combination of the original injection as well as arising due
to evaporation of the larger droplets during this time. The
distribution of the droplets (having a radius larger than 2.5
µm) at different time instants is illustrated in figure 11.
This corroborates the time variation of SMD of the droplet
distribution. The present simulation strategy effectively
resolves the aerosol behavior under the influence of the
existing airflow pattern. The smaller particles remain
airborne throughout the simulation time of 20 s for Case-3.

Time evolution of some of the important parameters is
compared among the three cases in figure 12. It is evident
that the injected respiratory particles are in accordance
with the input data mentioned in Table 1 for all cases. The
decrease in the particles for Case-1 and Case-2 implies
the droplet coalescence and complete evaporation. On
the other hand, the signature of the background breathing
and cough signal in the evolution of droplets for Case-
3 can be noticed. This is also reflected in the liquid
mass time-evolution. The orange curve (Case-3) remains
above the red curve (Case-2). The droplets reaching any
impermeable boundary of the computational domain result
in film accumulation accounted for by the wall-droplet
interaction model. It is clear that, for a single cough,
the film accumulation occurs only on the floor. The film
accumulation at this bottom boundary is shown in figure
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Figure 6: Evolution of dispersed phase for Case-1 at 0.1s, 0.5s and 1.9s.

Figure 7: Size distribution for Case-1 at different time instants.

12 for all the cases. A higher film accumulation for
Case-2 and Case-3 compared to Case-1 clearly depicts
the incorporation of breathing in the respiratory action.
Additionally, a marginal film accumulation (not shown)
at the south boundary (see figure 1, the wall behind the
standing man) is noticed for Case-2. However, for Case-3
due to evaporation cutoff, smaller micro-droplets remain
in the domain and film accumulation is noticed in several
boundaries (south, east and on the human body surfaces)
in addition to the floor. The AMR-based approach
to solving transient complex multiphase flow physics
is advantageous to achieve lower overall computational
costs. We compare the computational cells and total
memory usage for Case-2 and Case-3 in figure 13, and it
shows that the memory usage increases with time as more
particles are injected into the domain. The simulations are
performed using 96 processors, resulting in a maximum
cost of 144 CPU hours for Case-2, 82 CPU hours for case-
3, and less than 10 CPU hours for Case-1. The time-
varying cell counts are in accordance with the breathing
and cough events. The maximum cell number reaches
≈ 0.158 million when cough action triggers. Evidently,
the evolution of the cell counts clearly corroborates the
breath-cough signal. The memory usages are found to be
in the comparable range among these cases.

We have performed a mesh sensitivity analysis with
Case-3. Three different base sizes of the mesh are
chosen for this, namely Mesh-1 with 0.2 m, Mesh-

2 with 0.1 m and Mesh-3 with 0.05 m. The mesh
resolution at the wall boundaries and the mouth boundary
are kept consistently similar by varying the embed scale
and number of embed layers of CONVERGE setup, and
the AMR-based embedding was kept constant as stated
before. Figure 14 clearly shows that the results of Mesh-2
and Mesh-3 vary marginally.

5. Conclusions
In this study, we explored a more realistic approach
to human cough instances in an elevator setup, where
background breathing combined with a cough instance
is analyzed. An FVM-based 3D multiphase flow solver
equipped with an AMR functionality is used to solve the
multi-component compressible dispersion media with the
Eulerian approach while the dispersed phase is resolved
via the Lagrangian approach. First, a single cough with
an active evaporation model is presented to show the
capability of the solver to resolve complex transient flow
dynamics and evaporation-falling patterns are found to be
in accordance with the literature. The respiratory signal
consisting of breathing and cough is then studied with
the active evaporation model. Since the particles of a
diameter less than 5 µm are believed to remain airborne,
a user-defined function is implemented to switch off the
evaporation to account for this. This implementation
makes it clear that the particle dispersion is significantly
different from that expected in Case-1, with particles
traveling great distances and accumulating on the walls,
floor, and human body. Throughout the entire 20 s of the
simulation, the particles are still airborne, demonstrating
the seriousness of the risk of infection through airborne
particles. Results of Case-3 clearly demonstrate the
efficacy of the present method to capture the behavior
of airborne particles. To the best of our knowledge, a
combination of realistic breathing-coughing together with
cutoff evaporation to resolve micro-droplets has not been
reported in the literature before.

This work forms a basis to gain new knowledge
towards understanding airborne viral transmission
and designing guidelines for preventive measures in
indoor establishments. The future work will involve
sensitivity/uncertainty analysis and address the risk
assessment in different types of indoor environments
with different ventilation strategies utilizing the present
method.
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Figure 8: Evolution of dispersed phase for Case-2 at 7.3s, 7.6s, 8.3s and 10.3s.

Figure 9: Top row: gas phase velocity contours for Case-3 at 7.0s, 7.6s, 7.7s and 7.9s. Bottom row: evolution of dispersed phase for Case-3 at
7.6s, 8.3s and 10s.

Figure 10: Dispersed phase visualisation for Case-3 at 20s.
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Figure 11: Liquid phase distribution for Case-3 above cutoff size.
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Abstract

Increasing age and cardiovascular diseases lead to stiffening of the vasculature. Knowledge about an individual’s arterial
stiffness gives insights into the current state of the cardiovascular system and it is considered to be a valuable diagnostic index.
However, arterial stiffness cannot be measured directly. Numerical modelling based on measurements of flow and deformation
in an individual’s artery enable an indirect means. Our research aims to develop a method to estimate the local arterial
stiffness of an artery from non-invasive measurements through inverse modelling. Experimental measurement limitations and
the unmeasurable nature of model input parameters lead to uncertainties in the model prediction. Uncertainty quantification
and sensitivity analysis (UQSA) inform about how the model prediction is influenced by these uncertainties. Due to the
computational expenses of 3D fluid-structure interaction (FSI) models, we reduced the model’s complexity to a 1D model. To
verify the 3D-FSI implementation and validate the 1D implementation we performed simulated inflation tests and compared
the results with analytical theory. 3D-FSI simulations were performed and compared to the 1D-model predictions for different
simplification assumptions. To quantify the impact of uncertainties in input data, polynomial chaos expansion for UQSA was
applied to the 1D-model. This analysis revealed the model input parameters which lead to the highest variability in model
prediction. UQSA showed that variations in the Young’s modulus and the lumen radius lead to the largest variability in the
1D-model prediction. Thus, we focused in the validation process on the comparison between the the arterial wall behaviour
between the 1D and the 3D-FSI model.

1. Introduction
Arterial stiffening is an ubiquitous process associated with
human ageing and can be observed in all humans over
age 30 [1]. Stiffening itself contributes to cardiovascular
disease, and some diseases, such as arteriosclerosis,
directly cause arterial stiffening [2]. Clinicians recognize
arterial stiffness as a valuable biomarker describing the
overall state of an individual’s cardiovascular system.
However, arterial stiffness cannot be measured directly
[3]. Using numerical models and an inverse problem
formulation, we seek to estimate arterial stiffness from
non-invasive flow and deformation measurements.

The accuracy of an inverse problem’s solution depends
on the accuracy of the forward model response, which
is limited by experimental measurement uncertainties
and unavailable model parameters. Through uncertainty
quantification (UQ), the propagation of input uncertainties
through a numerical model can be investigated.
Subsequent sensitivity analysis (SA) attributes the
uncertainty in the model response to individual model
input parameters and their interactions [4]. These results
can help to identify key sources of error as well as focus
efforts on developing and validating influential portions
of the forward model. However, UQSA require the
evaluation of the entire uncertain input parameter space
increasing the computational expenses with the number
of uncertain model parameters and dimensions.

Three-dimensional (3D) models of vessel segments
enable the simulation of patient-specific geometries
giving spatially resolved insights into a patients’
haemodynamics. Of all model types, fluid-structure
interaction (FSI) models represent the anatomical and
physiological state in the greatest detail. However,
the computational expenses for such models are high,
making it impractical to conduct several thousand model
evaluations for UQSA.

Reducing the spatial model dimension to one (1D)
decreases the information which can be retrieved from
the model, but it also reduces the computational expenses
significantly. In vessel segments where the vascular
flow is independent of the geometry, 1D models
represent hemodynamic quantities like pressure and flow
rate accurately [5]. Low computational expenses and
the ability to evaluate specific hemodynamic quantities
accurately make 1D models suitable for UQSA.

The aim of this work is to compare the 1D model
prediction of pressure, flow rate, and radial deformation
of the common carotid artery (CCA) against a 3D-FSI
model and to determine focus for model development.
To gain insights into the uncertainty propagation from
the input parameters to the 1D model response, we
applied polynomial chaos (PC) expansion. PC is an
efficient way of representing random model inputs as a
polynomial function of another random variable enabling
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Figure 1: Representation of the 1D-model used in this validation
work. As an outlet boundary condition, a Windkessel model with
arterial impedance Z, compliance C, and resistance R is applied.

the evaluation of qualitative and quantitative uncertainty
measures [6]. Information about the most sensitive
1D model input parameters can be used in the process of
validating low-dimensional models against higher fidelity
models and experimental measurements.

2. Methodology
In this work, steps for the verification and validation of
a 1D-model of the CCA were conducted. The workflow
included verification of the 1D-model, UQSA, as well as
initial steps for the validation against a 3D-FSI model.

2.1. 1D-model formulation
The CCA in the 1D model is represented as a straight
deformable tube, depicted in Fig. 1. The quantities of
interest, pressure p, volumetric flow rate Q, and radius
change ∆R, are evaluated at five equidistant nodes located
on the tube’s centreline. In the vessel, laminar and
axisymmetric blood flow is assumed. Impermeability and
homogeneity characterize the vessel wall. Deformation of
the vessel wall is purely in the circumferential direction.
Blood is modelled as an incompressible Newtonian fluid.
Based on these assumptions, the conservation laws of
mass and momentum can be formulated as

∂A

∂t
+

∂(Au)

∂z
= 0 (1a)

∂u

∂t
+ u

∂u

∂z
+

1

ρf

∂p

∂z
=

f

ρfA
, (1b)

where the quantities u and p are the velocity and pressure
averaged over the vessel cross-section A, ρf is the fluid
density, and f represents the frictional force per unit
length [7]. The velocity profile of the fluid flow determines
the magnitude of f which accounts for the wall shear
stress and convective inertia terms. A commonly used
symmetric polynomial model of the velocity is applied:

ur(z, r, t) = u(z, t)
ζ + 2

ζ

[
1−

( r

R

)ζ]
, (2)

where ur is the velocity at a given radial distance r
from the centerline. R denotes the vessel radius, and the
polynomial order ζ determines the shape of the profile,
where a higher ζ corresponds to a blunter profile. For
this profile and a constant dynamic blood viscosity µ,
the friction term becomes f = −2(ζ + 2)µπu. In all
simulations of this work, a parabolic velocity profile with
ζ = 2 was applied.
The arterial wall was modelled as a thin, incompressible,
homogenous, isotropic, elastic material. The tube law
describes the fluid-structure interaction by relating the
pressure to the area with

p = pdia +
β

Adia
(
√
A−

√
Adia)

with β =

√
πEh

(1− ν2)
,

(3)

where pdia and Adia are the diastolic pressure and cross-
sectional area, respectively. Generally, Adia is larger than
the reference area A0 because A0 is the lumen area when
p = 0. Material properties of the vessel wall are the
Young’s modulus E, wall thickness h, and Poisson’s ratio
ν.
Eqs. 1 resemble a hyperbolic system of equations such
that at each boundary one boundary condition (BC) needs
to be specified. A representative volumetric flow rate
Qin(t) of the CCA was imposed at the inlet boundary
[8]. At the outlet, the 1D-model was coupled with a three
element Windkessel model, mimicking the behaviour
of the downstream vasculature. The elements of the
Windkessel model are a resistor Z modelling the arterial
impedance, a second resistor representing the peripheral
resistance R, and a capacitor C, which mimics the arterial
compliance. Relating pressure and flow, the Windkessel
model equation reads

∂p

∂t
+

p

RC
=

(
1

C
+

Z

RC

)
Q+ Z

∂Q

∂t
. (4)

As an initial condition, pressure in the entire domain was
set to Pd = 74.5 mmHg [9] and the initial flow rate was
7.7 mL/s. An explicit MacCormack scheme was used
to solve the system of equations. This solution method
is second order in space and time. To grant stability of
an explicit scheme, the Courant-Friedrich-Lewy (CFL)
condition needs to be satisfied. Information travels in
the domain from one element to the next with a forward
travelling wave, which is the sum of the fluid flow speed
u and the pulse wave velocity c. Using the constitutive
equation given in Eq. 3, the pulse wave velocity is

c =

√
β

2ρAdia
A1/4. (5)

The CFL condition becomes with the grid spacing ∆x and
the time step ∆t

CFL = (u+ c)
∆t

∆x
≤ 1. (6)

Since Eqs. 1 form a hyperbolic system of equations,
physiological conditions have two Riemann invariants
that travel in opposite directions, thus at each boundary
the BCs can only be specified to determine the single
Riemann invariant entering the domain [10]. We imposed
a volumetric inflow at the inlet and a relationship between
pressure and flow at the outlet.

2.2. Grid independence of the 1D model
Model verification is essential for every numerical study
[11]. In this work, a periodic solution of pressure, flow and
radius change was reached within twelve cardiac cycles,
demonstrating iterative convergence. Consistency of the
model was shown through mass conservation over five
consecutive heart beats and a pressure drop from inlet
to outlet. In total, three grids with increasing number
of grid points were tested. The coarsest grid with a
total of five nodes returned the same values for pressure,
flow, and radius change as the finer grids with ten and
15 nodes. Therefore, all simulations used a grid of five
nodes. The maximum allowed time step ∆tmax during the
simulations was determined with a maximal CFL number
of 0.8 and the five grid points following Eq. 6. To check
temporal convergence, the time step was set manually
in two subsequent simulation runs to 0.5 ∆tmax and
0.25 ∆tmax. Decreasing the time step did not alter the
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Table 1: Baseline hemodynamic parameters and uncertainties of
the 1D CCA-model of a healthy 45-year -old. Each value is given
with their lower and upper bound.

Lower Upper Unit

R 2.525 3.495 mm [12]
h 0.8875 1.3725 mm [13]
E 236 1306 kPa [9]
ν 0.4908 0.4912 - [14]
ρ 1043 1054 kg/m3 [15]
µ 3.784 5.516 mPa s [16]
Rtot 1.9066 2.3302 109 Pa s/m3 [17]
C 1.2192 1.4901 10−10m3/Pa [17]

accuracy of pressure, flow rate, and radius change values.
Therefore, the maximal allowed time step ∆tmax was used
for the simulations.

2.3. Validation of the 1D model
As a first step of the validation process, we conducted
UQSA of the 1D-model based on population variations in
parameter values. The results of SA motivated us to place
special focus on the structural mechanics of the FSI-solver.
Therefore, we compared a finite element (FE) inflation
test with the analytical solution of thin- and thick-walled
cylinder theory.

Uncertainty quantification and sensitivity analysis
Measurement errors and lack of knowledge lead to
uncertainties about model inputs and and thus propagate
through numerical models to contribute to uncertainty
about model outputs [18]. Quantifying this uncertainty
is an integral part of the model verification and
validation process [11], as well as a prerequisite for
its implementation in clinical decision support [18].
However, computational costs for UQ increase with
increasing number of uncertain model parameters and
model dimension, limiting efficient analysis to low-
fidelity models. This motivates to conduct UQSA on
the 1D-model prior to its validation against the 3D-FSI
model since UQSA will give insights into the model
characteristics. Validation test cases can then be designed
in such a way to capture these characteristics [11].
We considered a total of eight uncertain parameters based
on the variations in a 45-year old healthy population
given in literature. A uniform distribution was assumed
for all parameters, summarized with their lower and
upper bounds in Tab. 1. Due to lack of data and lack
of knowledge, the uncertainty of the Windkessel model
parameters, C and Rtot = R + Z, were assumed
with a deviation of ± 10% from their respective reference
value. Compliance was adjusted from reference values in
order to represent a 45-year old subject, whereas vascular
resistance was considered to be age-independent [17, 19].
The vessel length was held constant at 126mm for UQSA.
The 1D-model’s governing equations can be summarized
with the deterministic inputs z and deterministic output y
with a black box functional f as

y = f(z). (7)

If model input parameters are uncertain, then the model
output becomes uncertain as well. This is emphasized by
rewriting Eq. 7 in terms of a stochastic vector of input
variables, Z, that yields a stochastic output Y

Y = f(Z). (8)

PC expansion was used for estimating uncertainty and
sensitivity measures of this stochastic model, which can

Table 2: Material parameters and dimensions of the 3D-FSI
model. Material parameters, ρs, ρf , µ, and ν, are taken from
[20].

Property Value Unit

Length L 115 mm
Unstressed radius Rd 2 mm
Wall thickness h 0.5 mm
Young’s modulus E 700.0 kPa
Wall density ρs 1120 kg/m3

Wall Poisson ratio ν 0.49 -
Fluid density ρf 998.2 kg/m3

Fluid dynamic viscosity µ 1.003 mPa s

be written in the form of Eq. 8. A finite number
of polynomials N approximate Y through a sum of
expansion coefficients cp and orthogonal polynomials Φp

Y ≈
N∑

p=0

cp Φp(Z), (9)

where the orthogonality of Φp is with respect to the
distributions in Z [6].
SA attributes model output variance to particular model
inputs, as well as to the interactions between the uncertain
input parameters [4]. From the PC expansion, total
variance of the model output, Var[Y ], was computed as

Var[Y ] ≈ Var[YPC ] =
∑
p

Var[cp Φp(Z)]. (10)

The main sensitivity index Si quantifies the direct effect
of particular input parameter zi on Var[Y ]. With the set
Ai containing all basis functions depending only on zi, the
main sensitivity index Si describing the fraction of output
variance due to zi, can be approximated as

Si ≈
1

V ar[YPC ]

∑
p∈Ai

V ar[cp Φp]. (11)

The set AT,i contains all basis functions where the random
input zi and all its interactions with z∼i are involved, such
that the total model output variance with respect to zi can
be represented with the total sensitivity index STi as

STi ≈
1

V ar[YPC ]

∑
p∈AT,i

V ar[cp Φp]. (12)

PC expansion of orders one to three were tested, showing
that the sensitivity indices were already converged for
the third order. At the mid-point of the vessel, we
computed the sensitivity indices through time-averaging
and weighting by the last cardiac cycle’s variance, as well
as normalizing with the model output variance [21].

3D-model formulation
The CCA is modelled as an idealized, hollow cylinder.
Tab. 2 summarizes the dimensions and material properties
of the model. The mathematical formulation of the
3D problem assumes an incompressible Newtonian fluid
and a linear elastic vessel wall. Mass and momentum
conservation of the fluid domain Ωf are

∇ · u = 0 in Ωf

(13a)

ρf
∂u

∂t
+ ρfu · ∇u = −∇p+∇ · τ f + b in Ωf

(13b)
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Figure 2: Representation of a thick-walled cylinder subjected to
internal pressure p and external pressure pext = 0 Pa.

where ρf denotes the fluid density, u, the fluid velocity, p
the pressure inside the vessel, τ f = µf (∇u + (∇u)T )
the viscous stress tensor for a Newtonian fluid, and b body
forces which are assumed to be zero. At the fluid-structure
interface, a no-slip boundary condition was applied. The
governing equations for the solid domain Ωs are

ρs
∂us

∂t
−∇ · σs = bs in Ωs (14a)

σs · ns = (−PI + τ f ) · ns onΓ (14b)

with the wall density ρs, Cauchy stress tensor σs, body
forces on the solid domain bs, which are assumed to be
zero, and the outward normal vector ns on Γ.

Static and transient inflation test
In order to assure the correct settings for the comparison
between the 3D-FSI and the 1D-model, we tested the
mechanical solver individually with a static and transient
inflation test. Longitudinal displacement at the ends was
either prohibited or allowed, representing thick-walled
cylinder theory with fixed surfaces at the end or free
surfaces without stress, respectively. Radial displacement
was allowed in both cases. The pressure inside the
tube was increased linearly from the reference pressure
p0 = 0 Pa to 20000 Pa over ten seconds. Large
deformation of the domain was suppressed.
The wall displacement of the inflation test cases was
compared with the analytical solution of the thick-walled
cylinder theory, represented in Fig. 2. For a thick-walled
cylinder with fixed ends and no external pressure acting on
the outer surface is radial displacement described as [22]

u(R) =

1

2G

ri

1−
(

ri
ri+h

)2
(
ri
R

+ (1− 2ν)

(
ri

ri + h

)2
R

ri

)
P,

(15)

where ri is the inner radius and G the shear modulus as

G =
E

2(1 + ν)
. (16)

In order to represent the thick-walled cylinder with free
ends, a correction term ∆u(R) needs to be added to Eq. 15

∆u(R) = − ν2

G(1 + ν)

−( ri
ri+h

)2P

1− (ri + h)2
R. (17)

To investigate inertia effects, we tested simulation
times of five seconds while maintaining the maximum
pressure. This set of test cases resulted in a total
of two static and four transient simulations. Mesh

independence was demonstrated through three mesh
refinements. All simulations were performed in Ansys
Mechanical (Version 2021 R2) with the standard solver
MAPDL. Time integration was performed with an implicit
scheme.
In addition to the analytic thick-walled cylinder theory, the
radial displacement was analysed under the assumption
of a thin-walled cylinder with free ends. This analysis
was conducted because the current 1D-model contains this
assumption. The circumferential stress σc in a thin-walled
cylinder [22] is

σc =
P r

h
, (18)

with the middle radius r = ri+0.5h, where ri is the inner
vessel radius and h the vessel wall thickness. From the
linear stress-strain relation it follows for the displacement

uthin =
P r2

E h
. (19)

One-way FSI simulation without flow
To ensure a correct coupling between the fluid and the
solid domain in the study, we conducted a one-way FSI
simulation with the same pressure increase as in the
inflation test, fixed ends of the artery, and a resting fluid
domain. Ansys (Version 2020 R2) Fluent was used to
generate and solve the fluid domain. Both solid and fluid
domains consisted of hexahedral elements. A coupled
pressure-velocity solver evaluated the fluid problem, and
the standard MAPDL solver evaluated the solid problem.
Since Ansys uses the segregated approach to solve a
FSI problem, the equations are not solved simultaneously
within one matrix [20]. Instead, each of the participant
programs calculates its own problem. Fluent first iterates
the fluid domain for a set number of iterations, then passes
the evaluated force which the fluid exerts on the structure
to Mechanical so that the displacement of the structural
part can be obtained. This constitutes to one coupling
iteration in one-way FSI simulations. One coupling step
is equivalent to one time step and it contains a set number
of coupling iterations. Ansys guidelines suggest between
one and five. The number of iterations in Fluent was
set to seven, Mechanical’s iteration number was program
controlled. The maximum amount of coupling iterations
was five, with three usually being sufficient to meet the
convergence criteria after a few time steps had passed
since the start of the simulation [20].

3. Results
In Fig. 3, the time-averaged main and total sensitivity
indices for the pressure, flow rate, and radius change
predicted by the 1D-model, Eqs. 1-3, are presented for
the mid-point of the artery. Further, the numerical values
of the time-averaged main and total sensitivity indices
for the qunatities of interest are given in Tab. 3. For
all quantities of interest, the uncertainty in the Young’s
modulus is responsible for the largest part of the model
output variation. Lumen radius and wall thickness
have a minor influence, whereas the fluid properties
ρf and µ, the Poisson ratio, and the total resistance
of the Windkeseel model have no influence on model
output variation. Additionally, all quantities of interest
are slightly sensitive to the compliance value of the
Windkessel model. For all uncertain input parameters the
main and total sensitivity indices are approximately the
same, indicating that parameter interaction does not play a
significant role.
Over one cardiac cycle, Fig. 4 displays the 95 %
prediction interval for the pressure and the relative radial
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Figure 3: Main and total sensitivity indices, Si and STi, respectively, evaluated at the mid-point of the 1D-model. All sensitivity indices
are time-averaged over the last cardiac cycle. The quantities of interest are (a) pressure p, (b) flow rate Q, and (c) radius change ∆R with
reference to the minimum radius of the respective model evaluation.

Table 3: Numerical values for the main and total sensitivity indices, Si and STi, respectively, evaluated at the mid-point of the 1D-model
for pressure p, flow rate Q, and radius change ∆R with reference to the minimum radius of the respective model evaluation. All sensitivity
indices are time-averaged over the last cardiac cycle.

µ ρf h E ν R Rtot C

S ST S ST S ST S ST S ST S ST S ST S ST

p 0.00 0.00 0.00 0.00 0.06 0.07 0.75 0.76 0.00 0.00 0.14 0.14 0.00 0.00 0.04 0.04
Q 0.00 0.00 0.00 0.00 0.06 0.07 0.85 0.86 0.00 0.00 0.07 0.08 0.00 0.00 0.01 0.01
∆R 0.00 0.00 0.00 0.00 0.06 0.06 0.90 0.91 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.01

(a) (b)

Figure 4: 95% prediction interval for the last cardiac cycle at the mid point of the artery for the (a) pressure p and the (b) relative radius change
∆R with reference to the minimum radius of the respective model evaluation.

(a) (b) (c)

Figure 5: Comparison of analytical solutions of thin- and thick-walled cylinders with static and transient FE and one-way FSI inflation test.
(a) analytical solutions with different underlying assumptions, (b) solution comparison with the assumption of fixed ends, and (c) solution
comparison with the assumption of free ends.
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displacement with reference to the minimum radius of the
respective model evaluation predicted by the 1D-model
at the mid-point of the artery. During early systole and
around the dicrotic notch is the prediction band for the
pressure very close to the expected pressure values. The
relative radial displacement shows large variations at peak
systole.
Results from the comparison of the inflation tests with
analytical solutions for thick- and thin-walled cylinders
are presented in Fig. 5. In our analysis, static and
transient inflation tests for the 3D-FE model of the artery
coincide with the analytical solution for a cylinder with
fixed and free ends. The radial displacement of the
one-way FSI-simulation with fixed ends agrees with the
analytical and FE solution. Fig. 5a depicts the analytical
solutions visualizing the underlying assumption on the
radial displacement ∆R. For a thick-walled cylinder with
free ends, ∆R is higher than for a thick-walled cylinder
with fixed ends. For the thin-walled simplification, Eq. 19,
using the internal lumen radius results in the largest
discrepancy between 1D and 3D; however, using the mid-
wall radius results in a near agreement with the thick-
walled theory and 3D results.

4. Summary and Discussions
In this work, we verified that the simulations of a 1D
arterial model were grid independent. Subsequently,
UQSA of the 1D arterial model was performed using PC
expansion. This UQSA served a role in the validation
process to focus on comparison of the 1D wall model,
Eq. 3, with results from the 3D-FSI model. To this end, we
verified the solution during inflation of the 3D-FSI model
against thick-walled cylinder theory and evaluated the 1D
arterial model predictions against the 3D-FSI model of the
CCA.
The SA suggests that the most sensitive input parameters
are related to the arterial wall mechanics, namely the
wall thickness h, the Young’s modulus E, and the lumen
radius R. Small sensitivity indices were estimated for
the compliance C which might be due to the relation
of the downstream vasculature’s compliance to arterial
wall properties. Since variations in the fluid properties,
the Poisson ratio, and the total resistance do not lead to
variations in the quantities of interest, this result suggests
that these parameters can be set to average population
values in further simulations. This reduces the number
of parameters which need to be explored and with this
decrease computational expenses as well.
The SA findings motivated a detailed analysis of the
structural part of the FSI-model. We showed agreement
between the analytical thick-walled cylinder theory and
the FE inflation tests indicating that the boundary
conditions and material properties were set correctly in
the simulation. Since the transient and static simulation
results coincided, the inflation tests were not influenced
by inertia effects. Furthermore, the consensus between the
FSI simulation and the analytical solution assure correct
coupling between the fluid and the solid domain.
The discrepancy between the analytical thin- and thick-
walled cylinder with fixed ends radial displacement under
internal pressure indicates that the wall model in the
current 1D-model needs to be revised in order to lead to
the same displacement as the 3D-FSI model.

5. Conclusions
With this work we showed that UQSA during the
validation process can elucidate model characteristics
where specific emphasis needs to be placed on during

the validation process. In our specific case, special
focus needs to be placed on the wall mechanics because
variations in the arterial wall input parameters lead to the
largest variations in the model output.
In a next step, the FSI inflation test will be simulated
with a two-way coupling and the 1D wall model will
be advanced such that the average cylinder radius in the
thin-walled theory is used for the computation instead
of the inner radius. After successful completion, a
physiological flow rate and pressure wave will be applied
at the boundaries of the 3D-FSI model as well as at the 1D-
model. The discrepancy between the model predictions
will be quantified closing the validation process.
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Abstract

An optimization tool for offshore bottoming cycle and heat recovery steam generator (HRSG) design has previously been
developed. The tool is based on empirical correlations to obtain hydraulic and thermal quantities for the HRSG. However,
as these correlations are based on experiments with typical onshore designs, they may not be valid for the compact designs
encountered in offshore HRSGs.
In order to extend the validity range of the optimization tool, this work presents a numerical model able to predict heat transfer
and pressure loss in finned tube bundles by means of Computational Fluid Dynamics (CFD), utilizing a periodic domain to
reduce computational costs. Both steady-state and transient models were applied, using the Spalart-Allmaras turbulence model,
and their performance compared. To validate the model, results were compared with available experimental data, and then the
model’s performance was compared with a selected empirical correlation.
Three different fin-tube geometries were investigated (two serrated and solid) with varying tube layout angles. A parameterized
grid generation tool was developed and used to generate grids for the selected geometries. The CFD results were found to be
within 20 % of the experimental data, and were in most cases more accurate than the empirical correlation. The steady-state
simulations did, however, not converge for the geometry with the largest layout angle. The steady-state framework should
therefore be applied only to compact tube layouts. The transient simulations, though being computationally more intensive, are
also able to model large layout angles.

1. Introduction
Oil and gas production contributes significantly to the
global CO2-emissions. In Norway, it is the industry that
emits most greenhouse gases, accounting for 27% of CO2-
emissions from Norwegian territory in 2019. The largest
contributor to these emissions are the gas turbines used for
power generation offshore, which amounts to around 85%
of these emissions. [1]
The large emissions of the gas turbines makes them an
attractive candidate for emission reduction, and installing
steam bottoming cycles has been proposed as a way to
achieve this. Most of today’s offshore power systems utilize
the hot exhaust gases to some degree, e.g. for heating crude
oil, but the heat lost to the atmosphere is still significant.
With a steam bottoming cycle the heat is utilized for power
generation using a steam generator, lowering the demand
for power production from the gas turbines, and can reduce
the turbine CO2-emissions with as much as 25% [2]. One
reason for why there is no widespread use of offshore steam
bottoming cycles today, is weight and size limitations.
The heat recovery steam generator (HRSG) is a crucial
and large component of the steam bottoming cycle. The
limitations necessitate compact designs, and the once
through steam generator (OTSG) has been found to be
the most suitable HRSG type for offshore steam bottoming
cycles [2]. One of the key factors when optimizing OTSGs
for weight and size is small diameter heat exchanger tubes,
compared with their onshore equivalents [3, 4].
The optimization procedures used in the design process
rely on correlations for finned tube banks in order to

predict the heat transfer and pressure drop of the OTSG.
Correlations are almost exclusively based on empirical data,
and their region of validity is therefore limited to the range
of experiments that they are based on. This has proved to
be a challenge for the optimization of the compact offshore
OTSG designs, which have fin and tube geometries outside
the validity range of the correlations. The result is that
different correlations tend to give significantly different
predictions when compared to the same experimental data
sets. Holfeld [5] reported up to 77% spread between the
correlations for heat transfer, and up to 410% for pressure
drop when comparing different correlations to the same
experimental data.
Ideally, new correlations would be developed based on
experiments that are performed under conditions close
to those expected for the offshore OTSGs. However,
performing experiments to produce enough data for new
correlation development is both costly and time-consuming,
and therefore Computational Fluid Dynamics (CFD) is
proposed as a way to predict heat transfer and pressure drop
in compact OTSGs, and to validate the designs produced
by the optimization procedure.
Numerical simulations of finned tube banks, and
particularly serrated fins, have only started to emerge in the
course of the last two decades, as CFD has become more
widespread in the engineering field and the computational
power available to researchers and engineers has increased.
The earliest works on the field were limited to solid annular
fins, with few tube rows being modelled. Jang et al. [6]
performed both experiments and numerical modelling of
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Figure 1: (a) Tube layout parameters. (b) Fin and tube geometry parameters

laminar flow through 4 tube rows in a staggered layout. The
numerical model was able to accurately predict pressure
drop, but over-estimated heat transfer by 20 - 30%.
Mon [7] performed turbulent simulations for 23 different
tube layouts, both in-line and staggered, with the number
of tube rows ranging from 2 to 6. The model was able
to qualitatively describe the flow, but no comparison with
experimental data was done. New correlations based on
the numerical results and available experimental data were
proposed. In a later paper, Mon & Gross [8] compared
the results from selected layouts with existing correlations,
where they were found to agree from ±15% to over 50%.
Torresi et al. [9] were among the first to model flow in tube
banks with serrated fins. They simulated only one tube row,
without modelling heat transfer, and then used equivalent
porous medium zones in order to model the full HRSG.
The results were not compared with experimental data, but
showed good agreement with a proprietary 1D code.
McIlwian [10] compared the performance of solid and
serrated fins in a single tube row, and gave qualitative
insight into how serrated fins improve heat transfer
compared with solid fins. In a later study [11], McIlwian
extended the model and looked at the effects of adding
a 2nd, 3rd and 4th row. The results were compared with
correlations, but neither of the studies were validated with
experimental data.
As with Jang et al., laminar flow was also assumed by
Lemouedda et al. [12], where fin tube bundles for Re
between 600 and 2 600 were investigated. Fins with and
without serration were compared, and the effect of twisting
of the serrated fins was also investigated. No comparisons
with experiments were made.
Hofmann & Walter [13] performed simulations and
experiments for both solid and serrated fins, with both
helical and angular fin attachment. Both local and
overall heat transfer and pressure drop was investigated
for turbulent flow with Re ranging from 3500 to 50 000.
Results showed good agreement of the simulations with
experimental data, being within ±15% uncertainty.
Ó Cléirigh and Smith [14] investigated the effects of
degree of serration, modelling fully serrated, partially
serrated and solid fins. They found that the Nusselt number
increased with 23% from partially to fully serrated fins, a
distinction that is not made in most correlations. However,
no validation against experimental data was performed in
this study either.
Where the previous studies all have used standard inlet-
outlet boundary conditions in the stream wise direction,
Martinez et al. [15] utilized periodic boundary conditions
also in this direction, thus assuming fully periodic flow.
Local flow features were compared with experimental

measurements, but global heat transfer and pressure drop
were only compared with selected correlations, though with
good agreement. In a consecutive paper [16], they went on
to model six tube rows using standard inlet-outlet boundary
condition, and showed that the velocity, temperature and
turbulence fields indeed display periodic behaviour after
the third tube row.
Lindqvist & Næss [17] also used a periodic domain model,
and applied it to four different cases, both serrated and
solid fins. For one of them, a full domain model with
eight tube rows was also considered, which was shown to
match very closely with the periodic domain model. All
four cases were validated against experimental data, and
were found to be within 15% for both heat transfer and
pressure drop. In addition, three correlations and two fin
efficiency corrections were compared with the numerical
and experimental results and their performances assessed.
In a consecutive study [18], the authors investigated vortex-
shedding frequencies by performing transient simulations
with the same model, not including heat transfer. Both
studies were limited to geometries with compact tube
layout angles of 30◦.
The aim of the present work is to develop a numerical
model that is able to readily and accurately predict heat
transfer and pressure drop for a range of geometrical
parameters that is representative of compact heat
exchangers. Both serrated and solid fins will be considered,
and will be restricted to helical fin attachment. Both steady-
state and transient simulations will be carried out and
their performance assessed. To model a wider range of
fin-tube geometries, the present work will use geometries
with different layout-angles. The model will be validated
with available experimental data and compared with an
empirical correlation.

2. Selected geometries
Solid and serrated fin tubes are characterized by a fixed set
of parameters, illustrated in Fig. 1b, with the solid fin being
a special case of the serrated fin (hs = 0.) The tube bundle
layout is characterized by the longitudinal and transverse
pitches Pl and Pt, respectively, or the tube layout angle
β = arctan

(
Pt
2Pl

)
, as shown in Fig. 1a.

The three tube and fin geometries considered in this study,
listed in Tab. 1, are selected in order to span a sufficiently
wide range of parameters to represent the possible designs
encountered in compact heat exchangers. The first two
geometries, N1 and N2, are geometries 1 and 2 from
the experimental study by Næss [19], respectively. The
two cases from Næss are using the same serrated fin tube
geometry, but with different layout angles. Næss showed
that correlations tended to perform poorly for serrated



SIMS 63 Trondheim, Norway, September 20-21, 2022

Table 1: Layout, fin and tube geometries that are modelled.

Geometry H8 N1 N2
Type Solid Serrated Serrated

Pt [mm] 38.7 46.1 65.2
Pl [mm] 33.5 39.9 32.6
do [mm] 13.5 20.89 20.89
hf [mm] 10 8.61 8.61
hs [mm] - 8.61 8.61
sf [mm] 2.81 5.08 5.08
tf [mm] 0.50 0.91 0.91
wf [mm] - 3.97 3.97
β [◦] 30 30 45

geometries with layout angles deviating from 30◦, and it
is therefore desirable to investigate the predictive accuracy
of the numerical model in this case. The third case, H8,
is based on geometry 8 from the experimental study by
Holfeld [5], and is a solid finned tube with the same layout
angle as N1 (30◦).

3. Numerical method
The open-source CFD library OpenFOAM v2112 was used
to solve the coupled equations and SALOME v6.7.0 was
used for the grid generation.

3.1. Domain
The numerical domain consists of two regions: a fluid
region (gas) and a solid region (fins), as conduction in the
fins is also modelled. Note that only the outer surface of
the tube is modelled, not the tube wall itself. The numerical

Flow direction
Figure 2: The numerical domain (shaded in grey) inside an infinite
tube bank, with flow direction from left to right.

domain is based on the works of Maritnez et al. [15] and
Lindqvist & Næss [17, 18], and can be thought of as a
"unit cell" within an infinite tube bank, as illustrated in Fig.
2. This implies periodicity in all directions, and reduces
the computational requirements significantly, compared to
domains that include several tube rows.

3.2. Governing equations
The incompressible continuity, momentum and energy
equations are solved in the gas region. The continuity
equation reads

∇ · u = 0, (3.1)

where u is the velocity field. Cyclic boundary conditions
in the stream wise direction necessitate the addition of a
source term in the momentum equations to drive the flow,
as demonstrated by Patankar & Liu [20], and takes the
form,

∂u

∂t
+u ·∇u = S− 1

ρ
∇p+∇·

[
νeff

(
∇u+ (∇u)⊤

)]
,

(3.2)

where p is the pressure field, ρ is the density and νeff is
the effective kinematic viscosity. The source term S acts
as an imposed pressure gradient to drive the flow through
the domain. The energy equation is formulated using the
specific enthalpy, viz.

∂(ρh+ eK)

∂t
+∇· (u(ρh+ eK))−

Dp

Dt
= −∇·q (3.3)

where the heat flux is given by Fourier’s law q = ραeff∇h,
where αeff = κeff/(ρcp) is the effective thermal diffusivity
and eK = 1

2
ρ|u|2 is the specific kinetic energy. The energy

equation is also solved in the solid region, being a special
case of Eq. (3.3) by setting u = 0, Dp/Dt = 0 and use ρ,
cp and κ for the solid.

3.3. Choice of turbulence model
The model of choice in the present study is the Spalart-
Allmaras turbulence model [21], which has shown good
performance for flow over finned tube bundles [17, 22].
Being a one-equation model, where a transport equation
for the modified turbulent viscosity ν̃ is solved, it is
computationally advantageous to the more common two-
equation models.

3.4. Thermal properties
The unit cell allows for the assumption of constant thermal
properties, as the temperature differences will be moderate
since only one tube row is considered. As a consequence,
the incompressibility assumption is used in the governing
equations.
Both the fluid and solid regions are modelled using constant
thermal properties, given in Tab. 2. The fluid is modelled as
dry air at atmospheric pressure and 300 K, which matches
the experimental conditions closely. The fins are modelled
as carbon steel and aluminium 6060 for the Næss (N1 and
N2) and Holfeld (H8) cases, respectively.

3.5. Grid generation
One of the main tasks has been to develop a parameterized
grid generation procedure able to produce quality grids
from a given set of geometry parameters, e.g. the result
from an HRSG optimization. Lindqvist [17] had a similar
approach, but limited the tube layout angle to β = 30◦.
The present grid generation procedure is not limited to one
layout angle, but rather lets β be a free variable. Fig. 3
shows one of the grids used (N2), with β = 45◦.

A

B

C

Figure 3: The numerical grid for geometry N2, showing the gas
(■) and fin (■) regions.

The grid is dominated by hexagonal cells, though this
is not achieved in the serrated regions, where prismatic
wedge cells also are included, shown in box B in Fig.
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Table 2: Thermal properties for dry air, carbon steel and aluminium A6060 at atmospheric pressure and 300 K [23, 24].

Property Dry air Carbon Steel Aluminium Unit

Thermal conductivity λ 0.0263 48.5 210 W/(m·K)
Specific heat capacity cp 1007 434 898 J/(kg·K)
Density ρ 1.1614 7854 2700 kg/m3

Viscosity ν 15.89 ·10−6 - - kg/(m·s)

3. Hexagonal cells are desired in order to maximize the
accuracy of solution, and consideration was also given to
skewness and cell growth to ensure a smooth grid.
The boundary layer is resolved in the inter-fin regions and
on the tube surface, as shown in box C in Fig. 3. Ensuring
a first cell height of y+ < 1 yields a resolved turbulent
boundary layer in these regions. The boundary layer cells
are set to a growth rate of 20 % with a smooth transition
to the inter-fin region. On the fins sides and ends however,
the boundary layer was not resolved, and the turbulent
boundary layer is modelled using Spalding’s unified wall
function [25]. At the interface between the bulk grid and
the inter-fin grid, polyhedral cells are used to make the two
grid regions conform. This can result in skewed faces, but
is always kept within the grid criterion set in OpenFOAM.
Polyhedral cells are also used in the cut-plane directly
downstream of the tube, shown in box A in Fig. 3.
This is a consequence of the helix angle of the fins, and
results in wedge-shaped faces in order to make the periodic
boundaries conform, shown in box A in Fig 3.

3.6. Boundary conditions
The fin and tube surfaces are prescribed the no-slip and no
penetration boundary conditions for velocity, i.e. uw = 0
(where the subscript w denotes the quantity evaluated at
the wall) and zero gradient for pressure, ∂pw/∂n = 0.
For the modified turbulent viscosity ν̃, the wall boundary
conditions should also be zero, i.e. ν̃t,w = 0. This is done
on all walls except for the fin sides, where the boundary
layer is not resolved. Here, wall functions are used for
the turbulent viscosity directly to impose the theoretical
turbulent boundary layer profiles onto the flow field. This
does not yield as accurate results as the fully resolved
boundary layers do, but as these constitute only a minor
part of the total wall area, the use of wall functions here is
deemed acceptable.
The temperature at the tube surface and fin bases is set to a
uniformly fixed temperature Tw = 300 K at the tube walls
and the base of the fins. At the interface between the gas
and fins, the boundary conditions are set to a conserved heat
flux through the interface as well as identical temperature
for both regions, viz.

Tw,fluid = Tw,solid, qw,fluid = −qw,solid. (3.4)

All but the wall surfaces are periodic boundaries, and
for velocity and pressure stream wise periodicity is
implemented in Eq. (3.2), and the modified turbulent
viscosity ν̃ is also assumed to be fully periodic. The
temperature is also cyclic between inlet and outlet, but
an offset is prescribed to account for the temperature drop
over the tubes. The offset is defined such that the left cyclic
boundary (the inlet) Tinlet(x) always is kept at a constant
average temperature Tin = 320K while at the same time
maintaining the constant wall temperature Tw = 300K,

Tinlet(x) = Tw +

(
Tin − Tw

Tout − Tw

)
(Toutlet(x)− Tw), (3.5)

where Toutlet(x) is the temperature field at the right cyclic
boundary (the outlet) and Tout is the average temperature at
the outlet.
For the steady-state simulations, the stream wise velocity
boundary conditions are implemented by mapping the
velocity and pressure fields between inlet and outlet, as
were proposed by Lindqvist & Næss [17]. This improves
the stability of the simulation and makes it easier to arrive
at the steady-state solution. The inlet boundary is initially
prescribed a uniform profile with a fixed mass flux and a
zero gradient pressure, whereas the outlet is zero-gradient
velocity and fixed pressure boundary condition. The
velocity field is then mapped from outlet to inlet after every
1000 iterations, while the pressure field is mapped from
inlet to outlet and scaled to ensure a constant pressure
at the outlet boundary. This mapping is repeated until
the simulation converges, which is assessed by total heat
transfer and pressure drop over the central tube.
For the transient simulations, the inlet and outlet boundaries
were cyclic for both the velocity and pressure fields, which
is achieved by a momentum source term S in Eq. (3.2),
acting as an imposed pressure gradient. The pressure
gradient was fixed for each simulation and corresponded to
a Reynolds number. To estimate the pressure gradient
to achieve a desired Reynolds number, the Weierman
correlation [26] was used. The transient simulations are
carried out for 20 domain flow-through cycles to ensure
fully developed flow conditions.

3.7. Discretization and solution algorithm
All convective terms were discretized with the linear
upwind scheme, and a linear blend between Euler (0.3) and
the Crank-Nicolson (0.7) scheme was used for transient
terms, giving 2nd order accuracy in space and 1st-2nd order
in time.
The discretized equations were first solved with a steady
state solver using the SIMPLE algorithm. The PISO
algorithm was used to perform the transient simulations,
with adaptive time stepping ensuring that Co < 0.5 for all
cells in the grid. To accelerate the transient simulations,
the initial conditions were obtained by carrying out steady
simulations for 1000 iterations.

3.8. Data reduction
To allow for direct comparison with experimental results,
non-dimensional parameters are calculated by integrating
the raw numerical data and normalizing with appropriate
characteristic scales.

3.8.1. Reynolds number
The Reynolds number that characterizes the flow field is
defined as

Re =
douFmin

ν
, (3.6)

where uFmin is the average velocity in the minimum free
flow area. In the steady-state simulations, uFmin is fixed by
the inlet velocity, whereas for the transient simulations it
is obtained by sampling the mean velocity at the inlet and
time-averaging.
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Figure 4: Sampling planes for temperature and pressure.

3.8.2. Euler number
The pressure drop is normalized by the dynamic pressure
to form the Euler number,

Eu =
∆p

1
2
ρu2

Fmin

(3.7)

where ∆p is the pressure drop across one tube row. For
the steady-state simulations, ∆p is obtained by sampling
the pressure in front of and behind the central tube (at
x = ±Pl/2). For the transient simulations, ∆p is obtained
by multiplying the momentum source from Eq. (3.2) with
the longitudinal tube pitch Pl.

3.8.3. Nusselt number
The outside heat transfer coefficient αo is defined as,

αo =
Q̇tot

[ηfAf +At]∆T
, (3.8)

where Q̇tot is the total heat transferred to both the fin and
tube surface, ηf is the fin efficiency and Af and At is the
surface area of the fin and bare tube surfaces, respectively.
∆T is the average temperature difference that drives the
heat transfer between the gas and the surface of the finned
tube. For the cyclic domain with only one tube row, a local
arithmetic average temperature is used to approximate the
mean temperature difference,

∆T =
1

2
[(Tb,1 − Tw) + (Tb,2 − Tw)] , (3.9)

where Tb,1 and Tb,2 are the average bulk fluid temperatures
on sampling planes located at x = ±Pl/2, respectively
(see Fig. 4).
In experimental studies, the fin efficiency is usually
estimated using theoretical and corrected predictions, and
therefore the calculated heat transfer coefficient will depend
on the chosen fin efficiency calculation. On the other hand,
CFD results provides a full description of the temperature
field, which allows for direct computation of the actual
fin efficiency. However, to compare with the experiments
by Næss [19] and Holfeld [5] on a consistent basis, the
corrected and theoretical approaches will be used here.

ηth =
tanh [m (le + tf/2)]

m (le + tf/2)
,

where m =

√
2α0 (tf + wf)

kf · tf · wf
.

(3.10)

Due to the non-uniform distribution of the heat transfer
coefficient, Weierman [26] proposed the following
correction

ηf = ηth · (0.9 + 0.1 · ηth) , (3.11)

for serrated fin tube bundles. This correction is used by
Næss [19], i.e. for cases N1 and N2. For solid fins, the
theoretical fin efficiency is given as,

η th = C
I1 (mrf )K1 (mro)− I1 (mro)K1 (mrf )

I0 (mro)K1 (mrf ) + I1 (mrf )K0 (mro)
,

(3.12)

where C = 2ro

m
(
r2
f
−r2o

) and In and Kn are the modified

Bessel functions of first and second kind, respectively.
ro = do/2 is the tube outside radius and rf = ro + hf is
the fin radius.
The heat transfer coefficient αo is then normalized with do
and κ to yield the Nusselt number, defined as

Nu =
doαo

κ
. (3.13)

3.9. Grid Refinement Study
A grid refinement study was performed using the steady-
state solution method on geometry H8 at Re = 5 000. Three
different grid resolutions were investigated, where the bulk
mesh was refined, and the boundary layer mesh was kept at
a constant y+ and cell growth ratio. Both Eu and NuPr−1/3

were used as integral parameters. The results from the grid
refinement study can be seen in Fig. 5.
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Figure 5: Results from the grid refinement study, where Eu and
NuPr−1/3 are used as integral parameters.

4. Results and Discussions
The numerical results from case H8 are shown in Fig. 6,
and are compared with the experimental data from Holfeld
[5] and the Weierman [26] correlation. The steady-state
results are within 15% for both heat transfer and pressure
drop, whereas the transient results are within 15% for
pressure drop and 20% for heat transfer. All numerical
results are predicting better than the Weierman correlation.
Though both solution methods match the experimental
results closely, it is worth noting that the transient result,
which are computationally more intensive, are generally
performing poorer than the steady-state simulations.
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Figure 6: Results for geometry H8. Steady-state ( ) and transient
( ) CFD results compared with the experimental results ( )
from Næss [19] and the Weierman [26] correlation ( ). The
dark and light shaded areas denote ±10% and ±20% deviation
from the experimental results, respectively.

The numerical results from case N1 are shown in Fig. 7,
and are compared with the experimental data from Næss
[19] and the Weierman correlation. The steady-state results
are within 20% for both heat transfer and pressure drop,
whereas the transient results are within 10% for pressure
drop and heat transfer. It is evident that the transient
simulations are performing better in this case, particularly
when considering the pressure drop. Eu from the steady-
state simulations follows the Weierman correlation – which
diverges from experiments at higher Re – closely, whereas
the transient simulation matches the experimental results,
but with larger deviation for the lowest Re.
The numerical results from case N2 (β = 45◦) are shown
in Fig. 9, and are compared with the experimental data from
Næss [19] and the Weierman correlation. The steady-state
results did not converge, and thus only transient results are
presented from this case. The convergence issues are due
to the backflow at the outlet boundary. This occurs because
the layout angle is so large that the wake extends beyond
the outlet, resulting in unphysical and unstable behaviour.
Fig. 8 shows how the wake is being limited by the zero-
backflow boundary condition at the outlet. This problem is
not encountered in the transient cases, where actual cyclic
boundary conditions are used, and not mapping between
inlet and outlet. Cyclic boundary conditions were also
tested on the steady-state cases for all geometries, but all
simulations displayed unstable behaviour and no converged
results were obtained. The transient heat transfer results
show good agreement with experimental data, being within
10 % and performing significantly better than the Weierman
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Figure 7: Results for geometry N1. Steady-state ( ) and transient
( ) CFD results compared with the experimental results ( )
from Næss [19] and the Weierman [26] correlation ( ). The
dark and light shaded areas denote ±10% and ±20% deviation
from the experimental results, respectively.

Figure 8: Streamlines coloured by temperature at Re = 10 000 for
geometry N2, from steady-state simulation with mapped inlet and
outlet.

correlation. The pressure drop results are within 20 % for
all Re, but are more accurate for lower Re. The Weierman
correlation displays similar accuracy. The inability of the
steady-state solution method to model high layout angles
is not ideal, as the transient method is computationally far
more demanding and time-consuming than the steady-state
approach. As the compact tube layout angle is the most
used, especially for compact HRSGs, this will not be an
issue in most practical cases. However, in the general case,
where optimized designs may have a higher layout angle,
the numerical model will not provide results as rapidly as
for compact layouts.
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Figure 9: Results for geometry N2. Transient ( ) CFD results
compared with the experimental results ( ) from Næss [19] and
the Weierman [26] correlation ( ). The dark and light shaded
areas denote ±10% and ±20% deviation from the experimental
results, respectively.

5. Conclusion and further work
In this study, a numerical model has been used to predict
pressure drop and heat transfer in fin tube banks. A
parameterized grid generation procedure was developed
and used to generate grids for three different fin-tube
geometries, representable for compact Heat Recovery
Steam Generators. A combination of both solid and
serrated fins were considered, where the serrated geometry
were investigated at two different layout angles. Steady-
state and transient CFD-simulations were performed on all
geometries, and available experimental data was used to
validate the numerical results in addition to comparison
with an empirical correlation.

• All simulations were within ±20% of experimental
data for both pressure drop and heat transfer, except
for the non-converging steady-state simulations of the
geometry with the largest tube layout angle.

• For compact layout angles (β = 30◦), steady-state
simulations should be used, as they require less CPU-
hours than the transient solution method. For larger
layout angles, transient methods must be employed.
Further work is needed to find the critical layout
angles where

• To ensure sufficiently small time-steps for the
transient simulations, a temporal convergence study
should be performed in addition to spatial (grid)
convergence studies for all geometries.

• Though being computationally more intensive, the
transient solution method can also be used to perform

vibrational analyses of fin tube banks, in addition to
predicting pressure drop and heat transfer.
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Abstract 

 

This paper reviews and introduces the strategies for testing a given dataset sampled from an unknown dynamic 

process to determine if it is sufficiently informative to model the system’s behavior. The presented tests should 

be done as the first step in data-driven modeling to avoid an endless search for a proper model which may not 

exist based on the available data. It is unrealistic that available data holds complete information about the 

system at hand. The tests also allow us to estimate how good the established model can be. Finally, the 

presented methodologies are applied to an actual process as the case study: modeling the decarbonization 

section in an ammonia plant. 

 

 

1. Introduction 

By model, we will mean anything for which an 

experiment can be used to answer questions about 

the system [1]. Modeling is the act of developing a 

model. In this definition, the model can be a 

physical instance of the system or a mathematical 

representation of the system. The latter is what the 

model means in this paper.  

In many engineering cases, modeling is the first 

step before other analysis techniques. Therefore, 

the quality of the model directly affects the solution 

of the final problem by putting an upper bound on 

its quality [2]. This fact makes modeling the 

bottleneck of many engineering problems and 

raises the need for putting more effort into finding 

high-quality models. 

Data-driven modeling is a rapidly evolving field 

with great potential to transform engineering 

science [3]. The concept of data-driven modeling 

contrasts with physics-based modeling. In the 

former methodology, the data is the core element 

that illustrates the behavior and expresses the 

properties of the regarded phenomenon or object. 

In data-driven modeling, the scientist does not need 

to know the underlying physical interactions. These 

physical interactions form the basis for and needs 

to be known in physics-based modeling. In the case 

of data-driven modeling, the relationship between a 

given set of available measurements (i.e., model 

input variables or features) and desired behaviors 

or values (i.e., model output variables or targets) is 

called the model of the process/system. The 

construction of a model for a process involves three 

basic entities: 

1. Dataset 
2. Model structure 
3. Rules for assessing the model from data 

The dataset comes first among the items mentioned 

above, indicating its importance and fundamental 

effects on the other two entities. The data can be 

recorded based on designing a proper experiment 

(e.g., [4]). However, it is not always possible to 

affect the experiment, and historical data from the 

plant’s operation must be used. Therefore, although 

the informativity of the data during experiment 

design is guaranteed, while dealing with a historical 

dataset, the informativity of data should be 

evaluated. In addition, the historical data often 

includes many measurements where only a few are 

useful for building a model. Therefore, feature 

selection is a way of reducing the size of the dataset 

by removing non-informative variables.  

This paper presents a method for determining (1) 

whether the available data is informative enough to 

develop models and (2) which features contain 

information about the target variable. The novelty 

of the paper comes from the informativity of the 

data. Without considering the fact that the data is 

informative, one may spend weeks/months to find a 

model which does not exist. Therefore, at a point, 

this struggle should be ended by a conclusion that 

“based on the current data, the process cannot be 

modeled” or “the data is not enough for the 

modeling”. The current paper helps to make this 

decision quickly.  
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The viewpoint of this paper is more practical than 

theoretical, and represents a walkthrough on how to 

start modeling given a dataset without any further 

knowledge about the process. A case study from an 

ammonia plant is used to illustrate the methods. 

The case study is an example of non-informative 

dataset which serves to illustrate the topic of this 

paper.  

In the sequel, Section 2 gives a brief presentation of 

the dataset. Section 3 reviews the tests for checking 

the informativity of the dataset and selecting the 

features. For each represented test, the result of 

applying it to the case study dataset is shown with 

further discussion on the results. The authors of the 

present paper suggest to apply the proposed 

methods to the dataset in the suggested order, and if 

applicable, the latest results from each step are used 

as the basis in the subsequent steps. Section 4 

provides a discussion on the results and the 

conclusion is given in Section 5. 

2. Case study dataset 

Yara International ASA, one of the largest 

ammonia producers globally [5], has provided the 

historical data used in this work. The data is 

coming from a conventional steam reforming 

ammonia plant with natural gas used as both feed 

and fuel. The production capacity is approximately 

400,000 tons/year.  

As mentioned above, the assumption in the 

following approaches is that no technical 

information about the data is available. In other 

words, it does not matter whether the data comes 

from an ammonia plant, a refinery, or any other 

industrial process. However, as the essence of the 

features and target is known, it is helpful for 

evaluation purposes. Therefore, let us briefly 

explain the process and data for a more 

straightforward interpretation of the results. 

2.1. Ammonia plant process 

Ammonia plants normally use natural gas to 

produce ammonia. In the process, natural gas is 

converted into hydrogen, and then the hydrogen is 

combined with nitrogen to produce ammonia using 

the Haber-Bosch process [6]. Figure 1 illustrates 

the whole process with the main chemical reactions 

in each block. The process is described briefly in 

the following. 

Natural gas contains hydrogen sulfide components 

that can deactivate the catalysts used in the further 

steps of the process. Therefore, the first step is to 

remove sulfur components from the inlet gas; the 

so-called desulfurization. The sulfur-free natural 

gas is then sent to the primary reformer to react 

with super-heated steam, where H2, CO, and CO2 

are the products. Then, the gas, called synthesis gas 

or syngas, is mixed with air in the second reformer. 

The air’s nitrogen is needed in the final synthesis, 

and the oxygen reacts with syngas to produce more 

hydrogen. To convert the CO contents of the 

syngas into CO2, it is sent to the shift converter 

section. At this point, the residual water is also 

removed from the syngas. Then, in the 

decarbonization section, CO2 is absorbed from the 

syngas. Next, the outlet of the decarbonization 

section passes through another purification section 

called the methanator to remove small traces of 

residual CO/CO2 from the syngas by converting 

them to methane. Finally, to produce ammonia, the 

purified syngas (which now contains almost only 

H2 and N2) enters the ammonia converter or 

synthesis section, where the ammonia is the final 

product.  

2.2. Target variable: CO2 slip 

In the methanator, the reaction between CO/CO2 

and H2 is extremely exothermic. Therefore, high 

amounts of CO/CO2 supplied to the methanator can 

increase the reactor temperature leading to a series 

of complex reactions where the consequence is 

temperature runaway [7]. In addition, removing 

higher amounts of CO2 in the methanator consumes 

more power and reduces the efficiency of the plant. 

Therefore, it is crucial to control the CO2 residual 

in the syngas that enters the methanator (/leave the 

decarbonization column) below a desired limit. 

This value is the so-called CO2 slip, the target 

variable for modeling in the case study dataset.  

Desulfurizer  Sulfur-free
gas

CH4 

Natural 
gas

Shift Convertor

Primary Reformer

Steam H2O

Decarbonization 
column 

uses a carbon absorption 
solution to remove CO2

(e.g., potassium carbon 
solution)

Ammonia

NH3

Methanator  Ammonia Synthesis  

Secondary Reformer

Air 78% N2 + 21% O2Hydrogen H2

Syngas
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Water H2O
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syngas

CO2
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Figure 1: Overview of ammonia typical production steps 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

2.3. Features 

Based on experts’ knowledge1, 45 values from 

historical data are provided for the modeling. 

Although the selected variables are initially 

assumed to be promising, there is no guarantee 

whether they carry sufficient information about the 

target. In addition, there is a possibility that some 

variables are redundant, which means they have 

almost identical information. Using two redundant 

features does not help the modeling process and 

may make the model problematic by wrongly 

assuming the redundant information too important 

in the training phase. Interestingly, this is the case 

regarding the dataset used here.  

The values of 39 features come from 13 controllers 

(C1-C13). For each controller, three measurements 

are available: (1) set-point (SP), (2) sub-process 

output measurement (PV), and (3) control signal 

(OUT). If the controller is doing its job well (the 

case in most running plants), the PV value tracks 

SP, which means they are almost identical. In some 

cases, if a simple PID controller is used, the OUT 

value is nearly proportional to the PV values. 

However, this is not always true because of non-

linearity and saturation, or in the case of cascade 

controllers. All 13 controllers with a brief 

explanation are listed in Table 1. 

Code Type SP/PV OUT 

C1 Flow  Steam flow (plant load) Valve 

C2 Ratio Steam-to-carbon ratio Ctrl (gas flow) 

C3 Ratio Gas-to-air ratio Ctrl (air flow) 

C4 Temp. 
Prim. reformer temp. (last 
1/3, near outlet) 

Ctrl (pressure of last 
burner nozzle) 

C5 Temp. 
Prim. reformer temp. (first 
1/3, near inlet) 

Ctrl (pressure of first 
burner nozzle) 

C6 Δpressure 
between air and syngas 
inlets, sec. reformer  

Valve  

C7 Flow  Semi-lean solution Valve 

C8 Flow  Semi-lean solution Valve 

C9 Flow  Purge gas into unit Valve 

C10 Flow  
Purge gas into prim. 
reformer 

Valve 

C11 Pressure Syngas compressor suction Ctrl (compressor) 

C12 Flow Lean solution Valve 

C13 Flow Lean solution Valve 

The remaining six variables (S1 to S6) are 

measured signals from sensors, where five of them 

are temperature sensors, and one is a gas sensor. 

Table 2 summarizes the features, including the 

responsibilities of controllers and sensors.  

Code Type Description 

S1 Temp. Cooling water temperature 

S2 Temp. Ambient temperature 

S3 Temp. Secondary reformer catalyst temperature 

S4 Temp. Secondary reformer outlet temperature 

S5 Gas Secondary reformer methane slip 

S6 Temp. Syngas temperature exits shift convertor 

 
1 Engineers at Yara International ASA 

 

2.4. Samples 

The process historical data is stored in one-minute 

intervals. The dataset consists of data from 30 

consecutive days in August and September 2020. 

Therefore, there are 43200 samples, each having 46 

measurement values (i.e., 45 features + target). 

Note that, for secrecy, the actual values of the 

variables are normalized into range [0,1].  

3. Step-by-step methodology 

Assume a dataset from an unknown industrial 

process is given, and the desired output (i.e., target) 

is pre-defined. Therefore, the rest of the variables 

are inputs to the model (i.e., features). In this 

section, a practical walkthrough for the starting 

phase of modeling is presented to check the 

informativity of data and select the useful features.  

The walkthrough consists of three main steps: (1) 

data visualization, (2) data splitting and initial 

modeling, and (3) feature selection. The feature 

selection itself, is divided into two steps.  

Note that, for the computations, data science 

packages in Python such as NumPy, Pandas, scikit-

learn, Seaborn, etc., are used. 

3.1. Data visualization 

Data visualization is data representation by 

employing visual elements like charts, graphs, and 

maps, which helps to comprehend the trends, 

outliers, and patterns in data. Therefore, it is 

recommended to start data-driven modeling by data 

visualization prior to the other steps.  

As we are dealing with time-series data, the first 

essential plot is a simple time plot of each variable. 

To save space, only the target variable and C9_SP 

are shown in Figure 2. In addition, the weekends 

are highlighted in the plot, which sometimes helps 

to realize if they have different trends.  

In this example plot, one obvious outlier in target 

data can be seen on Sep. 9. Another visible issue is 

a rise in the mean values of both variables after 

Sep. 12, which suggests the usefulness of C9_SP 

for modeling CO2 slip. Note that this relevancy is 

not the case for all features. Several sharp peaks in 

Table 1: List of controllers in the dataset 

Table 2: List of sensors in the dataset 

  
Figure 2: Time-series plot of the target variable (CO2 Slip) 

and one feature (C9_SP) 
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CO2 slip values indicate a skewed probability 

distribution of this variable.  

Suggestion: It is beneficial to plot the time-series 

data using interactive plots. Python, for instance, 

has rich libraries for interactive plots where the 

programmer can plot all features and targets 

together. Then it is possible to switch on/off any 

variable or zoom in/out to have better comparison 

and inspection.  

Another helpful visualization technique is the 

histogram plot which reveals the data distribution. 

For instance, Figure 3 depicts the histogram for 

CO2 slip where the data bins before and after Sep. 

12 are shown in different colors. In addition, the 

skewness of the data during the whole period is 

also shown, which is a relatively high number.  

Suggestion: Most linear system identification 

methods (e.g., ARX, FIR, etc.) assume normally 

distributed data and Gaussian noises [8]. In cases 

similar to this example, it may be beneficial to try 

different models for each part. Later, using a 

clustering method can define which model should 

be used in each situation.  

Several other charts and plots (e.g., bar chart, radar 

chart, etc.) can give an initial insight into the data. 

However, for saving space, this is skipped here.  

3.2. Initial regression and dataset split 

Before examining the features and selecting the 

promising ones, making an initial regression model 

is beneficial. This model reveals if the data has the 

potential to predict the target variable. In addition, 

the regression results can help for feature selection 

later.  

In data-driven modeling, splitting data to train and 

test sets is a routine. However, instead of breaking 

the dataset into two simple parts, let us divide it 

into four parts with the following breaking dates: 

Aug. 28, Sep. 5, and Sep. 12. Then, four train-test 

pairs are made by taking each part as the test set 

and the rest as the train set (Table 3).  

Index Train Test 

1 Part 1 + Part 2 + Part 3 Part 4 

2 Part 1 + Part 2 + Part 4 Part 3 

3 Part 1 + Part 3 + Part 4 Part 2 

4 Part 2 + Part 3 + Part 4 Part 1 

* Part 1: Aug. 21~Aug. 28, part 2: Aug. 29 ~ Sep. 5, part 3: Sep. 6 ~ Sep. 

12, part 4: Sep. 13 ~ Sep. 19 

The idea comes from k-fold cross-validation [4]. 

Here, one may be concerned about the test sets’ 

validity as the system is dynamic and the prediction 

needs the data to be continuous in time. However, 

as each train set has more than 30,000 samples, and 

typically not more than 100 past values are used in 

the models, this will not cause any problem.  
The form of the ordinary linear regression (OLS) 

model for a dataset with 𝑛 features and 𝑁 samples 

is as follows: 

𝑦(𝑘) = 𝜃0 + ∑ 𝑥𝑖(𝑘)𝜃𝑖

𝑛

𝑖=1

 (1) 

Using the extended feature vector 𝑋(𝑘) =
[1, 𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘)] allows writing Eq. (1) 

in the following compact form: 

𝑦(𝑘) = 𝑋(𝑘)𝜃 (2) 

where 𝜃 = [𝜃0, 𝜃1, … , 𝜃𝑛]𝑇 is the coefficient 

vector. The coefficient vector 𝜃 can be 

calculated by minimizing the mean square error 

(MSE) between model prediction and measured 

values: 

𝜃 = (𝑿𝑇𝑿)−1𝑿𝑇𝑌 (3) 

Here, 𝑿𝑁×𝑛 is the feature matrix where each 

row presents one measured sample, and 𝑌𝑁×1 is 

a column vector containing values of the target.  
While dealing with dynamic systems, it is 

beneficial to use the finite impulse response (FIR) 

instead of a simple (static) OLS. From one point of 

view, FIR is the dynamic version of static OLS 

where shifted values of the features are added as 

new features to the model. Therefore, the FIR 

model has the following structure: 

𝑦(𝑘) = 𝜃0 + ∑ ∑ 𝑥𝑖(𝑘 − 𝑗)𝜃𝑖𝑗

𝑚

𝑗=0

𝑛

𝑖=1

 (4) 

where 𝑚 is called the order of the model and 

represents the maximum backward shifts for 𝑥. 

To calculate the coefficients 𝜃𝑖𝑗, Eq. (3) can 

still be used. However, the coefficient vector 𝜃, 

feature matrix 𝑿, and target vector 𝑌 should be 

constructed as follows: 

𝜃1×(nm+1) = [𝜃01, 𝜃02 , … , 𝜃0𝑚 , … , 𝜃𝑛1, … 𝜃𝑛𝑚]𝑇 (5) 

𝑿(N−m)×(nm+1)

= [𝑋1
(0)

 , 𝑋1
(1)

, … , 𝑋1
(𝑚)

, … , 𝑋𝑛
(0)

, … , 𝑋𝑛
(𝑚)

] 
(6) 

𝑌1×(N−m) = [𝑦(𝑚 + 1), 𝑦(𝑚 + 2), … , 𝑦(𝑁)]𝑇 (7) 

where: 

 
Figure 3: Histogram plot for the target variable 

Table 3: Four train-test pairs 
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𝑋𝑖
(𝑗)

= [𝑥𝑖(𝑚 + 1 − 𝑗), 𝑥𝑖(𝑚 + 2 − 𝑗), … , 𝑥𝑖(𝑁

− 𝑗)]𝑇 
(8) 

for 𝑖 = 1, … , 𝑛 and 𝑗 = 0, … , 𝑚. 

The advantage of FIR compared to static OLS 

is that the past values of features affect the 

current target prediction. Therefore, if some 

features affect the target with delay, FIR model 

includes those delays in the correspondence 

coefficients.  

Now, let us build three models for each train-

test pair. The first model is a static OLS, the 

second and the third are FIR with orders 10 and 

30, respectively.  

As we want to make a linear model for the 

process, the dataset is informative enough if 

the residual values have zero mean. Therefore, 

for each model, the distributions of residuals in 

the prediction of test sets are plotted in Figure 

4.  

The above plots show that the trends in the first 

part (i.e., train-test 4) and the last part (i.e., train-

test 1) of the data are not wholly similar to the 

other parts. However, using a FIR model of higher 

order makes it possible to predict the mean value 

change discussed earlier, which occurred on Sep. 

12. In contrast, for the first part of data, it is almost 

impossible to accurately predict the target values 

using either FIR or static OLS models.  

As mentioned earlier, redundant or irrelevant 

features can also cause the above problem. 

Therefore, let us examine the features and select 

the promising ones in the following subsections.  

3.3. Feature selection: filter methods  

Up to this point, we have some idea about the 

dataset. However, we need some metrics to select 

valuable features. Generally speaking, feature 

selection methods are classified into three major 

groups [9]: 

1. Filter methods 
2. Wrapper methods 
3. Embedded methods 

Going through all feature selection methods is out 

of the scope of this part. Instead, a few filter 

methods are explained and applied to the data in 

this subsection. The next subsection briefly reviews 

the wrapper methods. The embedded methods are 

not discussed in this paper.  

Filter methods are simple statistical tests 

independent of the model structure. They are 

computationally cheap and easy to apply to big 

datasets. Therefore, it is suggested to use them 

before other methods.  

The first and most important filter method is the 

Pearson correlation coefficient test which measures 

the linear relationship between variable pairs. The 

correlation of two random variables is the division 

of the covariance by their standard deviations: 

corr(𝐴, 𝐵) =
cov(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
 (9) 

The correlation values are in the range [-1,1] (if the 

variances of both variables are non-zero2), where 

the value of 1/-1 means that the variables are 

positively/negatively proportional. Several 

modeling methods use linear regression as the 

assessment rule. Hence, a feature that has a near-

zero correlation with the target variable almost 

contains no information about the target.  
In addition, if two features are highly correlated 

(e.g., |corr|>0.95), they almost contain identical 

information, making one of them redundant.  

The correlation matrix is a symmetric matrix that 

presents the correlation values of each variable 

pair. For the case study, the matrix is 46 by 46 and 

is massive to show here. However, the matrix for 

the first 24 variables is shown in Figure 5 using a 

heatmap. The correlations between SP and PV 

values for all controllers are almost 1.0. This was 

expected, as discussed earlier. Therefore, from each 

pair, one of them is redundant. In addition, SP/PV 

values of controllers C4 and C5 are also correlated. 

C4 and C5 control the temperature of the last 1/3 

and first 1/3 of the primary reformer, respectively. 

Therefore, it is logical that both temperatures are 

kept proportional. The same thing is true about 

controller pairs C7-C8 and C12-C13. C7 and C8 

are two parallel controllers for the semi-lean 

solution, and C12 and C13 are two parallel 

 
2 A random variable with zero variance has no 
information and can be removed from the dataset. 

 

 

 
Figure 4: CO2 slip prediction residual using in (a) OLS 

model, (b) FIR model m=10, FIR model m=30 
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controllers for the lean solution. Therefore, 

identical set-point settings and their correlations 

make sense. 

Also, as expected, some OUT values have high 

correlations with their corresponding SP/PV values. 

However, we keep all of them. 

A correlation test can also be done between the 

target and each feature. Figure 6 depicts the 

correlations between the target and all features.   

The correlations shown in Figure 6 help the 

selection between redundant features. SP is kept for 

each controller except C2 and C4, and PV is 

removed from the dataset based on correlations. 

Regarding the C2 and C4, PVs are kept instead of 

SPs as they have higher correlations with the target. 

Therefore, the number of features is reduced to 32.  

3.4. Feature selection: wrapper methods  

In contrast to filter methods, wrapper methods 

depend on the type of final model in evaluating the 

performance of features. Therefore, let us assume 

the model to be OLS or FIR. Although this 

assumption may lead to removing features with 

valuable non-linear information about the target, 

these models make a fair basis for feature selection 

for linear modeling in general.  

Two common general ideas of wrapper methods 

are backward and forward feature selection. In 

addition to these standard methods, two innovative 

algorithms are also used in this paper. Let us 

explain the methods in brief: 

Forward selection: several models, each including 

one of the features, are made. Then the feature 

corresponding to the best-performed model is 

selected as the most promising one. In the next 

rounds, the same procedure is used where all 

models include the selected variable(s) from the 

previous round. Finally, the algorithm stops when 

adding new features does not increase the model 

performance.  

Backward selection: the algorithm starts with a 

model that includes all features. Then in each step, 

one variable whose removal leads to the highest 

performance of the model is selected and removed 

from the dataset. This procedure continues until 

removing none of the variables leads to a better 

model.  

Backward-forward ver. 1: in each round, one 

complete forward selection procedure follows by 

one complete backward selection. If the forward or 

backward selection in one of the rounds does not 

change the selected set, the algorithm stops.  

Backward-forward ver. 2: after each round of 

adding a variable to the list, one backward round is 

run. Therefore, each backward or forward round 

removes or adds only one feature.  

Note that both backward-forward algorithms (i.e., 

ver. 1 and 2) can start from an empty or complete 

set. Therefore, each algorithm has two variants 

(i.e., empty set start and full set start).  

A metric is needed for the model’s performance to 

decide on adding or removing features in all the 

above-mentioned algorithms. The most common 

metric is the mean square error (MSE) between 

predicted and actual values of the target in the test 

set.  

MSE =
1

𝑁
∑(𝑦(𝑘) − �̂�(𝑘))

2
𝑁

𝑘=1

 (10) 

where �̂�(𝑘) is the model prediction for 𝑘th 

sample in the train/test set.  

Another helpful metric is the R2-Score which is 

the proportion of the variation in the target 

variable that is predictable from the features:  

R2-Score = 1 −
MSE

1
𝑁

∑ (𝑦(𝑘) − �̅�)2𝑁
𝑘=1

 (11) 

where �̅� is the total mean of the target.  
Using each algorithm (i.e., 6 in total) with the two 

mentioned metrics (i.e., MSE and R2-Score) on 

each train-test pair yields 12 different sets for the 

features. For instance, using the forward selection 

algorithm and MSE metric on train-test set 1 gives 

the following features as the promising ones: 

C13_SP, C9_OUT, C6_SP, C10_OUT, C12_SP, 

S3. To save space, the full results are not shown 

here. Instead, the appearance counts of the features 

in the final models separated by the train-test sets 

are shown in Figure 7.  

 
Figure 5: Correlation matrix of the first 24 features 

 
Figure 6: Correlations between the target and features 
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Figure 7: Appearance count of features 
 

One first observation is that the occurrence of some 

features does not really show their importance. For 

example, feature S2 (i.e., ambient temperature) is 

in the final models 10, 3, 6, and 8 times. Obviously, 

the ambient temperature has almost no meaningful 

effect on the CO2 slip values. Therefore, this 

suggest that most other variables do not contain 

more information about CO2 slip than the ambient 

temperature.  

Table 4 lists all variables present in more than half 

of the final models on average. Based on the 

information given in Table 4, the most important 

feature is C8_SP (i.e., set-point value for semi-lean 

solution controller), which is reasonable. The other 

important features are C4_OUT (i.e., primary 

reformer temp.), C9_SP (i.e., purge gas flow into 

the unit), C10_OUT (i.e., purge gas into the 

primary reformer), C11_OUT (i.e., syngas 

compressor suction pressure), and C2_OUT (i.e., 

steam-to-carbon ratio), where all relate to the plant 

load and affect the average of CO2 slip rather than 

its trends. The rest of the features, as mentioned, 

are not more informative than ambient temperature.  

Another observation from Table 4 is the difference 

between train-test set #2 and the other sets. This 

suggests a different operation regime in the plant 

between Sep. 6 and Sep. 12.  

 Number of occurrences 

Feature 
Train-test 

1 
Train-test 

2 
Train-test 

3 
Train-test 

4 
Average 

C1_SP 4 7 8 8 6.75 

C2_PV 8 2 8 8 6.50 

C2_OUT 10 2 8 8 7.00 

C3_SP 6 4 6 10 6.50 

C3_OUT 8 6 8 4 6.50 

C4_OUT 5 8 5 12 7.50 

C6_SP 10 8 4 5 6.75 

C7_OUT 6 6 10 4 6.50 

C8_SP 10 4 10 8 8.00 

C9_SP 10 1 11 8 7.50 

C10_OUT 7 6 10 6 7.25 

C11_OUT 6 10 5 8 7.25 

C12_OUT 4 8 10 4 6.50 

S2 10 3 6 8 6.75 

4. Discussion 

Based on the features found in previous section, let 

us make our final models for each train-test set. 

The models are made based on the train sets, and 

prediction results on the test set are shown in 

Figure 8, together with the measured values. The 

initial OSL model predictions (section 3.2) are also 

plotted for better comparison.  

The plot’s first conclusion is that the feature 

selection procedure leads to models with better 

predictions. The second conclusion is that the 

models suffer from noise that is not white. In other 

words, some other crucial variables are not 

Table 4: The most important features based on wrapper 
methods 

 

 

 

 
Figure 8: Performance of different models on test sets 
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available in the given dataset. This makes linear 

modeling almost impossible.  

Additional attempts were made on this dataset to 

evaluate the correctness of above-mentioned 

conclusions. For example, some pre-processing 

methods used before applying the feature selection 

methods. Among them:  

• the data was smoothed using moving 
average filter,  

• Hampel filter used for detecting and 
removing outliers, and 

• non-scaled and standardized data (i.e., 
scale to data to have mean of 1 and 
standard deviation of 0) were used 
instead of normalized data.  

None of the pre-processing methods changed 
the results noticeably.  
In addition, instead of Eq. (3), partial least 
square (PLS) method was used for finding 
coefficients in both static OSL and FIR models. 
PLS automatically reduces the number of features 

using SVD decomposition. However, those features 

would be transformed features that have no 

physical interpretation. Also, using PLS did not 

contribute to the performance of the models.  

To find out how non-linear models perform on this 

dataset, deep learning methods such as long short-

term memory (LSTM) and convolutional neural 

networks (CNNs) models were also tried. However, 

all of the models failed to follow the trends in the 

data. Therefore, “missing feature(s)” is the best 

description for the case study dataset.  

5. Conclusions  

The outset of this work was to develop a data-

driven model for use in model predictive control 

(MPC). When considering such models, it is vital 

to know whether the data contain sufficient 

information for such a model. In other words: 

whether the data is informative. In this paper, a 

walkthrough for feature selection given a historical 

dataset measured from a process was reviewed. In 

addition, the informativity of the data is also 

checked during the feature selection process. The 

step-by-step method was applied to a case study 

dataset from an ammonia plant. However, the fact 

that irrelevant features such as ambient temperature 

are among the selected features suggests the dataset 

is not informative enough to predict the target 

variable. In addition, the prediction results show 

some trends that the models cannot follow. Further 

works (i.e., non-linear modeling approaches – not 

presented in the current paper) illustrate the 

correctness of the presented walkthrough and non-

informativity of the data for modeling the process.  
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Abstract 

In this work, we investigate machine learning methods 

to predict the failures of progressive cavity pumps 

(PCP). The PCPs are located in a biogas plant, Den 

Magiske Fabrikken, in Norway, which is transforming 

food waste and animal manure to biogas and 

biofertilizer. Available measurements were pump on-

signal, speed, current, torque and control signal, inlet 

flow, inlet pressure and outlet pressure, and several 

vibrations derived signals. 

Five categories were defined to categorize the 

operation of the pumps as: stopped, normal running, 7 

days from failure, 1 day from failure and 1 hour from 

failure. The objective was to train a Machine Learning 

model to predict these categories. The data was pre-

processed to clean gross outliers and scale the signals 

using different techniques. 

This paper presents results from the same Long 

Short-Term Memory (LSTM) model using two different 

approaches for scaling the data. The results are 

evaluated using confusion matrices where one scaling 

method clearly improves the results when testing on new 

data points. 

Keywords: Machine Learning, Predictive Maintenance, 

Long-Short Term Memory, Progressive Cavity Pump 

1 Introduction 

This project investigates and evaluates progressive 

cavity pump failures used in a waste processing plant by 

applying machine learning (ML) methodology. In the 

industry, maintenance costs account for significant 

losses in profit for companies. Predictive maintenance 

methods and their tools have changed the way in how to 

approach problems through advanced control analysis. 

Lindum operates a waste management company that 

produces biogas and biofertilizer as a result of 

processing animal manure and food waste. During the 

processing phase, the highly corrosive and acidic liquid 

flows through the pipes and causes severe effects on the 

pumps. To prevent any production losses and increase 

the pump lifetime, pumps are maintained periodically. 

Obviously, excessive manual supervision of the pumps 

may result in increased labor force demand and increase 

the spare part costs. However, increased periodic 

surveillance do not prevent unexpected failures 

completely. Consequently, the objective of this project 

is to develop methods for preventing pump failures by 

analyzing pump parameters with ML algorithms and 

proposing a model to detect faults.  

1.1 Progressive Cavity Pumps and 

Predictive Maintenance 

Positive displacement pumps can handle solids, high 

viscosity and low flow rates. Besides, progressive cavity 

pumps are one type of positive displacement pump. 

Centrifugal pumps, on the other hand, are suitable for 

low viscosity and high flow rates. The pump efficiency 

will decrease at both higher and lower pressures for 

centrifugal pumps, whereas the pump efficiency will 

increase with increasing pressure in positive 

displacement pumps.   

In this project, the analyzed pump type is ‘Nemo’ brand 

progressive cavity pumps produced by Netzsch Pumpen 

& Systeme GmbH. These types of pumps provide a 

large capacity and pressure range. During the operation 

of the process in the factory, the pumps suffer from 

changing viscosity and corrosive materials in each 

batch. Figure 1 illustrates the progressive cavity pump 

that is used in the process. The pump has the following 

components: rotor (1), stator (2a, 2b), drive chain (3), 

shaft sealing (4), suction and discharge housing (5). 

Typical problems in progressive cavity pumps are 

elastomer expansion, rotor, and stator material corrosion 

which are caused by high temperature or fluid type (Lea 

et al., 2003).   

There are some points to avoid pump failure 

specifically in progressive cavity pumps. These are: 

• Choosing the right elastomer type by taking into 

account temperature and fluid physical properties 

• Avoiding dry running conditions 

mailto:ozgurylc@gmail.com
mailto:carlos.pfeiffer,%20hakon.viumdal%7d@usn.no
mailto:martin.holm@lindum.no
https://lindum.no/


• Selecting suitable rotor material to stay away from 

abrasive wear on the rotor 

 

Predictive maintenance aims to transform advanced 

analytical and process data into valued outcomes. 

Hence, equipment failure or breakdown can be 

prevented just before it occurs. Additionally, predictive 

maintenance may take advantage of ML algorithms to 

build a systematic approach. Besides, predictive 

maintenance minimizes the cost of maintenance and 

improves the equipment lifetime without causing 

unpredicted production losses. Thus, the process will 

run as long as possible without interruption. 

1.2 Machine Learning Methods 

Various type of data is gathered from the process 

equipment. ML algorithms are able to unveil unseen or 

hidden patterns and relationships within a data set. With 

the progressively increase of computational power, and 

development of new ML algorithms, there is an 

increasing trend in publications in the literature related 

to data analysis through ML algorithms (Carvalho et al., 

2019). One method is the LSTM algorithm, which is 

considered especially successful in time series 

applications, where long-term dependencies in the data 

needs to be detected (Géron, 2019, pp.511-523). 

Simply, the function stores a value and determines how 

long it should be stored. This makes long short - term 

memory one of the most common models when working 

with time-dependent data (Rivas et al.,2019). Wisyaldin 

(2020) compared Autoregressive Moving Average 

(ARMA), Recurrent Neural Network (RNN), and 

LSTM models for analyzing vibration signals to predict 

the health condition of bearings of a water circulation 

pump and LSTM produced better accuracy. Even 

though LSTM is used to calculate remaining useful time 

and anomaly detection in various processes, there are 

few studies for progressive cavity pump failure analysis 

with LSTM found in the literature.    

2 System Description 

2.1 Features 

The system under scrutiny in this paper consists of a 

progressive cavity pump with measurements control 

signal [%], current [A], torque [%] and speed [%] from 

a frequency converter. In addition, inlet pressure [Bar], 

outlet pressure [Bar] and inlet flow [m³/h] is measured. 

These will be used as the features for the machine 

learning model. The sampling rate for all the 

measurements is 30 seconds. Although the selected 

pump is part of a system of pumps and may be impacted 

by other pumps earlier in the process, this potential 

impact has been ignored in this work. The system 

cyclically pumps fluid for 45-60 minutes, it will always 

start the cycle again after 60 minutes whether it has just 

ended or ended 15minutes ago. 

The analyzed feature data spans 17 months, with some 

missing data. During this period, the pump considered 

has been replaced 14 times due to pump failures.  

2.2 Predictions 

The goal is to predict one of the five operational 

categories: pump is (0) stopped, (1) running normally, 

(2) less than one week from failure, (3) less than one day 
from failure or (4) less than one hour from failure. 

Where running normally is assumed to be anything 

which is not covered by the other categories. 

These categories have been assumed useful as there was 

little information concerning the breakdown of the 

pumps, only sparse information about when they had 

been replaced was available. 

3 Methods and Methodology 

3.1 Long Short-Term Memory 

Configuration 

The LSTM model architecture was set up as a two 

layered LSTM block with a dense output layer as seen 

in Figure 2. The first layer has 7 feature inputs with a 

sequence length of 120 and 32 output neurons. The layer 

Figure 1. Illustration of the progressive cavity pump that is used in the process. 

 



has the parameter return_sequence set as true (Chollet, 

LSTM layer, 2015) which means a sequence will be 

returned, compared to only return the last estimate of the 

sequence, which is the case when set to false. The 

sequence length of 120 samples correspond to one hour 

which is the cycle time for the pump sequence. The 

pump sequence is determined by the process operation. 

The 32 neurons from the first layer serves as inputs to 

the second layer. However, it outputs only 16 neurons 

as the return sequence is set to false. Both the LSTM 

layers are using standard configurations for all other 

parameters. Lastly, a dense layer using the softmax 

activation function with the 16 neurons from the 

previous layer as inputs and outputting a probability for 

each of the categories. The output with the highest 

probability is assumed to be correct for a given sequence 

thus giving a positive for one of the five categories. The 

loss function, categorical crossentropy (Chollet, 2015),  

is minimized using the Adam optimizer (Kingma, 

2017). 

LSTM Layer 1

LSTM Layer 2

Dense Output layer

Input:

Output: 120 samples, 32 neurons

120 samples, 7 features

Input:

Output: 16 neurons

120 samples, 32 neurons

Input:

Output: 5 categories

16 neurons

 

Figure 2. LSTM model architecture 

3.2 Scaling 

Standardization is used to scale the data, using Eq. (1) 

where z is the scaled sample, x is the sample that should 

be scaled, µ is the mean and σ is the standard deviation. 

𝑧 =  
𝑥 − µ

𝜎
 (1) 

The standardization is used in two ways, one where the 

data from all the pumps are scaled using the same scaler 

for the merged dataset, from hereon named Merged 

Dataset Scaling (MDS). The other approach is to collect 

data during one hour of operation for each pump and use 

this data to calculate individual means and standard 

deviations to scale the new data. This second method is 

called Separate Dataset Scaling (SDS). Both approaches 

are shown in Figure 3.  
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Figure 3. Two methods to scale training data.  

The reasoning behind this approach can be seen by 

inspecting parts of the data shown in Figure 4. There are 

several normal distribution-like structures in the current 

when including data from all the pumps in the same 

histogram. This may indicate that the level of current 

(and other variables) may vary between the pumps that 

have been replaced, and thus the level near the end of 

the lifetime may vary. This gives the ML method 

ambiguous signals as to what is considered a degraded 

pump.  

Figure 5 shows one single pump scaled with the first 

hour of its own data. The distribution now seems closer 

to a single normal distribution, yet, it still has two 

distinct tops. Investigating other plots reveals that many 

look like Figure 5 and some are a lot closer to a narrow 

normal distribution.  

 

Figure 4. Histogram including all pump failures with 

previous original scaling method for current. 

 

Figure 5. Histogram for one pump failure for the feature 

current, scaled. 

It thus appears that there are individual characteristics of 

the pumps, and hence they have various distributions. 

This may confuse the LSTM-model as there will be 

many levels of data points where the pump is ok for one 

pump, but not for another. 

Continuing this approach and using data from only 

the first hour of the pump's active lifetime yields a 

distribution as seen in Figure 6. This distribution looks 

more coherent, yet there are more outliers and a higher 



span. 

 

Figure 6. Histogram including all failures with scaling 

Method 2. 

3.3 One hot encoding 

The outputs are one hot encoded from integer encoded, 

meaning that the labels have been converted to numbers 

as seen in Table 1. These in turn has been transformed 

into a one hot encoded format, where each row indicates 

an example where only one label is true, and others are 

false. As per definition of one hot encoding (Géron, 

2017). 

Table 1. Integer encoded labels 

Label Description 

0 Stopped 

1 Normal running 

2 Less than one week before failure 

3 Less than 24 hours before failure 

4 Less than 1 hour before failure 

4 Results and Discussion 

4.1 Scaling pump data using Merged Dataset 

Scaling 

Before the data is used for training, the features are 

standardized. All the 14 failures are scaled using one 

scaler and the data is split into sequences. The outputs 

are one hot encoded. After this, the data is split into 

training, validating and testing datasets with 60% used 

for training, 20% for validation and 20% used for 

testing. The validation data is used during training to 

check if the model is improving or not, while the test set 

from this distribution is used in Figure 7.  

Using the MDS method, the results on the confusion 

matrix based on the training set can be seen in Figure 7 

and appears very good. Figure 8 however shows the 

results in a more realistic manner where the data tested 

on was not involved in training the model. The model 

was trained on data from March 2020 to September 

2021 and was then tested on data from September 2021 

to October 2021. The confusion matrix for the test data 

shows that all the three categories where it was less than 

one week before failure of the pump, was considered 

“normal operation”, or in some rare cases “stopped”. 

Some of the reason for this might be related to an 

extensive number of “normal operation” in the data, 

compared to the other. That will affect the model. 

Comparing Figure 7 and Figure 8, there is a clear 

indication of a generalization problem with the model. 

As already mentioned, the MDS method has its 

shortcomings, which is improved in the SDS method. 

 

Figure 7. Confusion matrix based on training data 

 

 

Figure 8. Confusion matrix based on test data 

4.2 Scaling pump data using Separate 

Dataset Scaling 

Using the SDS method for scaling the data has reduced 

the overall accuracy of the model based on the training 

data, as seen in Figure 9. It can however be noted that 

most false positives in the failure categories for the most 

part end up in another failure category.  

The test set shows that the model is greatly improved by 

using the SDS method in Figure 10. The total accuracy 

becomes 78.5% where the total accuracy is defined by 

how many samples are correct for each label divided by 

number of samples tested on.  
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Figure 9. Confusion matrix on test data with SUS method 

from training data 

 

Figure 10. Confusion matrix on test data completely 

separate from training data using the SUS method 

The expectation to be able to predict one hour before 

failure may have been high, however, the other failure 

categories appear to be reasonable, at least a 

combination of them. Assuming all failure modes are 

merged to one, the total accuracy of the model becomes 

98.9%. One week from fail: 98.7%, One day from fail: 

98.9%, and one hour from fail: 99.1% when adding 

together each row. 

However, the model does never predict a normal 

operation as an upcoming failure for the given test set. 

The results indicate that there is a small risk of having a 

false alarm, and performing pump replacements without 

any good reason, with this approach. Simultaneously, 

there is a good chance of being able to detect an 

approaching error within a pump in advance. On the 

other side, it is a risk for not being able to detect 

precisely when the pump failures will occur. 

The model was only tested on one pump failure, 

while trained on many. As such there may be a lucky 

draw that the model was able to predict as well as it did. 

It has already been seen that the data varies from pump 

to pump, and it may be that other pump failures are not 

that well picked up. 

In the process of LSTM modelling, noise was not 

removed from the input data and only raw data was fed 

into the model. One might argue that noise filtering can 

increase accuracy. However, it was concluded that noise 

in data still can hold valuable information, and 

disregarding noise in data might reduce the model 

performance.  

5 Conclusions and Further Work 

This paper has aimed at evaluating and predicting of 

progressive cavity pump failures in the waste processing 

plant, maintained by Lindum AS. After gathering 

information from field instruments, measurement data 

classified 5 different pump working time cycles such as 

stopped or normal condition, 1h, 24h, and 1 week from 

failure. Analyzed data covered 17 months of operation 

that consist of 14 replacements, and with 30s sampling 

rate. The time series data was handled well by the LSTM 

algorithm and produced reasonable results. However, it 

became evident that scaling for the entire dataset led to 

information loss on pump failures, that is using the MDS 

method. Instead, improved results were obtained by 

scaling pump data with one hour of operational data for 

each pump replacement, the SDS method. Thus, each 

pump data was captured on the scaled dataset, 

separately. The total accuracy of the model with the 

proposed scaling method becomes 78.5%.  

Further work is being done on trying to generalize the 

model such as to fit onto similar pumps in the process. 

This requires some features to be removed and use data 

from many more pumps (Holm, 2022).  

As the stopped label is already known, it is not really 

needed to predict and will be removed in further studies. 

The one hour from failure label is never predicted 

outside the training data and is thus removed from 

further studies. 

More work should be done on setting correct 

parameters of the LSTM structure. 

The initial project (Holm et al., 2021) also explored 

other ML techniques such as Support Vector Machine, 

Naïve Bayes and Principal Component Analysis. These 

were not tested with the new scaling method and may be 

worthwhile to investigate further. 
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Abstract 

 

Oil and gas will remain the most important source of energy for the foreseeable future according to DNV’s 

Energy Transition Outlook 2021, and there is an urgent need to improve oil and gas recovery with less carbon 

footprint to meet the future energy demands. For the extraction of oil from the reservoir, horizontal drilling is 

being applied due to its higher recovery rate. These horizontal wells are advanced wells equipped with 

downhole Flow Control Devices (FCDs), sand screens, zonal isolation as well as monitoring and control 

systems, etc. FCDs are the key elements of advanced wells. The main objective of this paper is to modelling and 

simulation of secondary oil recovery with water flooding from a heterogeneous reservoir through advanced 

wells completed by main types of FCDs. In this paper, a computational study of oil recovery from a black oil 

reservoir is performed through modelling and simulation using the Petrel© software. The modified ‘Egg Model’ 

is used which is a synthetic heterogeneous reservoir model consisting of an ensemble of relatively small three-

dimensional realizations of a channelized oil reservoir produced under water flooding conditions. A comparative 

analysis of reservoir models with vertical open hole wells and horizontal open hole wells is presented where it is 

found that the horizontal well produces 23% more oil. Also, horizontal open-hole wells are further equipped 

with ICDs which have reduced the water production by 91.4% and have also delayed the water breakthrough in 

comparison to open-hole horizontal wells. 

 

1. Introduction 

The extraction of oil from a reservoir starts by 

drilling a well into the oil zone. Initially, due to the 

high pressure, the oil is pushed towards the surface. 

But as the pressure inside the reservoir drops a 

recovery method such as water injection is required 

to maintain a high pressure in the reservoir. This 

process is called secondary oil recovery.(Lie, n.d.) 

To achieve cost-effective and efficient oil recovery 

it is necessary to maximize the well-reservoir 

contact, and this is achieved using long horizontal 

wells. However, this method has its challenges. 

Due to the heel-toe effect and heterogeneity along 

the horizontal wells, early gas and/or water 

breakthrough is a big challenge. To tackle this 

problem, advanced wells are widely used today. 

Advanced wells are horizontal wells equipped with 

downhole Flow Control Devices (FCDs), sand 

screens, zonal isolation as well as monitoring and 

control systems.(Moradi et al., 2022) FCDs are the 

key elements of advanced wells. The most widely 

used flow control device today is passive Inflow 

Control Devices (ICDs). To achieve a successful 

design of advanced wells, a suitable dynamic 

model of oil field and advanced wells must be 

developed. Generally, it is difficult to observe and 

understand the dynamics of fluid flow in a porous 

medium and this is one of the main barriers to 

developing such dynamic models. Also, it is not 

possible to measure all the parameters that 

influence the multiphase flow behavior inside a 

reservoir. Consequently, predicting how a reservoir 

will produce over time and respond to different 

drive and displacement mechanisms is important to 

understand. This paper aims to provide more 

insight into the operation of a passive inflow 

control device (ICD). This is achieved through the 

reservoir simulation of black oil production from a 

vertical well and then a horizontal well equipped 

with ICDs. The reservoir model used for simulation 

is an enlarged egg model developed in Petrel©. 

 

2. Passive inflow control devices 

Since the 1990s, ICDs have been used to reduce the 

danger of early water and/or gas breakthrough in 

horizontal wells. ICDs are passive flow restrictor 

devices that are installed on the production tubing 

and do not have any moving parts.(Moradi and 

Moldestad, 2022) 
 

 
Figure 1: Mitigation of early water breakthrough through 

the application of ICDs.(Moradi and Moldestad, 2022) 
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ICDs are used to add extra pressure drop to 

compensate for non-uniform inflow along the 

length of the horizontal well. Fig. 1 depicts how 

such devices work to prevent early water breakout 

by balancing intake along the well. One type of 

ICD is the Orifice/nozzle-type ICD. Nozzle-type 

ICDs enable fluid to achieve the desired pressure 

drop by limiting the fluid flow. To induce flow 

resistance, fluid is pushed to pass through small 

openings (orifices) in a pipe. Fig. 2 shows the 

nozzle ICD where the fluid path is shown by red 

arrows. The reservoir fluid flows into the well 

through the annulus via sand screen and then 

through the nozzle ICD. As stated in Equation 1, 

when the fluid flows through the small nozzle, the 

pressure drop is generated as a function of fluid 

density, velocity squared, and the geometry of the 

ICD. Also, in the case of nozzle ICD, the pressure 

drop is not dependent on the fluid viscosity. The 

nozzle size and the pressure drop for a specific 

fluid are set for the nozzle ICD before the 

installation. (Elverhøy et al., 2018) 

 

Figure 2: Flow through nozzle ICD. (Elverhøy et al., 

2018) 

 
21

2
P C  =  (1) 

 
q

A
 =  (2) 

Here, q is the volume flow rate of oil, gas, or water 

depending on the fluid being referred. ΔP is the 

pressure drop, v is the velocity,  C is the 

geometrical constant, ρ is the density of fluid 

referred to, and A is the cross-sectional area of the 

nozzle opening.  

Figure 3 shows the performance curve for the ICD 

which shows ΔP on the y-axis and q on the x-axis. 

 
Figure 3: Performance curves for nozzle ICD for oil, 

water, and gas. 

3. Development of Reservoir Model 

The reservoir model is developed using the Petrel© 

2021 software. The geological model used in this 

simulation case is the Egg Model. The Egg Model 

is a synthetic heterogeneous reservoir model 

consisting of small three-dimensional realizations 

of an oil reservoir produced under water flooding 

conditions with eight water injectors and four oil 

producers. This model has been used to 

demonstrate a variety of aspects related to water 

flooding simulations. The model consists of a 

reservoir with discrete permeability fields modeled 

with 60×60×7 = 25,200 grid cells of which 18,553 

cells are active. The non-active cells are all at the 

outside of the model, which leaves an egg-shaped 

model of active cells. (Jansen et al., 2014)  

The model is modified in Petrel© and is referred to 

as Enlarged Egg Model which is used to 

demonstrate the horizontal well. 

 

3.1. Characteristics of the Enlarged Egg Model. 

For simulation of oil production through vertical 

and then horizontal wells a heterogeneous reservoir 

model namely the Enlarged Egg Model is created 

in Petrel©. The datum of the reservoir is at -4000 m. 

Each grid block has a width and length of 40 m and 

a height of 8 m. The model expands 2400 m in x 

and y directions, while the height is 56 m with 7 

layers. Fig. 4 shows the Enlarged Egg Model 

created in Petrel©. 

 
Figure 4: Enlarged Egg Model developed in Petrel©. 

The Permeability of the reservoir in the x-direction 

is equal to the permeability in the y-direction which 

is equal to 500mD. The permeability in the z-
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direction is 10 % of the permeability in the x/y 

direction. Since the reservoir is heterogeneous it 

has high and low permeability zones which forms 

the channels as shown in Fig. 5. 

 

Figure 5: Highly permeable channels. 

Tab. 1 shows the characteristics of the reservoir 

model used for simulation. 
Table 1: Reservoir characteristics. 

Variable Value Unit 

Porosity 0.2 - 

Oil compressibility 1.1×10-10 Pa-1 

Rock compressibility 0 Pa-1 

Water compressibility 1.0×10-10 Pa-1 

Oil dynamic viscosity 5.0×10-3 Pa s 

Water dynamic 

viscosity 
1.0×10-3 Pa s 

End-point rel. perm., oil 0.8 - 

End-point rel. perm., oil 0.75 - 

Corey exponent, oil 4.0 - 

Corey exponent, water 3.0 - 

Residual-oil satur. 0.1 - 

Connate water-satur. 0.2 - 

Capillary pressure 0.0 Pa 

Ini. Reservoir pressure 40×106 Pa 

Ini. Water satur 0.1 - 

Water inj. rate/well 1650 m3/day 

Production well BHP 39.5×106 Pa 

Well-bore radius 0.1 m 

Simulation time 7200 day 

 

3.2. Vertical and horizontal well patterns. 

Figure 6 shows the 8 injectors (INJECT1 to 

INJECT8) and 4 vertical producer wells (PROD1 

to PROD4) set in a staggered line drive pattern. 

Each well is 80 m in length vertically with a well-

head at -3976 m up to the base of the reservoir at -

4056m. The open hole diameter of the well is 8 

inches. 

 

 
Figure 6: Pattern of producers and Injectors in the 

reservoir model. 

The vertical producer wells are converted to 

horizontal wells. The horizontal wells rest in the 

top three layers of the reservoir. The horizontal 

wells are optimized by trying different positions 

and directions of the wells before coming to the 

final will pattern. The length of PROD1 is 533m, 

PROD2 is 696m, and PROD3 is 660 PROD4 is 

634m. The pattern of the horizontal wells is shown 

in Fig. 7. 

 

 
Figure 7: Horizontal well pattern. 

3.3. Well Completion 

For the open hole of 8 inches, the diameter of the 

casing is 7 inches, and the diameter of the tubing is 

5.5 inches which rest inside the casing. The ICDs 

are implemented inside the compartment. The 

length of each compartment is 125 m which is the 

distance between two packers. Each compartment 

is equipped with 10 ICDs as shown in Fig. 8. 

The ICD in this case has a cross-sectional area of 

3.3653×10-6 m2 as calculated from Equations (1) 

and Equation (2) where the value of ΔP and q are 

taken from Fig. 3. 
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Figure 8: ICD completion developed in Petrel©. 

3.4. Well segmentation. 

The standard well model cannot be used to model 

the frictional pressure losses, acceleration pressure 

loss, and pressure drop across the flow control 

device. To overcome the shortcomings of the 

standard well model in the case of horizontal wells, 

a more rigorous well model is used which is a 

multi-segment well model. Muti-segment well 

analysis breaks the well into a series of continuous 

segments with 0, 1, or more connections to the 

reservoir grid blocks as shown in Fig. 9. Each 

segment will consist of four equations three 

material balance equations and one pressure drop 

equation. These equations contain the elements that 

define hydrostatic, acceleration, and friction 

effects. The equations are solving the pressure, 

flow rate, and fluid composition in each segment. 

(Youngs et al., 2010) 

 
Figure 9: ICDs implemented in multisegmented model as 

individual segments. .(Youngs et al., 2010) 

The four producers are segmented in Petrel©. A 

separate segment is created for each grid block. 

Each segment is shown by a cross sign (×) in Fig 8. 

The components of pressure drop in the 

segmentation are phase slip, friction, and 

acceleration. 

4. Result and discussion 

In this chapter results obtained from different 

simulation cases run in Petrel© are presented and 

discussed. The reservoir production is controlled by 

the rate of water injection which is 1650 m3/day 

and bottom-hole pressure (BHP) which is 395 bar. 

The different simulation cases compared in this 

chapter are the production of vertical open holes vs 

the production of the horizontal open hole. The 

other case is where all the horizontal open hole 

production well are equipped with the well 

completions like casing, tubing, packers, and ICDs. 

Also, all the producers are provided with 

segmentation so that the effect of phase slip, 

friction, and acceleration are taken into 

consideration while the production. Then the 

horizontal open hole is compared with the multi-

segmented horizontal well equipped with ICD. 

3.1. Vertical open hole vs horizontal open hole. 

The result for the horizontal well is given by the 

solid line while the result for the vertical open hole 

is given by the dashed line, the green color shows 

the result for oil and the blue is for water.  

 

Field production rate 

From the results plotted in Fig. 10, the rate of 

production of oil for the horizontal well is 

significantly higher than the vertical producer 

which at its peak gives the production rate of 6000 

m3/day in the case of horizontal and 3600 m3/day in 

case of vertical producers. After day 2400 the 

production rate in horizontal cases drops just below 

vertical production. This is because in the initial 

2000 days most of the oil is produced. Also, the 

production rate of water is very high in the case of 

a horizontal well. The reason for the higher 

production rate in the horizontal well is because the 

horizontal well provides a larger surface area 

compared to the vertical well given the difference 

in their lengths. Also, the simulation results of all 

the production wells show that there is a rapid 

increase in oil production before the water 

breakthrough. This is caused because the viscosity 

of water is 5 times lower than that of the oil and 

hence water is 5 times more mobile than oil. This 

highly mobile water tends to push oil rapidly 

towards the production well which leads to a 

sudden increment. After the water breakthrough, 

the rate of production of oil starts dropping.  
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Figure 10: Production rate of oil and water for the 

horizontal wells vs vertical wells. 

Cumulative field production. 

The total production of oil and water over time of 

7300 days (20 years) is shown in Fig. 11. The 

production of the horizontal well is higher than that 

of the vertical. Over time of 20 years, the 

horizontal well has produced a little over 7×107 m3 

of water and 1.6×107 m3 of oil. While the vertical 

open hole wells have produced 3×107 m3 of water 

and 1.3×107 m3 of oil. So, the horizontal well has 

produced a higher quantity of fluid from the 

reservoir. Although the production of water is 

notably high in the horizontal case. This is because 

the horizontal wells, in this case, are not equipped 

with any kind of FCDs and hence these wells are 

prone to heterogeneity effect, and the water 

breakthrough is observed quite early. 

Figure 11: Cumulative production of oil and water for the 

horizontal well and vertical well vs time. 

Tab. 2 shows the total oil and water production of 

the field in the case of vertical open holes and 

horizontal open holes. 

Table 2: Cumulative production after 7300 days 

Well Oil m3 Water m3 

Vertical 1.3×107 3×107 m3 

Horizontal 1.6×107 7×107 m3 

 

Dynamic results 

The dynamic results in Fig. 12. show that in the 

case of vertical open hole lot of oil is trapped in the 

upper layers of the reservoir. Since the result of 

cumulative oil production shows no further 

increment. In the case of horizontal open hole more 

oil recovery is observed. 

Figure 12: Dynamic simulation result of vertical (left) 

producer and horizontal producers (right) 

3.2. Horizontal open hole well vs horizontal well 

with ICDs. 

In this case, all the horizontal wells are equipped 

with ICDs, and the production and production rate 

of the whole reservoir field are analyzed. The result 

of the production rate of horizontal open hole wells 

is compared with the horizontal wells with ICD 

 

Field production rate 

The result of production rate over time shown in 

Fig. 13 shows that the rate of production after 

implementing the ICDs has dropped significantly in 

the first 2000 days. Also, the initial hype of oil 

production is flattened. This is because ICDs help 

to reduce the pressure in horizontal wells by 

restricting the flow of fluid through a small 

passage. This also helps to obtain a smoother flow 

profile over the length of a horizontal well. 

Implementation of ICD also helped to delay the 

water breakthrough significantly. Without ICDs the 

water breakthrough was seen on day 450 while 

after implementation of ICD the water 

breakthrough is obtained on day 1700. ICDs have 

also been helpful to reduce water production as the 

water production rate at its peak without ICDs is 

12800 m3/day and with ICDs is just 2000 m3/day. 

 
Figure 13: Production rate of oil and water for the 

horizontal well and horizontal well with ICDs vs time. 

Cumulative field production 
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The simulation results for the total production of 

the field show that the field with open-hole 

horizontal wells has produced more oil and water 

over 20 years (7300 days). However, the lower 

production of oil is not a bad sign at all. Fig. 14 

shows that after 7300 days the oil produced is 

almost 1.7 times that of oil which stands at 1×107 
m3 of oil in the case of horizontal wells with ICD. 

Whereas, in the open hole the water produced is 4 

times more than the oil being produced.  

 

 
Figure 14: Cumulative production of oil and water for the 

horizontal well and horizontal well with ICDs. 

Tab. 3 shows the total oil and water production of 

the field in the case of horizontal open hole and 

horizontal well with ICD. 
Table 3: Cumulative production after 7300 days 

Well Oil m3 Water m3 

Vertical 1.6×107 7×107 m3 

Horizontal 1×107 0.6×107 m3 

 

Dynamic results 

The dynamic results in Fig. 15. show that in the 

case of horizontal open hole producers most of the 

oil is produced. While in case of the horizontal 

wells with ICD large amount of oil is still to be 

produced and the water is in most of the lower 

layers. 

 
Figure 12: Dynamic simulation result of horizontal open 

h. (left) producer and horizontal with ICD (right) 

 

5. Conclusion 

The simulation results show that the horizontal 

wells help to improve the production from the 

reservoir by increasing the surface area in contact 

with the reservoir. However, they do not 

necessarily improve the quality of production. 

Replacing the open hole vertical wells with open-

hole horizontal wells increased the oil production 

by 23% but it will also increase the production of 

water by 133%. This is because horizontal wells 

are prone to heterogeneity effect, especially in the 

heterogeneous reservoir which may lead to the 

early water breakthrough which further leads to the 

drop in oil production.  

This effect of early water breakthrough in the open 

hole horizontal well can be mitigated using the 

FCDs such as ICD. The comparative analysis of 

production from horizontal wells equipped with 

ICDs and the horizontal well with open hole shows 

that the use of ICDs helps to avoid the early water 

breakthrough. Results show that the production of 

water is reduced by 91.4% in wells with ICD. 

Although there is also a reduction in oil production 

which is about 37%, the results show that more oil 

and less water will be produced over time which 

makes it more economical and environmentally 

friendly since the amount of water produced is 

reduced remarkably. Hence, it can be concluded 

that applying the advanced wells with ICD can 

improve the quality of production. 
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Abstract 

Bubbling fluidized bed (BFB) reactors are extensively used in several process applications like gasification, 

pyrolysis, drying, and combustions due to their excellent mixing properties and good temperature control. The 

bubble dynamic and particle movement in the reactor is primarily responsible for uniform heat and mass transfer 

and mixing. The properties of bubbles in BFB are governed by the gas distribution inside the reactor or supply of 

the fluidizing gas. This work investigates the influence on the fluid dynamic behaviour of the BFB reactor at 

different fluidizing gas injection systems using the Computational Particle Fluid dynamic model. Three different 

modes of fluidizing gas injection include uniform injection, air injection via twenty-five nozzles, and air supply 

via side nozzles along the reactor height in a gasification reactor of 10.04 cm diameter. Air is used as the fluidizing 

gas and silica sand as the bed material. The CPFD model is developed in Barracuda Virtual reactor 20.01. The 

CPFD model is validated against the experimental data obtained from the Electrical Capacitance Tomography 

(ECT) sensors. The result depicts the better fluidization quality of the bed with uniform air supply as flow 

boundary and air injection via twenty-five nozzles located at the bottom of the reactor. With air injection via two 

side nozzles along the reactor height, the bed is fluidized with large bubbles and particle entrainment in the 

freeboard zone of the reactor. A method is proposed to improve the fluidization quality of the bed while using 

side nozzles as inlet flow Boundary Conditions (BC) for air injection. The proposed method includes addition of 

four nozzles along the reactor wall instead of two which improves the fluidization quality of the bed in terms of 

smaller size bubbles without particle entrainment in the freeboard region. 

Keywords: Gas distribution, flow boundary conditions, bubbling-fluidized bed, bubble properties, CPFD                     

 

1. Introduction 

Fluidized bed reactors are widely used for several 

industrial applications like waste to energy 

conversion, chemical synthesis, granulation, drying 

of pharmaceutical products and raw agricultural 

products, chemical looping, catalyst regeneration, 

biomass gasification, pyrolysis etc. (Jaiswal et al., 

2020; Bandara et al., 2021; Singh and Gbordzoe, 

2017; Chang et al., 2013). The efficiency of the 

fluidized bed reactors largely depends on the gas 

distribution inside the reactor since the gas 

distribution influences the conversion process and 

the fluidization regime under which the reactor is 

operated. For instance, during the gasification of 

biomass or wastes using a bubbling fluidized bed 

reactor, the carbaneous feedstock is converted into 

higher calorific value gases in the presence of 

limited amount of oxidizing agent (Jaiswal et al., 

2020). The amount of oxidizing medium present for 

the feedstock conversion depends on how well the 

fluidizing gas is distributed across the reactor cross-

section. Similarly, the hot bed material which is in a 

continuous motion in such reactors acts as the 

thermal flywheel and provides the required heat for 

thermal degradation of the feedstocks. The particle 

motion is governed by the bubbles rising in the bed 

and the properties of the bubbles for example bubble 

rise velocity, bubble diameter and bubble frequency 

is determined by the gas distribution inside the 

reactor. Additionally, the mixing phenomena of 

large biomass particles with bed material and the 

operating regime of the reactor is determined by the 

gas distribution (fluidizing gas) to the reactor. The 

fluidizing gas can be supplied to the particle bed 

through the distributor or nozzles (Basu et al., 2006). 

The most common method has been the use of a 

distributor plate that allows to distribute the 

fluidizing gas uniformly, supports the bed material, 

provides good gas-solid mixing, prevents 

channeling, and minimizes dead zones in the reactor 

(Depypere and Dewettinck, 2004). While using the 

air distributor or distributor plate, the supply gas 

velocity has to overcome the distributor plate 

resistance and lift entire mass of the particles against 

the gravity in order to fluidize. Alternatively, the 

fluidizing gas can be supplied to the reactor via 

orifice or nozzles which can be on the side of the 

reactor wall or at the bottom of the reactor. It is 

essential to characterize the fluidized bed behaviour 

for the specified fluidizing gas flow boundary 
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conditions for a smooth operation of the reactor 

(Sasic and Johnsson, 2005). Each of the fluidizing 

gas supply methods, with or without distributor, 

nozzles, orifice has its own limitation and 

advantages. For instance, the use of a distributor 

plate increases the auxiliary power consumption 

required to pump the gas through the reactor. 

Additionally, the distributor plate has to be selected 

depending on the reactor types and process as the 

distributor plays a critical role in the reactor 

performance (Raza et al., 2021). In addition, there 

are challenges in operating the reactor with the 

distributor plate, which requires cleaning and 

maintenance due to clogging of the pores of the 

distributor plate by the fine particles and sintering. 

The blockage of the pores in the distributor plate can 

lead to local de-fluidization and dead zones in the 

reactor. In this regard, operating the fluidized bed 

reactor without a distributor can be of great 

advantages as it can save the operational cost, and 

the construction and design cost of the distributor 

plate. At the same time, it helps to avoid the problem 

associated with the air distributor. Several studies 

have been conducted on design of the distributor 

plate and the influence of the distributor plate on the 

reactor performance (Geldart and  Baeyens 1985; 

Saxena et al., 1979). However, the number studies 

on operation of a bubbling fluidized bed reactor 

without an air distributor and comparing the fluid 

dynamics behaviour of the bed operated with and 

without distributor are scarce (Agu et al., 

2018).There are a few studies on operation of a 

fluidized bed reactor without an air distributor where 

large size particles are used at the lower region of 

the bed and the bed is fluidized by passing the gas 

through the bed of stationary large particles (Agu et 

al., 2018). 

In a single study, reported on the operation of reactor 

without an air distributor Agu et al.  has studied the 

bed behaviour with different types of particles and 

gas velocity based on the pressure and solid 

circulation using CPFD simulation. However, no 

information is provided about the grid size and 

number of computational cells in the article (Agu et 

al.,2018). The grid number or computational domain 

in such simulations have significant impact on the 

fluid dynamics behaviour of the bed and the pressure 

and flow boundary conditions. Additionally, there 

are no studies in the literature that mention the 

influence on the bubble properties in a fluidized bed 

reactor operated without a distributor plate. 

Therefore, more work is required to characterize the 

fluid dynamics behaviour of the bed without an air 

distributor and compare the fluid dynamics 

behaviour of the bed with a distributor and different 

modes of gas supply to the reactor.  

The objective of this work is to investigate the fluid 

dynamics behaviour of the bed without air 

distributor and compare with uniform air supply 

methods. The uniform air supply methods include 

use of an air distributor and nozzles. A cold flow 

model of the fluidized bed reactor with different air 

injection methods are simulated using a CPFD 

model developed in Barracuda VR 20.01. For the 

case without air distributor the bed is fluidized with 

air supply from two nozzles (holes) located at the 

opposite side of the reactor wall. The fluid dynamics 

behaviour of the bed in terms of solid fraction 

fluctuation and bubble properties are reported 

briefly. The results from the CPFD simulations are 

compared with experimental data obtained from a 

cold fluidized bed equipped with ECT sensors and 

an air distributor. A method to improve the 

fluidization quality of the bed without an air 

distributor is proposed. 

2. Material and methods  

 

2.1. Experimental set up 

A cold fluidized bed reactor equipped with ECT 

sensors, and a data acquisition system are used for 

the experiments. The reactor is 10.04 cm in internal 

diameter and 150 cm in height. The reactor column 

is fitted with an air distributor at the bottom and is 

open at the top. The air distributor is 3mm thick with 

a 10.04 cm internal diameter. It has a porosity of 

40% with a flow area of 36.6 cm2 which allows the 

fluidizing gas to pass through the bed uniformly. 

The reactor is equipped with twin-plane ECT 

sensors that are located at 15.7 cm and 28.7 cm from 

the air distributor. Each of the sensors consists of 12 

electrodes mounted on the outer wall of the reactor 

that allows to capture raw data in the form of matrix 

or images. The online images are extracted from the 

capacitance measurements using the Linear Back 

Projection algorithm. The cross-section of each 

sensor is divided into 32*32 square pixels of which 

812 are the effective pixels that lie within the bed. 

Each pixel holds a normalized relative permittivity 

value between 0 and 1, which represents the solid-

gas fraction. The details of the reactor set up can be 

found elsewhere (Agu et al., 2019). The reactor is 

filled with sand material and fluidized by using 

compressed air. The fluctuation of solid volume 

fraction is measured from the transient data for each 

gas velocity. The raw data from the experiments 

were processed in MATLAB to obtain the solid 

fraction fluctuation, bubble properties, and bed flow 

dynamics behaviour. 

2.2. Simulation set up 

The CPFD simulations in this work have been 

carried out using a commercial software Barracuda 

VR which consists of numerical codes specially 

designed for applications in the multiphase flow 

systems like industrial fluidized bed reactors. 

Initially, the reactor is filled with bed material with 

a static bed height of 30 cm. The properties of bed 
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material like density (2650 kg/m3), and particle size 

distribution, sphericity (0.86), close pack volume 

fraction (0.63), are defined similarly to that of the 

experiment. The particle size distribution was 

measured from the sieve analysis with mean 

diameter 423µm. 

 
Figure 1: (A-B) flow and pressure boundary conditions, 

(C) flux planes, initial bed height and reactor dimension. 

For the simulation of gas-particle flows, 3D 

multiphase particle-in-cell approach is used where 

solid particles are modeled as discrete Lagrangian 

methods and the fluid is modeled as Eulerian grid of 

cells. To create a virtual reactor, a CAD geometry 

equal to the experimental column is imported to 

Barracuda VR. A uniform grid of total 102400 cells 

were defined which provides the control volume for 

all fluid fields calculations. The reactor is operated 

at atmospheric pressure. Therefore, the pressure 

boundary condition is defined at the top of the 

reactor. Three different flow boundary conditions 

were set up for different modes of gas supply to the 

reactor as shown in Fig. 1(A). The fluidizing gas is 

supplied to the reactor using injections points, 

uniformly distributed along the reactor cross- 

section (grids or distributor) and through side 

nozzles (holes). 25 injection points were defined 

along the reactor cross-section shown in Fig. 1A(I). 

The mass flow rate through each nozzle (injection 

points) was equally distributed. Similarly, for the 

second case, uniform flow boundary conditions are 

defined at the bottom of the reactor. The reactor 

cross-section is divided into 1024 cells. The 812 

effective pixels or grids that cover the reactor cross-

section as shown by the red circle in Fig. 1A(II)) is 

used as the flow BC. For the third case, two nozzles 

or holes located on the opposite side of the reactor 

wall are defined as the flow boundary conditions (as 

shown in Fig. A(III)). The size of the nozzles is 0.5 

cm in diameter. Also, two planes are set up at heights 

15.7 cm and 28.7 cm along the height of the reactor 

column to measure the transient raw data for each of 

the flow boundary conditions. The drag model used 

in fluidized bed simulations is an important factor 

that determines the force acting on a particle by the 

flow of fluid around it. In this work, the Wen-Yu and 

Ergun blended drag model is used where the Wen-

Yu drag model is suitable for the dilute phase and 

the Ergun model is used for the dense phase. The 

details of the drag model, and the governing 

momentum and force equation can be found 

elsewhere (O'Rourke and Snider, 2012; Sinder, 

2001; Andrews and O'Rourke, 1996; Weber et al., 

2013). 

3. Results and Discussion 

For maximum conversion efficiency, it is important 

to operate a BFB reactor above minimum 

fluidization velocity and within a bubbling regime.  

In this work employs methods to identify the 

fluidization quality of the bed based on solid volume 

fraction fluctuation and bubble properties 

measurement. In addition, influence of different air 

supply modes on the fluid dyncmics behaviour of the 

bed are presented. 

3.1. Model Validation 

The CPFD model is validated by comparing the 

solid volume fraction fluctuation measured from the 

experimental data and CPFD simulations at different 

gas velocities as shown in Fig. 2. As the air was 

supplied through the static bed, initially the bed 

expanded as it reached the superficial gas velocity 

0.065 m/s. The bed exhibited into the fluidization 

regime at superficial gas velocity 0.075 m/s. The 

results depict that the CPFD model followed a 

similar trend to that of minimum fluidization 

velocity and bed expansion. However, the solid 

fraction fluctuation during bed expansion was higher 

as predicted by the CPFD model compared to the 

experimental data. This may be due to the difference 

in the initialization (packing) of the bed material in 

the CPFD model compared to the experimental 

conditions. 

Further, the bubbles rising in the bed at the 

superficial gas velocity of 0.1 m/s at different time 

steps are compared to check the model robustness. 

The bubbles rising in the bed at a pre-defined plane 

in the simulation setup and ECT sensors in the 

experimental set up were captured for both the 
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CPFD simulation data and the experimental 

measurement as shown in Fig. 3. The size of the 

bubbles and the path along which the bubbles move 

upward (along the center of the bed) in the bed were 

similar for both experimental tests and the CPFD 

simulations. However, the number of bubbles 

predicted by the CPFD model is higher at a lower 

superficial gas velocity (0.1 m/s). Due to increase in 

area of the flow boundary conditions in case of 

CPFD simulation, smaller size bubbles appeared in 

the CPFD simulation compared to experimental 

data.   

    

 
Figure 2: Solid fraction fluctuation at different superficial 

gas velocities obtained from CPFD simulation and 

experiment. 

               
Figure 3: Comparing the rising bubbles in the bed 

obtained from the CPFD simulation (left side) and 

experiment (right side) as it reaches the plane at 15.7 cm 

at the superficial gas velocity 0.1 m/s. 

3.2. Influence on solid fraction fluctuation 

For a given superficial gas velocity, the variation 

of the gas-solid fraction in the bed can be used to 

characterize the fluidization pattern of the bed. The 

solid fraction fluctuation across the cross section of 

the bed at height 27.5 cm and at the superficial gas 

velocity 0.15 m/s were captured over the 

measurement of 60s with time steps of 0.001. The 

average solid fraction fluctuation over the 

measurement period for different flow boundary 

conditions (injections BC, nozzle BC, uniform BC) 

from the CPFD simulation and experimental 

measurements with air distributor are compared in 

Fig. 4. The result illustrates that for the experimental 

measurements with an air distributor the solid 

fraction was lower towards the center of the bed, and 

it increases near to the wall of the reactor. A similar 

trend of solid fraction fluctuation was predicted by 

the CPFD model with the injection flow BC and the 

uniform flow BC. However, fluctuation in the solid 

fraction for both the cases were not smooth 

compared to the experimental measurements 

because of smaller bubbles in the bed with the 

uniform and injection flow BCs. Multiple smaller 

size bubbles were formed in case of the CPFD 

simulations due to an increase in flow boundary area 

as compared to that of the experiment. The decrease 

in the solid fraction at the lower region of the bed 

near to the center reveals a higher gas fraction in the 

region. The gas in a fluidized bed rises from the 

lower region of the bed to the upper region in the 

form of bubbles. Therefore, the depression of the 

solid fraction near to the center of the reactor and the 

increase near  to the wall of the reactor illustrate that 

the bubbles rise upwards following the path near to 

center of the reactor. For the flow BCs with two 

nozzles near to the wall of the reactor, the solid 

fraction fluctuation was lower near to the wall of the 

reactor where the nozzles wre defined and near to 

the center of the bed. The fluidizing gas passes in the 

form of bubbles where some of the bubbles pass near 

to the wall while some follow the path near to the 

center of the bed.  

 
Figure 4: Radial distribution of the solid volume fraction 

for different flow boundary conditions at superficial gas 

velocity 0.15 m/s. 
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3.3. Influence on bubble properties and bed fluid 

dynamics behaviour 

The bubble properties in a BFB reactor 

significantly influences the fluid dynamics 

behaviour of the reactor and its performance. The 

appearance and the movement of the bubbles in the  

bed is governed by the flow of fluidizing gas through 

the bed. For the same mass flow rate of the fluidizing 

gas with different flow boundary conditions, the 

bubble properties were measured. The influence on 

the bubble properties and fluidization quality of the 

bed with different flow boundary condition are 

compared. The bubbles in BFD can be distinguished 

from the dense phase by using a bubble solid 

threshold value. In this work the bubble solid 

threshold value of 0.2 is used to identify bubbles in 

the bed. For the CPFD simulations, the bubbles were 

identified as the zones (object) and the volume of the 

bubbles were measured by counting (with algorithm 

written in MATLAB) the number of the cells the 

bubbles occupied. The bubbles diameter were than 

calculated from equivalent spherical area. 

    Fig.5 compares the bubble frequency with respect 

to the bubble diameter for different flow boundary 

conditions over the measurement of 30 s. With the 

uniform flow boundary conditions, the result shows 

that different bubble sizes within the range of  2.5 

cm< db <5 cm appeared in the bed with dominant 

frequency of the bubbles with 3 cm. Here, db is the 

bubble diameter in cm. While for the flow with two 

nozzles, the bubble diameters are comparatively 

large for the same mass flow rate (1.5 kg/ hr.) of the 

air as compared to that of uniform and injection flow 

BCs. With the injection flow (using 25 nozzles) the 

bubbles in the bed are smaller and uniform in size as 

shown in Fig.5(b). The smaller and uniform size 

bubbles in the bed means better fluidization quality 

of the bed which contributes to uniform heat transfer 

and better mixing. On contrary, the large size 

bubbles in case of flow BC via two nozzles (as 

shown in Fig.5(c)) can bypass the bed if such 

bubbles rise in the bed near to the wall of the reactor. 

Such large bubbles can grow into slugging bubbles 

as they rise in the bed and turn the bed into a 

slugging regime. Additionally, with large size 

bubbles in the bed, the bubble rise velocity in the bed 

increases significantly which may transform the bed 

into turbulent regime. When the bed is in the 

turbulent regime during gasification of biomass in 

BFB reactor, the fine particles can entraine in the 

freeboard region which may contaminate the 

product gases. The entrainment of fine particles in 

the freeboard region when the air is supplied to the 

reactor via two side nozzles is shown in Fig.7 F(a). 

Also, due to increase in gas velocity and bypassing 

of the fluidizing gas through the side of the bed (near 

to the wall of the reactor), less oxidizing medium is 

present for thermochemical conversion of feedstock 

in the bed where biomass is present. As a result, 

more oxidizing medium is present in the free board 

region which can convert the carbon monoxide into 

carbon dioxide. Therefore, in order to supply the 

fluidizing gas to the reactor without a distributor 

(with side nozzles) it is essential to optimize the flow 

behaviour of the fluidizing gas to the reactor. This 

can be achieved by increasing the number of nozzles 

(or holes) along the reactor wall. In this work, the 

CPFD model was used to simulate a case with four 

different nozzles along the reactor wall. By 

increasing the number of side nozzles, entrainment 

of the bed particles were prevented as shown in the 

Fig.7(b). Similar, the bubble size is reduced (as 

shown in Fig.5(d)) and the bubble frequency is 

increased with large number of smaller size bubbles 

in the bed. With addition of two more side nozzles, 

better fluidization quality of the bed is achieved (as 

shown in Fig.6 and Fig.7. 

 

    
Figure 5: Bubble frequcency vs bubble diameter for 

different air supply systems. 

             
(a)             (b)                 (c)                (d) 

Figure 6: (a-d), Iso-surface of the bubbles in the bed 

obtained during, air injection via four nozzles, two side 

nozzles, 25 nozzles at the bottom of the reactor, and 

uniform flow BC respectively.  
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                       (a)              (b) 

Figure 7: Particle volume fraction of the bed with (a) two 

side nozzles and (b) four side nozzles. 

4. Conclusion 

Bubbling fluidized bed reactors are extensively used 

for several industrial application due to uniform heat 

and mass transfer. The advantages of a such reactor 

can only be achieved with proper distribution of the 

fluidizing gas to the reactor. This work investigates 

three different methods to supply fluidizing gas to 

the reactor including uniform flow BC, air injection 

with twenty-five nozzles and air supply via side 

nozzles along the reactor wall. A CPFD model has 

been developed in Barracuda VR 20.01 and the 

model is used to investigate the fluidization quality 

of the bed in terms of solid fraction fluctuation and 

bubble properties. The CPFD model is validated 

against experimental data obtained from a cold 

fluidized bed equipped with ECT sensors and air 

distributor. The result depicts that a better 

fluidization quality of the bed is achieved with 

uniform air supply as flow boundary and air 

injection via twenty-five nozzles located at the 

bottom of the reactor. With air injection via two side 

nozzles along the reactor height, the bed fluidized 

with large bubbles and particle entrainment in the 

freeboard zone of the reactor. A method was 

proposed to improve the fluidization quality of the 

bed while using side nozzles as inlet flow BC for air 

injection. The proposed method includes addition of 

four nozzles along the reactor wall instead of two. 

With the addition of two nozzles, fluidization quality 

of the bed was improved in terms of smaller bubble 

sizes without particle entrainment in the freeboard 

region. 
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Abstract 

 

Lignocellulosic biorefineries, paper and pulp industries across the globe can convert cellulose and hemicellulose 

parts of the biomass into higher valued products. However, lignin from biomass is an underutilized biorefinery 

waste. Value-added applications of lignin waste should be investigated to produce low-molecular-weight 

compounds as an alternative to petrochemical compounds. Valorization and lignin recovery play an important 

role in ‘green shifts’ for such industries. In this work, the authors performed gasification of lignin pellets obtained 

from one biorefinery located in Finland.  A 20-kW pilot-scale bubbling fluidized bed gasifier was used for the 

experiments. A computational particle fluid dynamics model based on a multi-phase particle in cell approach was 

developed for the same process. The developed model was validated against the experimental results. 

The experimental results showed good conversion of lignin pellets into permanent light gases such as carbon 

monoxide, hydrogen, methane, etc. The average production of product gas and the lower heating value were 5.74 

Nm³/hr and 4.95 MJ/Nm³, respectively. The average molar gas compositions obtained from the experimental study 

were 0.04 for CH₄, 0.16 for CO, 0.15 for CO₂, 0.13 for H₂ and 0.51 for N₂. 

Keywords: lignin waste, lignin gasification, fluidized bed, CPFD 

 

1. Introduction 

Biomass is the world's fourth largest primary energy 

source, after coal, petroleum, and natural gas. 

Biomass now accounts for around 15% of total 

global energy use (Ankolekar and Kulkarni, 2018). 

The carbon present in the biomass is non-fossil in 

origin and considered as a renewable energy source. 

Biomass is a biobased material with a wide variety 

of sources such as lignocellulosic biomass, food 

waste, fish ensilage, etc. Lignocellulosic biomass 

primarily consists of cellulose, hemicellulose, and 

lignin. Lignin forms a part of the secondary cell 

walls of plants that helps to maintain the structural 

integrity of the plants. Lignin is the most abundant 

natural aromatic polymer which is found in most of 

the terrestrial plants on earth. Lignin accounts for 

15–40% of dry weight (Ragauskas et al., 2014) in 

terrestrial plants. The exact composition and the 

content of lignin in plants depend upon the botanical 

species. Millions of tonnes of lignin are produced as 

a byproduct from the paper, pulp industries, 

biorefineries, etc every year. The majority of lignin 

produced from such processes is currently used as a 

low-cost fuel to balance energy needs for the same 

process. Annually around 5–36×108 tonnes of lignin 

are produced across the globe (Gellerstedt and 

Henriksson, 2008). Lignin residue can be used 

directly as fuel in combustion furnaces, boilers, etc. 

or can be used as binders, emulsifiers, concrete 

additives, dyestuff dispersants, components for 

composites and copolymers, etc after chemical 

transformation (Calvo‐Flores and Dobado, 2010). 

The major challenge for lignin conversion is its 

heterogeneous properties, such as molecular weight, 

functionality, and thermal properties depending 

upon the different sources and processing methods 

(Saito et al., 2014). There are no significant 

applications of lignin waste on a commercial scale 

other than burning it as low-grade boiler fuel for an 

energy source. 

Different alternatives for lignin conversion include 

biochemical conversion such as hydrolysis, 

fermentation, etc, and thermochemical conversions 

such as pyrolysis and gasification. Gasification 

converts lignin waste into low molecular weight 

gases that can be used for various applications. 

Gasification is primarily a thermochemical 

conversion process where thermal heat breaks down 

the solid materials into product gases such as carbon 

monoxide (CO), hydrogen (H₂), methane (CH₄), 

carbon dioxide (CO₂), etc. The mixture of CO and 

H₂ is also known as syngas, a common valuable 

product for the production of alternative fuels. 

Gasification of lignin waste can handle a certain 

variation of lignin properties. 

A bubbling fluidized bed (BFB) gasifier uses solid 

bed materials to heat up the solid fuels in the 

presence of a limited supply of oxidizing agents (air, 
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oxygen, or steam) to produce light hydrocarbon 

gases such as CO, H₂, CH₄, CO₂, etc. The BFB 

gasifiers operate in the temperature range of 700-

1100°C (Franco et al., 2003). Good mixing and high 

heat capacity of the bed material result in a higher 

heat transfer rate to the biomass particles, thus 

resulting in higher conversion. The operation of the 

BFB gasifiers involves multiphase flow, different 

chemical reactions, and heat transfer. The effect of 

different parameters and designs of gasifiers can be 

studied with the help of modelling and simulation in 

a relatively short time period. Computational fluid 

dynamics (CFD) is used to model the systems 

handling the fluid flow. Conventional CFD is a well-

accepted technique for single-phase systems while 

multiphase CFD is used to investigate the systems 

handlings both solids and fluids. 

Multiphase CFD models are based on either 

Eulerian-Eulerian (EE) or Eulerian-Lagrangian (EL) 

approaches. Both the solid and gas phases are treated 

as a continuous phases in the EE approach where 

two phases are differentiated by their volume 

fraction. This method lacks the discrete nature of 

solid particles and the transient information of the 

two-phase interactions (Bin et al., 2009). EL 

approach preserves the discrete nature of solid 

particles where the solid phase can exchange the 

mass, momentum, and energy with the fluid phase, 

i.e., strong coupling between the phases. The EL 

approach gives high loading to a computer central 

processing unit due to the need of tracking 

individual particles in the system and the 

requirement of the small-time steps for solving the 

particle collisions (Ku et al., 2015). The EL 

approach is computationally expensive and is 

limited to only 2x10⁵ particles (Gidaspow et al., 

2004). 

Multi-Phase Particle-In-Cell (MP-PIC) modelling 

incorporates the EL approach that eliminates the 

need for tracking individual particles. 

Computational particles for MP-PIC modelling are a 

group of particles (called parcels) with similar 

properties such as size, density, residence time, 

velocity, etc. The parcels are modelled in a discrete 

frame and the particle interactions are modelled in 

the Eulerian frame. Barracuda Virtual Reactor (VR) 

is a commercial software based on the MP-PIC 

approach, also known as a computational particle 

fluid dynamics (CPFD) approach. The rapid 

development of the graphic process unit in 

computers has made the CPFD simulation capable 

of simulating the real process in a short time. The 

major advantage of CPFD is that it can downsize the 

billions of particles in a large commercial plant to 

millions of computational particles (Chen et al., 

2013). The governing equations for the CPFD 

approach can be found in the study of Snider et al. 

(Snider et al., 2011).  

 

1.1 Background 

Lignin is a major byproduct of biomass-based 

biorefinery, paper and pulp industries. This led to 

different researchers focusing on lignin as a low-cost 

renewable raw material. Biochemical conversion of 

lignin waste is widely studied over time (Boerjan et 

al., 2003; Bugg and Rahmanpour, 2015). However, 

heterogeneity and higher resistance to chemical and 

physical actions (Ralph et al., 2019; Strassberger et 

al., 2014) limit the lignin valorization via 

biochemical conversion pathways. The biochemical 

conversion technologies still depend upon 

improvements and innovation in terms of product 

separation and catalysts (Strassberger et al., 2014). 

Therefore, in this study, the authors attempt to 

convert pelletized lignin waste into syngas via 

gasification, a thermochemical conversion 

technology. Different technological hurdles must be 

overcome to make lignin processing feasible, and 

the authors believe this study gives a step forward 

toward lignin waste valorization.  The present study 

aims to gasify lignin pellets obtained from a 

biorefinery in a pilot scale bubbling fluidized bed 

gasifier located at the University of South-Eastern 

Norway (USN). 

Literature study in the field of lignin gasification 

gave a limited number of recent studies, suggesting 

that lignin gasification is an emerging topic. 

Liakakou et al. (Liakakou et al., 2019) have studied 

the gasification of lignin rich residues in an updraft, 

bubbling fluidized bed, and MILENA indirect 

gasifier. The study shows the feasibility of 

gasification for lignin extracted from a steam 

explosion (lignin A) and enzymatic hydrolysis 

(lignin B). Fluidized bed gasification gave the 

lowest tar content compared to the other two 

technologies. Different combinations of lignin and 

gasification technologies were able to give the 

H₂/CO ratio of 0.6 to 1.0 and the tar yield was 

between 18-108 g/Nm³. The gasification behaviour 

of the three technologies was quite different and was 

able to give the overall gasification behaviour of 

lignin residue (Liakakou et al., 2019). 

Liakakou et al. (Liakakou et al., 2021). performed 

gasification of lignin rich residue obtained after a 

steam explosion and enzymatic hydrolysis of wheat 

straw in the MILENA gasifier. The authors 

compared the results with the gasification of 

beechwood chips from the same gasifier. The 

average volume percentage of the major product gas 

is presented Tab 1. 

 
Table 1: Product gas composition from Liakakou et al. 

 CO H₂ CO₂ CH₄ N₂ 

Beech wood 28.8 32.1 25.2 8.8 1.2 

Lignin 19.8 35.5 24.4 11.4 1.4 

 

The study showed reasonable product gas 

composition from the gasification of lignin waste 
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(Liakakou et al., 2021). The basic background on the 

discussed topic is presented in the beginning. The 

relevant literature, theory, research gap, and the 

nobility of this study are presented in Chapter 1. The 

detailed methods and the properties of the materials 

are presented in Chapter 2. The results and 

discussions of this study are described in detail in 

Chapter 3, and the conclusion is drawn at last. 

 

2. Methodology  

2.1. Experimental setup 

Experiments were performed at the pilot scale BFB 

gasifier located at USN Porsgrunn. Fig. 1 shows the 

isometric view of the BFB gasifier, and the gasifier 

is designed to operate at atmospheric pressure. 

 

 
Figure 1: BFB gasifier with auxiliary connections at 

USN. 

The setup consists of a reactor (3), biomass storage 

silo (1), biomass feeding screws (4 and 5), bed 

material funnel (2) and a chimney with flare. The 

setup is facilitated by three electrical heaters with 

3kW each, one is the gas heater (6) used to heat the 

gasifying agent, and the other two are used to heat 

up the reactor. The reactor has an inner diameter and 

height of 0.1 m and 1 m, respectively. An air 

preheater heats the gasifying agent (compressed air) 

before entering the reactor to a temperature of 

around 450°C. Fuel is stored in a sealed silo and is 

conveyed to the reactor using two screw conveyors. 

Biomass is fed at a height of 250 mm from the 

distributor. The gasifier has different pressure and 

temperature measurement sensors at different 

positions. The facility also has sensors for the 

detection of H₂, CO and N₂ to identify any gas 

leakage. Silica sand in the range of 850 – 1000 µm 

and density of 2650 kg/m³ was used as bed materials. 

The initial bed height was 0.22 m. Characterization 

of the lignin pellets was performed at the Eurofins 

testing facility to know the elemental composition. 

The proximate and ultimate analyses are presented 

in Tab. 2. 
Table 2: Characterization of lignin pellets. 

Proximate analysis (wt.%, wet basis) 

Fixed carbon 25.68 

Volatiles 65.8 

Moisture 8.2 

Ash 0.32 

Ultimate analysis (wt.%, dry basis) 

Ash 0.32 

C 54.8 

H 6.3 

N 0.78 

S 0.11 

Cl 0.01 

O (by difference) 37.68 

LHV (MJ/kg, dry) 23.51 

Table 3: Reaction kinetics for the CPFD model. 

Reactions/reactions name Reaction rate kinetics (mol m⁻³ S⁻¹) Enthalpy (kJ/mol) 

2C + O2 ↔ 2CO 

Char partial oxidation (Snider et al., 

2011) 

4.34×107msTexp(
−13590

T
)[O2] +221.0 

C + O2 ↔ CO2    

Char oxidation (Sreejith et al., 

2015) 

5.7×1012msexp(
−4595

T
)[O2]0.78 -394.0 

C + CO2 ↔ 2CO 

CO2 gasification (Thapa et al., 

2014) 

1.12×108msP0.31θfexp(
−29518

T
)[CO2] +172.0 

H2 + 0.5O2 ↔ H2O 

H2 oxidation (Bates et al., 2017) 
5.69×1011exp(

−17610

T
)[H2][O2]0.5 -241.9 

CO + 0.5O2 ↔ CO2 

CO oxidation (Xie et al., 2013) 
5.62×1012exp(

−16000

T
)[CO][O2]0.5 -283.0 

CH4 + 1.5O2 ↔ CO + 2H2O 

CH4 oxidation (Bates et al., 2017) 
5.0118×1011exp(

−24357

T
)[CH4]0.7[O2]0.8 -519.4 

CO + H2O ↔ CO2 + H2 

WGS (Xie et al., 2013) 
7.68×1010Texp(

−36640

T
)[CO]0.5[H2O] -41.0 

CH4 + H2O ↔ CO + 3H2 

Methane reforming (Solli et al., 

2018) 

3×105exp(
−15042

T
)[CH4][H2O] +201.9 
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Lignin pellets were gasified in a bubbling fluidized 

bed reactor with air as a fluidizing agent. 

Experiments were performed at different airflow 

rates (thus giving a different equivalence ratio) and 

the product gas was analyzed in a gas 

chromatograph. 

 

2.2 Computational model 

A simulation model was developed using Barracuda 

VR 21.1.1. WenYu-Ergun drag model was used with 

40% momentum retention after a particle-particle 

collision. The reactor was modelled as an open 

cylinder with a diameter of 0.1 m and a height of 1 

m. The developed geometry was divided into 10000 

cells with the help of a built-in mesh generator. Fig. 

2 shows the boundary conditions, computational 

cells, and initial bed materials of the developed 

model. 

The formation of the tar and the higher hydrocarbons 

were neglected during this study. Arrhenius reaction 

rate model was used to model the chemistry in the 

reactor. The reaction kinetics is presented in Tab. 3. 

Major reactions were considered for the model, and 

their reaction rate kinetics were taken from the 

literature. 

 

 
Figure 2. (a) boundary conditions, (b) computational 

cells and (c) initial bed materials. 

 

3. Results and discussions 

The reactor temperature and pressure for a window 

of 30 minutes during the experiments are presented 

in Fig. 3. 

The results show a certain variation in the bed 

temperature during the experiments. Biomass was 

fed via a screw conveyor which gives some degree 

of variation from the mean feeding rate. Reactor 

temperature decreases with higher biomass feed rate 

and increases with lower biomass feed rate. This is 

because biomass gasification is an endothermic 

process, which takes heat from the heated bed 

materials. 

 

 
Figure 3: Temperature and pressure variation during the 

experiment. 

A higher biomass feed rate consumes larger amounts 

of reactor heat, thus lowering the reactor 

temperature. Lower biomass feeding could lead to a 

higher reaction rate which in turn increases the 

reactor temperature. Therefore, variation in reactor 

temperature gave a certain level of variation in the 

product gas composition for different samples. 

Average gas composition was taken for further 

analysis which minimizes a certain level of 

measurement uncertainties during the experimental 

process. The reactor’s bed pressure increased 

slightly with time due to the accumulation of char 

and ash during the gasification process. As the ash 

composition was relatively low for the lignin pellets, 

char gasification is an important aspect of these 

types of reactors. Char gasification is relatively slow 

compared to the devolatilization and homogeneous 

phase reactions (Bermudez and Fidalgo, 2016). 

Therefore, an alternative configuration such as a 

dual fluidized bed could be the better alternative to 

fully utilize the char generated during the 

gasification process. Char is combusted in a 

combustor reactor to heat the bed materials which 

are recirculated back into the bubbling fluidized bed 

reactor to optimize the biomass conversion. 

A simulation model was developed using Barracuda 

V 21.1.1(Software©, 2022) and the simulation 

results were compared with the experimental results.  

The average gas compositions for the experimental 

study and simulation study are presented in Fig. 4. 

Average molar composition is taken from 40 to 80 

seconds for the simulation. The model predicts the 

fractions of product gases comparatively well and 

there is a good agreement between the experimental 

and simulation results regarding the major gas 

species such as carbon monoxide (CO), carbon 

dioxide(CO₂), hydrogen (H₂) and nitrogen (N₂). The 

difference observed between the simulation results 

and the experimental results could be due to the 

limited number of reactions considered for the 
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simulation model, a significant number of reactions 

occurs during an experimental process. However, 

the difference is not significant and therefore the 

developed model was used to study the lignin pellets 

gasification in depth. 

 

 
Figure 4. Comparison of average gas species at ER 

0.165. 

A number of chemical reactions occur during the 

biomass gasification process. However, only a 

certain number of major chemical reactions were 

included in the simulation model for reasonable 

accuracy and simulation time. The average oxygen 

concentration during the simulations was zero 

whereas around 1% of oxygen was present during 

the experimental analysis. This shows some degree 

of air contamination during the sampling process. 

The CPFD model shows a comprehensive result 

regarding the molar concentration and reactor 

hydrodynamics during a gasification process. 

The product gas compositions were monitored 

during the simulations with respect to time at the 

reactor outer boundary. Fig. 5 shows the 

composition of the product gases over simulation 

time. The reactor reaches steady state conditions 

after around 10 seconds of simulation time. The CO₂ 

production started abruptly after around 3 seconds, 

which counterbalances the O₂ inside the reactor. The 

high fraction of carbon dioxide at the start represents 

the combustion process due to the presence of an 

excess amount of oxygen. 

 

 
Figure 5. Mole fraction of product gases with respect to 

time. 

The start of the production of CO, H₂ and CH₄ after 

around 10 seconds of simulation time represents the 

start of the gasification process. The process 

gradually shifted from combustion to gasification 

process. The average molar composition fluctuates 

around their mean value at steady state conditions. 

A certain level of variation in the composition 

illustrates different physical and chemical 

transformations inside the reactor.  

The product gas composition during the simulations 

was monitored in the reactor. Fig. 6 shows the mole 

fraction for methane, carbon monoxide and 

hydrogen at the center plane of the reactor. 

Non-distinguishable gas variation inside the bed 

represents that the heterogeneous reactions are less 

significant as compared to the homogeneous phase 

reactions. This suggests that the heterogeneous 

reactions in the gasification process are slow and are 

often considered as a rate-limiting process compared 

to the homogeneous phase reactions. Certain abrupt 

changes in gas composition can be seen in the 

biomass feeding regions. This is the region where 

biomass first enters the reactor, thus altering the 

flow behaviour. A number of phenomena occur 

simultaneously giving distinct chemical variations 

in this region.  

Additionally, devolatilization and char mixing with 

bed materials give different dynamics and properties 

variation in this region. A certain level of variation 

in gas composition can be seen in the freeboard 

regions. The carbon monoxide concentration 

increased slightly along with the reactor height that 

indicating the dominance of methane reforming 

reaction and backward water gas shift reaction. 

 

 
Figure 6. Product gas composition (mole fraction) along 

xz plane (at y=0.05m). 

Gasification of lignin is an emerging aspect of lignin 

valorization. The literature study gave only certain 

studies on this topic. It is important to compare the 

quality of the product from this study to the results 
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published in the literature. The mole percentage of 

major gas species excluding N₂, C₂H₂, C₂H₄, C₂H₆ 

and other minor gas components is compared in Tab. 

4. 
Table 4: Comparision of molar percentage. 

 CH₄ CO CO₂ H₂ 

Current study 9.05 32.51 30.59 27.85 

Liakakou et al 12.51 21.73 26.78 38.97 

 

As seen from the table, there is considerable 

variation between the two results. Liakakou et al 

have used the MILENA gasifier, a dual fluidized bed 

gasifier operated with steam as a fluidizing agent. 

However, the air was used as the gasifying agent in 

the current study which gives lower hydrogen 

production compared to the MILENA gasifier. 

Further, variation in operating conditions, bed 

materials, equivalence ratio, etc would normally 

give the variation in the product composition. 

Therefore, further experiments in different gasifiers 

at different conditions would give a broader 

perspective of the generated product gas 

applications. 

 

4. Summary and conclusions 

This study gave a comprehensive result for the air 

gasification of lignin pellets. Experiments were 

performed in a pilot scale BFB gasification reactor. 

A simulation model based on MP-PIC modelling 

approach was developed to study the reaction 

chemistry and the bed hydrodynamics inside the 

reactor. The average product gas obtained from the 

model was validated against the experimental 

results. The product gas varied with a variation of 

equivalence ratio in the gasifier. The simulation 

study showed a higher fraction of CO₂ at the start, 

suggesting combustion has taken place. The 

conversion shifted towards gasification at steady-

state conditions. The average gas compositions from 

the experimental study were 0.04 for CH₄, 0.16 for 

CO, 0.15 for CO₂, 0.13 for H₂ and 0.51 for N₂. The 

lower heating value and the carbon conversion 

efficiency were 4.95 MJ/Nm³ and 40.3% 

respectively. Different sets of experiments are 

needed to generalize the product gas quality and 

quantity from the gasification of lignin waste. The 

developed CPFD model can be used to optimize the 

model in terms of gasifier performance, fuel 

flexibility, and reduced emissions. The model can be 

used to scale up the reactor to an industrial scale 

reactor to investigate the behaviour at a commercial 

scale. 
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Abstract 

 

The petroleum industry operates under great uncertainty. Achieving an efficient approach to quantify uncertainty 

in oil production models is of key importance in supporting decision-makers to find suitable strategies for 

mitigating risks and maximizing profit. Uncertainty quantification is commonly performed based on the Monte 

Carlo approach and this is a very time-consuming process by using the physics-based models developed by 

reservoir simulators. To solve this challenge, data-driven proxy models which are less complex and 

computationally efficient can be used as an alternative. This paper aims to investigate the functionality of the 

ANN method in developing proxy models for uncertainty quantification of oil production from advanced wells. 

The investigation is conducted through a case study for uncertainty assessment of cumulative oil and water 

productions from a long horizontal well with ICD completion and zonal isolation in a synthetic reservoir for 10 

years. In this study, the Eclipse® reservoir simulator is used for developing the base case model and it is coupled 

with MATLAB® for generating the required data sets to train and test the ANN proxy model. According to the 

obtained results, the trained and developed ANN proxy model can predict the production of oil and water from 

advanced wells accurately with a mean error of less than 4%. Besides, the proxy model is 150 times faster than 

the Eclipse model and can solve the challenge of the time-consuming process of uncertainty quantification. 

 

1. Introduction 

Nowadays, to develop long-term oil production 

models, engineers need to predict the behavior of 

reservoirs by utilizing geological features [1]. 

However, the defining variables have a wide range 

and are many and various. Thereby integrating the 

parameters one by one cannot describe the reservoirs 

accurately. Hence some simplifications should be 

applied to solve the model’s difficulties [1], [2]. 

First, the most impactful parameters should be 

determined. Sensitivity analysis is a good solution 

for figuring out the input parameters with the most 

likely influence [3]. By considering some 

assumptions on variables and their distribution, 

numerical models will be generated to simulate the 

reservoir. However, there is still an unsolved issue, 

namely the treatment of uncertainty.  

Defeating the uncertainty in anticipating the 

production requires a huge number of simulations, 

which is unfeasible because of the long computation 

time. [4], [5]. Different techniques have been 

focused on, and among them, proxy models have 

received more attention. The first proxy model was 

innovated by utilizing a bilinear polynomial of 

inputs.  These analytical models have been trained 

and developed to behave like simulators while 

consuming less time. In this way prediction, 

analysis, and finally optimization will be performed 

more efficiently [6], [7].   

So far it can be mentioned that accuracy and 

acceleration are two important characteristics that 

should be considered during the reservoir 

simulations. Artificial Neural Networks (ANNs) 

have been introduced as a practical solution. In a 

study, ANNs were applied as a proxy model to 

assess the uncertainty in production prediction [8]. 

Another study investigated different architectures of 

the neural networks in reducing the time 

consumption of reservoir simulation [9].  Artificial 

neural network separately or in combination with the 

genetic algorithm was utilized to grab nonlinearities 

of problems [2], [10]. Apart from optimization of the 

algorithm, there are several studies related to the 

application of ANN in engineering and production. 

Shaik et al. [2] predicted the life time of a pipeline 

by applying ANN. Otchere et al. [7] forecasted the 

features of a petroleum reservoir by using supervised 

machine learning paradigms. Moreover, the 

application of neural networks in production 

prediction was also proposed by  Yuan et al. [11]. 

Through all the previous studies it is mentioned that 

the quality and accuracy of a proxy model highly 

depend on the training step.  

This study focuses on the applicability of ANN as a 

proxy model for assessing the uncertainty in 

production prediction. Based on the Design of 

Experiments (DOE), a set of reliable data is 

produced by coupling MATLAB and Eclipse. Then 

the proxy model is trained, and the trained model is 

used to assess the uncertainty based on the Monte 

Carlo sampling principle. The main purpose of this 

paper is to propagate a methodology to allow for a 

more reliable decision about the productivity of a 

reservoir based on geological parameters. 
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1.1. Definition of Artificial Neural Network 

A neural network is simply a set of neurons that are 

connected. Each neuron, as it is depicted in Fig. 1, 

takes one or more inputs and gives an output based 

on defined functions. These functions may be Relu, 

Sigmoid, Gaussian, or the sign functions. It should 

be mentioned that synaptic weight is considered for 

different neurons [4]. 

 

Figure 1: Schematic of a artificial neuron. 

According to Fig. 1, x represents inputs, w is 

allocated to weight vector and b0 is bias. 

Mathematically each neuron should be displayed by 

its function (f). So, if a neuron receives n input it 

would be represented as bellow: 

𝑓: 𝑅𝑛+1  ×  𝑅𝑛  → 𝑅  (1) 

Satisfying 

1: 𝑔: 𝑅 → 𝑅 

2: 𝑊 ∈  𝑅𝑛+1, 𝑊 = (𝑤1, 𝑤2, … , 𝑤3, 𝑏0) 

3: ∀ 𝑥 ∈  𝑅𝑛, 𝑓(𝑊, 𝑥) = 𝑔(∑ 𝑤𝑖𝑧𝑖 +  𝑏0)

𝑛

𝑖=1

 

x = (𝑧1, … , 𝑧𝑛)   (2) 

Where g is the transfer function. This basic function 

could model the higher-order functions by utilizing 

the collective behavior of a set of neurons which is 

called a layer. Indeed, a network is made of 

multilayer, consisting of an input layer, one or more 

intermediate or hidden layers, and an output layer, 

while each layer is composed of several neurons 

(Fig. 2). 

 

Figure 2: Schematic diagram of a neural network with 

two hidden layers. 

Learning is the most important ability of a neural 

network, and a neural network will be able to 

generalize, classify and foresee [4], [12]. In other 

words, because of having experienced, neural 

networks will have recognition ability. But 

according to the learning, networks are divided into 

two classes, supervised and unsupervised networks. 

In a supervised learning class, input and output are 

fed into the network at the same time [7]. Then, the 

machine will learn how to reconfigure itself. On the 

other side, under unsupervised learning, the proxy is 

exposed to unlabeled input solely for clustering or 

comparing. It should be mentioned that to make the 

quadradic error of output at least, backpropagation is 

utilized in the supervised learning network, indeed it 

is a method of more accurate weight calculation 

[13].  

Generally, based on the structure of the network and 

the operation of neurons, neural networks carry out 

a quite simple differentiable function. Indeed, after 

the learning phase and stabilizing the weight, the 

machine as a black box forecasts the phenomenon 

for new inputs [9]. Despite all of these, there are still 

some deterrents against utilizing ANNs. In other 

words, configuring the architecture of ANNs, 

namely the number of layers and number of neurons 

in each layer, should be found, while there is not any 

identification of a better architecture [5]. 

 

2. Methodology  

 

2.1. Creating Proxy Model 

Fig. 3 represents the steps of an algorithm to model 

a proxy. The Data sets and the previously proxy 

algorithms are considered as the most important 

factors for qualifying a proxy model. To make sure 

that all aspects of the model are dealt with, an infinite 

size dataset is required, which is practically 

impossible [3], [9], [12]. Some techniques of 

experimental design are enlisted to extract the 

utmost information with the least simulations. 

 
Figure 3: Schematic proxy model development [14]. 
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Selecting the input variable highly depends on the 

type of problem and the level of knowledge of the 

project.  It is recommended to consider all input 

variables at the beginning and then omit unimportant 

parameters through the sensitivity analysis step. 

Indeed, sensitivity analysis filters out less significant 

parameters on a simulation model. Consequently, an 

appropriate dataset will be prepared. 

The accuracy of the proxy model highly originates 

from training. By utilizing a decent dataset 

sampling, the proxy model will be trained 

appropriately, and in the following, the estimation 

will be performed accurately.  Thereby, verifying the 

model which is based on prediction accuracy will be 

satisfied [14].  

 

2.1.1. Architecture of Artificial Neural Network 

A neural network is considered a good proxy when 

it predicted a new case with acceptable error. 

Therefore, evaluation of the model should be 

performed sequentially to avoid overtraining. In this 

way, cross-validation, as one of the most popular 

methods, lets defined architecture stop learning 

when a validation error is raised [11], [12]. 

Overtraining also comes from a poorly structured 

network. Thereby identifying the appropriate 

number of hidden layers and their neurons is so 

requisite [1]. Moreover, the complexity of neural 

networks should also be limited. For this purpose, 

after finishing the learning phase, the pruning 

method will eliminate the connections with the 

smallest effect on the output error. 

To obtain an optimal neural network for the defined 

method, both pruning and cross-validation were 

utilized. 

 

2.2. Development of The Physic-based Model With 

Uncertainity Description 

 

2.2.1. Defining Uncertain Input Domains 

This study is conducted through modeling and 

forecasting oil and water production from an 

advanced horizontal well in a synthetic reservoir 

with uncertain properties for 10 years. The reservoir 

properties are the model inputs, and it is assumed 

that the value of some of the properties is uncertain. 

The uncertain reservoir parameters with their 

uncertainty range are reported in Tab. 1.  

Table 1: Uncertain reservoir properties with their 

range. 

Parameter Min Mean Max 
Porosity 0.15 0.23 0.27 

Permeability in x-dir. [mD] 200 500 1000 

Permeability in y-dir. [mD] 150 600 1200 

Permeability in z-dir. [mD] 20 100 500 

Irreducible water sat. 0.1 0.15 0.2 

Residual oil saturation 0.05 0.1 0.15 

Max. rel. perm. of water 0.2 0.4 0.5 

Max. rel. perm. of oil 0.85 0.95 1 

Initial water saturation 0.12 0.2 0.25 

Capillary pressure [bar] 4 2.7 2 

Aquifer prod. Index [m3/d/bar] 2000 10000 15000 

 

2.2.2. Determining the Most Impactful Uncertain 

Parameters 

Uncertainty quantification based on the Monte Carlo 

approach requires many simulations. For each 

simulation run, a random combination of model 

input values is chosen, and the corresponding model 

outputs are calculated by using the simulator. This is 

a very time-consuming process when the system has 

several inputs. By filtering the less important inputs 

out and focusing on the most impactful input 

variables on the accuracy of the models, a bit of 

prediction accuracy is sacrificed but the speed of 

uncertainty assessment highly increases. The 

sensitivity analysis assesses the contribution of the 

uncertainty of each model input to the accuracy of 

the model outcomes and identifies the most 

important parameters of the system. Cumulative oil 

and water production are the most important outputs 

of oil models and are the model outputs in this paper. 

By performing sensitivity analysis on the uncertain 

reservoir parameters given in Tab. 1, the sensitivity 

coefficient of each reservoir parameter for the 

cumulative oil and water production is calculated. 

The obtained results are depicted as a tornado 

diagram in Fig. 4. Based on the presented results, the 

five most important input variables for predicting oil 

and water production are determined and given in 

Tab. 2. These input variables are the model inputs 

for the proxy model development and uncertainty 

quantification. 

 
Figure 4: Sensitivity analysis of uncertain reservoir 

parameters. 
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Table 2: Uncertain input variables for uncertainty 

assessment. 

Parameter Min. Mean Max. 

Porosity 0.15 0.23 0.27 

Irreducible water saturation 0.1 0.15 0.2 

Initial water saturation 0.12 0.2 0.25 

Permeability in z-dir 20 100 500 

Max. rel. perm. of water 0.2 0.4 0.5 

 

2.2.3. Development of The Physics-based Model in 

Eclipse. 

In this paper, the production prediction and 

uncertainty assessment are performed for primary oil 

production from a medium oil reservoir with a water 

drive. The reservoir fluid properties, as well as the 

temperature and pressure of the reservoir, are given 

in Tab. 3. 

Table 3: Reservoir characteristics and fluid properties. 

Parameter Value 
Oil density and Viscosity 900 kg/m3, 2.5 cP 

Water density and Viscosity 1050 kg/m3, 0.45 cP 

Gas-oil ratio (GOR) 50 

Temperature and Pressure 60 ˚C, 200 bar 

It is assumed that oil is produced from the reservoir 

near an advanced horizontal well with a length of 

1000 m completed with Inflow Control Devices 

(ICDs) and zonal isolation. The diameters of the 

wellbore, the production tubing, and the ICDs are 

8.5 inches, 5.5 inches, and 0.01 m respectively. The 

thickness and width of the reservoir are assumed to 

be 30 m and 70 m respectively. It is also assumed 

that the well is located 5.5 m below the top of the 

drainage area. The schematic of the near-well 

reservoir is shown in Fig. 5. 

 

 
Figure 5: Schematic of the near-well reservoir. 

To achieve a suitable grid setup, in the Y and Z 

directions finer meshes have been set near the 

wellbore and uniform meshes are considered in the 

X-direction. It is assumed that the horizontal well 

has 8 equivalent joints, each 125 m long. As a result, 

8 uniform cells are considered for the reservoir in the 

X-direction. The grid resolution in Y and Z 

directions is illustrated in Fig. 6. 

 
Figure 6: Grid resolution in the Y-Z plane. 

In this study, Eclipse® which is a robust physics-

based simulator is applied as a simulation tool. Due 

to the high pressure and low temperature of the 

reservoir, the reservoir condition is located well to 

the left-hand side of the critical point, and the black-

oil model can be used for modeling fluid flow from 

the reservoir to the production tubing. Moreover, the 

multisegmented well model in the Eclipse simulator 

is used for developing the well model with ICD 

completion and zonal isolation. The well is 

considered to be controlled by the Bottom Hole 

Pressure (BHP), and the BHP is assumed to be 190 

bar.  Based on the mean value of the reservoir 

properties and the mentioned considerations and 

assumptions, a base model is developed in the 

Eclipse simulator. The cumulative oil and water 

production based on the base model for 10 years is 

shown in Fig. 7. 

 
Figure 7: Base model water and oil production 

prediction for 10 years. 

 

3. Results 

 

3.1. Training and Test the ANN 

The training data sets were generated by the Eclipse 

reservoir simulator. Inputs consisted of 5 variables 

and each variable accounted for 5 values, which 

gives the data sets with a size of 55. For each 

variable, the min. value, max. value, mean value, a 

value between min. and mean, and a value between 

mean and max. were opted. In addition, the main 

dataset accounted for 67% training, 25% validation, 

and 8% test. 

Before feeding inputs to the machine for training, all 

values were normalized between [0,1] based on min 

value and max value. Outputs in the dataset 
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accounted for accumulative oil and water production 

through 10 years. Because of that, for predicting 

fluid production of each year, fluid production of the 

previous year was considered as input too, Fig. 8. 

 

Figure 8: Schematic flow chart of predicting in 

sequential years. 

For testing the proxy, the values of inputs opted 

ununiformly in a way that the machine had never 

experienced, although these values were between the 

minimum and the maximum values. 

During testing the machine, prediction errors were 

calculated point by point within 10 years and for 

each state. State refers to the specific set of an input.  

𝐸𝑟𝑟𝑜𝑟 =  
 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  (3) 

The machine predicted the oil production better than 

the water production. The mean error values are 

presented as a horizontal line in Fig. 9, 0.96 and 3.79 

for oil and water respectively.  

 

 
Figure 9: Prediction error for testing the proxy model. 

 

3.2. Uncertainty Assessment in Production 

Prediction 

Input datasets play a great role in studying 

uncertainty in production prediction. In addition, the 

uncertainty of input parameters makes it necessary 

to use a probabilistic approach [4], [6]. Although 

there are different methods for probabilistic data 

sampling, Latin Hypercubic Sampling (LHS) was 

chosen as an efficient sampling method [14]. Indeed, 

by considering the min and max of 5 effective 

parameters, the 100000 most probable sets of inputs 

were extracted according to the LHS approach. In 

this way, P (10), P (50), and P (90) are to be 

predicted. 

After performing 100000 predictions for each time 

step. Cumulative probability distribution and 

probability density for accumulative oil and water 

production whithin 10th year is shown in Fig. 10, 11, 

12 and 13. 

Fig. 10 depicts a normal distribution for 

accumulative oil production. On the other side, Fig. 

12 shows a lag normal distribution of water 

production.   

 

Figure 10: Probability distributionof cumulative oil 

production after 10 years. 

 

Figure 11: Cumulative probability distributiondiagram 

for predicting oil production after 10 years. 

 
Figure 12: Probability distribution  of cumulative 

water production after 10 years. 

 

Figure 13: Cumulative probability distributiondiagram 

for predicting water production after 10 years. 
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As it is presented in Tab. 4, there is a 90% chance to 

produce less than 2.4E+05  m3  oil and less than 

3.6E+06 m3 water after 10 years. In addition, 

cumulative oil and water production will be less than 

1.5E+05 m3  and 2.4E+06 m3 respectively with a 

chance of 10%. In this case, the best estimation (P50) 

for cumulative oil and water production is 1.9E+05 

m3 and 3.3E+06 m3 respectively. 

Table 4: Summary of uncertainty results. 

 P (10) P (50) P (90) 

Oil 1.5E+05 1.9E+05 2.4E+05 

Water 2.4E+06 3.3E+06 3.6E+06 

 

4. Conclusion  

As the oil reservoirs are developing,  uncertainty 

assessment has become a priority.  An unreliable 

prediction of the producibility of a reservoir may 

cause investment bankruptcy. Although this type of 

reservoir engineering problem could be solved by 

applying a reservoir simulator, the time-consuming 

process is a significant deterrent. Therefore, an 

artificial neural network with a stochastic approach 

has been enlisted to analyze uncertainty. 

This paper presents an appropriate methodology to 

deal with assessing the uncertainty during the fluid 

production prediction. The paper compiles 

MATLAB and Eclipse and built an amendable 

optimal Neural Network by utilizing mathematical 

procedures, to reduce the time consumption of data 

extraction and prediction of an oil reservoir. 

The results show that an appropriate proxy model 

can predict the production with an acceptable error 

of less than 4%. In addition, when utilizing ANN, 

the time consumption was reduced by a ratio of 150 

times. It is also concluded that by increasing the size 

of a dataset, the time-consumption effectiveness of 

ANN will raise.  

 

References 
 

[1] J. Navrátil, A. King, J. Rios, G. Kollias, R. Torrado, and 
A. Codas, “Accelerating Physics-Based Simulations 

Using End-to-End Neural Network Proxies: An 

Application in Oil Reservoir Modeling,” Frontiers in 
Big Data, vol. 2, p. 33, 2019, doi: 

10.3389/fdata.2019.00033. 
[2] T. Foroud, A. Seifi, and B. AminShahidi, “Assisted 

history matching using artificial neural network based 

global optimization method - Applications to Brugge 

field and a fractured Iranian reservoir,” Journal of 
Petroleum Science and Engineering, vol. 123, 2014, 

doi: 10.1016/j.petrol.2014.07.034. 

[3] A. F. Teixeira and A. R. Secchi, “Machine learning 
models to support reservoir production optimization,” 

IFAC-PapersOnLine, vol. 52, no. 1, pp. 498–501, 2019, 

doi: 10.1016/j.ifacol.2019.06.111. 
[4] D. Guérillot and J. Bruyelle, “Uncertainty assessment 

of hydrocarbon in place with geological models 

satisfying gravity-capillary equilibrium,” Society of 
Petroleum Engineers - SPE Kuwait Oil and Gas Show 

and Conference 2019, KOGS 2019, 2019, doi: 

10.2118/198099-ms. 
[5] D. D. Monteiro et al., “Uncertainty analysis for 

production forecast in oil wells,” SPE Latin American 

and Caribbean Petroleum Engineering Conference 
Proceedings, 2017, doi: 10.2118/185550-ms. 

[6] C. Wei et al., “Uncertainty assessment in production 

forecasting and optimization for a giant multi-layered 
sandstone reservoir using optimized artificial neural 

network technology,” Society of Petroleum Engineers - 

SPE Reservoir Characterisation and Simulation 
Conference and Exhibition, RCSC 2017, pp. 1179–

1188, 2017, doi: 10.2118/186069-ms. 

[7] D. A. Otchere, T. O. Arbi Ganat, R. Gholami, and S. 
Ridha, “Application of supervised machine learning 

paradigms in the prediction of petroleum reservoir 

properties: Comparative analysis of ANN and SVM 
models,” Journal of Petroleum Science and 

Engineering, vol. 200. 2021. doi: 
10.1016/j.petrol.2020.108182. 

[8] D. R. Guerillot and J. Bruyelle, “History Matching 

Methodology Using an Optimal Neural Network Proxy 
and a Global Optimization Method,” vol. 2016, no. 1, 

pp. 1–5, 2016, doi: https://doi.org/10.3997/2214-

4609.201602403. 
[9] P. C. Silva, C. Maschio, and D. J. Schiozer, “Use of 

Neuro-Simulation techniques as proxies to reservoir 

simulator: Application in production history matching,” 
Journal of Petroleum Science and Engineering, vol. 57, 

no. 3, pp. 273–280, 2007, doi: 

https://doi.org/10.1016/j.petrol.2006.10.012. 
[10] D. R. Guérillot and J. Bruyelle, “Uncertainty 

assessment in production forecast with an optimal 

artificial neural network,” in SPE Middle East Oil and 
Gas Show and Conference, MEOS, Proceedings, 2017, 

vol. 2017-March. doi: 10.2118/183921-ms. 

[11] Z. Yuan, H. Huang, Y. Jiang, and J. Li, “Hybrid deep 
neural networks for reservoir production prediction,” 

Journal of Petroleum Science and Engineering, vol. 

197, 2021, doi: 10.1016/j.petrol.2020.108111. 
[12] N. B. Shaik, S. R. Pedapati, and F. A. B A Dzubir, 

“Remaining useful life prediction of a piping system 

using artificial neural networks: A case study,” Ain 
Shams Engineering Journal, 2021, doi: 

https://doi.org/10.1016/j.asej.2021.06.021. 

[13] L. A. N. Costa, C. Maschio, and D. Schiozer, “Study of 
The Influece of Training Data set in Artificail Neural 

Network Applied to The History Matching Process,” 

2010. 
[14] D. I. Zubarev, “Pros and cons of applying proxy-models 

as a substitute for full reservoir simulations,” 

Proceedings - SPE Annual Technical Conference and 
Exhibition, vol. 5, pp. 3234–3256, 2009, doi: 

10.2118/124815-ms. 

  

 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 
Simulation of adsorption and desorption of VOC on activated carbon 

 

Sviatoslav Eroshkina, Eivind Johannessenb, Even Solbraac  

  
a, c Department of Energy and Process Engineering, Norwegian University of Science and Technology 

b ,c Equinor 

eroshkin.sviatoslav @gmail.com 

 

Abstract 

 

The study's primary purpose is to simulate the adsorption and desorption of volatile organic components on 

activated carbon bed using python. The model was verified with experiments for the separation of methane (55 

mol %) - carbon dioxide (45 mol %) mixture using vacuum pressure swing adsorption on an activated carbon 

molecular sieve. For a six-component mixture (methane, ethane, propane, butane, carbon dioxide and nitrogen), 

the model was verified using Aspen Adsorption flowsheet simulator and experimental results of vacuum 

pressure swing adsorption on activated carbon. Even though the model showed a relatively low error in 

comparison with provided experiments, some experimental cases need to be investigated more to get a better 

model prediction. 

 

1. Introduction 

Adsorption of VOC (Volatile Organic 

Components) on a fixed-bed AC (Activated 

Carbon) is commonly used to reduce VOC 

emissions.  VRU (Vapor Recovery Units) gained 

popularity in the 1990s.  Today 95 % of all new 

VRU are based on AC adsorption followed by 

vacuum regeneration.  

 

Many papers have studied the PSA (Pressure 

Swing Adsorption) for other components than 

VOC. From the technical point of view, these 

works are interesting because the mechanism of 

VOC VPSA (Vacuum Pressure Swing Adsorption) 

is in many ways similar.  The PSA process exploits 

the change of the adsorption equilibrium with a 

change in system pressure.  The process efficiency 

depends on many factors such as the number, 

sequence, and time of PSA steps, flow rate of the 

gas, gas composition, adsorption pressure, and 

others.  For example, Kim et al. (2015) investigated 

biogas mixture adsorption on AC molecular sieve 

with four beds and a seven steps PSA system.  A 

significant improvement to the PSA process was 

the equalization step: reducing the energy 

consumption in the pressurization step by 

employing the purified product from the second 

adsorber.  The experimental setup and numerical 

model showed a cyclic steady-state process after 13 

cycles. 

 

Furthermore, Kim et al. (2015) indicate that 

optimum conditions for the separation highly 

depend on such parameters as the adsorption 

pressure, desorption pressure, purge, and feed rates 

(the ratio of the purge gas flow rate to the flow rate 

of desirable component feed rate).  Ahn et al. 

(2013) also showed the importance of purge to feed 

ratio, adsorption pressure, feed flow rate, step 

times, and carbon ratio for layered two- and four-

bed 6-step PSA processes for H2 recovery from 

coal gas.  The result of the study is that higher 

purity of the product can be achieved with layered 

beds; however, less recovery can also be observed.  

 

One of the main difficulties in mathematical 

adsorption modeling is the correct definition of 

adsorption thermodynamics and mass transfer.  The 

EL (extended Langmuir) (Duong, 1998) isotherm is 

widely used due to the model’s simplicity.  

However, the accuracy of this isotherm type is 

questionable.  Even though it has a theoretical basis 

behind it, the assumptions place significant 

restrictions on the applicability of this isotherm.  

The EL model is an explicit model that is preferred 

over its implicit counterparts, for example, IAST 

(Ideal Adsorption Solution Theory), due to the 

computation complexity of the last one.  An 

essential shortcoming of the EL model is the 

neglect of the adsorbate size effect (Tom et al., 

2021).  However, the results of studies that use EL 

are usually coherent with experimental data.  In this 

study, more components will be considered, which 

may have a negative effect when a simple EL 

model is used. 

 

The adsorption mass transfer model defines the 

mass accumulation in the solid phase.  The most 

common is to use the LDF (Linear Driving Force) 

for estimating the mass transfer.  Kim et al. (2015) 

indicate that the optimal parameters of mass 

transfer constants should be obtained by comparing 
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the numerical results with experimental data.  

These parameters should be chosen such that the 

model solution is the closest to the whole range of 

available experimental data. 

 

Even though PSA systems are well known, the 

multicomponent VOC VPSA systems are not 

properly investigated.  The VOC VPSA modeling 

is becoming critical to the industry as increasingly 

stringent emission standards are being set.  In 

addition, modeling in python is more and more 

advantageous since it provides practical 

optimization tools. 

 

1.1 The VPSA process  

The VPSA process can be done in different ways 

(with two or more adsorbers, with three or more 

steps, and with co-current and counter-current flow 

configurations). The simplified flow diagram of 

VOC adsorption process studied in this work is 

shown in Fig. 1. The process consists of two beds: 

one in adsorption mode and another in regeneration 

mode. The adsorber outlet is a pure product during 

the adsorption process and highly concentrated 

vapor during the regeneration process. This vapor 

is then recycled in the absorption system. 

 
Figure 1: The simplified process flow diagram of VOC 

adsorption  

One way of VPSA organization is co-current 

pressurization, adsorption, counter-current 

desorption, and counter-current purge. The steps 

are switched by employing valves. The top of the 

adsorber is closed during pressurization, and the 

system's pressure increases (see Fig. 2, upper left). 

The pressure increase occurs from a specific low 

pressure after regeneration to that required for 

adsorption. Next, the valve at the top of the 

adsorber opens, and the pure product is achieved at 

the outlet (see Fig. 2, upper right). After a certain 

period, the breakthrough of specific components 

occurs, and it is necessary to switch the adsorber to 

the regeneration mode (see Fig. 2, lower left). 

There is no inflow at the bottom during 

regeneration. Also, the valve to the vacuum pump 

opens, and the vacuum pump turns on. After some 

time, inert gas is supplied from the top while the 

pump operates. This step is called "purge" (see Fig. 

2, lower right). As a result, the adsorbates' partial 

pressure decreases, which causes them to desorb 

better. After the purge, the whole cycle repeats. A 

certain amount of non-desorbed gas remains in the 

adsorber, which affects the process and changes the 

result of the next cycle. However, the system 

gradually converges with an increase in number of 

cycles to the so-called "cyclic-steady-state". 

 

 
Figure 2: Cycle organization 

 

1.2 Adsorption Equilibrium and Mass transfer 

The extended Langmuir (EL) isotherm is widely 

used to describe the adsorption equilibrium due to 

the model’s simplicity (see Eq. (1)).  

 

 
𝑤𝑒𝑞,𝑖

𝑤𝑚𝑎𝑥,𝑖

 =
𝑏𝑖𝑃𝑖

1 + ∑ 𝑏𝑗𝑃𝑗
𝑁
𝑗=1

(1) 

 

here, 𝑤𝑒𝑞,𝑖 is an equilibrium concentration of the 

adsorbate in the solid phase [kmol/kg], 𝑤𝑚𝑎𝑥,𝑖 is the 

maximum adsorbate concentration in the solid 

phase [kmol/kg], 𝑏𝑖 is an affinity coefficient of 

component i [1/bar], 𝑃𝑖  is a partial pressure of 

component i [bar], N - number of components, 𝑏𝑗 is 

an affinity coefficient of component j [1/bar], 𝑃𝑗 is 

a partial pressure of component j [bar]. 
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Coefficient b is the parameter that shows the ratio 

between adsorption and desorption rates. This 

parameter is called affinity coefficient and may be 

expressed in terms of adsorption heat, temperature, 

and affinity constant: 

 

𝑏𝑖 = 𝑏∞ 𝑒𝑥𝑝 (
𝑄

𝑅𝑇
) (2) 

here, 𝑏∞ is an affinity constant [1/bar], Q is an 

isosteric heat of adsorption [J/mol], R is a universal 

gas constant R = 8.314 [J/molK], T is temperature 

[K]. 

 

The IAST is widely used to describe 

multicomponent adsorption. One of the challenges 

in the theory is that it requires the evaluation of the 

spreading pressure, which is not available in the 

analytical form for many isotherms. However, any 

isotherm that can express spreading pressure 

analytically can be used in Fast IAST (Fast Ideal 

Adsorption Solution Theory), such as one-

component Langmuir isotherm. The calculation 

procedure is described in more detail by Duong 

(1998). 

 

The mass transfer resistance between gas and solid 

phases plays a great role in adsorption modeling. 

The mass transfer model defines the mass 

accumulation in the solid phase. The most common 

is to use the LDF model (see Eq. (3)) for estimating 

the mass transfer coefficient. The lumped mass 

transfer coefficient (overall mass transfer 

coefficient 𝑘𝑖 in Eq. (3)) considers all the 

resistances to the mass transfer. They are the film 

around each particle, surface diffusion, macropore, 

and micropore diffusion in each particle. 

 

The optimal mass transfer constants can be 

obtained from the comparison of the numerical 

results with experimental data.  

 
𝜕𝑤𝑖

𝜕𝑡
= 𝜌𝑏𝑢𝑙𝑘𝑘𝑖(𝑤𝑒𝑞,𝑖 − 𝑤𝑖) (3) 

 

here, 𝜌𝑏𝑢𝑙𝑘 is a solid bulk density [kg/m3], 𝑘𝑖 is an 

overall mass transfer coefficient of a component i 

[1/s]. 

 

1.4 Governing transport equations  

The transport equations include mass, momentum, 

and energy balance equations. The following 

assumptions are used:  

 

1. Bed porosity is homogeneous and constant along 

the bed. 

2. Gas flows only in axial direction and there are no 

gradients in radial direction (one-dimensional 

model). 

4. Diffusion in axial direction are negligible. 

5. Ideal gas law is used for gas state calculations. 

6. Solid thermal conductivity is negligible and heat 

capacity is assumed to be constant and independent 

of temperature. 

7.  Gas thermal conductivity is negligible and heat 

capacity is assumed to be constant (independent of 

temperature and gas composition). 

8. There is no thermal resistance between gas and 

solid phase. 

9. The heat of adsorption is assumed to be constant, 

independent of loading and temperature. 

10. Constant wall temperature assumption. Wall 

temperature is equal to the ambient temperature.  

The mass balance equation: 

 

102𝜖

𝑅𝑇

𝜕(𝑦𝑖𝑃)

𝜕𝑡
− (

102

𝑅𝑇
) (

𝐵

𝜇
 )(𝑦𝑖𝑃

𝜕2𝑃

𝜕𝑥2
+ 𝑦𝑖 (

𝜕𝑃

𝜕𝑥
)

2

𝑃
𝜕𝑃

𝜕𝑥

𝜕𝑦𝑖

𝜕𝑥
) +

𝜕𝑤𝑖

𝜕𝑡
= 0 (4)

 

 

here, 𝜖 is a total porosity, 𝑅 is a universal gas 
constant [J/kmolK], 𝑇 is temperature [K], 𝐵 is bed 

permeability [𝑚2], 𝜇 is a dynamic gas viscosity 

[bar s], 𝑃 is pressure [bar], 𝑦𝑖  is a molar fraction of 

component i, 𝑤𝑖  is a solid loading [kmol/𝑚3]. 
 
The energy equation: 

                    

(𝑐𝑝,𝑠𝑜𝑙𝑖𝑑𝜌𝑏𝑢𝑙𝑘 + 𝜖𝑐𝑝,𝑔𝑎𝑠 (
𝑃 ⋅ 102

𝑅𝑇
))

𝜕𝑇

𝜕𝑡
 

−𝑐𝑝,𝑔𝑎𝑠 (
𝑃 ⋅ 102

𝑅𝑇
) (

𝐵

𝜇
 )(

𝜕𝑃

𝜕𝑥

𝜕𝑇

𝜕𝑥
) 

=
4ℎ𝑊

𝑑
(𝑇𝑎𝑚𝑏 − 𝑇) + ∑

𝜕𝑤𝑖

𝜕𝑡
𝛥𝐻𝑖

𝑁

𝑖=1

(6)

 

         

here, cp,solid is a solid specific heat capacity 

[J/kgK], cp,gas is a gas specific heat capacity 

[J/kmolK], hW is a wall heat transfer coefficient 

[W/𝑚2𝐾], d is a diameter of the adsorber [m], Tamb 
is an ambient temperature [K], ΔHi is a heat of 
adsorption of component i [J/kmol]. 
 
1.5 Boundary and initial conditions 

The prescribed equations are subject to boundary 

and initial conditions: 
Table 1: Boundary and initial conditions for 

pressurization and adsorption steps. 

Pressurization Adsorption 

P(x, t = 0) = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

P(x = 0, t) = 𝑃1(𝑡) 

P(x = L, t) = 𝑃2(𝑡) 

𝑦𝑖(x = 0, t) = 𝑦𝑖,𝑓𝑒𝑒𝑑 

T(x, t = 0) = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

T(x = 0, t) = 𝑇𝑖𝑛𝑙𝑒𝑡  

 

P(x, t = 0) = 𝑃𝑝𝑟𝑒𝑠𝑠 

P(x = 0, t) = 𝑃𝑖𝑛𝑙𝑒𝑡  

𝜕2P

𝜕𝑥2
(𝑥 = 𝐿, 𝑡) = 0 

𝑦𝑖(x = 0, t) = 𝑦𝑖,𝑓𝑒𝑒𝑑 

T(x, t = 0) = 𝑇𝑝𝑟𝑒𝑠𝑠 

T(x = 0, t) = 𝑇𝑖𝑛𝑙𝑒𝑡  
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Table 2: Boundary and initial conditions for desorption 

and purge steps. 

Desorption Purge 

P(x, t = 0) = 𝑃𝑎𝑑𝑠 

P(x = 0, t) = 𝑃1(𝑡) 

P(x = L, t) = 𝑃2(𝑡) 
𝜕𝑦𝑖

𝜕𝑥
(x = L, t) = 0 

T(x, t = 0) = 𝑇𝑎𝑑𝑠 
𝜕𝑇

𝜕𝑥
(x = L, t) = 0 

 

P(x, t = 0) = 𝑃𝑑𝑒𝑠 

P(x = 0, t) = 𝑃1(𝑡) 

P(x = L, t) = 𝑃2(𝑡) 

𝑦𝑁2(x = L, t) = 1 

T(x, t = 0) = 𝑇𝑑𝑒𝑠 

𝑇(x = L, t) = 𝑇𝑖𝑛𝑙𝑒𝑡  

 

here, 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the initial pressure along the 
adsorber for the first cycle or pressure along the 
adsorber after purge step for the next cycles 
[bar], 𝑃1(𝑡) is the pressure at the bottom (inlet) 
of the adsorber [bar], 𝑃2(𝑡) is the pressure at the 
top (outlet) of the adsorber [bar], 𝑦𝑖,𝑓𝑒𝑒𝑑  is the 

molar fraction of component i in the feed 
stream, 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the initial temperature along 
the adsorber for the first cycle or temperature 
along the adsorber after purge step for the next 
cycles [K], 𝑇𝑖𝑛𝑙𝑒𝑡  is the gas inlet temperature [K], 
subscripts press, ads, des mean the results of 
temperature or pressure from the previous step.  
 

P1(t) and P2(t) are the boundary pressures at the 

bed bottom (inlet) and top (outlet) respectively. 

These pressures are calculated based on the ideal 

gas law using the following equations: 

1. Pressurization 

          
𝜕𝑃1

𝜕𝑡
=     

𝑃1

𝑉1

(
𝐹𝑅𝑇 ⋅ 10−2

𝑃1

− 𝑢𝑜𝑢𝑡𝐴)          (7) 

  
𝜕𝑃2

𝜕𝑡
=     

𝑃2

𝑉2

(𝑢𝑖𝑛𝐴)                                        (8) 

2. Desorption 
𝜕𝑃1

𝜕𝑡
=     

𝑃1

𝑉1

(−𝑞𝑝𝑢𝑚𝑝 − 𝑢𝑖𝑛𝐴)                       (9) 

  
𝜕𝑃2

𝜕𝑡
=     

𝑃2

𝑉2

(𝑢𝑜𝑢𝑡𝐴)                                       (10) 

3. Purge 
𝜕𝑃1

𝜕𝑡
=     

𝑃1

𝑉1

(−𝑞𝑝𝑢𝑚𝑝 − 𝑢𝑖𝑛𝐴)                     (11) 

  
𝜕𝑃2

𝜕𝑡
=     

𝑃2

𝑉2

(𝑞𝑝𝑢𝑟𝑔𝑒 + 𝑢𝑜𝑢𝑡𝐴)                     (12) 

here, F is the flow rate coming into the adsorber 

[kmol/s], 𝑉1 is an inlet volume not filled with 

adsorbent [𝑚3], 𝑉2 is an outlet volume not filled 

with adsorbent [𝑚3], 𝑢𝑜𝑢𝑡 is a velocity of gas going 

to the adsorber [m/s], 𝑢𝑖𝑛 is a velocity of gas going 

out of the adsorber [m/s], 𝑞𝑝𝑢𝑚𝑝 is a volumetric 

flow rate to the vacuum pump [m3/s], 𝑞𝑝𝑢𝑟𝑔𝑒 is a 

purge volumetruc flow rate to the adsorber [m3/s]. 

It should be noted that velocity has a negative sign 

during desorption and purge steps.  

 

 

2. Methodology  

2.1 Python numerical solution 

The set of PDEs (Partial Differential Equations) 

and ODEs (Ordinary Differential Equations) need 

to be solved with the initial and boundary 

conditions as shown in Tables 1 and 2.  

 

The spatial and time derivative terms can be 

approximated. The variables are defined on a grid 

with finite difference methods. 

 

The first-order upwind difference scheme may be 

beneficial in the case of sharp front propagation, 

which is vital in the simulation beginning and in 

the systems where breakthrough curves are steep. 

The first-order upwind method is also 

recommended because of the fast simulation. The 

scheme is first-order accurate and may give a 

significant numerical diffusion. However, the 

method does not produce oscillations 

(unconditionally stable). The upwind difference 

scheme for the positive velocity is shown below: 

 

  
𝜕𝑓

𝜕𝑥
=    

𝑓𝑙 − 𝑓𝑙−1

Δ𝑥
 𝑖𝑓 𝑢 > 0, 

 

  
𝜕𝑓

𝜕𝑥
=    

𝑓𝑙+1 − 𝑓𝑙

Δ𝑥
 𝑖𝑓 𝑢 < 0                       (13) 

 

here, f is a function, l is a space grid point, u is 

velocity.  

The second order derivative approximation is 

shown below:  

  
𝜕2𝑓

𝜕𝑥2
=    

𝑓𝑙+1 − 2𝑓𝑙 + 𝑓𝑙−1

Δ𝑥2
          (14) 

 

The system of PDE and ODE will be solved in 

Python.  

 

2.2 Aspen Adsorption numerical solution 

Aspen Adsorption will be used to compare the 

results. Aspen Adsorption is a comprehensive 

flowsheet simulator for adsorption modeling. The 

developed flowsheet with one adsorber for VPSA 

process is shown in Fig. 3. 

 
Figure 3: Aspen Adsorption VPSA flowsheet 
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3. Results 

3.1 Model verification 

3.1.1 Comparison with  Cavenati et al. (2005) 

experiments 

The simulation becomes more complicated with an 

increase in the number of components. Therefore, it 

is better first to compare the results with fewer 

components to investigate if the simulation works 

correctly. For example, Cavenati et al. (2005) 

considered only two components’ adsorption on 

AC molecular sieve 3K: methane and carbon 

dioxide. 

 

 Cavenati et al. (2005) focused on vacuum pressure 

swing adsorption for the separation of methane (55 

mol %) - carbon dioxide (45 mol %) mixture with a 

total flow between 1 and 1.5 SLPM (Standard Liter 

per Minute). A four-step cycle consisted of 

pressurization, adsorption, counter-current 

blowdown, and counter-current purge. The results 

for binary methane-carbon dioxide adsorption at a 

constant pressure of 320 kPa are presented. The 

authors did the experiments in a column of 0.83 m 

length and 0.021 m in diameter with a bulk density 

of 715 kg/𝑚3 . The ambient temperature during the 

experiments was 303 K.  

 

Equilibrium and kinetic parameters for methane-

carbon dioxide mixture adsorption on Carbon 

Molecular Sieve 3K can be found in Vilardi’s work 

(Vilardi et al. 2020). 

 

Fig. 4 shows the simulated breakthrough curves 

and experimental results for non-isothermal 

conditions. The model describes well the trend of 

breakthrough for methane and carbon dioxide. 

 

 
Figure 4: Comparison of breakthrough results with 

experiments (experimental results from Cavenati et al. 

(2005)) 

An essential part of the simulation is energy 

balance. Carbon dioxide adsorption produces a 

significant amount of heat. Cavenati et al. (2005) 

also reported a substantial amount of heat loss to 

the environment that needs to be considered. 

Therefore, wall heat transfer coefficient of 4E-5 

MW/𝑚2K was used as a fitting parameter, and the 

result is shown in Fig. 5. The experimental data 

includes temperature profiles at three positions of 

the adsorption bed (0.17, 0.43, and 0.68 m). These 

temperature profiles were compared with simulated 

ones. 

 

 
Figure 5: Comparison of temperature results with 

experiments (experimental results from Cavenati et al. 

(2005)) 

The results reflect the thermal wave well, but 

temperature profiles are more sharp than 

experimental. That may be due to the inaccuracy of 

the component properties (such as the heat capacity 

of gas and adsorbent) and neglection of axial 

thermal conductivities.  

Next, Cavenati et al. (2005) presented the results 

after 46 cycles for VPSA system. The results of the 

experiments as well as the developed python 

simulation results are shown in Fig. 6. During the 

first 80 seconds of a cycle, the pressure rises from 

10 kPa to 320 kPa with the constant feed flow rate 

of gas (see Fig. 2, upper left). The outlet flow rate 

of methane and carbon dioxide is 0 during this step 

because the top of the column is closed. During the 

next 100 seconds, the top of the column is opened, 

and the adsorption step with constant pressure and 

inlet flow rate begins (see Fig. 2, upper right). Only 

methane is obtained as the product at this step. 

From 180 to 300 seconds, the top of the column is 

closed, and counter-current blowdown occurs with 

the vacuum pump (see Fig. 2, lower left). The 

characteristic of the MZ 1C vacuum pump was 

used in the developed model. The final desorption 

pressure of 10 kPa coincides with what the authors 

presented in the article. In the next 50 seconds, 

there is a counter-current purge to decrease the 

partial pressure of carbon dioxide inside the 

adsorber (see Fig. 2, lower right). 
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Figure 6: Comparison of temperature results with 

experiments (experiment results from (Cavenati et al., 

2005)) 

 

3.1.2 VOC simulation and comparison with Aspen 

Adsorption results and Equinor experiments 

 

The central part of the study deals with simulation 

of VOC adsorption on AC. The experiments were 

conducted at Equinor to optimize the adsorption of 

VOC on AC adsorption bed (Eroshkin, 2022). 

Adsorber design, cycle details and operating 

conditions are described in Tables 3-5. The 

adsorption cycle in the experiments was as 

described in Section 1.1 (see Figure 2): 

 
Table 3: Bed parameters 

Parameter Value 

Adsorber height 

Adsorber height (filled 

with AC) 

Adsorber diameter 

Clean adsorbent bulk 

density 

 

1 m 

0.77 m 

 

0.032 m 

 

430 kg/𝑚3 

 
Table 4: Cycle steps 

Cycle step Time 

Pressurization 

Adsorption  

Desorption 

Purge 

 

Until 1 bara is reached 

900 sec/1500 sec 

600 sec / 1200 sec 

300 sec 

 
 

Table 5: Parameters of the main case study 

Parameter Value 

Gas inlet flow rate 

Purge gas flow rate 

Composition 

 

 

 

 

 

Inlet temperature 

1248/1254 Nml/min 

50 Nml/min 

𝐶𝐻4: 8.6 / 8 mol%  

𝐶2𝐻6:16.1 / 16 mol% 

𝐶3𝐻8: 22.4 / 20.4 mol% 

𝐶4𝐻10: 10 / 11.7 mol% 

𝐶𝑂2 : 4.7 / 4.6 mol%,  

𝑁2: 38.2 / 39.3 mol% 

303 K  

Adsorbent initial 

temperature 

 

303 K 

 

 

Since the temperature variations do not exceed 10 

degrees in the experimental results of VOC 

adsorption, neglecting temperature calculations 

should not radically change the solution. Thus, the 

isothermal simulation is presented below. The main 

parameters fitting to the model are the mass 

transfer coefficients. The mass transfer coefficients 

are initially assumed to be high, and there is almost 

no adsorption resistance.  

The following parameters are used for equilibrium 

description. However, these parameters still need to 

be improved with proper experiments.  
 

Table 6: Equilibrium parameters 

Methane Ethane 

𝑤𝑚𝑎𝑥: 0.00032 
𝑘𝑚𝑜𝑙

𝑘𝑔
 

b: 0.65 𝑏𝑎𝑟−1 

 

𝑤𝑚𝑎𝑥: 0.0008 
𝑘𝑚𝑜𝑙

𝑘𝑔
 

b: 3.06 𝑏𝑎𝑟−1 
 

Propane Butane 

𝑤𝑚𝑎𝑥: 0.0018 
𝑘𝑚𝑜𝑙

𝑘𝑔
 

b: 3.8 𝑏𝑎𝑟−1 

 

𝑤𝑚𝑎𝑥: 0.0018 
𝑘𝑚𝑜𝑙

𝑘𝑔
 

b: 8 𝑏𝑎𝑟−1 
 

Carbon Dioxide Nitrogen 

𝑤𝑚𝑎𝑥: 0.00075 
𝑘𝑚𝑜𝑙

𝑘𝑔
 

b: 0.73 𝑏𝑎𝑟−1 

 

𝑤𝑚𝑎𝑥: 0  
𝑘𝑚𝑜𝑙

𝑘𝑔
 

b: 0 𝑏𝑎𝑟−1 
 

Fig. 7 shows the change in pressure for the first 

case (15 min cycle and 1248 Nml/min inlet flow 

rate). When the pressure reaches just above 1 bar, 

the adsorption process begins while the pressure 

remains constant. The adsorption cycle lasts 15 

minutes, after which the vacuum pump is turned 

on, and the pressure reduces rapidly to 0.06 bar 

during 300 seconds of regeneration. Then pressure 

rises slightly after desorption due to the desorption 

of heavy hydrocarbons (HC) with the purge. The 

model developed in Aspen Adsorption (see Fig. 3) 

shows approximately the same pressure result as 

the model developed in Python. 

 

 

Figure 7: Pressure development during VPSA cycles  
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The graphs shown in Figs. 8 represent the molar 

flow rate of each gas exiting the adsorber after 10 

simulated cycles. Cycle 1 means that all four stages 

were carried out only once: pressurization, 

adsorption, desorption, and purge. Thus, the 

number of cycles means how many times this 4-

step cycle was simulated, using the final state from 

the previous cycle as the initial condition for the 

next cycle. Initially, the adsorber is assumed to be 

in equilibrium with nitrogen at 0.06 bar. However, 

some other adsorbed components remain adsorbed 

after the first cycle, affecting the next cycle. When 

the differences between cycles begin to be less than 

1%, one can argue that the system has come to the 

so-called cyclic-steady-state. 

 

Figure 8: Comparison of the experimental and simulated 

results of VOC adsorption on AC with 15 min cycle and 

inlet flow rate 1248 Nml/min 

 

Figures 9, and 10 show the capture efficiency when 

the cyclic-steady-state is reached for the cases with 

15 min cycle and 25 min cycle. Capture efficiency 

of 100 % means no flow rate of a component 

exiting the column. Capture efficiency of 0 % 

means that the outlet molar flow rate of a 

component is equal to the inlet molar flow rate. The 

negative efficiency means that the outlet flow rate 

is higher than the inlet. As one can see from the 

model the capture of various VOC happens 

differently. The competitive behavior can be 

noticed. Once an equilibrium zone is formed in the 

AC, components with stronger affinity will push 

components with less affinity out of the adsorbent. 

Consequently, the outlet flow of “weak” 

components will increase above the inlet flow. It is 

seen from the graph that heavier components bind 

to the AC stronger than lighter components.  

 

 

 

Figure 9: Capture efficiency. Molar flow 1248 Nml/min 

and cycle time 15 min 

 

 

Figure 10: Capture efficiency. Molar flow 1254 Nml/min 

and cycle time 25 min 

 

4. Summary and Discussion 

The developed python model for VPSA simulation 

showed good agreement with Aspen Adsorption 

simulations, Cavenati et al. (2005) experiments and 

some multicomponent VOC experiments. It can be 

confirmed that the model calculates correctly; 

however, the equilibrium and kinetics parameters 

for the six-component mixture need to be 

improved.   The available experimental data on 

equilibrium and kinetics is limited, and more 

accurate model predictions can be achieved by 

conducting more equilibrium and kinetic 

experiments.  
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5. Conclusion 

The proper development of the adsorption process 

with high performance involves the design of a 

model that can describe the dynamic of adsorption, 

considering all relevant transport phenomena. The 

developed model in python can be used for 

prediction and theorical description of competitive 

VOC adsorption. The multicomponent adsorption 

isotherm and LDF equation for mass transfer 

reasonably well predict the adsorption behavior of 

2 component VOC mixture (methane and carbon 

dioxide). When it comes to the six-component 

mixture, some adjustment required to get a good 

comparison with experimental data.  
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Abstract 
 
In architecture, Integrated Energy Design (IED) entails considering energy during each design phase, especially 
in the early design stage. The form of a building is an important factor in this stage due to its considerable impact 
on energy consumption. Finding the optimal form is a time-consuming process, and computational design 
techniques can help designers to facilitate this process and achieve a design solution with acceptable performance 
in terms of CO2 emission. Moreover, the surrounding buildings, trees and urban elements can affect the energy 
and daylight of the project by casting shadows. Considering all these elements throughout the design process can 
be very demanding and take several working days. Today, digital tools make it possible to parametrically analyze 
morphological characteristics of buildings to identify the most efficient solution. The present study proposes an 
environmental-simulation based design workflow to be used in the early design stage to determine the building’s 
form parameters (height, angle,..) in a given urban area based on the weather data and the surrounding context. 
This process is done by parametric design tools and environmental simulations in Rhino3D®, Grasshopper®, and 
ladybug Tools®. The typical Norwegian cabin’s form parameters are applied in the visual coding program 
(Grasshopper®) to generate the initial geometry for optimization. Due to the great effect of the energy consumption 
on the CO2 emission, minimizing energy, maximizing thermal comfort and the sky view percentage were the main 
objectives. To test the workflow the weather data of Tromsø (Norway) and 3d model of the surrounding context 
of a design location was applied as inputs. The output of this application was several building’s form alternatives 
for that specific location. This study showed using the digital tools and parametric design thinking can help the 
designers to apply the climatic data in the design process to narrow down the design solutions.  
 
Keywords: parametric-design, optimization, morphology, Integrated-Energy-Design 
 
1 Introduction 
The building industry is responsible for 40% of the 
carbon emission (Huang et al., 2018). The decisions 
made in the early design stage are having a great 
effect in terms of CO2 emission. In this stage, many 
design alternatives are generated, and their 
performances are evaluated (Miles et al., 2001). 
Among the building factors the building’s form can 
have an considerable impact on energy 
consumption. A study showed that by changing 
design parameters such as the roof slope and 
skylight length and width, daylighting performance 
can be increased to nearly 40 percent, and energy 
demand reduced by around 20 percent (Miles et al., 
2001). Zou et al. (2021) showed that the average 
performance of the building could increase by up to 
24% by optimizing the design variables, including 
wall length and glazing ratio with the objective of 
having minimum air conditioning and lighting 

energy and maximizing the average Useful Daylight 
Illuminance (UDI). Zhang et al. (2017) investigated 
the effect of the building shape parameters such as 
window-to-wall ratio, room depth, orientation, and 
shading type on energy consumption and thermal 
discomfort. The optimized solution could perform 
better near 13% and 4% in energy and thermal 
comfort, respectively. Konis et al. (2016)  
introduced a new method to improve the 
performance of the passive strategies in conceptual 
design and investigated the building morphology 
optimization to achieve desired daylighting and to 
minimize energy consumption in four different 
climates. The result showed that the performance of 
the building improved, especially in warmer 
climates. It also revealed a huge impact of shape 
optimization on daylight improvement, between 
24% to 65% depending on the local context and the 
climate. Harkouss et al. (2018) presented a 

mailto:Niloofaz@stud.ntnu
mailto:Tahmineh.akbarinejad@ntnu.no
mailto:matteo.tagnocchetti@ntnu.no
mailto:bunji.izumi@ntnu.no
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comprehensive study on optimal passive design. In 
this study the optimal solution showed the potential 
of saving up to 54% of cooling and 87% of heating 
demands compared to the initial values. The present 
study aims to introduce a workflow for an 
investigation of building morphology with geometry 
generation parameters as variables and optimization 
using an evolutionary multi-objective optimization, 
so-called Non-dominated Sorting Genetic 
Algorithm II  (NSGA-II)  (Deb et al., 2002). 
regarding the energy, occupants' thermal indoor 
comfort, and sky view percentage. 
 
2 Methodology  
The present study is addressed to designers and 
engineers who need to evaluate the environmental 
performance of their design in the early design stage 
but they do not have computational design 
knowledge to write the analysis by digital tools. In 
this study  Grasshopper® (Visual programming plug-
in in Rhino3D®) is used as the parametric design 
tool. The defined workflow is applied to the design 
of small cabin with the sloped roof but the process 
can be applied more widely. The order of used 
applications and the process are shown in Fig. 2.  
Procedure is explained in detail in 2.1. 
 
 

 
 

2.1 Simulation Procedure 
The first step in the workflow was generating an 
initial 3D geometry as the building’s form in 
Grasshopper®. Inspired by a typical Norwegian 
cabin form with a polygon as the plan and the sloped 
roof (Fig. 1), the main framework of the geometry 
was defined, and the geometry parameters such as 
plan shape, the height of the wall, wall angle, and 
roof slope were set as the variables in Grasshopper® 

(Table. 2) for which numeric values are assigned. 
Changing each variable’s numeric value could 
generate a new form with different height and 
angles. Next step is to evaluate the performance of 
the form in Energy consumption, occupants’ thermal 
comfort , and the sky view by the Ladybug Tools® 

and EnergyPlus® plug-in in Grasshopper®. The 
Energy analysis is conducted by running the Energy 
component in EnergyPlus® inside Grasshopper®. 
After that the indoor thermal comfort will be 
calculated by the same plug in. Finally, the sky view 

will be analyzed by Ladybug Tools® in 
Grasshopper®. The optimization is conducted by 
Wallacei X® plug-in in Grasshopper®. This 
workflow could generate thousands of form 
possibility and calculate their environmental 
performance and compare each form to the others 
regarding the result of the performances. Therefore, 
it can find the numeric values for geometry 
parameters that generate the optimal form, with 
having an average of good performance in all the 
objectives (Energy, comfort, sky view). The inputs 
of this workflow are weather data of the desired 
location and the context geometry as a 3D model in 
Rhino3D®, and the output is several form 
alternatives with minimized energy consumption, 
maximized occupants’ indoor comfort, and sky view 
among all the form possibilities (design solutions).  

2.2 Setting the geometry parameters 
The initial geometry framework was inspired by the 
typical Norwegian cabin having a polygon as the 
plan and a sloped roof (Fig. 1). The building 
geometry paramters was decoded and translated into 
visual coding (Grasshopper®) to generate the initial 
geometry. Considering the initial construction form, 
a polygon was generated as the base surface. Since 
this study aimed to use a parametric design 
approach, the location of the corners of that polygon 
could be defined in a parametric way. Therefore, a 
circle was chosen as the base of the polygon 
creation. Then by connecting the subdivision points 
on the circle the plan polygon is created. After that, 
getting the center point of the polygon will produce 
the sloped roof geometry. By connecting each corner 
to the center point and moving the center point, the 
degree of the roof is changed (Fig. 3). In the 
morphology investigation process, the geometry 
parameters generating the shape of the building were 
considered as the variables (Fig. 3). To achieve the 
appropriate percentage of the glazing, the area of the 
walls was multiplied by a number between 0.1 to 
0.8, resulting in the window-to-wall ratio. Then the 
location of the glazing is made by a random 
function. Random selection of the exterior wall 
surfaces produced the location of the glazing in the 
initial solid geometry. Although this is a random 
function, the possibilities of window locations can 
be modified.  
 
2.3 Setting the Objectives 

2.3.1 Total Energy Consumption 
In this study, energy demand minimization was the 
first objective calculated using the EnergyPlus® 
engine (Delgarm et al., 2016) in Ladybug Tools®. 
The output of this analysis was heating and cooling 
energy load. The addition of these values is used in 
this study to calculate the total energy demand. The 
Energy and comfort simulations are done with the 
opaque material of the EnergyPlus® database, with a 

Figure 1: left) a typical Norwegian cabin outline 
(svenskoedegaard, 2020), and right) the extracted 

geometry showing different parameters.   
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U-value of 0.13 W/m²K, which is the heat transfer 
rate through the opaque material. The glazing U 
value is set as 0.7 W/m²K for the initial analysis. In 
the current study material was not the in focus of the 
study, therefore the simulations are considered 
without insulation. The general comparison of the 
form’s performances has been under investigation. 
The numeric result of the simulations were higher 
than standards expectedly. 

2.3.2 Occupants’ Indoor thermal comfort 
Thermal comfort is a state of mind in which a person 
expresses full satisfaction with their thermal 
surroundings (Moser et al., 2001). Design variables 
under the architect's control can affect the indoor 
environment. These design variables are general 
layout, shape, location of windows, and insulation.  
Comfort is evaluated by predicted mean vote 
(PMV), a well-known example of a thermal comfort 
performance indicator which was developed by Povl 
Ole Fanger as an empirical fit to the human sensation 
of thermal comfort. It was later adopted as an 
ISO standard. PMV is a seven-point sensation scale 
from -3 to +3. According to the ASHRAE standards, 
this  should be kept at 0 with a tolerance of ±0.5 to 
ensure a comfortable indoor environment (Srebric et 
al., 2015). The PMV Comfort in Ladybug Tools® 
has three main inputs, including dry bulb 
temperature, mean radiant temperature of the 
surrounding surfaces in degrees Celcius, and 
metabolic rate of the human and the output will be 
predicted mean vote showing the degree of the 
occupants’ comfort. Wallacei X® Plug-in can only 
minimize the objectives’ values; Therefore, the 
result of the comfort calculation was changed into 
the formula below and then connected to the 
Wallacei X® to be minimized.    

Figure 2: Diagram showing the workflow process and the order of used applications. 

Figure 3: left) generating the simple geometry of 
typical Norwegian house with parametric design 

tools, and right) showing the geometry parameters 
as the variables (in red) to generate different forms. 

https://www.designingbuildings.co.uk/wiki/Thermal_comfort
https://www.designingbuildings.co.uk/wiki/Adopted
https://www.designingbuildings.co.uk/wiki/Standards
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𝑁𝑁 =  3 − |X| (1) 
where, 𝑁𝑁 is an objective to be minimized, and X is 
the result of the comfort simulation from Ladybug 
Tools®. The closer the result of the comfort 
simulation be to zero, the better comfort is provided. 
The result of formula (1) should be close to three. 
(Tab. 1) gives the assumed ranges for nine main 
variables. 
 

2.3.3 Sky View 
If the energy was the only objective of the workflow 
the result would be a form with no window to save 
the energy consumption due to less heat loss. 
Another objective is needed to balance the glazing 
ratio. Therefore, sky view percentage from inside of 
the form is chosen as an objective. 
Since Wallacei X® can only minimize the  
objectives, to maximize the objective it  was 
multiplied by minus one (-1) and then connected to 
input of Wallacei X®.   

2.3.4 Area 
Optimization results showed disregarding the floor 
area can lead to solutions with smallest floor area 
and high energy efficiency. Therefore, floor area 
was also added as an objective to drive the 
optimization in favor of the floor area as close as 35 
m2. The objective function appears as formula(2). 

A =  | 35 – (Floor area of the case)| (2) 

2.4 Optimization  
In this project, Wallacei X® version 2.7 is used as 
the optimization tool using an evolutionary 
algorithm (NSGA-II) suitable for multi-objective 
optimization with four objectives and nine  
geometry variables. The evolutionary algorithm is 
the genetic algorithm that uses the natural selection 
principles to evolve a set of solutions towards an 
optimum solution (Machairas et al., 2014). Wallacei 
X® is the key built-in and integrated multi-objective 
optimization algorithm widely employed in many 
studies  (Wang et al., 2021). This tool tests each 
numeric value for each variable, test the results with 
objective functions, compares the results and goes to 
another set of variables which generate another 
solution (form). For the first generation (iteration) it 
conducts random numeric values to evaluate the 
resulted forms. Then using the analyzed data it 
produces another set of geometries in the next 
generation (iteration) and compared them with the 
previous generation (iteration). The goal is to 
minimize the numeric value of the result. So, it is 
expected after multiple generation the last one be 
containing the optimized solutions (Deb et al., 
2002). The overview of optimization process is 
shown in Fig. 4. 
 
                                                           
1 Extracted from https://climate.onebuilding.org/ 

 

2.5 Case Study (Tromsø) 
To test the developed workflow in Grasshopper®, a 
real location in Tromsø was chosen because of its 
severe cold climate and critical energy demand. The 
surrounding of a residential area in Tromsø in 
Petterburggate is modeled in  Rhino3D®   as the cabin  
location (Fig. 5(Right)).  
 

2.5.1 Tromsø climate 
Tromsø lies in Northern Norway (69.6492° N, 
18.9553° E). The temperature typically varies from 
-6 to 15 °C and is rarely below -13 °C or above 21°C. 
The coldest month in Tromsø is January, with an 
average low of -6 °C and a high of -1 °C. Fig. 
5(right) shows the total radiation rose in Tromsø, 
having the most radiation on the south side up to 
near 770 kWh/m2. 
 

2.5.2 Applying Tromsø Weather Data 
The weather data1 of Tromsø was the climate input 
for the environmental simulation. The surrounding 
area was modelled in Rhino3D® and connected to 
the context input of the Ladybug Tools® plug-in. 

 
Figure 5: Left) Tromsø location in “Petterburggate,” with 

the surrounding Right) Radiation Rose of Tromsø 
extracted from Ladybug Tools® weather data analysis. 

 
The optimization is operated with the default setting 
of Wallacei X®, having 50 as the number of 

Figure 4: Diagram showing the workflow process. 

https://en.wikipedia.org/wiki/Northern_Norway
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generations to iterate and a maximum population of 
30 forms for each iteration. 
 
Table 1: Variables’ assumed ranges  

 

Table 2: Variables’ assumed ranges and chosen values 
for sensitivity analysis. 

 
 
Algorithm parameters for optimization were as 
follows: 0.9 for crossover probability, 20 for 
crossover distribution index, 20 as mutation 
distribution index, 1 as random seed, and the 
mutation probability is 1/n. The result was 30 
individual forms in Generation (iteration) 49, 12 

forms of the 3d models are shown in Fig. 7 in the 
plan view.  
Due to the time-consuming nature of the 
optimization and simulation in this study, energy 
and comfort simulations were done for the most 
critical month of the year in Tromsø which is 
January, with the highest demand for heating. 
Regarding the nine main variables (Tab. 1) and to 
narrow down the number of simulations, the limited 
number of numeric values as variables were chosen 
among all the possibilities so that the number of 
generated 3D models was reduced from millions of 
shapes to a few thousands of models to do the 
sensitivity analysis which narrows down the number 
of possibilities to see the most affective range of the 
numeric values of the variables (Tab. 2).  
 
3 Results  

The generated solutions were exported from 
Wallacei X® as shown 3D in Fig. 6 and 2D in Fig. 7. 
The optimization process showed that with a ready 
to use workflow developed by parametric design 
tools, achieving an efficient form based on the 
climatic data will take less than one working day.  
The plan shape of the pareto front solutions Fig. 7 
shows that according to the weather data in January 
and surrounding buildings in that context, the 
southeast has a wider side to receive more radiation, 
while in the north, the walls are more compact. The 
roof is tilted toward the sun in the south, and in most 
cases of the pareto front solutions, the skylight in  the 
north side. As Fig. 6 shows, the wall angles are 
slightly leaning towards the outside, helping them to 
receive better solar radiation since the sun's altitude 
is low in that location. Observations showed that no 
single solution is doing the best in all the objective 
values. The solution that performs the best in Energy 
consumption is expected to be the worst in sky view 
since the glass ratio is low to avoid heat loss. 

 
5 Discussion 

Due to the environmental simulations' complexity 
and the time-consuming optimization process, not 
every designer and engineer know the 
environmental simulation techniques to apply to the 
project's location.  

Variables Range 
Number of plan Polygon corners 3< <10 
Ellipse Division Distance_ Plan 
shape 0.0 < <1.0 

Roof Point x Coordinate -3.0< <+3.0 

Roof Point y Coordinate -3.0< <+3.0 

Roof Point z Coordinate -3.0< <+3.0 

Glazing Ratio 0.1< < 0.7 

Glazing Plane location 
(Randomness between choosing 
which surface to be glazing) 

0.0< <1.0 

Scale factor of the roof surface 
(responsible for the wall angle)  0.0< <1.0 

Tilt angle of the roof  -25< <+25 

Variables Range 
Number of plan polygon 
corners 3< <10 

Ellipse division distance plan 
shape 0.0 < <1.0 

Roof point X coordinate -3.0, -1.5, 0, 
+1.5, +3.0 

Roof point Y coordinate -3.0,-1.5, 
0,+1.5, +3.0 

Roof point Z coordinate -3.0,-1.5, 
0,+1.5, +3.0 

Glazing Ratio (customized 
based on location) 0.1,0.2,0.3,0.4 

Glazing plane location 
(randomness between 
choosing which surface to be 
glazing) 

0.2,0.3,0.4,0.5 

Scale factor of the roof surface 
(responsible for the wall 
angle)  

1.0, 1.3, 
1.5,1.7,2.0 

Tilt angle of the roof  -25,-12.5, 0, 
+12.5, +25 

Figure 6: showing three different alternatives with their 
objective values as the outputs from Wallacei X®  .The 

highlighted form is showing more efficiency. 
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Therefore, an integrated workflow is needed to 
facilitate the decision-making in the design space 
regarding the performance of the building in 
environmental simulations to enhance the use of the 
climatic data and energy efficiency in the design 
process. Previous studies mentioned earlier have 
investigated the possibility of optimization for the 
constructed shape. In this study the generation of a 
new form is studied to prepare a workflow regarding 
the energy efficiency. This workflow shows the 
power of using the digital tools to narrow down 
design solutions.  

 
 
6 Conclusion and further study 

The introduced workflow used parametric design 
tools such as Rhino3D® and Grasshopper®, and 
Ladybug Tools® for environmental simulation to 
investigate the morphology of buildings and 
introduce a form generation method inspired by 
typical Norwegian cabin geometry. The geometry 
parameters were considered as numeric variables, 
and the objectives for optimization were total energy 
demand, occupants’ thermal indoor comfort, sky 
view percentage, and area. This workflow helps the 
designers to narrow down the design solutions and 
make better decisions based on the environmental 
performance of the. Still, the designer's role is to 
choose among the generated form solutions 
manually. This innovative approach introduced the 
potential of generating geometry and its 
modification based on the climatic data. 
This study considered energy, occupants’ comfort , 
the sky view percentage, and the area as the 
objectives for optimization, and it is suggested that 
further work be conducted to include daylight 
availability, wind analysis for natural ventilation, 
and cost of the elements. Further studies can be done 
to find another geometry generation process, such as 
a complex geometry for the form of the building. 
Interesting study as further work can be suggested 
by allocating material and analyzing the different 
material options and their effect on each objective 
value. This workflow has the potential to be used as 
a plug-in for Grasshopper®, which generates a set of 
optimum design solutions for given weather data. 
Comparing the optimized shape for different 
locations also can be another interesting topic in 
future studies.  
 
Acknowledgment 
Thanks to Marcin Luczkowski for his help in the 
form-finding process, and Steinar Hillersøy Dyvik 
for helping with the investigation of digital tools.  
 
References 
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast 
and elitist multiobjective genetic algorithm: NSGA-II. IEEE 
Transactions on Evolutionary Computation, 6(2), 182–197. 
https://doi.org/10.1109/4235.996017 

Delgarm, N., Sajadi, B., Kowsary, F., & Delgarm, S. (2016). 
Multi-objective optimization of the building energy performance: 
A simulation-based approach by means of particle swarm 
optimization (PSO). Applied Energy, 170, 293–303. 
https://doi.org/10.1016/j.apenergy.2016.02.141 

Harkouss, F., Fardoun, F., & Biwole, P. H. (2018). Passive design 
optimization of low energy buildings in different climates. 
Energy, 165, 591–613. 
https://doi.org/10.1016/j.energy.2018.09.019 

Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., & Zhang, X. 
(2018). Carbon emission of global construction sector. 

Figure 7: 20 Pareto front Solutions top view in 
generation(iteration) 49 exported from Wallacei X ®  

Fv.1 : Energy Demand , Fv.2 : A, Fv.3 : percentage 
of View, Fv.3 : N gen= generation, Ind = Individual. 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

Renewable and Sustainable Energy Reviews, 81, 1906–1916. 
https://doi.org/10.1016/j.rser.2017.06.001 

Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance 
and building form: An optimization framework for early-stage 
design support. Solar Energy, 125, 161–179. 
https://doi.org/10.1016/j.solener.2015.12.020 

Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). 
Algorithms for optimization of building design: A review. 
Renewable and Sustainable Energy Reviews, 31, 101–112. 
https://doi.org/10.1016/j.rser.2013.11.036 

Miles, J. C., Sisk, G. M., & Moore, C. J. (2001). The conceptual 
design of commercial buildings using a genetic algorithm. 
Computers & Structures, 79(17), 1583–1592. 
https://doi.org/10.1016/S0045-7949(01)00040-2 

Moser, A., Schäulin, A., Davidson, L., Corrado, V., Dorer, V., & 
Koschenz, M. (2001). 11—DESIGN WITH MODELING 
TECHNIQUES. In H. Goodfellow & E. Tähti (Eds.), Industrial 
Ventilation Design Guidebook (pp. 1025-p3). Academic Press. 
https://doi.org/10.1016/B978-012289676-7/50014-X 

Rizzo, G., Beccali, M., & Nucara, A. (2004). Thermal Comfort. 
In C. J. Cleveland (Ed.), Encyclopedia of Energy (pp. 55–64). 
Elsevier. https://doi.org/10.1016/B0-12-176480-X/00551-9 

Santamouris, M. (2019). Chapter 3—Urban Heat Island and 
Local Climate Change. In M. Santamouris (Ed.), Minimizing 
Energy Consumption, Energy Poverty and Global and Local 
Climate Change in the Built Environment: Innovating to Zero (pp. 
65–102). Elsevier. https://doi.org/10.1016/B978-0-12-811417-
9.00003-9 

Srebric, J., Heidarinejad, M., & Liu, J. (2015). Building 
neighborhood emerging properties and their impacts on multi-
scale modeling of building energy and airflows. Building and 
Environment, 91, 246–262. 
https://doi.org/10.1016/j.buildenv.2015.02.031 

Wang, W., Liu, K., Zhang, M., Shen, Y., Jing, R., & Xu, X. 
(2021). From simulation to data-driven approach: A framework 
of integrating urban morphology to low-energy urban design. 
Renewable Energy, 179, 2016–2035. 
https://doi.org/10.1016/j.renene.2021.08.024 

Zhang, A., Bokel, R., Van den Dobbelsteen, A., Sun, Y., Huang, 
Q., & Zhang, Q. (2017). The Effect of Geometry Parameters on 
Energy and Thermal Performance of School Buildings in Cold 
Climates of China. Sustainability, 9(10), 1708. 
https://doi.org/10.3390/su9101708 

Zou, Y., Zhan, Q., & Xiang, K. (2021). A comprehensive method 
for optimizing the design of a regular architectural space to 
improve building performance. Energy Reports, 7, 981–996. 
https://doi.org/10.1016/j.egyr.2021.01.097 

 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 

 

A fast and effective method for modelling and optimizing district 

heating systems in the Modelica language 
 

Haoran Li a,*, Juan Hou a, Natasa Nord a 

  
a Department of Energy and Process Technology, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1 B, 

Trondheim 7491, Norway 

corresponding. haoranli@ntnu.no  

 

Abstract 

 

A district heating system is a centralized energy system that supplies heat to end users such as buildings and 

industrial facilities. This centralized system may have multiple heat sources, a complex distribution network, 

and a large number of end users. Moreover, the heat distribution and utilization processes entail tumultuous 

thermal dynamics. Therefore, modelling and optimizing such a system generally demands arduous labour and 

necessitates powerful computing resources. To overcome these difficulties, this study introduced a fast and 

effective method for modelling and optimizing district heating systems using the Modelica language. Firstly, a 

simplified district heating system model was developed. This simplified model lumped all the end-users into a 

single thermal pinot with critical physical constraints. Meanwhile, the distribution network was simplified into 

two pipelines: supply and return. In addition, a one-dimensional discrete model was used to describe the 

behaviours of water tank thermal energy storage. Other essential components, like central and distributed heat 

sources, were modelled using basic mass and energy balance equations. Afterwards, two optimization 

frameworks were formulated, which incorporated the developed system model: a long-term optimal operation 

framework aimed at a yearly level open-loop optimization with a two-hour resolution, and a model predictive 

control framework aimed at a daily level close-loop optimization with a one-hour resolution. The proposed 

method was tested numerically on a university campus district heating system in Norway on a personal 

computer. Model validation showed that the proposed modelling approach could capture the key characteristics 

of the studied system. Optimization results demonstrated the effectiveness of the proposed optimization 

frameworks both for the long-term and short-term optimization. 

 

1. Introduction 

Buildings consume a considerable amount of 

energy and contribute significantly to global 

warming. In the European Union (EU), buildings 

account for roughly 40% of overall energy 

consumption and 36% of greenhouse gas emissions 

(In focus: Energy efficiency in buildings). As 

important parts of building energy systems, space 

heating (SH) and domestic hot water (DHW) 

systems play a crucial role in the energy usage of 

buildings. For example, in the EU's residential 

sector, SH and DHW account for over 80% of 

energy use (Heating and cooling- European 

Commission). District heating (DH) systems are a 

cost-effective and environmentally responsible 

approach to meeting buildings’ heat demand (Li & 

Nord, 2018). Because of these advantages, DH 

systems are competitive with alternative heating 

methods, particularly in urban areas with high heat 

demand. In Europe, around 4,000 DH systems are 

currently operational (Sayegh et al., 2017), with 

DH systems accounting for up to 60% of the 

national heat market share in some countries 

(Åberg et al., 2020; Connolly et al., 2014; Werner, 

2017). Despite these advantages of DH systems, no 

viable open-source platform focusing on the 

optimal design of DH systems and their control 

systems exists. 

Modelica is a promising open-source language for 

modelling energy systems with numerous libraries. 

Recently, the Modelica language is further 

promoted by several large-scale international 

projects. Among these projects, IBPSA Project 1 

has built the basis of the next generation computing 

tools for district energy and control systems 

(IBPSA Project 1, Jan 2021). However, the current 

Modelica based platforms show inadequate 

performance on computing DH systems and their 

control systems, especially for the cases with large 

scale and complex systems. Furthermore, 

modelling such a system is typically time-

consuming, which adds to the difficulty of 

modelling and optimizing DH systems. To 

overcome these challenges, this article proposes a 

fast and effective method for modelling and 

mailto:haoranli@ntnu.no
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optimizing DH systems using the Modelica 

language. This article reports the research 

outcomes from several recent publications (Hou et 

al., 2019; Hou, Li, & Nord, 2022; Hou, Li, Nord, et 

al., 2022; Li et al., 2021; Li, Hou, Hong, et al., 

2022; Li, Hou, Tian, et al., 2022; Li & Nord, 2019). 

2. Modelling DH systems in Modelica 

As illustrated in Figure 1, the proposed DH system 

model included a building, distribution pipeline, 

water tank thermal energy storage (WTTES), main 

substation, and distributed heat source (DHS) 

component. Due to the object-oriented nature of the 

Modelica language, it is possible to model a 

complete DH system by integrating these 

components. The detailed modelling work for these 

components is presented in Sections 2.1 to 2.4.  

 
Figure 1: Configuration of the studied DH system. 

2.1. Main substation and distributed heat source 

model 

The energy balance equation was used to model the 

main substation and distributed heat source, as 

shown in Equations (1) to (4). The main substation 

has two heat exchangers, heat exchanger 1 and heat 

exchanger 2, working as charging and boosting 

heat sources, respectively. The distributed heat 

source may be solar thermal plants and waste heat 

recovery facilities. 

 �̇�(𝑡) = �̇�𝐻𝐸1 + �̇�𝐻𝐸2 (1) 

 
�̇�𝐻𝐸1 = 𝑐 ∙ �̇�𝐻𝐸1 ∙ (𝑇𝐻𝐸1,𝑠𝑢𝑝

− 𝑇𝐻𝐸1,𝑟𝑒𝑡) 
(2) 

 
�̇�𝐻𝐸2 = 𝑐 ∙ �̇�𝐻𝐸2 ∙ (𝑇𝐻𝐸2,𝑠𝑢𝑝

− 𝑇𝐻𝐸2,𝑟𝑒𝑡) 
(3) 

 
�̇�𝐷𝐻𝑆 = 𝑐 ∙ �̇�𝐷𝐻𝑆 ∙ (𝑇𝐷𝐻𝑆,𝑠𝑢𝑝

− 𝑇𝐷𝐻𝑆,𝑟𝑒𝑡) 
(4) 

where �̇�𝐻𝐸1, �̇�𝐻𝐸2, and �̇�𝐷𝐻𝑆 are the water flow 

rate of the heat exchanger 1, heat exchanger 2, and 

distributed heat source, respectively. �̇�𝐻𝐸1, �̇�𝐻𝐸2, 

and �̇�𝐷𝐻𝑆 are the heat flow rate of the heat 

exchanger 1, heat exchanger 2, and distributed heat 

source, respectively. 𝑇𝐻𝐸1,𝑠𝑢𝑝, 𝑇𝐻𝐸2,𝑠𝑢𝑝, and 

𝑇𝐷𝐻𝑆,𝑠𝑢𝑝 are the supply water temperature of the 

heat exchanger 1, heat exchanger 2, and distributed 

heat source, respectively. 𝑇𝐻𝐸1,𝑟𝑒𝑡, 𝑇𝐻𝐸2,𝑟𝑒𝑡, and 

𝑇𝐷𝐻𝑆,𝑟𝑒𝑡 are the return water temperature of the heat 

exchanger 1, heat exchanger 2, and distributed heat 

source, respectively. 𝑐 is the specific heat capacity 

of water. 

2.2. Buildings model 

The overall performance of all the buildings in a 

DH system was represented by a single-equivalent 

building model to improve computing efficiency. 

Following this simplification, the thermal 

behaviour of all the buildings was described using 

Equation (5). Inequality constraints for the water 

temperature and flow rate variables were given by 

Equations (6), (7), and (8). 

 �̇�𝐵𝑢𝑖 = 𝑐 ∙ �̇�𝐵𝑢𝑖 ∙ (𝑇𝑠𝑢𝑝 − 𝑇𝑟𝑒𝑡) (5) 

 
∆𝑇𝐵𝑢𝑖,𝐿 ≤ ∆𝑇𝐵𝑢𝑖 = 𝑇𝑠𝑢𝑝 − 𝑇𝑟𝑒𝑡

≤ ∆𝑇𝐵𝑢𝑖,𝑈 
(6) 

 𝑇𝑠𝑢𝑝,𝐿 ≤ 𝑇𝑠𝑢𝑝 ≤ 𝑇𝑠𝑢𝑝,𝑈 (7) 

 �̇�𝐵𝑢𝑖,𝐿 ≤ �̇�𝐵𝑢𝑖 ≤ �̇�𝐵𝑢𝑖,𝑈 (8) 

where �̇�𝐵𝑢𝑖 is the total building heat demand, 

including the heat demand for SH and DHW 

systems as shown in Equation (9). �̇�𝑆𝐻  can be 

further divided into the demand for the radiator 

heating system �̇�𝑟𝑎𝑑 and the demand for the 

ventilation system �̇�𝑣𝑒𝑛 , as described in Equation 

(10). �̇�𝐵𝑢𝑖 and ∆𝑇𝐵𝑢𝑖  are the mass flow rate and 

temperature difference for water at the primary side 

of the building substation, respectively. 𝑇𝑠𝑢𝑝 and 

𝑇𝑟𝑒𝑡  are the supply and return temperature of water 

at the primary side of the building substation, 

respectively. ∆𝑇𝐵𝑢𝑖,𝐿, 𝑇𝑠𝑢𝑝,𝐿, and �̇�𝐵𝑢𝑖,𝐿 are the 

lower bounds for ∆𝑇𝐵𝑢𝑖 , 𝑇𝑠𝑢𝑝, and �̇�𝐵𝑢𝑖, 

respectively. ∆𝑇𝐵𝑢𝑖,𝑈, 𝑇𝑠𝑢𝑝,𝑈, and �̇�𝐵𝑢𝑖,𝑈 are the 

upper bounds for ∆𝑇𝐵𝑢𝑖 , 𝑇𝑠𝑢𝑝, and �̇�𝐵𝑢𝑖, 

respectively. 

 �̇�𝐵𝑢𝑖 = �̇�𝑆𝐻 + �̇�𝐷𝐻𝑊 (9) 

 �̇�𝑆𝐻 = �̇�𝑟𝑎𝑑 + �̇�𝑣𝑒𝑛 (10) 

Buildings’ dynamics were described using a 

simplified-lumped-capacity model generated from 

resistance-capacitance networks analogous to 

electric circuits, as stated in Equations (11), (12), 

and (13). 

 

𝐶𝑒𝑛𝑣 ∙
𝑑𝑇𝑒𝑛𝑣

𝑑𝑡
=

𝑇𝑖𝑎 − 𝑇𝑒𝑛𝑣

𝑅𝑖,𝑒

+
𝑇𝑜𝑎 − 𝑇𝑒𝑛𝑣

𝑅𝑜,𝑒

 

(11) 
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𝐶𝑖𝑎 ∙
𝑑𝑇𝑖𝑎

𝑑𝑡
=

𝑇𝑚𝑎 − 𝑇𝑖𝑎

𝑅𝑖,𝑚

+
𝑇𝑒𝑛𝑣 − 𝑇𝑖𝑎

𝑅𝑖,𝑒

+
𝑇𝑜𝑎 − 𝑇𝑖𝑎

𝑅𝑤𝑖𝑛

+
𝑇𝑜𝑎 − 𝑇𝑖𝑎

𝑅𝑣𝑒𝑛

+ �̇�𝑟𝑎𝑑 + �̇�𝑣𝑒𝑛

+ �̇�𝑖𝑛 

(12) 

 𝐶𝑚𝑎 ∙
𝑑𝑇𝑚𝑎

𝑑𝑡
=

𝑇𝑖𝑎 − 𝑇𝑚𝑎

𝑅𝑖,𝑚

 (13) 

where 𝐶 and 𝑅 are the heat capacitance and 

resistance, and 𝑇 refers to the temperature. 

Building envelopes (including exterior walls and 

roofs), indoor air, outdoor air, internal thermal 

mass, window, and ventilation (including 

infiltration and mechanical ventilation) are denoted 

by the subscripts 𝑣𝑒𝑛, 𝑖𝑎, 𝑜𝑎, 𝑚𝑎, 𝑤𝑖𝑛, and 𝑣𝑒𝑛, 

respectively. 𝑅𝑖,𝑒 represents the heat resistance 

between indoor air and building envelopes, 𝑅𝑜,𝑒 

represents the heat resistance between outdoor air 

and building envelopes, and 𝑅𝑖,𝑚 represents the 

heat resistance between indoor air and interior 

thermal mass. �̇�𝑖𝑛 is the internal heat gain. 

As described in Equation (14), the lower bound of 

the supply temperature should be high enough for 

the SH and DHW systems to maintain a 

comfortable indoor temperature while avoiding 

hygiene problems. Equation (15) defined the lower 

bound of the supply temperature for the SH system 

(He et al., 2009), whereas Equation (16) 

determined the lower bound for the DHW system, 

which is required by European standard 

CEN/TR16355 ("CEN/TR16355 

Recommendations for prevention of Legionella 

growth in installations inside buildings conveying 

water for human consumption," 2012). 

 𝑇𝑠𝑢𝑝,𝐿 = 𝑚𝑎𝑥(𝑇𝑠𝑢𝑝,𝑆𝐻,𝐿 , 𝑇𝑠𝑢𝑝,𝐷𝐻𝑊,𝐿) (14) 

 

𝑇𝑠𝑢𝑝,𝑆𝐻,𝐿

= 𝑇𝑖𝑎

+ 0.5 ∙ (𝑇𝑠𝑢𝑝,𝑆𝐻,𝑑𝑒𝑠 + 𝑇𝑟𝑒𝑡,𝑆𝐻,𝑑𝑒𝑠 − 2

∙ 𝑇𝑖𝑎,𝑑𝑒𝑠) ∙ (
𝑇𝑖𝑎,𝑑𝑒𝑠 − 𝑇𝑜𝑎

𝑇𝑖𝑎,𝑑𝑒𝑠 − 𝑇𝑜𝑎,𝑑𝑒𝑠

)1/𝑏 + 0.5

∙ (𝑇𝑠𝑢𝑝,𝑆𝐻,𝑑𝑒𝑠 − 𝑇𝑟𝑒𝑡,𝑆𝐻,𝑑𝑒𝑠)

∙ (
𝑇𝑖𝑎,𝑑𝑒𝑠 − 𝑇𝑜𝑎

𝑇𝑖𝑎,𝑑𝑒𝑠 − 𝑇𝑜𝑎,𝑑𝑒𝑠

) 

(15) 

 𝑇𝑠𝑢𝑝,𝐷𝐻𝑊,𝐿 = 60℃ (16) 

where 𝑇𝑠𝑢𝑝,𝑆𝐻,𝐿 and 𝑇𝑠𝑢𝑝,𝐷𝐻𝑊,𝐿 are the lower 

bounds for the SH and DHW system’s supply 

temperatures, respectively. 𝑇𝑖𝑎 and 𝑇𝑜𝑎 are the 

indoor and outdoor air temperatures, respectively. 

𝑇𝑠𝑢𝑝,𝑆𝐻 and 𝑇𝑟𝑒𝑡,𝑆𝐻 are the supply and return 

temperatures for the SH system, respectively. 𝑏 is a 

parameter defining the radiator’s characteristic. 𝑑𝑒𝑠 

is a subscript that refers to the design conditions. 

The lower bound of the water mass flow rate 

�̇�𝐵𝑢𝑖,𝐿 was zero, while the upper bound �̇�𝐵𝑢𝑖,𝑈 was 

constrained by the distribution system's capacity. In 

addition, the lower bound of the water temperature 

difference ∆𝑇𝐵𝑢𝑖,𝐿 was zero, and the upper bound of 

the water temperature difference ∆𝑇𝐵𝑢𝑖,𝑈 was 

obtained from linear regression Equation (17). 

 ∆𝑇𝐵𝑢𝑖,𝑈 = 𝑎0 + 𝑎1 ∙ 𝑇𝑠𝑢𝑝 (17) 

where 𝑎0 and 𝑎1 are parameters. 

2.3. Distribution pipeline model 

Equations (18), (19), and (20) were used to 

describe the heat loss from pipelines. 

 �̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝 = �̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝,𝑠𝑢𝑝 + �̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝,𝑟𝑒𝑡 (18) 

 

�̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝,𝑠𝑢𝑝

= 𝐿 ∙ 𝜋 ∙ 𝑑

∙
(𝑅𝑔 + 𝑅𝑖) ∙ ∆𝑇𝑝𝑖𝑝,𝑠𝑢𝑝 − 𝑅𝑐 ∙ ∆𝑇𝑝𝑖𝑝,𝑟𝑒𝑡

(𝑅𝑔 + 𝑅𝑖)
2 − 𝑅𝑐

2  

(19) 

 

�̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝,𝑟𝑒𝑡

= 𝐿 ∙ 𝜋 ∙ 𝑑

∙
(𝑅𝑔 + 𝑅𝑖) ∙ ∆𝑇𝑝𝑖𝑝,𝑟𝑒𝑡 − 𝑅𝑐 ∙ ∆𝑇𝑝𝑖𝑝,𝑠𝑢𝑝

(𝑅𝑔 + 𝑅𝑖)
2 − 𝑅𝑐

2  

(20) 

where �̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝, �̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝,𝑠𝑢𝑝, and �̇�𝑙𝑜𝑠𝑠,𝑝𝑖𝑝,𝑟𝑒𝑡 

represent the overall heat loss from pipes, supply 

pipe heat loss, and return pipe heat loss, 

respectively. 𝐿 refers to the route length for the pair 

of pipes. 𝑑 is the outer pipe diameter. 𝑅𝑖, 𝑅𝑔, and 

𝑅𝑐 are the resistances for the insulation, ground, 

and coinciding, respectively, and they can be 

obtained by Equations (21), (22) and (23), 

respectively. ∆𝑇𝑝𝑖𝑝,𝑠𝑢𝑝 and ∆𝑇𝑝𝑖𝑝,𝑟𝑒𝑡 are the 

temperature differences for the supply and return 

pipes, respectively, and can be obtained using 

Equations  (24) and (25).  

 𝑅𝑖 =
𝑑

2 ∙ 𝜆𝑖

∙ 𝑙𝑛
𝐷

𝑑
 (21) 

 𝑅𝑔 =
𝑑

2 ∙ 𝜆
∙ 𝑙𝑛

4 ∙ ℎ

𝐷
 (22) 

 𝑅𝑐 =
𝑑

2 ∙ 𝜆
∙ 𝑙𝑛(((

2 ∙ ℎ

𝑠
)2 + 1)0.5) (23) 

 ∆𝑇𝑝𝑖𝑝,𝑠𝑢𝑝 = 𝑇𝑝𝑖𝑝,𝑠𝑢𝑝 − 𝑇𝑔𝑟𝑜𝑢 (24) 

 ∆𝑇𝑝𝑖𝑝,𝑟𝑒𝑡 = 𝑇𝑝𝑖𝑝,𝑟𝑒𝑡 − 𝑇𝑔𝑟𝑜𝑢 (25) 

where 𝐷 is the outer insulation diameter, ℎ is the 

distance between the pipe centres and the ground 
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surface, 𝑠 is the distance between pipe centres, and 

𝜆 and 𝜆𝑖 are the heat conductivity for the ground 

and insulation, and 𝑇𝑔𝑟𝑜𝑢 is the ground temperature. 

2.4. Water tank thermal energy storage model 

The dynamics of the water tank were described 

using a one-dimensional WTTES model (Powell & 

Edgar, 2013).  

 

𝑐 ∙ 𝜌 ∙ 𝐴𝑋𝑆 ∙
𝜕𝑇

𝜕𝑡
= 𝑐 ∙ (�̇�𝑠𝑜𝑢 − �̇�𝑢𝑠𝑒)

∙
𝜕𝑇

𝜕𝑥
− 𝑈 ∙ 𝑃

∙ (𝑇(𝑡, 𝑥)
− 𝑇𝑎𝑚𝑏)+𝜀 ∙ 𝐴𝑋𝑆

∙
𝜕2𝑇

𝜕𝑥2
 

(26) 

where 𝑇 is the water temperature. 𝑥 is the height of 

the tank. 𝑡 is the time. 𝜌 is the water density. 𝐴𝑋𝑆 

and 𝑃 are the cross-sectional area and perimeter of 

the tank, respectively. �̇�𝑠𝑜𝑢 and �̇�𝑢𝑠𝑒 are the water 

mass flow rate of the heat source and user side, 

respectively. 𝑇𝑎𝑚𝑏  is the ambient temperature. 𝑈 is 

the U-value of the tank wall. 𝜀 is a parameter 

representing the combined heat transfer effect of 

water through diffusion, conduction, and mixing 

due to turbulent flow. 

By discretizing the tank into n nodes, spatial 

derivatives were approximated using numerical 

techniques. Equation (27) shows the ordinary 

differential equation for the ith node. Equations 

(28) and (29) were used to compute the heat loss 

and heat flow rate of the ith node, while Equations 

(30) and (31) were used to get the total heat loss 

and heat flow rate of the WTTES. 

 

𝑐 ∙ 𝜌 ∙ 𝐴𝑋𝑆 ∙ ∆𝑥 ∙
𝑑𝑇𝑖

𝑑𝑡
= 𝑐 ∙ �̇�𝑢𝑠𝑒 ∙ (𝑇𝑖−1

− 𝑇𝑖) + 𝑐 ∙ �̇�𝑠𝑜𝑢

∙ (𝑇𝑖+1 − 𝑇𝑖) − 𝑈
∙ 𝑃 ∙ ∆𝑥 ∙ (𝑇𝑖

− 𝑇𝑎𝑚𝑏) +
𝜀 ∙ 𝐴𝑋𝑆

∆𝑥
∙ (𝑇𝑖+1 − 2 ∙ 𝑇𝑖

+ 𝑇𝑖−1) 

(27) 

 �̇�𝑙𝑜𝑠𝑠,𝑇𝐸𝑆,𝑖 = 𝑈 ∙ 𝑃 ∙ ∆𝑥 ∙ (𝑇𝑖 − 𝑇𝑎𝑚𝑏) (28) 

 �̇�𝑇𝐸𝑆,𝑖 = 𝑐 ∙ �̇�𝑠𝑜𝑢 ∙ (𝑇𝑖+1 − 𝑇𝑖) (29) 

 �̇�𝑙𝑜𝑠𝑠,𝑇𝐸𝑆 = ∑ �̇�𝑙𝑜𝑠𝑠,𝑇𝐸𝑆,𝑖

𝑛−1

𝑖=1

 (30) 

 �̇�𝑇𝐸𝑆 = ∑ �̇�𝑇𝐸𝑆,𝑖

𝑛−1

𝑖=1

 (31) 

where ∆𝑥 is the node length, and 𝑇𝑖  is the water 

temperature of the ith node. �̇�𝑙𝑜𝑠𝑠,𝑇𝐸𝑆,𝑖 and �̇�𝑇𝐸𝑆,𝑖 are 

the heat loss and heat flow rate of the ith node, 

respectively. 

3. Optimization frameworks in JModelica 

Two optimization frameworks were formulated: a 

long-term optimal operation framework aimed at a 

yearly level open-loop optimization with a two-

hour resolution, and a model predictive control 

(MPC) framework aimed at a daily level close-loop 

optimization with a one-hour resolution. These two 

optimization frameworks used the same objective 

function, minimizing heating costs while tracking 

the reference indoor temperature, as shown in 

Equation (32). In addition, these two optimization 

frameworks used the same system dynamic models 

and inequality constraints introduced in Section 2, 

as shown in Equations (33), (34), (35), and (36). 

 

∫ 𝐸𝑃(𝑡) ∙ �̇�(𝑡)𝑑𝑡
𝑡𝑓

𝑡0

+ 𝐿𝑃 ∙ �̇�𝑝𝑒𝑎

+ 𝑊

∙ ∫ (𝑇𝑖𝑎(𝑡)
𝑡𝑓

𝑡0

− 𝑇𝑖𝑎
𝑟𝑒𝑓

(𝑡))2 ∙ 𝑑𝑡 

(32) 

subject to: 

 �̇�(𝑡) ≤ �̇�𝑝𝑒𝑎 (33) 

 𝐹(𝑡, 𝒛(𝑡)) = 0 (34) 

 𝐹0(𝑡0, 𝒛(𝑡0)) = 0 (35) 

 𝑧𝐿 ≤ 𝒛(𝑡) ≤ 𝑧𝑈 (36) 

where �̇�(𝑡) is the heat flow rate supplied from the 

central DH to the main substation. �̇�𝑝𝑒𝑎 and 𝐿𝑃 is 

the peak load and the peak load related heating 

price, respectively. 𝐸𝑃(𝑡) is the heating price for 

the heat use related heating cost. 𝑇𝑖𝑎(𝑡) and 

𝑇𝑖𝑎
𝑟𝑒𝑓

(𝑡) are the simulated indoor temperature and 

its reference value at time t. 𝒛 ∊  ℝ𝑛𝑧 represents the 

time-dependent variables, which includes the 

manipulated variable 𝒖 ∊  ℝnu  to be optimized, the 

differential variable 𝒙 ∊  ℝnx, and the algebraic 

variable 𝒚 ∊  ℝny . Equation (34) defines the 

system dynamics and Equation (35) is the initial 

conditions of the system. 𝑧𝐿 ∊  [−∞, ∞]nz  and 𝑧𝑈 ∊
 [−∞, ∞]nz are the lower and upper bounds, 

respectively. 

The long-term open-loop optimization framework 

is illustrated in Figure 2. This long-term 

optimization framework computes the optimal 

operation trajectory for a whole operating year. 

This framework was used for optimal design and 

operation in the research (Li, Hou, Hong, et al., 

2022; Li, Hou, Tian, et al., 2022). 
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Figure 2: Long-term open-loop optimization framework 

for optimal design and operation. 

The short-term close-loop optimization framework 

is illustrated in Figure 3. This short-term 

optimization framework computes the optimal 

operation trajectory within the prediction horizon 

(mostly from half to two days). This framework 

was used for MPC in a study presented in the 

results section 4.2. 

 
Figure 3: Short-term close-loop optimization framework 

for optimal control. 

4. Case study 

A campus DH system in Trondheim, Norway, was 

chosen as the case study. The campus DH system is 

a prosumer with a distributed heat source, as shown 

in Figure 4. The distributed heat source is the 

university data centre, which recovers the 

condensing waste heat from the data centre’s 

cooling system. The campus DH system supplies 

heat for the university buildings with a total 

building area of  300,000 m2. The main substation 

is used to connect the campus DH system with the 

city's central DH system. According to the 

measurements from June 2017 to May 2018, the 

total heat supply for the campus DH system was 

32.8 GWh. About 80% of the heat supply came 

from the central DH system through the main 

substation. The other 20% came from the waste 

heat recovery from the data centre. 

 
Figure 4: Campus district heating system. 

5. Results 

The developed DH system model presents high 

accuracy, and the results of model validation can be 

found in articles (Li, Hou, Hong, et al., 2022; Li, 

Hou, Tian, et al., 2022). This article only presents 

the key results on energy and economic 

performance of the long-term and short-term 

optimization frameworks.  

5.1. Energy and economic performance of the long-

term optimization framework 

The long-term optimization framework tested the 

idea of introducing a WTTES into the campus DH 

system. Figure 5 and Figure 6 present the annual 

heat use and the yearly peak load for the scenario 

before and after introducing the WTTES, 

respectively. These two indicators quantified the 

heat supply from the central DH system to the heat 

prosumer through the main substation. It can be 

observed from Figure 5 that introducing the  

WTTES reduced the annual heat use from 26.2 

GWh to 25.9 GWh, meaning a heat use saving of 

1%. Compared to this less significant heat use 

saving, a more obvious peak load shaving was 

obtained as shown in Figure 6, the yearly peak load 

was shaved from 12.4 MW to 9.5 MW, a shaving 

of 24%. 
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Figure 5: Annual heat use for the scenario before and 

after introducing WTTES. 

 
Figure 6: Yearly peak load for the scenario before and 

after introducing WTTES. 

The resulting annual heating cost for the scenario 

before and after introducing WTTES is presented 

in Figure 7. Introducing WTTES cut the annual 

heating cost from 20.7 million NOK to 19.3 million 

NOK, which meant a cost saving of 7% was 

achieved.  

 
Figure 7: Annual heating cost for the scenario before and 

after introducing WTTES. 

5.2. Energy and economic performance of the 

short-term optimization framework 

The short-term optimization framework evaluated 

the potential of the MPC strategy. In this study, two 

scenarios, one MPC scenario and one rule-based 

control (RBC) scenario, were designed and 

compared. Figure 8 and Figure 9 present the heat 

use and peak load for the MPC and RBC scenario, 

respectively.  

It can be observed from Figure 8 that the MPC 

scenario reduced the heat use from 5.12 GWh to 

5.02 GWh in January, meaning a heat use saving of 

2%. Meanwhile, in April the reduction was from 

2.33 GWh to 2.25 GWh, a saving of 3%. Similar to 

the long-term optimization problem with less 

significant heat use saving, a more obvious peak 

load shaving was obtained as shown in Figure 9, 

the peak load was shaved from 11.6 MW to 10.9 

MW in January, a shaving of 6%. In addition, the 

shaving was from 8.0 MW to 7.1 MW in April, a 

shaving of 11%. 

 
Figure 8: Heat use for the MPC and RBC scenario. 

 
Figure 9: Peak load for the MPC and RBC scenario. 

The resulting energy costs (including heating and 

electricity cost) for the MPC and RBC scenarios is 

presented in Figure 10. In Figure 10, the electricity 

cost included the spot price-related fee and 

surcharges, which had prices in NOK/kWh. The 

proposed MPC strategy cut the energy cost from 

3.47 million NOK to 3.40 million NOK in January, 

which meant a cost saving of 2% was achieved. 

Meanwhile, the cutting was from 1.92 million 

NOK to 1.86 million NOK in April, a saving of 

3%. These cost savings were subjected to the 

specified energy price models in this study. For 

other cases, the results may be different. 
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Figure 10: Heating cost for the MPC and RBC scenario. 

6. Conclusion 

This study presents a fast and effective method for 

modelling and optimizing DH systems using the 

Modelica language. A case study on a university 

campus DH system in Norway showed that the 

method was effective both for long-term optimal 

operation and short-term optimal control problems. 

For the studied case, the approach achieved energy 

cost saving by energy use reduction and peak 

demand shaving. It is worth noting that the 

achieved results may be subjected to specified 

energy price models, however, this study provided 

a generalized method to solve this type of research 

problem. 
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Abstract

Accurate forecasting of thermal loads is a critical factor for operating district heating and cooling networks economically,
efficiently and with minimized emissions. If thermal loads are known with high accuracy in advance, use of renewable energies
can be maximized, and fossil generation, in particular in peaking units, can be avoided. Machine learning has already proven
to be an efficient tool for time series forecasting in this context. One recent advancement in machine learning is the "Temporal
Fusion Transformer" (TFT), which shows especially good results in the area of time series forecasting. This paper examines
the performance of TFT in the concrete context of thermal load forecasting for district heating and cooling networks. First,
a brief summary of differences between TFT and other machine learning methods is given. Secondly, it is described how the
method can be adopted to train a machine learning model for thermal load forecasting. The data to train and evaluate the neural
network is based on 8 years of hourly operating data made available from the district heating network of the city of Ulm in
Germany. The presented technique is used to produce 72 hours of heating load forecasts for three different district heating grids
in the city of Ulm. The results are compared to forecasts of other machine learning methods that have been previously made
as part of the publicly funded research project "deepDHC", in order to evaluate if TFT is an improvement to further reduce
forecasting uncertainties.

1. Introduction
Precise forecasting of thermal loads is crucial
for operating district heating networks efficiently,
economically and environmentally friendly. If precise
load forecasts are available to the operator, the use
of fossil-fuelled peaking boilers can be significantly
reduced. In addition, integration of fluctuating renewable
into the grid can be maximized. A precise long-term load
forecast several days ahead also simplifies fuel ordering,
or planned maintenance. Hence this work focuses on
thermal load forecasts throughout 72 hours in advance.
The data used for the process is based on hourly data from
the district heating network in Ulm, a medium-sized city
in southern Germany with about 130,000 inhabitants.

2. Related Work
Accurate prediction of heat loads has become an
interesting field of application for modern time series
forecasting methods. Its importance even increases with
a rising global energy demand, decreasing reserves of
fossil fuels and the impact of using fossil fuels on
climate change (Benalcazar and Kamiński, 2019). District
heating and cooling can be a sufficient way to reduce
carbon dioxide emissions by optimizing fuel consumption
(Werner, 2017). Machine learning has proven to be an
attractive option for generating accurate thermal load
predictions also in the context of district heating and
cooling (e.g. (Saloux and Candanedo, 2018; Leiprecht
et al., 2021)).
Different algorithms have been evaluated in recent years
for this purpose, such as Adaptive Boosting (AdaBoost)
(Freund et al., 1996) and its derivative Extreme Gradient

Boosting (XGBoost) (Friedman, 2000), recurrent neural
networks (RNNs) like Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and the Seasonal
Autoregressive Integrated Moving Average Exogenous
model (SARIMA) (Fang and Lahdelma, 2016).
While the traditional machine learning methods produce
decent results, they all have the problem of not being
significantly better than statistical methods on many time
series problems. In many cases the larger overhead of
implementing these methods make them economically
less attractive than statistical approaches (Lim and Zohren,
2021). Current research tries to solve this issue by
improving the abilities of models of learning from the
past, which helps these methods to further improve their
accuracy in time series forecasting by reducing their
overfitting.
One approach to this issue is the Temporal Fusion
Transformer (TFT) (Lim et al., 2021). This new method
is an attention based network. TFT is already used
in a number of areas for time series forecasting, like
meteorology (Wu et al., 2022), medicine (Phetrittikun
et al., 2021) and the stock market (Hu, 2021). While there
will be some commonalities in input data with forecasting
in meteorology, right now there is no research about the
performance of TFT for energy demand forecasting. This
paper therefore aims to give a first estimation of what
results can be expected in this area.
Most of the work that was done on the topic of energy
demand forecasting focused on a 24 hour time horizon
(Benalcazar and Kamiński, 2019; Xue et al., 2019). This
paper instead focuses on an extended forecasting period of
up to 72 hours, in order to allow further optimised dispatch
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planning of power plants and thermal energy storages.

3. Temporal Fusion Transformer
TFT (Lim et al., 2021) is a new approach explicitly
developed for time series forecasting. Therefore it brings a
number of qualities that are very helpful for training robust
forecasting models. Usually machine learning methods
use information of the past to learn the behaviour of a
time series in order to create accurate forecasts. In order to
learn patterns in historic data, neurons have to memorize
data they have seen earlier during training. Most of the
time this is currently achieved with RNNs (Hochreiter
and Schmidhuber, 1997; Jaeger, 2001). However RNNs
oftentimes face the problem of expecting that all input data
is known, even for time steps in the future. However this
is not always possible. For example the temperature in the
future can not be known for sure. It can be estimated with
the help of weather forecasts, but there exist parameters
for which there is no way of knowing them upfront. TFT
on the other side does not belong into the class of RNNs,
it instead uses a transformer architecture (Vaswani et al.,
2017). Transformers use a more advanced method to learn
patterns in historic data. As a consequence they support a
variety of different types of input data, which enables the
usage of features whose values can not be known during
prediction. Next some of the advantages of TFT for time
series forecasting will be explained.
Firstly TFT supports multi step forecasting. This means
that multiple forecasts can be done in one prediction call.
For example in the case of this paper one prediction creates
forecasts for the next 72 hours with an interval of one
hour. Single step methods on the other side would only
predict one step at a time. To predict further ahead than
one hour this would require the user to do one prediction,
add it to the input data and then run the next prediction
until the size of the targeted prediction interval is reached.
This is undesirable because prediction errors in early time
steps can influence the prediction of later time steps.
Many new machine learning methods support this type
of forecasting, but it is still important to have and can’t
be done with every of the methods mentioned in this
paper. As transformers are not RNNs, another way to learn
relations between historic data is needed. TFT uses an
attention based method for solving this issue.
TFT supports three different types of input data: temporal
data which is known in the future, temporal data which
is unknown in the future and static variables. The first
group is the most common type of data as known from
other forecasting problems. For example the hour of the
day for which a prediction is made is such a feature. It
is known for historic data during training, but it can also
be determined for every future time step. The second type
of data is only needed during training, but can be missing
when the model is used for predictions. A good example
is weather data. Usually the historic weather is known
but can not be determined for the future. Other machine
learning algorithms would require to guess the weather
data or for example use a weather forecast instead of
real weather data. However these approaches don’t deliver
the actual correct values. The model however is trained
assuming the provided values are correct, which leads to
the predictions being inherently wrong when a forecast
is used as input instead. TFT on the other hand makes
it possible to use any feature in training even when it is
not possible to provide it during prediction phase. The last
type allows to add static data that will not change over
time, e.g. the holidays of the location of the prediction or
the location itself.

Another feature is the support of predicting multiple time
series at once. Usually every time series that should be
predicted needs its own neural network that is fitted to the
training data, in order to create the best possible forecast
based on the provided data. TFT provides the possibility
to add multiple sets of input data to a model. The model
then learns which dataset is used for predicting which time
series and fits its model in a way that can predict all time
series at the same time. This process can be very helpful
because this can save a lot of time. Usually in the process
of fitting a model, the hyperparamters will be optimized
to. If each time series would need its own neural model
multiple of this hyperparameter optimizations would be
required. In TFT only one for the model as a whole is
needed.
Additionally TFT tries to make the process of working
with it more interpretable. Usually neural networks are
black boxes that can not be understood in their way of
calculating a result. This makes the process of improving a
model especially tough when the model just does not seem
to get better. TFT solves this issue by a so called multi
head attention mechanism. This process works as follows.
TFT always calculates the importance of different input
features as part of its attention system. These importances
can be analysed and can be provided to the machine
learning developer. They can then examine which features
are important or which impact different features had
during one training. Altering features and then evaluating
the impact of the change to the performance of a parameter
makes it much easier to optimize and understand a model.
The prior explained advantage already includes a last
advancement TFT provides. Since the TFT calculates the
importance of all input features, it can also realize that a
given feature has no importance to the prediction problem.
In this case TFT can weigh the effect of the feature with a
zero which leads to the feature having no effect in training
and prediction. This can also save a lot of time, because
the right features do not have to be selected up front by a
data scientist.

4. Model Training
The training was done with a little bit more than six
years of historic data beginning at 02.09.2014 until the
31.12.2020. This time frame was split into a training and
validation dataset with the first 70% being the training
dataset and the last 30% being used for validation.
As TFT can analyse features itself in terms of their
importance for the problem, almost all features that were
available to us were used to train the model. In total those
were more than 37 features. Some of the most important
ones can be found in Tab. 1

Table 1: Used features for TFT training.
Name Description

Last Load The thermal load of the
prior hour in MW

avgLoad6/12/24 The average thermal load over
the last 6/12/24 hours in MW

Temperature Current air temperature in Celsius

avgTemp6/12/24 The average temperatur over
the last 6/12/24 hours in Celsius

Dewpoint Current dewpoint in Celsius

Season Sin One period of a sine wave
mapped onto the period of a whole
year
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Key features are temperature and the current thermal load
profile of the district heating network. The temperature is
the main factor that changes heating behaviour, especially
in residential areas. Therefore the required thermal load
strongly correlates with the temperature. The dew point
acts like an amplifier of the temperature. In our case both
values are very similar most of the time so it also is a good
indicator for how the heating demand evolves.
The last load is a good indicator, because most of the time
the thermal load demand does not change drastic over a
short period of time. Therefore, it usually acts as a good
estimation of the next thermal load required. Both of these
parameter can also be used as averages over the last few
hours. These averages can indicate the overall trend of the
current thermal load demand which can help to estimate
if the load demand will rise or decline over the next few
hours.
The Season Sin feature encodes which day of the year
it is at a given prediction point. This can be helpful
in improving the understanding of time in the neural
networks. While the weather is not exactly the same at the
same day over multiple years it can be similar, because
it is usually around the same time of the year when the
weather gets warmer or colder. Season Sin helps to learn
to take this periodic behaviour into account.
The implementation of TFT was not done by ourselves.
Pytorch(Paszke et al., 2019) already provides an
implementation of TFT which was used in this paper.

5. Methodology

5.1. Metrics
Benchmarking the forecasts is not an easy task, since
there is no standardized metric available. The Mean
Absolute Percentage Error (MAPE) is probably the most
commonly used metric for measuring forecast accuracy. It
is widespread in finance or other forecasting applications,
especially if enough data is available. The MAPE is
dimensionless and independent of the magnitude of the
values considered. At the same time, it can be clearly
interpreted. A MAPE of zero corresponds to a perfect
forecast (Clark, 2013; Armstrong and Collopy, 1992). Its
equation can be seen in (1). It is the mean of the sum of
the absolute error ei divided by the real value di. n is the
number of prediction-load pairs that are used to calculate
the error.

MAPE =
1

n

n∑
i=0

|ei|
di

(1)

In addition the Mean Absolute Error (MAE)(Willmott and
Matsuura, 2005) was used as a second metric. It is the
mean of the sum of n errors. The errors are the absolute
deviation of the prediction yi from the real thermal
load xi. The MAE oftentimes has the disadvantage of
being hard to interpret. In many cases the range of
values the target of a prediction can have is not known.
In this situations it is hard to argue if the measured
absolute improvement is significant or not. However in
our context this is not the case. For each of the district
heating networks considered the thermal loads that can be
expected are known. Moreover the unit of the MAE in this
case is Megawatts, a unit that is very easily interpretable.
The MAE should not be used to compare different district
heating networks, because their load profile can differ
significantly, however for each individual network the
metric can be very helpful for the power plant. It knows
which ways it has to provide the thermal load to a given

district heating network and how much energy each of
these options can provide. In this context absolute values
can be very helpful to optimize the energy production for
a given district heating network.

MAE =

∑n
i=1 |yi − xi|

n
(2)

So while the MAPE is a good indicator for making general
assumptions about the performance of a machine learning
method for district heating networks, the MAE can be used
for closer evaluation for concrete scenarios. Moreover the
MAE can relativise a high MAPE if the absolute target
values are quite low.

5.2. District Heating Networks
For the comparison three different district heating
networks of the city of Ulm were used. The first network
acts as a good general baseline for the performance
of a machine learning method, as the network is very
consistent and most algorithms evaluated so far perform
best on it. It has a total length of 40 km and provides space
heating for over 7500 households with an average annual
heating demand of 75 GWh, and a heat load ranging from
2 to 22 MW. Water with a temperature between 70°C and
110°C is used as a heat transfer fluid.
Additionally two more networks were selected which have
a more complex thermal load profile. The second district
heating network uses a combination of steam and hot
water for heat transfer. Steam transfer uses steam at a
heat of 130°C while the temperature of the water varies
between 70°C and 110°C. The network provides space
heating to over 13.000 households and has a heat load
ranging from 1 to 19 MW.
The third and last district heating network considered,
mainly supplies industrial buildings instead of private
households, which leads to one more different thermal
load profile. It is run with 120°C hot water as transfer fluid.
Additional to many factories the district heating network
supplies 220 households. It has a heat load ranging from 2
to 25 MW.
While still providing promising forecasts, many of the
machine learning methods evaluated prior produced far
less optimal results on district heating network two and
three. Evaluating the results of TFT on these networks
too, can show if the strengths of its new approach help
dealing with overall harder to predict scenarios. Also
the addition of a more industrial focused district heating
network provides more insights for a wider range of use
cases.

5.3. Time Frames
As time frame for the comparison the whole year of 2021
was used. With this time frame the evaluation should hold
meaningful results for the active usage of the model in a
power plant by covering many different scenarios and load
profiles of different seasons. Moreover the data is very
new, thereby the results can be extrapolated into the future
of the net more easily than an older time frame.
In addition to the comparison over the whole year, several
shorter time frames are evaluated too. These are:

• Winter (01.01.2021-28.02.2021 and 01.12.2021-
31.12.2021)

• Spring (01.03.2021-31.05.2021)

• Summer (01.06.2021-31.08.2021)

• Fall (01.09.2021-30.11.2021)
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These four intervals resemble four parts of the year
which have different load profiles. Evaluating them makes
it possible to further investigate how TFT performs
in different scenarios. For example the load profile is
very consistent in winter and summer which resulted in
pretty good predictions for the already evaluated methods.
However the older approaches struggle far more in the
spring and fall time frame. During these periods the
load profile is much more ambivalent. This could be a
problem for these older models because they tend to
overfit. Comparison of these time frames will show if
TFT can adapt better to learning more unpredictable time
series.

5.4. Machine Learning Methods
TFT will be compared to the results of three machine
learning methods. Namely LSTM, AdaBoost and
XGBoost. Since these methods can not abstract which
features are not important to them, these methods were
not trained by providing all possible features available
as input. To find the most important features for the
given machine learning method a feature reduction
was performed. The used method was the scikit learn
(Pedregosa et al., 2011) implementation of Recursive
Feature Elimination (Guyon et al., 2002) with cross
validation. The features used for each method can be seen
in Tab. 2

Table 2: Features used for training of different machine learning
methods.

Method Used Features
LSTM loads of the last 6 hours,

temperature,
season sin, avgTemp24,
hour, temperature forecast,
dewpoint forecast

AdaBoost loads of the last 6 hours,
season sin, avgTemp12, avgLoad24,
hour,
temperature forecast for the next 5 hours

XGBoost season sin, avgTemp12,
avgLoad24, hour,
loads of the last 6 hours,
temperature forecast for the next 3 hours

The features correspond to the features explained in
section 4. The amount of last loads and forecasts used in
AdaBoost and XGBoost vary between the models for each
of the three different nets in order to further improve the
results of the nets. The range in which those parameters
lie is three to six hours. The forecasts of all LSTM neural
networks are the same as the LSTM predicts the load as a
multi step while AdaBoost and XGBoost use a single step
method.

6. Discussion of Results
The promising results of TFT can be seen in Fig. 1. TFT
beats all other machine learning methods on every district
heating network evaluated. Moreover this is special,
because it is the first time in our investigation that one
method is the best one for any district heating network it
was tested on. For example without TFT, LSTM would
be the best way to predict network one while XGBoost
is the best method for network two and three. Moreover
the reduction of the error is impressive. On the easiest
network it beats LSTM by two percent points. This is
a good result, however it is not that relevant for the

facility, because looking at the absolute error, it already
lies beneath one MW. However the improvement is much
stronger in the tougher to predict networks two and three.
In both cases the MAPE of TFT is almost half as high as
the MAPE of XGBoost. This indicates how the attention-
based approach of TFT is way better in generalizing the
problem than older machine learning methods and thereby
avoids overfitting.

Figure 1: MAPE for the whole year of 2021

As a next step the four different time frames will be
evaluated to gain a better understanding why TFT beats the
other machine learning methods by such a huge margin.
The results for the spring time frame can be seen in Fig.
2. The results of this time frame early in the year are
quite similar to the overall results of the evaluation. TFT
performs best on every net, but while the difference is only
around two percent points better for network one the error
is around 4 percent points better for network two and 8
percent points better for network three. The MAPE for all
methods is higher in the spring than in the overall year. The
reason is that spring and fall is more difficult to predict
because the load profile does not behave as similar as it
does in the summer and winter months.
Comparing the difference between the overall MAPE
and the spring MAPE for each of the machine learning
methods shows that the difference in percent points is quite
similar across all methods. This indicates that TFT is not
per definition better in predicting spring times. The big
improvement is only so huge because the predictions of
TFT are overall better.

Figure 2: MAPE of the spring time frame.

Fig. 3 shows the different results for the summer time
frame. Errors in the summer time frame are generally
lower and closer to the overall year MAPE than the results
of the spring time frame. Again TFT is the best machine
learning method evaluated for all three district heating
networks. Comparing the summer results with the spring
results, district heating network three stands out. While
in network one and two the MAPE is much lower in
summer than in spring, in district heating network three
the reduction of the error is not that significant. TFT even
performs worse in summer than in spring on network
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three. All three district heating networks are located in
the same city, so the weather during this period was
the same for all three networks and should not have
been more unpredictable for network three. This leaves
two possibilities for why TFT is worse in summer than
in spring. Either the network changed which leads to
the historic data being less optimal for a prediction of
the current form of the district heating network, or the
reported load values during the prediction time frame
were erroneous, which lead to bad input values for the
prediction. The load data during the prediction time frame
did not have any issues, so the first problem probably
caused this result.

Figure 3: MAPE of the summer time frame.

Fig. 4 shows the results of all machine learning methods
for the fall time frame. Similar to the spring time frame
TFT really performs much better than its alternatives
during this period. For network two and three the error is
reduced by almost 50% over the second best method and
even on the already well performing network one the error
is reduced by around 30%. Together with the results of Fig.
2 the assumption of TFT being especially good for less
predictable time frames can be proved. This is a very good
trait for a machine learning method used for thermal load
forecasting, because some of the most important features
are weather data and weather forecasts. Even if a forecast
is very accurate, the nature of a forecast is, that it is
never a safely known value. This makes a very adaptable
system like TFT preferable. If compared with the spring
time frame also all MAPEs are a bit better. In both time
frames the thermal load provided by the district heating
networks is quite similar, which again would indicate that
the spring time frame of 2021 was less predictable in
its behaviour compared to the fall time frame. Moreover
when compared to the summer time frame it seems like
the predictions in fall would be better than in the summer.
This is as misconception created by the MAPE having a
percentage as error unit. In summer the thermal load is far
lower in all of the evaluated district heating networks. This
results in larger MAPEs even for small absolute errors.
Considering the absolute errors, the predictions for the
summer are actually better than for fall, e.g. with TFT
for network one the MAE for summer is 0.22MW and for
fall it is 0.49MW. So the summer predictions are actually
better even if the MAPE is worse.
Lastly the winter time frame is considered. The results
can be seen in Fig. 5. Again TFT is the strongest method
for each of the three inspected networks. For network
two and three TFT beats XGBoost by about 10 percent
points. Furthermore, TFT also is a notable improvement
in network one even though the error reduction is just
2.3 percent points. Moreover the MAPEs in the winter
time frame is the best of the whole year. This has two
reasons. First the prediction is overall very good. 5.52%
MAPE resembles a MAE of 0.78MW which is fairly low

Figure 4: MAPE of the fall time frame.

in the context of the evaluated district heating network.
The second fact is again one of the properties of the
MAPE. In the winter months the thermal load is quite
high, which leads to lower MAPEs even on similar large
absolute errors.

Figure 5: MAPE of the winter time frame.

For more insight on the actual absolute error, Tab. 3 shows
all predicted MAEs for TFT. A good indicator for the
performance of the TFT is that most errors are below
1MW. Only in the very unpredictable network three the
absolute error lies on average above 1MW. The networks
considered have thermal loads in the range of 10 to 20
MW for most of the year, so the calculated error is very
little. The absolute errors of summer also show the issue
of comparing the MAPEs of different time frames. The
MAEs are the lowest for every network in the summer time
frame but still the summer MAPEs were the worst.

Table 3: Absolute errors of TFT in MW.
Timeframe Network 1 Network 2 Network 3

Overall 0.57 0.56 1.00
Spring 0.79 0.96 1.28

Summer 0.22 0.19 0.36
Fall 0.49 0.45 0.92

Winter 0.78 0.67 1.44

Evaluation of all time frames has shown that out of the list
of evaluated methods, TFT is the best machine learning
method for the use case of time series forecasting in any
scenario. Further comparing the MAPEs in different time
frames showed that TFT is not really better in predicting
any of the time frames as it also struggled with predicting
spring and fall more than summer and winter. However
TFT predictions were overall always way better than their
competitors. This results in overall lower errors in all
time frames which leads to very competitive overall errors
because the reduction of the error in spring and fall also
reduces the overall error far more than improvements in
the summer and winter forecasts. A low overall error
translates to a more robust system.

7. Conclusion-and-Future-Work
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Use of TFT could contribute to further improve thermal
load forecasting. This paper presents first results of
benchmarking TFT against different machine learning-
based forecasting approaches for district heating and
cooling networks. As a starting point, the predictions
of these different methods were analysed on multiple
time frames and over multiple district heating networks.
All measured data, including statistically optimized
point weather forecasts, were automatically pre-processed
prior to the actual training and validation steps. The
models predicted 72 hours in advance. The predictions
were benchmarked against three other machine learning
methods that where evaluated in previous works. TFT
showed to have better MAEs and MAPEs over all
experiments, making it a very strong candidate for
thermal load forecasting in any scenario. Especially the
improvements in spring and fall forecasts above other
methods is a big improvement.
This paper used one specific model for each of the
networks to predict the thermal loads. One of the
advantages of TFT is to be able to train one model for
the prediction of multiple time series. As a next step it
should be investigated if a model trained to predict the
thermal load of multiple networks still holds the same
results. This could be a very important step in making
machine learning for thermal load forecasting more viable,
because it would reduce training effort and cost for the
power plants immensely.
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Abstract 

CO2 capture from gas turbine exhaust gas is a possibility for CO2 emission reduction on oil and gas production 

platforms.  A standard process is based on absorption in monoethanol amine (MEA).  A challenge is that the cost 

of size and weight for the process equipment is higher than on a land-based process. A standard process based on 

CO2 absorption into (MEA) is simulated in Aspen HYSYSTM. The equipment cost was obtained from Aspen In-

plant Cost EstimatorTM. The base case is based on assumptions which are in earlier works assumed to be close to 

optimum for a land-based process with a heat consumption of 3.5 MJ/kg removed CO2.  Different parameters as 

the number of stages in the absorption column and the minimum temperature approach are varied in the direction 

expected to be more optimum for an offshore application.  It is expected that a lower absorption column and 

smaller heat exchangers are more optimum offshore even though the heat consumption will increase.  Parametric 

studies were performed at 90 % capture efficiency.  Suggested conditions for an offshore application with 87 % 

capture efficiency are 13 m absorber packing height and 15°C minimum approach temperature due to a decrease 

in equipment cost, size and weight.   This is expected to balance the increase of heat consumption to approximately 

5.5 MJ/kg CO2 removed.    

Keywords: Carbon capture, Aspen HYSYS, gas turbine, offshore, simulation. 

 

1. Introduction 

There are published numerous articles on CO2 

capture in general (Liang et. al, 2015; Li et al., 2016).  

There are also many articles about cost estimation of 

CO2 capture (Rao and Rubin, 2002; Ali, 2019).  Some 

include power production and CO2 capture in their 

studies (de Ruick, 1992; Schach et al., 2010).   

Research work on the combination of simulation, cost 

estimation and cost optimization have been 

performed by Kallevik (2010), Øi (2012) and Shirdel 

et al. (2022).  In a PhD Thesis by Ali (2019) the EDF 

(Enhanced Detailed Factor) method was presented.  

Øi et al. (2021) evaluated automated calculation of 

cost optimum process parameters in the CO2 capture 

process. Typical parameters to optimize in an amine-

based process is the number of stages in the 

absorption column and minimum temperature 

approach in the heat exchangers.   

In this study, there was a big challenge to find open 

literature on process simulation of CO2 capture from 

a gas turbine offshore application. There are very few 

literature references that contain both the CO2 capture 

process from offshore gas turbines in a combined 

cycle by process simulation.    

In order to dispose and capture CO2 De Ruyck et al. 

(1992) proposed a combined cycle with higher 

efficiency for a more economical CO2 capture 

process. They concluded that the combined steam-

CO2 gas turbine cycle was viable with no major issues 

in practical manner. 

Bjerve and Bolland (1994) assessed six alternatives 

in power generation with the purpose of reducing CO2 

emission from exhaust gas released from a gas 

turbine in an offshore natural gas combustion.  They 

concluded that the option with exhaust gas recycling 

in the combined cycle, was the best alternative in the 

CO2 capture process, it resulted in the highest 

efficiency of CO2 removal, and second lightest 

option.  Falk-Pedersen et al. (1995) presented a 

concept of CO2 removal from an off-shore gas turbine 

based on absorption into monoethanol amine (MEA).  

Falk-Pedersen and Dannström (1987) suggested an 

off-shore process based on absorption into an amine 

solution through a membrane.   

Flatebø (2012) evaluated several offshore combined 

cycle configurations to meet the power need for the 

offshore installation and accordingly reduce the cost. 

The tools Aspen Plus, GTPRO and GTMASTER 

were used. One of the case studies focused on the 

design of the offshore installation, and another 

assigned to obtain high efficiency.  Liu and Karimi 

(2019) used the tool GateCycle for similar analysis. 

Nord et al. (2017), studied gas turbines as a power 

production resource in an offshore oil and gas 

installation by increasing the level of CO2 emission. 

To supply energy demand in the reboiler, a heat 

resource is required.  To compensate the energy 
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demand entirely or partially, they suggested an 

additional system of a compact steam bottoming 

cycle that can supply power need included in the CO2 

capture system. Through his study, a weight 

evaluation for main equipment has been performed to 

investigate a simple relation between the outlet gas 

turbine mass flow and the size of the oil and gas 

installation.  

There are very few studies on offshore CO2 capture 

analysis and almost none about optimizing the 

suggested solutions with parameter values. In this 

work, similar procedure of designing, simulating, and 

cost estimation for the CO2 capture process have been 

performed and more consideration regarding the 

offshore application have been considered.  This 

work presents results from the Master Thesis work by 

Fatemeh Fazli (2022). 

2. Process Description and Specifications 

2.1 Process description  

Figure 1 shows the process before the CO2 capturing 

process. This combined process cycle is assigned to 

meet the platform’s need for power energy. 

  

 
Figure 1: Upstream process before CO2 capture. 

This combination is a set of heat engines 

collaborating sequentially together with the same 

heat source and for a typical offshore project is 

included a set of gas turbine, a WHRU unit, and a 

generator followed by a condenser and a pump. The 

flue gas enters the two parallel gas turbines which are 

assigned to produce power. Then heat will be 

recovered in a waste heat recovery unit (WHRU) to 

supply additional heat and generate more energy. One 

of the exhaust gases from the WHRU unit will be sent 

to the reboiler and one to the steam turbine to generate 

electricity.   

Figure 2 shows the CO2 capture process for the 

defined project. The exhaust gas from the WHRU 

unit is entering the absorption column and the 

pressure and temperature of the flue gas need to be 

adjusted.  The exhaust gas will be led to an absorber 

where the CO2 will be removed from the gas with the 

help of a mixture of MEA and water injected into the 

absorber from the top of the column. The dissolved 

CO2 then exit the absorber column from the bottom 

and is sent to the rich amine pump to pressurize for 

further process in the desorber unit. Meanwhile, the 

clean gas will exit the column from the top.  To 

regenerate the MEA and separate the CO2 captured 

from the flue gas in the absorber unit, the gas flows 

to the desorber unit where this is done with the help 

of a reboiler and a condenser. The temperature should 

be increased to fulfill the reboiler requirement. The 

required energy to heat up the gas is supplied by the 

outlet of the reboiler.  As the regeneration process in 

the desorber column is done, CO2 removed from the 

gas is obtained from the top of the stripper for further 

storage processes. The regenerated amine will exit 

the stripper from the bottom and will be sent back to 

the cycle where the MEA is injected into the absorber 

column. 

  

 
Figure 2: CO2 capture process. 

2.2 Process Specifications and simulation 

The process specifications used for the base case 

simulation are presented in Table 1. The process 

simulation in this work applies the same strategy used 

in Øi (2007) and Aromada et al. (2015). The 

simulations were conducted using the equilibrium-

based Aspen HYSYS Version 10. 

The base case was simulated to capture 90 % CO2 

from exhaust gas from a natural gas combined cycle 

(NGCC) power plant. The process consists of an 

absorber with 16 packing stages (16 m), a desorber 

with 6 packing stages (6 m), and 10 ℃ temperature 

difference in the main heat exchanger.  

The Aspen HYSYS simulation process flow diagram 

showing all the equipment included in the scope of 

the study is shown in Figure 3.  
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Table 1: Specifications for process simulation. 

Parameter Value Unit 

Inlet flue gas 

temperature 
40 ℃ 

Inlet flue gas pressure 101 kPa 

Inlet flue gas flow rate 1.0 × 105 kgmol/h 

CO2 content in inlet 

gas 
3.73 mol % 

Water content in inlet 

gas 
6.71 mol % 

Lean amine 

temperature before and 

after pump 

120 ℃ 

Lean amine pressure 

before pump 
200 kPa 

Lean amine pressure 

after pump 
300 mol % 

Lean amine pressure to 

absorber 
101 kPa 

Lean amine rate to 

absorber 
25945 kgmol/h 

CO2 content in lean 

amine 
2.942 mol % 

Number of stages in 

absorber (base case) 
16 - 

Rich amine pressure 

before pump 
111 mol % 

Rich amine pressure 

after pump 
200 mol % 

Number of stages of 

stripper 

6 + Reboiler 

+ Condenser 
- 

Reboiler temperature 120 ℃ 

2.3 Equipment Sizing 

To determine the packing height, a constant stage 

(Murphree) efficiency corresponding to 1 meter of 

packing was assumed. Murphree efficiencies of 0.15 

and 0.5 were specified for the absorber and the 

desorber respectively (Table 1). For the absorber and 

desorber internals, structured packing was assumed. 

The absorption column diameter was calculated 

based on a gas velocity of 2.0 m/s and the desorption 

column based on a gas velocity of 1 m/s as in Park 

and Øi (2017) and Øi et al. (2021).  The total height 

of the absorption column and desorption column is 

specified to be packing height plus 34 m (Kallevik, 

2021). The extra height is due to distributors, water 

wash packing, demister, gas inlet, outlet, and sump. 

Centrifugal pumps with 75 % adiabatic efficiency 

were used in the process simulations. Overall heat 

transfer coefficient values have been specified for the 

lean/rich heat exchanger to 500 W/(m2K). These 

values are close to the same as in Øi (2012) and Park 

and Øi (2017) and slightly less than the numbers in 

Øi et al. (2021) which are regarded as optimistic. 

2.4 Capital and Operating Cost Estimation 

The equipment costs were calculated in Aspen In-

plant Cost Estimator (v.12), which gives the cost in 

Euro (€) for Year 2020. A generic location (e.g. 

Rotterdam) was assumed. Stainless steel (SS316) 

with a material factor of 1.3 was assumed for all 

equipment units.   

In the detailed factor method and the EDF method, 

each equipment cost (in carbon steel) was multiplied 

with its individual installation factor to get equipment 

installed cost. The detailed installation factor is a 

function of the site, equipment type, materials, size of 

equipment and includes direct costs for erection, 

instruments, civil, piping, electrical, insulation, steel 

and concrete, engineering cost, administration cost, 

commissioning, and contingency. The updated 

installation factors for 2020 (Aromada, 2021) were 

used.  Specifications for operating cost estimation are 

found in Table 2.  More details can be found in Fazli 

(2022). 

 
Figure 3: CO2 capture process model in Aspen HYSYS.   
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Table 2: Cost calculation specifications. 

Parameter  Value 

Plant lifetime 25 years 

Discount rate  8% 

Maintenance cost 
3 % of installed 

cost 

Electricity price 0.078 Euro/kWh 

Steam price 0.032 Euro/kWh 

Annual operational time 8000 hours 

Currency exchange rate 2021 9.78  

Cost index 2020 301  

Cost index September 2021 317  

2.5 Annual Cost and Capture Cost  

A cost optimization can be based on minimization of 

different cost measures. A common measure is the CO2 

capture cost defined by Equation 1 for a defined process 

plant and a defined time of operation.  

𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑐𝑜𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑
           (1) 

In this work the annual capital cost is calculated and is 

added to the yearly operating cost to obtain the total 

annual cost. The annual capital cost is obtained as by 

Equation 2: 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =
𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟
          (2) 

The annualized factor is calculated by Equation 3 

which is based on a constant interest rate (Aromada et. 

al, 2021).  

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  ∑ [
1

(1+𝑟)𝑛]𝑛
𝑖=1                  (3) 

where n is the years of operation and r is the interest 

rate. 

3 Results and Discussion 

3.1 Simulation Results 

Table 3 presents the process simulation results for the 

base case and parametric optimization.  

Table 3: Main simulation results.  

  Reboiler heat Optimum  
[MJ/kg CO2] parameter 

Base case 3.58 - 

Base case 

packing height 

- 16 meter 

Base case minimum 

temperature difference 

- 10℃ 

 
The reboiler specific heat consumption in this work is 

3.58 MJ/kg CO2. This is close to the 3.7 MJ/kg CO2 

calculated by (Øi, 2007) for a similar process with 85 

% CO2 capture. 

3.2 Sensitivity Analysis 

In Figure 4, the cross-section area in the absorber is 

simulated and calculated as a function of number of 

stages and minimum temperature approach (ΔTMIN). 

 

 
Figure 4: Absorber cross section area per no. of stages. 

The figure shows that the absorber cross section 

increases slightly with the number of packing stages 

and increases slightly with increasing minimum 

temperature difference. 

In Figure 5, the heat exchanger area in the main 

lean/rich amine heat exchanger absorber is simulated 

and calculated as a function of number of stages.   

 
Figure 5: HEX area per number of stages area. 

The figure shows that the heat exchanger area decreases 

with the number of packing stages and increases with 

the minimum heat exchanger area.  This means that a 

low column and a high temperature difference (ΔTMIN) 

give the lowest heat exchanger area. 

In Figure 6, the reboiler duty in the desorber is 

simulated and calculated as a function of number of 

stages. 
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Figure 6: QReboiler [kJ/kg CO2 removed] dependency on 

number of stages. 

The figure shows that the heat consumption decreases 

considerably with the number of packing stages and 

with the minimum temperature difference (ΔTMIN).  

This means that some packing height and a reasonably 

low minimum temperature approach is necessary to 

avoid a too high heat consumption.  Table 4 shows a 

summary of the sensitivity analysis results. 

A lower column than 12 meter (12 packing stages) is 

probably not optimum due to high energy consumption. 

A higher column than 15 meter gives only a slight 

reduction in energy consumption.  Due to this, a 13 

meter packing height is suggested for an offshore 

application.  Compared to ΔTMIN = 15 °C, a reduction 

to  10 °C increases the heat exchanger area substantially 

while the heat consumption decreases only slightly. 

When the ΔTMIN increases to 20 °C, the heat 

consumption increases substantially.  Because of this, 

ΔTMIN = 15 °C is suggested as a close to optimum value.  

These values can not be calculated as exact optimums, 

because accurate cost data are not available.     

3.2 General discussion 

In a traditional land-based plant, the accuracy of a 

capital cost and operating cost estimate based on an 

early phase study is in order of magnitude 30-50 %.  

The uncertainty in a cost estimate for an offshore 

installation is much higher.    One reason for this is that 

there are more unknown factors in such an estimate.  

The uncertainty of purchased equipment cost and 

energy consumption has about the same accuracy for 

land-based and offshore installations.  But the 

additional factors have much higher uncertainty for an 

offshore plant.  If there are no space and weight 

limitations, capital cost estimates based on land-based 

methods can be reasonable.  But with space and weight 

limitations, equipment cost factors can be an order of 

magnitude higher for an offshore installation. Because 

of this, cost estimates for an offshore plant in this study 

can only be order of magnitude estimates.   

 

Table 4: Summary of the results. 

  

cost 

optimum 

packing 

height 

cost 

optimum 

temperature 

difference 

90% 

route 

(1) 

92% 

route (2) 

Combined 

optimum 

parameters 

Capital cost (million €) 167.7 171.7 192.2 190.6 174.9 

Annualized capital cost (million €/yr) 16.5 16.8 18.9 18.7 17.2 

Annual operating cost (million €/yr) 52.5 51.9 76.6 60.2 50.8 

Total annual cost (million €/yr) 69.0 68.7 95.5 78.9 67.9 

CO2 capture cost (k€/tCO2) 63.9 63.8 84.5 67.3 62.9 

Specific reboiler heat (MJ/kgCO2) 3.50 3.41 5.24 3.55 3.33 

Annual cost savings (%) -2 -2 29 3 -4 

Energy savings (%) -7 -10 39 -6 -12 

 

4 Conclusion 

A challenge for an offshore based CO2 capture plant 

is that the cost of size and weight for the process 

equipment is higher and more uncertain than on a 

land-based process.  Possibilities to reduce the size 

and cost are evaluated using simulations in an 

equilibrium-based model in Aspen HYSYSTM.  The 

effects of reducing the size and weight of the 

absorber and the amine/amine heat exchanger and 

especially the effect on heat consumption are 

calculated and evaluated.   

A standard process based on CO2 absorption into 

mono ethanolamine (MEA) is simulated.  The base 

case is based on assumptions which are in earlier 

works assumed to be close to optimum for a land-

based process with a heat consumption of 3.5 MJ/kg 

removed CO2.  In this work, different parameters as 

the number of stages in the absorption column and 

the minimum temperature approach are varied in the 

direction expected to be more optimum for an 

offshore application.  It is expected that a lower 

absorption column and smaller heat exchangers are 

more optimum offshore even though the heat 

consumption will increase.   
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Suggested conditions for an offshore application 

with 87 % capture efficiency are 13 m absorber 

packing height and 15°C minimum approach 

temperature due to a decrease in equipment cost, 

size and weight.   This is expected to balance the 

increase of heat consumption to approximately 5.5 

MJ/kg CO2 removed. 
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Abstract 

The two-phase drift flux model is extensively used in multiphase flow applications. In this study, we focus on 

possible numerical schemes for solving the drift flux model. Due to the complexity of the primitive equations and 

empirical parameters, it is challenging to achieve stability of the numerical scheme used for the drift flux model. 

The high resolution second order central scheme, the high resolution second order central-upwind scheme, and 

the high resolution third order and fifth order weighted essentially non-oscillatory schemes (WENO) were 

successfully implemented for the drift flux model. The schemes were tested with the shock tube discontinuity 

problem. The central-upwind-WENO scheme was developed and applied to the drift flux model. In the central-

upwind-WENO scheme, the cell interface values were taken from the WENO reconstruction, and the monotone 

flux is calculated from the central-upwind flux. The central-upwind-WENO scheme can achieve higher order 

accuracy than the central-upwind scheme by using the same stencils which are used for the central-upwind 

scheme. The central-upwind-WENO scheme gives more accurate results than the central scheme, central-upwind 

scheme and the WENO scheme. Especially at the rarefaction and shock wave fronts, the central-upwind-WENO 

scheme gives sharper gradients compared to the other schemes. Instead of a limiter function, the central-upwind-

WENO scheme uses a smoothness indicator. All the schemes used in the study are suitable for two-phase drift 

flux model simulation.        

 

1. Introduction 

Two-phase models are important in the oil and gas 

production process and in well drilling operation due 

to the multiphase properties of the fluid. The two-

fluid model and the mixture model have been used 

for over two decades in the oil and gas industry. The 

two-fluid model treats each phase with a set of 

conservation equations [1]. The phase interaction 

appears as source terms in the conservation 

equations in the two-fluid model. The number of 

transport equations can be reduced by correlating the 

relative velocity between the phases, the slip 

velocity, with the flow variables [2] . The drift-flux 

model can be derived by adding together the 

momentum equations from both phases in the two-

fluid model [3]. The drift-flux model consists of two 

mass conservation equations and a mixture 

momentum equation. The drift flux model uses a 

single momentum equation; therefore, it might give 

weak results for the phasic velocities compared to 

the two-fluid model. The drift flux model requires a 

number of empirical parameters. Those are the 

drawback of the drift flux model.  

          

2. The two-phase 1-D drift flux model 

Equations 1 and 2 give the mass balance for the 

liquid and gas phases, respectively. A single 

momentum equation for the liquid and gas mixture 

in Equation 3 gives the momentum balance for the 

mixture,   
𝜕(𝜌𝑙𝛼𝑙)

𝜕𝑡
+

𝜕(𝜌𝑙𝛼𝑙𝑣𝑙)

𝜕𝑥
= 0,     (1) 

𝜕(𝜌𝑔𝛼𝑔)

𝜕𝑡
+

𝜕(𝜌𝑔𝛼𝑔𝑣𝑔)

𝜕𝑥
= 0,     (2)    

𝜕(𝜌𝑙𝛼𝑙𝑣𝑙+𝜌𝑔𝛼𝑔𝑣𝑔)

𝜕𝑡
+

𝜕(𝜌𝑙𝛼𝑙𝑣𝑙
2+𝜌𝑔𝛼𝑔𝑣𝑔

2+𝑝)

𝜕𝑥
= 0.   (3) 

Here, subscripts 𝑙 and 𝑔 denote the liquid and gas 

phases, 𝜌 is the density, 𝛼 is the phase volume 

fraction, 𝑣 is the velocity. In this study, we have not 

considered source terms. The drift-flux model 

assumes that the phases are mechanically at 

equilibrium, such that gas and liquid phases have 

same pressure, 𝑝(𝑥, 𝑡) = 𝑝𝑙(𝑥, 𝑡) = 𝑝𝑔(𝑥, 𝑡). The 

speed of sound is comparatively larger than the fluid 

velocity, therefore the fluids are assumed to be 

weakly compressible [4]. However, the phases are 

compressible, in other words, the densities of the 

phases change with time and space. The system is 

assumed to be isothermal; hence, the energy 

equation is neglected. The phases are immiscible, 

and there is no phase transfer between them. The 

pipe cross sectional area is assumed to be constant. 

There is set of closure laws related to the two-phase 

drift-flux model. There is no empty space and the 

total volume fraction is unity,  

𝛼𝑙 + 𝛼𝑔 = 1.     (4) 

The closure law for the liquid density is a function 

of pressure,  
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𝜌𝑙 =  𝜌𝑙,0 +
1

𝑐𝑙
2 (𝑝 − 𝑝𝑙,0),    (5) 

where 𝜌𝑙,0 = 1000 kg/m3 and 𝑝𝑙,0 = 1 bar are 

constants related to a reference point, 𝑐𝑙 = 1000 m/s 

is the sound velocity in the liquid phase. The closure 

law for the gas density as a function of pressure is  

𝜌𝑔 =
1

𝑐𝑔
2 𝑝,     (6) 

where 𝑐𝑔 = 316 m/s is the sound velocity in the gas 

phase. The slip velocity is the relative velocity 

between the phases, and can be defined as a function 

of flow variables, 𝑣𝑔  −  𝑣𝑙  =  𝛷(𝛼𝑔, 𝑝, 𝑣𝑔) [2]. The 

gas velocity can be presented in term of mixture 

velocity, 𝑣𝑚 =  𝛼𝑙𝑣𝑙 + 𝛼𝑔𝑣𝑔, and gas drift velocity, 

𝑣𝑑,  

 𝑣𝑔 = 𝑘𝑣𝑚 + 𝑣𝑑.    (7) 

Here, 𝑘 is the profile parameter (or distribution 

parameter); it describes the velocity and 

concentration profile, and is varying from 1.0 to 1.5 

in a cylindrical pipe flow [3]. For simplicity, we 

assume 𝑘 =  1.2; this implies that the ratio of 

maximum to the average flow velocity is 

approximately equal to 1.2. The drift velocity is 

0.216 [5]. Here, we denote Equations 4, 5, 6, and 7 

by the primitive equations. 

Equation 1, 2, and 3 can be presented in compact 

vector form with the conservative variables,  

 
𝜕𝐔

𝜕𝑡
+

𝜕𝐅(𝐔)

𝜕𝑥
= 0.    (8) 

Here, 𝐔 is the conservative variable vector, and 

𝐅(𝐔) is the flux vector function. 

𝐔 = (

𝛼𝑙𝜌𝑙

𝛼𝑔𝜌𝑔

𝛼𝑙𝜌𝑙𝑣𝑙 + 𝛼𝑔𝜌𝑔𝑣𝑔

) = (

𝑢1

𝑢2

𝑢3

),  (9) 

𝐅(𝐔) = (

𝛼𝑙𝜌𝑙𝑣𝑙

𝛼𝑔𝜌𝑔𝑣𝑔

𝛼𝑙𝜌𝑙𝑣𝑙
2 + 𝛼𝑔𝜌𝑔𝑣𝑔

2 + 𝑝
) =

(

𝑢1𝑣𝑙

𝑢2𝑣𝑔

𝑢1𝑣𝑙
2 + 𝑢1𝑣𝑔

2 + 𝑝
),   (10) 

while, 𝑢1, 𝑢2 and 𝑢3 are conservative variables. Due 

to the non-linearity of the drift flux model and the 

closure laws, it is difficult to express explicit 

conservative formulas for 𝑣𝑙  , 𝑣𝑔 and 𝑝 in the flux 

vector function. It is possible to express the 𝑣𝑙  , 𝑣𝑔 

and 𝑝 in terms of conservative variables. By 

embedding the closure laws in Equations 5 and 6 in 

4, a quadratic equation can be found expressing the 

pressure 𝑝(𝑢1, 𝑢2) with conservative variables, 

𝑝2 + (−𝑝0 + 𝑐𝑙
2𝜌𝑙0 − 𝑐𝑙

2𝑢1 − 𝑐𝑔
2𝑢2)𝑝 + (𝑐𝑔

2𝑝0 −

𝑐𝑙
2𝑐𝑔

2𝜌𝑙0)𝑢2 = 0.   (11) 

Equation 11 gives two real values for the pressure; 

however, Equation-12 is the physically realistic root,  

𝑝(𝑢1, 𝑢2, 𝑢3) = 0.5 (−(−𝑝0 + 𝑐𝑙
2𝜌𝑙0 − 𝑐𝑙

2𝑢1 −

𝑐𝑔
2𝑢2) +

√(−𝑝0 + 𝑐𝑙
2𝜌𝑙0 − 𝑐𝑙

2𝑢1 − 𝑐𝑔
2𝑢2)

2
− 4(𝑐𝑔

2𝑝0 − 𝑐𝑙
2𝑐𝑔

2𝜌𝑙0)𝑢2)

.     (12) 

The velocities can be derived by embedding 

conservative variables in Equation-7, 

𝑣𝑙(𝑢1, 𝑢2, 𝑢3) =
(1−𝑘𝛼𝑔)𝑢3−𝑣𝑑𝑢2

(1−𝑘𝛼𝑔)𝑢1+𝑘𝛼𝑙𝑢2
,   (13) 

𝑣𝑔(𝑢1, 𝑢2, 𝑢3) =
𝑘𝛼𝑙𝑢3+𝑣𝑑𝑢1

(1−𝑘𝛼𝑔)𝑢1+𝑘𝛼𝑙𝑢2
.   (14) 

The fluids are assumed to be compressible. Because 

oil and gas reservoir pressure is comparatively large, 

the wells are deep, and pressure is varying along the 

well. Fluid densities are functions of pressure such 

as 𝜌𝑙 = 𝜌𝑙(𝑢1, 𝑢2) and 𝜌𝑔 = 𝜌𝑔(𝑢1, 𝑢2). The 

compact conservative form of the drift flux model, 

after discretization, can be presented without source 

terms, 
𝑑𝐔

𝑑𝑡
= 𝐋(𝐔),    (15) 

Here, 𝐋(𝐔) is the discretization of the spatial 

operator,  

𝐋(𝐔) = −
1

∆𝑥
(𝐅(𝐔)

𝑖+
1

2

− 𝐅(𝐔)
𝑖−

1

2

).  (16) 

In most applications, the challenge is to discretize 

the cell interface flux function, 𝐅(𝐔)
𝑖±

1

2

, accurately. 

The flux function is the most important part of semi-

discretization for partial differential equations. 

Monotonicity of the numerical flux, 𝐅(𝐔)
𝑖+

1

2

=

𝐅 (𝐔
𝑖+

1

2

+ , 𝐔
𝑖+

1

2

− ), can be achieved by using 

monotonocity preserving schemes such as Godunov 

flux, Engquist-Osher flux, Lax-Friedrichs flux [6]. 

The positive and negative fluxes should be Lipschitz 

continuous functions, and should be consistent with 

the physical flux. Here, 𝐅 (𝐔
𝑖+

1

2

+ , 𝐔
𝑖+

1

2

− ) is non-

decreasing in the first argument and nonincreasing 

in the second argument. For the lower order 

reconstructions, there can be a big difference 

between results obtained by different monotone 

fluxes. The order of the reconstruction polynomial 

higher than two helps to achieve less smearing effect 

at the discontinuities [7]. The problem is that most 

of the high order monotone schemes move to first 

order at a discontinuity. 

 

3. Time integration for the semi-discrete schemes   

 

Time integration is applied to the Equation-15. The 

TVD Runge-Kutta method is used to preserve the 

total variation diminishing (TVD) properties under 

the CFL condition [8]. A fourth order TVD Runge-

Kutta scheme for time iterations is [9] 

 𝐔(1) = 𝐔(0) +
1

2
∆𝑡𝐋(𝐔),   (17) 

𝐔(2) =
1

2
𝐔(0) +

1

2
𝐔(1) −

1

4
∆𝑡𝐋(𝐔(0)) +

1

2
∆𝑡𝐋(𝐔(1)),    (18) 
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𝐔(3) =
1

9
𝐔(0) +

2

9
𝐔(1) +

2

3
𝐔(2) −

1

9
∆𝑡𝐋(𝐔(0)) −

1

3
∆𝑡𝐋(𝐔(1)) + ∆𝑡𝐋(𝐔(2)),   (19) 

𝐔(4) =
1

3
𝐔(1) +

1

3
𝐔(2) +

1

3
𝐔(3) +

1

6
∆𝑡𝐋(𝐔(1)) +

1

6
∆𝑡𝐋(𝐔(3)).     (20) 

Here, 𝐔(0) is related to time step 𝑛, 𝐔(4) is related to 

the time step 𝑛 + 1. High order TVD Runge-Kutta 

methods can be found in [9]. Under the CFL 

restriction, the time step can be defined as, 

∆𝑡 ≤ 𝑐
∆𝑥

max{𝜆𝑖} ∀𝑖
,    (21) 

Here 𝑐 is the CFL number, 𝜆 is the eigenvalues of 

the Jacobian of the hyperbolic system.  

      

4. High-resolution second order central scheme 

for the drift flux model 

The piecewise polynomials are functions of cell 

averages. For the third order central schemes, they 

couple with a piecewise quadratic approximation, 

such as the essentially non-oscillatory (ENO) 

reconstruction [10]. The integral values are 

approximated by the midpoint rule. The mid-point 

values are predicted by Taylor expansion. For more 

details, see [11], [12]. The cell interface values are 

𝐔
𝑖+

1

2

𝑛,+ = 𝐔𝑖+1
𝑛 −

∆𝑥

2
(𝐔𝑥)𝑖+1

𝑛 ,   (22) 

𝐔
𝑖+

1

2

𝑛,− = 𝐔𝑖
𝑛 +

∆𝑥

2
(𝐔𝑥)𝑖

𝑛.    (23) 

Here, the spatial derivatives, 𝐔𝑥, are reconstructed 

from the cell averages. A scalar total variation 

diminishing (TVD) property is achieved from a 

limiter function. The family of MINMOD-like 

limiters are used to calculate the numerical 

derivative,  

(𝐔𝑥)𝑖
𝑛 = MINMOD (𝜃

𝐔𝑖
𝑛−𝐔𝑖−1

𝑛

∆𝑥
, 𝜃

𝐔𝑖+1
𝑛 −𝐔𝑖

𝑛

∆𝑥
), (24) 

where, 1 ≤ θ ≤ 2 is the limiter parameter; for more 

details about the limiter functions, refer [13], [14]. It 

can be shown that for large θ values, a highly 

oscillatory solution is found, while for small θ 

values, a highly diffusive solution is found. In this 

study, we use the 𝜃 = 1 for simplicity.  The 

multivariable MINMOD function is defined as 

MINMOD(𝑧1, 𝑧2, … ) =

{

min𝑖{𝑧𝑖},             if 𝑧𝑖 > 0,       ∀𝑖,

max𝑖{𝑧𝑖},            if 𝑧𝑖 < 0,       ∀𝑖,

0,                  otherwise.                  

  (25) 

The central scheme’s numerical viscosity coefficient 

is  
∆𝑡

∆𝑥
𝑎𝑖+1/2 which is less than the numerical 

viscosity of the Lax-Friedrichs scheme, 

corresponding to the Courant-Friedrichs-Lewy 

(CFL) condition. There can be an accumulation of 

numerical dissipation, 𝒪 (
(∆𝑥)2𝑟 

∆𝑡
); this is one of the 

disadvantages of the central scheme [15]. The cell 

interface flux is calculated with the modified-Lax-

Friedrichs scheme [12],  

𝐅(𝐔)
𝑖+

1

2

𝑛 =
1

2
(𝐅 (𝐔

𝑖+
1

2

𝑛,−) + 𝐅 (𝐔
𝑖+

1

2

𝑛,+)) +

1

2
𝑎

𝑖+
1

2

𝑛 (𝐔
𝑖+

1

2

𝑛,− − 𝐔
𝑖+

1

2

𝑛,+).   (26) 

Here, 𝑎 is the one-sided local speed. In the original 

Lax-Friedrichs scheme, 𝑎 is set as ∆𝑡/∆𝑥. In this 

approach, 𝑎 is calculated from the maximum 

eigenvalue of the Jacobian matrix, 

𝑎
𝑖+

1

2

𝑛 = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0}.

     (27) 

The eigenvalues of the drift flux model are 

𝜆 = {𝑣𝑙 + 𝑐𝑚, 𝑣𝑔, 𝑣𝑙 − 𝑐𝑚}.  (28) 

The eigenvalues are derived with the assumption of 

having an incompressible liquid phase [16]. Here, 

𝑐𝑚 is the sound velocity in the mixture of gas and 

liquid. Based on the assumption of incompressible 

liquid and no slip for each phase, assuming 𝛼𝑔𝜌𝑔 ≪

𝛼𝑙𝜌𝑙 and 0 < 𝛼𝑔 < 1, the mixture sound velocity 

can be presented as [1], [17], 

𝑐𝑚 = √
𝑝

𝛼𝑔𝜌𝑙(1−𝑘𝛼𝑔)
.    (29) 

Here we introduce the stencils for the central scheme 

in a form similar to that of ENO schemes. To 

calculate the cell interface function, the second order 

central scheme uses one stencil from one side, 

because the MINMOD limiter function selects a 

single stencil from a side. 

 

5. Second order central-upwind scheme for the 

drift flux model 

As an improvement of the high-resolution central 

scheme, the central-upwind scheme was developed 

by Kurganov et al. [15]. The scheme is a semi-

discrete scheme, Godunov-type central scheme 

since it is based on integration over the Riemann fan. 

The upwind nature of the scheme is adapted by 

measuring the one-sided local speeds which present 

the directions of wave propagation. The one-sided 

propagation speeds are the largest and smallest 

eigenvalues of the Jacobian matrix at the cell 

interface. The central-upwind scheme is a Godunov-

type central scheme because the evolution employs 

the integration over the Riemann solver, and it does 

not require a Riemann solver and a characteristic 

decomposition. Equation 22 and 23 calculate the cell 

interface values, 𝐔
𝑖+

1

2

𝑛,±
, with the MINMOD limiter 

function. Compared with the high-resolution central 

scheme, the high-resolution central-upwind scheme 

only differs is the cell interface flux calculation. 

Specifically, the central-upwind scheme consists of 

negative and positive direction one-sided local 

speeds at the cell interface. These are called the 

discontinuities propagation speeds. The 

discontinuities propagation speeds in right and left 

sides are 
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𝑎
𝑖+

1

2

𝑛,+ = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0},

     (30) 

𝑎
𝑖+

1

2

𝑛,− = min {min {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , min {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0}.

     (31) 

The central-upwind scheme bounds the Riemann fan 

by (𝑎
𝑖+

1

2

𝑛,+ − 𝑎
𝑖+

1

2

𝑛,−) ∆𝑡 [15]. The numerical flux of the 

high resolution central-upwind scheme is  

𝐅(𝐔)
𝑖+

1

2

𝑛 =
𝑎

𝑖+
1
2

𝑛,+
𝐅(𝐔

𝑖+
1
2

𝑛,−
)−𝑎

𝑖+
1
2

𝑛,−
𝐅(𝐔

𝑖+
1
2

𝑛,+
)

𝑎
𝑖+

1
2

𝑛,+
−𝑎

𝑖+
1
2

𝑛,− +

𝑎
𝑖+

1
2

𝑛,+
𝑎

𝑖+
1
2

𝑛,−

𝑎
𝑖+

1
2

𝑛,+−𝑎
𝑖+

1
2

𝑛,− (𝐔
𝑖+

1

2

𝑛,+ − 𝐔
𝑖+

1

2

𝑛,−).   (32) 

The numerical flux, 𝐅(𝐔)
𝑖+

1

2

𝑛  , is independent of ∆𝑡, 

therefore the numerical viscosity is independent of 

𝒪 (
1 

∆𝑡
) in both the central and the central-upwind 

schemes. This is an advantage for using these two 

schemes for steady state calculations. The order of 

the scheme is second order.  

 

6. WENO scheme for the drift flux model 

Harten et al. [10] made the fundamental step for 

developing the ENO scheme. The ENO scheme uses 

a non-linear adaptive procedure to select the 

smoothest stencil where it can avoid the crossing 

discontinuities as much as possible [7]. ENO 

schemes map the cell averages in the stencil to the 

value of cell interface where there exists constant 

values. As the first step of the ENO scheme, a 

polynomial reconstruction is used to approximate 

the cell averages. If the degree of the interpolation 

polynomial function is 𝑟, then the order of the ENO 

scheme becomes 𝑟. The weighted ENO (WENO) 

scheme can be generated from the same stencil node 

in the ENO scheme with higher order accuracy. Liu 

et al. [6] developed the WENO scheme and it is 

further developed by Jiang and Shu [19]. The 

WENO scheme uses a convex combination of all the 

candidate stencils instead of just one used in the 

ENO scheme. Therefore, the WENO scheme can 

achieve higher order accuracy, 2𝑟 − 1, by using the 

same ENO stencils.  

        

6.1. Fifth order WENO scheme for the drift flux 

model 

Parallel to the third order ENO scheme, the fifth 

order WENO scheme uses a convex combination of 

the all three stencils [20].  

The third order ENO approach is used to calculate 

the cell interface variable related to each stencil. The 

negative direction cell interface with related to the 

stencils 𝑠0, 𝑠1, and 𝑠2 are 

𝐔
𝑖+

1

2

−,0 =
1

3
𝐔𝑖−2 −

7

6
𝐔𝑖−1 +

11

6
𝐔𝑖,  (33) 

𝐔
𝑖+

1

2

−,1 = −
1

6
𝐔𝑖−1 +

5

6
𝐔𝑖 +

1

3
𝐔𝑖+1,   (34) 

𝐔
𝑖+

1

2

−,2 =
1

3
𝐔𝑖 +

5

6
𝐔𝑖+1 −

1

6
𝐔𝑖+2.  (35) 

The positive direction cell interface with related to 

the stencils 𝑠0, 𝑠1, and 𝑠2 are 

𝐔
𝑖+

1

2

+,0 =
11

6
𝐔𝑖+1 −

7

6
𝐔𝑖+2 +

1

3
𝐔𝑖+3,  (36) 

𝐔
𝑖+

1

2

+,1 =
1

3
𝐔𝑖 +

5

6
𝐔𝑖+1 −

1

6
𝐔𝑖+2,   (37) 

𝐔
𝑖+

1

2

+,2 = −
1

6
𝐔𝑖−1 +

5

6
𝐔𝑖 +

1

3
𝐔𝑖+1.   (38) 

Here we have skipped the superscript 𝑛 in time. The 

cell averages are used to calculate the cell interface 

value 𝐔
𝑖+

1

2

±
in each stencil. Here we only present the 

left side stencils approach. The convex combination 

of the left biased stencils of the ENO approach gives 

the WENO approach, at the cell interface 𝑖 +
1

2
, 

𝐔
𝑖+

1

2

− = 𝜔0𝐔
𝑖+

1

2

−,0 + 𝜔1𝐔
𝑖+

1

2

−,1 + 𝜔2𝐔
𝑖+

1

2

−,2
.  (39) 

The weight functions are 

𝜔0 =
𝛼0

𝛼0+𝛼1+𝛼2
,    (40) 

𝜔1 =
𝛼1

𝛼0+𝛼1+𝛼2
,    (41) 

𝜔2 =
𝛼2

𝛼0+𝛼1+𝛼2
,    (42) 

Here, 𝜔0 + 𝜔1 + 𝜔2 = 1, and  

𝛼0 =
1/10

(𝜖+𝛽0)2,    (43) 

𝛼1 =
6/10

(𝜖+𝛽1)2,    (44) 

𝛼2 =
3/10

(𝜖+𝛽2)2.     (45) 

𝜖 = 10−6 is used to avoid division by zero𝛽 is the 

smoothness indicator. The smoothness indicator is 

defined based on undivided differences [20]. The 

smoothness indicator consists of a (𝑟 − 1)-th order 

accurate polynomial functions, 

 

𝛽0 =
13

12
(𝐔𝑖−2 − 2𝐔𝑖−1 + 𝐔𝑖)2 +

1

4
(𝐔𝑖−2 −

4𝐔𝑖−1 + 3𝐔𝑖)2,    (46) 

𝛽1 =
13

12
(𝐔𝑖−1 − 2𝐔𝑖 + 𝐔𝑖+1)2 +

1

4
(𝐔𝑖−1 − 𝐔𝑖+1)2,

     (47) 

𝛽2 =
13

12
(𝐔𝑖 − 2𝐔𝑖+1 + 𝐔𝑖+2)2 +

1

4
(3𝐔𝑖 − 4𝐔𝑖+1 +

𝐔𝑖+2)2.     (48) 

By symmetry, the 𝐔
𝑖+

1

2

+  values can be calculated. 

Here we choose the local Lax-Friedrichs flux to 

calculate the monotone flux in the WENO scheme. 

The local Lax-Friedrichs flux is 

 𝐅(𝐔)
𝑖+

1

2

𝑛 = 𝐅 (
𝐔

𝑖+
1
2

𝑛,−
+𝐔

𝑖+
1
2

𝑛,+

2
) −

1

2
𝑎

𝑖+
1

2

𝑛 (𝐔
𝑖+

1

2

𝑛,− − 𝐔
𝑖+

1

2

𝑛,+),

     (49) 

where 𝑎
𝑖+

1

2

𝑛   is 

𝑎
𝑖+

1

2

𝑛 = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)}}.

     (50) 
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6.2. Third order WENO scheme for the drift flux 

model 

The third order WENO scheme is developed from 

the second-order ENO scheme. Parallel to the fifth 

order WENO scheme, the third order WENO 

scheme has two stencils in each side. Here we briefly 

explain the third order WENO scheme, one can 

compare the fifth order WENO scheme parallelly. 

The cell interface values for the stencil 𝑠0 and 𝑠1 

respectively are  

𝐔
𝑖+

1

2

−,0 = −
1

2
𝐔𝑖−1 +

3

2
𝐔𝑖,    (51) 

𝐔
𝑖+

1

2

−,1 =
1

2
𝐔𝑖 +

1

2
𝐔𝑖+1.   (52) 

The negative cell interface value is  

𝐔
𝑖+

1

2

− = 𝜔0𝐔
𝑖+

1

2

−,0 + 𝜔1𝐔
𝑖+

1

2

−,1
.   (53) 

The weight functions are  

𝜔0 =
𝛼0

𝛼0+𝛼1
,    (54) 

𝜔1 =
𝛼1

𝛼0+𝛼1
,    (55) 

where,  

𝛼0 =
1

(𝜖+𝛽0)2,    (56) 

𝛼1 =
1

(𝜖+𝛽1)2,    (57) 

and,  

𝛽0 = (𝐔𝑖−1 − 𝐔𝑖)
2,   (58) 

𝛽1 = (𝐔𝑖 − 𝐔𝑖+1)2.   (59) 

The right side (positive direction) functions can be 

found by symmetry to the cell interface 𝑖 +
1

2
. 

 

7. Proposing a high resolution central-upwind-

WENO scheme for the drift flux model    

 

Here we use the above mentioned central scheme, 

the central-upwind scheme, and the WENO scheme 

for development of a central-upwind-WENO 

scheme. The main idea of the central-upwind-

WENO scheme is to calculate the numerical flux 

from the central-upwind flux, and the cell interface 

values are calculated from the WENO 

reconstruction. The objective is to adapt the central-

upwind nature in WENO scheme which can produce 

more accurate and stable results. The order of the 

scheme is decided by the polynomial interpolation 

used to calculate the cell interface flux. 

 

7.1. Development of high resolution fifth order 

central-upwind-WENO scheme for the drift flux 

model    

The cell interface flux is calculated with the central-

upwind flux. Here we rewrite Equation 32 which 

gives the central-upwind flux, 

𝐅(𝐔)
𝑖+

1

2

𝑛 =
𝑎

𝑖+
1
2

𝑛,+
𝐅(𝐔

𝑖+
1
2

𝑛,−
)−𝑎

𝑖+
1
2

𝑛,−
𝐅(𝐔

𝑖+
1
2

𝑛,+
)

𝑎
𝑖+

1
2

𝑛,+
−𝑎

𝑖+
1
2

𝑛,− +

𝑎
𝑖+

1
2

𝑛,+
𝑎

𝑖+
1
2

𝑛,−

𝑎
𝑖+

1
2

𝑛,+−𝑎
𝑖+

1
2

𝑛,− (𝐔
𝑖+

1

2

𝑛,+ − 𝐔
𝑖+

1

2

𝑛,−).   (60) 

The one-sided local speeds in Equation 60 can be 

calculated from the largest and smallest eigenvalues 

of the system. Here we rewrite the Equations 25 and 

26 form of the central-upwind scheme:     

𝑎
𝑖+

1

2

𝑛,+ = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0},

     (61) 

𝑎
𝑖+

1

2

𝑛,− = min {min {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , min {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0}.

     (62) 

The cell interface values 𝐔
𝑖+

1

2

𝑛,±
 can be calculated from 

the fifth order WENO reconstruction. Here, we 

rewrite Equation 39, which gives the negative 

direction cell interface value,   

𝐔
𝑖+

1

2

− = 𝜔0𝐔
𝑖+

1

2

−,0 + 𝜔1𝐔
𝑖+

1

2

−,1 + 𝜔2𝐔
𝑖+

1

2

−,2
.  (63) 

The weight functions can be calculated from 

Equations 40 to 48. The fifth order central-upwind-

WENO scheme is developed from the central-

upwind flux and the fifth order WENO 

reconstruction for the cell interface values. Once we 

know the cell interface flux, it is possible to calculate 

flux gradients.  

  

7.2. Development of high resolution third order 

central-upwind-WENO scheme for the drift flux 

model   

Like the fifth order central-upwind-WENO scheme, 

the third order central-upwind-WENO scheme can 

be developed. The numerical flux function is 

calculated from the Equations 60 to 62. The cell 

interface values can be calculated from Equations 51 

to 59.  

8. Results  

The shock tube problem is a benchmark case for 

testing the capability of numerical schemes in pipe 

flow. Evje and Flåtten [1] used the following initial 

conditions for a discontinuity in a pipe flow, see 

Figure 1. Here, subscript 𝐿 is left side and subscript 

𝑅 is right side.  

  
Figure 1. Initial condition of the shock tube 

problem-1 in the pipe flow  

The initial gas velocity, 𝑣𝑔, can be calculated as, 

𝑣𝑔 =  (𝑘𝑣𝑙𝛼𝑙  + 𝑣𝑑)/(1 −  𝑘𝛼𝑙). For the test case, 

we assume that the diameter of the pipe is 0.1 m, the 

length of the pipe is 100 m, the step length is ∆x = 

0.5 m. The initial discontinuity is at x = 50 m when 

t = 0 s. The friction force and gravity force terms are 

neglected for the numerical test, and 𝑘 =  1.07 and 

𝑣𝑑  =  0.216 m/s. The test problem is purely a 

convection dominated flow; this initial condition 

generates discontinuities for all three conservative 

variables. The fifth order WENO scheme with fine 

mesh is used as the reference solution; we used 2.5 
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times more cells in the fluid domain compared to the 

other schemes. The fifth order WENO scheme gives 

accurate results compared with [16]. Figure 2 shows 

the shock tube problem result comparison between 

the central-upwind-WENO scheme and the central 

scheme. The results are shown after 1 s of simulation 

for pressure, gas velocity, liquid velocity, and liquid 

volume fraction. The central-upwind-WENO 

scheme gives a better solution than the central 

scheme, especially at the square wave in the 

solution. The second order central scheme is more 

diffusive compared to the other schemes used in this 

study. Figure 3 shows the shock tube result 

comparison between the third order central-upwind-

WENO scheme vs. the second order central-upwind 

scheme. Compared to the central scheme, the 

central-upwind scheme gives more accurate results. 

However, the central-upwind-WENO scheme gives 

even higher accuracy than the central-upwind 

scheme. Figure 4 shows the shock tube problem 

result after 1s of simulation for the third order 

central-upwind-WENO scheme vs. the third order 

WENO scheme. The third order WENO scheme 

gives more accurate results than the central scheme 

and the central-upwind scheme. However, the third 

order central-upwind-WENO scheme gives more 

accurate results than the third order WENO scheme.  

The third order central-upwind-WENO scheme 

gives sharper gradient for rarefaction waves and 

shock wave fronts compared to the third order 

WENO scheme, the second order central scheme, 

and the second order central-upwind scheme. In 

other words, the third-order central-upwind-WENO 

gives the highest accuracy.   

 
(a) 

 
(b) 

 

Figure 2. Shock tube problem results comparison 

after 1 s simulation between the third order high-

resolution central-upwind-WENO scheme vs. the 

second order high-resolution central scheme. The 

fifth order WENO scheme with a fine mesh is used 

as the reference: (a)Pressure, (b)Gas velocity.    

 
(a) 

 
(b) 

 

Figure 3. Shock tube problem results comparison 

after 1 s simulation between the third order high-

resolution central-upwind-WENO scheme vs. the 

second order high-resolution central-upwind 

scheme. The fifth order WENO scheme with a fine 

mesh result is used as the reference: (a)Pressure, 

(b)Gas velocity.  

 
(a) 

 
(b) 

Figure 4. Shock tube problem results comparison 

after 1 s simulation between the third order high-

resolution central-upwind-WENO scheme vs. the 

third order high-resolution WENO scheme. The fifth 

order WENO scheme with a fine mesh result is used 

as the reference: (a)Pressure, (b)Gas velocity.     

 

Table 1 shows the computational speed comparison 

for the schemes. The simulations have conducted for 

the shock tube problem up to 1s, and all the schemes 

have used same coarse mesh which has 200 cells. 

The CPU times presented in the table are averages 

of five simulation runs for each case. The third order 

WENO scheme is the fastest scheme, it has higher 
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accuracy than the second order central scheme and 

second order central-upwind scheme. Compared to 

the third order WENO scheme, the central-upwind 

scheme is a slower scheme. The MINMOD limiter 

function has logical “if” closure structures, or 

equivalent mathematical formulae, which are not 

very efficient. The WENO scheme solves algebraic 

equations with weight functions. Therefore, the 

central and the central-upwind second order 

schemes are slower than the third order WENO 

scheme. However, all the schemes are in same speed 

range, this is no big differences. One can argue that 

fifth order WENO scheme has comparatively high 

speed for the coarse mesh. However, the fifth order 

WENO scheme gives higher oscillatory results for 

the coarse mesh than the third order WENO 

schemes, see Figure 5. The fifth order WENO 

scheme is very accurate and less oscillatory for finer 

mesh. The fifth order central-upwind-WENO 

scheme is more accurate than the fifth order WENO 

scheme. However, the fifth order WENO scheme 

and the fifth order central-upwind-WENO scheme 

produce more oscillatory results than their third 

order schemes.    

Table 1: Computational time comparison: 

Computation time was calculated for 1s simulations. 

All the schemes were used same coarse mesh, 200 

cells 

Scheme CPU Time (s) 

Third order central-upwind-

WENO 

0.90 

Fifth order WENO 0.95 

Third order WENO 0.80 

Second order central  0.88 

Second order central-upwind  0.92 

 

 
Figure 5. Coarse mesh simulation of the fifth order 

WENO scheme and the third order WENO scheme: 

The mesh has 200 cells. The results show liquid 

velocity for the shock tube problem 

 

9. Concluding remarks  

  

In this study, we considered possible numerical 

schemes for the two-phase drift flux model. The drift 

flux model is typically used in well-drilling and oil-

gas production process in the petroleum industry. 

The high resolution second order central scheme, the 

high resolution second order central-upwind scheme 

and the third order and fifth order WENO schemes 

were used for numerical simulations. The stencil 

selection procedure and numerical discretization 

procedure were explained in detailed for each 

scheme. We developed the high resolution third 

order and fifth order central-upwind-WENO scheme 

for the drift flux model. The main idea of the central-

upwind-WENO scheme is to calculate the numerical 

flux from the central-upwind flux, and the cell 

interface values are calculated from the WENO 

reconstruction. This method helps to achieve higher 

order of the scheme with minimum number of 

stencils. The developed central-upwind-WENO 

scheme produces more accurate results than the 

central scheme, the central-upwind scheme, and the 

WENO scheme. All the schemes used in the study 

are suitable for the drift-flux model simulation. The 

source term effect, especially friction and gravity, 

will be discussed in future publications.  
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Abstract

It is known that the presence of delays hinders the performance achievable by a feedback control system, and it can
even lead to closed-loop instability if not considered during the design. For this reason, predictors are often included
in the loop, although they typically require the knowledge of the exact value of the delay, which in some applications
is hard to obtain in practice. This paper presents a method to design an observer that simultaneously estimates the
unknown state and the time-varying input delay of a plant based on an available model and the measurements coming
from the sensors. In particular, the main contribution of this paper is to show that by accounting for a known lower bound
of the input delay, it is possible to improve the observer’s performance when compared to state-of-the-art approaches
encountered in the literature. Simulations are used to illustrate the efficiency of the proposed design method.
Keywords: input delay, delay estimation, state observer

1 Introduction
An input delay system is a particular case of time-delay
system in which the delay affects only the input signal.
There are many possible causes for input delays, of both
computational and physical nature. In many situations,
these delays must be explicitly considered during the de-
sign, because failing to do so can lead to a non-acceptable
degradation of the performance or to the loss of stability.

The most widely used approach to account for delays
is the Smith predictor (Smith, 1959) which was extended
to work with time-varying delays in (Normey-Rico et al.,
2012) and (Franklin and Santos, 2020). An alternative ap-
proach that has drawn attention lately relies on the lin-
ear parameter varying (LPV) framework (Rotondo et al.,
2019) and achieves the desired performance/stabilization
using a delay-scheduled controller (Briat et al., 2009b,a).
However, even when the time delay is explicitly taken into
account, the presence of uncertainty on the delay value can
produce fragility in the control system. A possible way to
address this issue and decrease the amount of uncertainty
in the delay value is to estimate it online. For this reason,
many works in the literature have focused on the problem
of time delay estimation.

The approaches used for time delay estimation can
be classified into signal processing and control-oriented
(Léchappé et al., 2018). In the former class of meth-
ods, the value of the delay that minimizes some criterion
(cost function) based on available data collected from the
process is sought (Knapp and Carter, 1976; Jacovitti and
Scarano, 1993). However, this comes at the cost of a high
computation time and they require the knowledge of the
delayed signal, which is not always realistic. For this rea-
son, control-oriented approaches consider the delay as a

parameter to be estimated online. (Agarwal and Canudas,
1987) approximated the delay term using the Padé form,
then used least-squares to minimize an objective function.
(Tuch et al., 1994) proposed a recursive least-squares al-
gorithm in the frequency domain, which had the drawback
of requiring perfectly known initial conditions.

Among the control-oriented approaches, observer-
based methods have been under consideration lately. For
instance, (Cacace et al., 2015) proposed an augmented ob-
server able to estimate a constant state delay. A Kalman
filter-based solution was proposed in (Léchappé et al.,
2015) and (Léchappé et al., 2018). On the other hand,
adaptive and sliding mode observers were applied to time
delay estimation in (Wu et al., 2013) and (Drakunov et al.,
2006).

In this paper, we consider the observer-based solu-
tion proposed by (Léchappé et al., 2015), and we im-
prove it under the assumption that a known lower bound
is available for the time-varying delay. We discuss how
this knowledge can be used when applying the Taylor’s
theorem, so that a generally smaller remainder is ob-
tained. Consequently, a better performing observer is im-
plemented, as demonstrated by simulations under different
realizations of the delay and input signals.

The paper is organized as follows. Section 2 presents
the problem formulation and summarizes the state and de-
lay observer proposed by (Léchappé et al., 2015). Section
3 shows that by considering a lower bound for the delay, it
is possible to perform a different sequence of calculations
that lead to an improved state and delay observer structure.
The discussion about the observer stability is provided in
Section 4. The performance of the proposed improved ob-
server is demonstrated using simulation examples in Sec-



tion 5. Finally, the main conclusions are drawn in Section
6.

2 Problem and background
Consider the following SISO LTI system:{

ẋ(t) = Ax(t)+bu(t−d(t))
y(t) = cT x(t) (1)

where x ∈ Rn is the state, u ∈ R is the known input, y ∈ R
is the measured output, and d ∈ R is the unknown input
delay, which should be estimated. The matrix A and the
vectors b,c are assumed to be known and such that the
pair (A,cT ) is observable. On the other hand, it is assumed
that the time-varying delay d(t) is continuous and differ-
entiable, with |ḋ(t)| ≤ H. Finally, it is assumed that the
signal u(t) is smooth, which means u ∈ C 2 and there ex-
ists a bound M > 0 such that |ü(t)| ≤M for all t ≥−d.

The problem under consideration is the design of an ob-
server that can estimate the state x(t) and the input delay
d(t) from the knowledge of y(t), u(t) and u̇(t).

The work by (Léchappé et al., 2015) assumed that the
time-varying delay d(t) satisfies d(t)∈ [0,d], where d > 0
denotes the upper bound of d(t). Then, they proceed to
apply the Taylor’s theorem to expand u(t−d(t)) about t,
obtaining:

u(t−d(t)) = u(t)−d(t)u̇(t)+ γ (t−d(t)) (2)

where γ(·) is the so-called remainder, for which a uniform
bound can be obtained given that |ü(t)| ≤M, as follows:

|γ (t−d(t)) | ≤M
d(t)2

2
(3)

This allowed (Léchappé et al., 2015) to rewrite (1) as:{
ẋ(t) = Ax(t)+bu(t)−bu̇(t)d(t)+bγ (t−d(t))
y(t) = cT x(t) (4)

and, by augmenting the state vector as z(t) =[
x(t)T d(t)T

]T : ż(t) =
[

A −bu̇(t)
0 0

]
z(t)+

[
b
0

]
u(t)+

[
bγ (t−d(t))

ḋ(t)

]
y(t) =

[
cT 0

]
z(t)

(5)
which can be brought to the compact form:{

ż(t) = Ā(u̇(t))z(t)+ B̄u(t)+Γ(t, t−d(t))
y(t) = C̄z(t) (6)

where the definition of Ā, B̄, C̄ and Γ(·) is straightforward.
Then, the following observer was proposed to recon-

struct and estimate ẑ(t) of z(t) (and, in turn, to obtain esti-
mates x̂(t) and d̂(t) of x(t) and d(t)):

˙̂z(t) = Ā(u̇(t)) ẑ(t)+ B̄u(t)−L(t)
(
C̄ẑ(t)− y(t)

)
(7)

where the discussion about how to choose the observer
gain L will be omitted, since it is not relevant for fur-
ther developments (the interested reader is referred to
(Léchappé et al., 2015)).

3 Improved state and delay observer
As already mentioned, the approach proposed by
(Léchappé et al., 2015) and summarized in the previous
section works under the assumption that d(t) ∈ [0, d̄]. In
many practical situations, it is realistic to assume that not
only an upper bound d is available, but a lower bound d as
well, which means that d(t) ∈ [d,d]. In this case, expand-
ing u(t−d(t)) about t−d would lead to a reduced magni-
tude of the remainder term, which acts as an unknown ex-
ogenous disturbance in the model (5), thus being responsi-
ble for degrading the state/delay estimate obtained via the
observer (7).

Then, the following is obtained:

u(t−d(t)) =u(t−d)−d(t)u̇(t−d) (8)
+du̇(t−d)+ γ̃ (t−d(t))

where γ̃(·) is a new remainder term, for which a uniform
bound is calculated as follows:

|γ̃ (t−d(t)) | ≤M
(d(t)−d)2

2
(9)

By comparing (3) and (9), it is clear that given the same
value of the delay d(t), it can be generally expected that:

|γ̃ (t−d(t)) | ≤ |γ (t−d(t)) | (10)

will likely hold.
Based on (8), Eq. (1) can be rewritten as: ẋ(t) = Ax(t)+bu(t−d)−bu̇(t−d)d(t)

+bdu̇(t−d)+bγ (t−d(t))
y(t) = cT x(t)

(11)

and, using the augmented state vector z(t):
ż(t) =

[
A −bu̇(t−d)
0 0

]
z(t)

+

[
b bd
0 0

][
u(t−d)
u̇(t−d)

]
+

[
bγ̃ (t−d(t))

ḋ(t)

]
y(t) =

[
cT 0

]
z(t)

(12)

which can be brought to a form similar to (6): ż(t) = Ā(u̇(t−d))z(t)+ B̄
[

u(t−d)
u̇(t−d)

]
+ Γ̃(t, t−d(t))

y(t) = C̄z(t)
(13)

with an appropriate definition of the matrices Ā, B̄, C̄ and
Γ̃(·).

For the system (13), let us use the following observer:

˙̂z(t)= Ā(u̇(t−d)) ẑ(t)+B̄
[

u(t−d)
u̇(t−d)

]
−L(t)

(
C̄ẑ(t)− y(t)

)
(14)

where, following (Léchappé et al., 2015), the gain L(t) is
chosen according to a Kalman filter-like structure, i.e.:

L(t) = S(t)−1C̄T R (15)



where R is a positive diagonal matrix that acts as a filter,
chosen as R = I in the noise-free scenario, and the sym-
metric matrix S is obtained as the solution of the following
matrix differential equation:

Ṡ(t) =−ρS(t)− Ā(u̇(t−d))T S(t) (16)

−S(t)Ā(u̇(t−d))+C̄T RC̄

with a positive constant ρ > 0 that affects the convergence
speed of S and an initial condition S(0)� 0.

4 Observer stability
This section provides the observer stability proof, which
follows the theoretical steps discussed in (Léchappé et al.,
2015). For the sake of proving the stability, let us recall
the following lemma (Khalil, 2002).

Lemma 1. Let x = 0 be an exponentially stable equilib-
rium point of the nominal system:

ẋ(t) = f (t,x(t)) (17)

and let V (t,x(t)) be a Lyapunov function for (17) that sat-
isfies for all t ≥ 0 and ∀x ∈D = {x ∈ Rn : ‖x‖2 < r}:

c1 ‖x‖2 ≤V (t,x(t))≤ c2 ‖x‖2 (18)

∂V
∂ t

+
∂V
∂x

f (t,x(t))≤−c3 ‖x‖2 (19)∥∥∥∥∂V
∂x

∥∥∥∥≤ c4 ‖x‖ (20)

for some positive constants c1,c2,c3,c4. Also, assume that
a perturbation term g(t,x) satisfies:

‖g(t,x)‖ ≤ γ(t)‖x‖+δ (t) ∀t ≥ 0,∀x ∈D (21)

where γ : R→R is a nonnegative and continuous function
such that: ∫ t

t0
γ(τ)dτ ≤ ε(t− t0)+η (22)

for some nonnegative constants ε and η where:

ε <
c1c3

c2c4
(23)

and δ : R→ R is nonnegative, continuous, and bounded
for all t ≥ 0. Provided that:

‖x(t0)‖<
r
ρ

√
c1

c2
(24)

sup
t≥t0

δ (t)<
2c1θr
c4ρ

(25)

with:

θ =
1
2

[
c3

c2
− ε

c4

c1

]
> 0 (26)

ρ = exp
(

c4η

2c1

)
≥ 1 (27)

then, the solution of the perturbed system:

ẋ(t) = f (t,x(t))+g(t,x(t)) (28)

satisfies:

‖x(t)‖<
√

c2

c1
ρ ‖x(t0)‖e−θ(t−t0)+

c4ρ

2c1

∫ t

t0
e−θ(t−τ)

δ (τ)dτ

(29)

In addition, let us recall the following lemma given by
(Besançon et al., 1996), which characterizes the matrix
S(t) obtained as a solution of (16).

Lemma 2. Assume that u̇ is regularly persistent, and
consider the differential equation (16). Then ∃ρ0 > 0
such that for any symmetric positive definite matrix S(0),
∀ρ ≥ ρ0, there exist ᾱ, β̄ , t0 > 0 such that ∀t ≥ t0:

ᾱI � S(t)� β̄ I (30)

Let us define the Lyapunov candidate function:

V (e(t)) = e(t)T S(t)e(t) (31)

where S(t) is the solution of (16) and e(t) = ẑ(t)− z(t).
Given the assumption of regularly persistent u̇(t), in virtue
of Lemma 2, there exists a positive scalar ρ0 so that ∀ρ ≥
ρ0 there exist ᾱ, β̄ , t0 > 0 such that ∀t ≥ t0:

ᾱ ‖e(t)‖2 ≤V (e(t))≤ β̄ ‖e(t)‖2 (32)

so that (18) holds with c1 = ᾱ and c2 = β̄ . The dynamics
of the estimation error is described by:

ė(t) = ˙̂z(t)− ż(t) (33)

which, using (13)-(15), follows:

ė(t) = Ā(u̇(t−d)) ẑ(t)+ B̄
[

u(t−d)
u̇(t−d)

]
−L(t)

(
C̄ẑ(t)− y(t)

)
− Ā(u̇(t−d))z(t)− B̄

[
u(t−d)
u̇(t−d)

]
− Γ̃(t, t−d(t))

=
(
Ā(u̇(t−d))−L(t)C̄

)
e(t)− Γ̃(t, t−d(t))

=
(
Ā(u̇(t−d))−S(t)−1C̄T RC̄

)
e(t)− Γ̃(t, t−d(t))

(34)

Let us neglect the perturbation term Γ̃(t, t−d(t)) so that:

V̇ (e(t)) = ė(t)T S(t)e(t)+ e(t)T Ṡ(t)e(t)+ e(t)T S(t)ė(t)
(35)

becomes, after taking into account (16) and (34):

V̇ (e(t)) = e(t)T [Ā(u(t−d))−S(t)−1C̄T RC̄
]T

S(t)e(t)

−ρe(t)T S(t)e(t)− e(t)T Ā(u̇(t−d))T S(t)e(t)

− e(t)T S(t)Ā(u̇(t−d))e(t)+ e(t)TC̄T RC̄e(t)

+ e(t)T S(t)
[
Ā(u(t−d))−S(t)−1C̄T RC̄

]
e(t)

=−ρe(t)T S(t)e(t)− e(t)TC̄T RC̄e(t) (36)



Due to the positive definiteness of the matrix C̄T RC̄, (32)
and (36) lead to:

V̇ (e(t))≤−ρᾱ ‖e(t)‖2 (37)

so that (19) holds with c3 = ρᾱ . Finally, from (32) it fol-
lows that: ∥∥∥∥∂V (e(t))

∂e

∥∥∥∥≤ 2β̄ ‖e(t)‖ (38)

which means that (20) holds with c4 = 2β̄ .
Let us consider now the perturbation term Γ̃(t, t−d(t)).

Notably, in this case the domain D corresponds to the en-
tire state-space (r = ∞), which means that by choosing
γ(t) = 0 and δ (t) = sup

∥∥Γ̃(·)
∥∥ in (21), then (24)-(25) al-

ways hold and we can choose ε =η = 0 in (22)-(23). Con-
sequently, (26)-(27) lead to ρ = 1 and θ = ᾱ/2β̄ . Then,
according to Lemma 1, e(t) will satisfy the following in-
equality:

‖e(t)‖<

√
β̄

ᾱ
‖e(t0)‖e

− ᾱ

2β̄
(t−t0)

+
β̄

ᾱ

∫ t

t0
e
− ᾱ

2β̄
(t−τ)

sup
∥∥Γ̃(·)

∥∥dτ

=

√
β̄

ᾱ
‖e(t0)‖e

− ᾱ

2β̄
(t−t0)

+
β̄

ᾱ

∫ t−t0

0
e
− ᾱ

2β̄
s
sup
∥∥Γ̃(·)

∥∥ds

=

√
β̄

ᾱ
‖e(t0)‖e

− ᾱ

2β̄
(t−t0)

+
2β̄ 2

ᾱ2

(
1− e

− ᾱ

2β̄
(t−t0)

)
sup
∥∥Γ̃(·)

∥∥ (39)

which shows the ultimate boundedness of the estimation
error e(t).

It is worth remarking that the regular persistency of u̇(t)
is a key point for the above discussion to hold true, which
is the reason why in practice the estimation error spikes at
times where this assumption does not hold true, as shown
in the results in the next section.

5 Simulation results
Let us consider the second-order example proposed by
(Léchappé et al., 2015):

ẋ(t) =
[

0 1
−2 −3

]
x(t)+

[
0
1

]
u(t−d(t)) (40)

y(t) =
[
1 0

]
x(t) (41)

for which we assume that x(0) =
[
1.5,1

]T . Then, the ex-
tended system is described by matrices:

Ā(u̇) =

 0 1 0
−2 −3 −u̇
0 0 0

 B̄ =

0 0
1 d
0 0

 (42)
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Figure 1. Simulation results (Scenario 1).

where d̄ is the known lower bound for d(t). We will as-
sume that the observer (14)-(16) is obtained with ρ = 5,
S(0) = I3, x̂(0) = [0,0]T , d̂(0) = 0.4, and we will com-
pare the performance of the observer proposed in this pa-
per with the results in (Léchappé et al., 2015).

5.1 Scenario 1
Let us first consider the delay sequence:

d(t) =

 0.15 for 0≤ t ≤ 15
0.6 for 15 < t ≤ 30
0.3 otherwise

(43)

with a ramp input signal u(t) = 0.2t for which u̇(t) = 0.2,
and let us consider a known lower bound for the delay
d = 0.1. Under these conditions, we obtain the simulation
results shown in Figure 1. In this scenario, the relationship
(2) holds with a zero remainder term, so that (6) reduces
to:

ż(t) = Ā(u̇(t))z(t)+ B̄u(t) (44)

and the estimation errors for both the state variables and
the delay tend asymptotically to zero. Notably, no differ-
ence between the case with d = 0 and d 6= 0 is perceivable
in this case.

5.2 Scenario 2
Let us now consider the delay d(t) = 0.4+ 0.2sin(0.4t)
while keeping the ramp input signal u(t) = 0.2t, with the
known lower bound for the delay d = 0.2. In this case,
ḋ(t) 6= 0 acts as an exogenous disturbance that prevents
the observer from estimating the delay correctly, as shown
in Figure 2, where d(t)− d̂(t) exhibits a clear steady-state
error. Notably, also in this case the knowledge of a precise
lower bound d for d(t) does not play any role.

5.3 Scenario 3
Let us now consider the following modification to Sce-
nario 1: u(t) = sin(0.1t), so that the terms γ (t−d(t))
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Figure 2. Simulation results (Scenario 2).
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Figure 3. Simulation results (Scenario 3).

and γ̃ (t−d(t)) appear in (2) and (8), respectively. Given
that (10) is likely to happen, we would now expect to
see a difference between the performance of the observer
with d = 0 and that of the observer with d 6= 0. This is
confirmed by the simulation response shown in Figure 3,
where a slight improvement brought by the proposed ob-
server in the estimation of d(t) can be perceived.

5.4 Scenario 4
Let us now consider the delay from Scenario 2 d(t) =
0.4+ 0.2sin(0.4t) with known lower bound for the delay
d(t) = 0.2, and the input signal from Scenario 3 u(t) =
sin(0.1t). The corresponding results are showed in Figure
4. It can be seen that the estimate obtained with d = 0
suffers much more from the loss of observability of the
system (5) when u̇(t) = 0, which is the reason for the sud-
den changes in d̂(t) at approx. 16.5s and 47.5s.

5.5 Scenario 5
We will now analyze the behavior of the proposed ob-
server under relatively big delay and known lower bound.
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Figure 4. Simulation results (Scenario 4).
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Figure 5. Simulation results (Scenario 5).

Under such situation, the difference between the right-
hand terms in the inequalities (3) and (9) becomes more
significant, which should lead to a bigger difference be-
tween the performance of the observer without known
lower bound (d = 0) and that of the proposed observer.
More specifically, let us consider d(t) as follows:

d(t) =

 1.15 for 0≤ t ≤ 15
1.6 for 15 < t ≤ 30
1.3 otherwise

(45)

with u(t) = sin(0.1t), with a bound d = 1. The cor-
responding results are shown in Figure 5, where it can
be seen that the proposed observer estimates d(t) with a
much reduced error and mitigates the impact of the loss of
observability when ḋ(t) = 0.

5.6 Scenario 6
Finally, Figure 6 shows the results obtained under the
same conditions as Scenario 5, except for the delay being
d(t) = 1.4+0.2sin(0.4t). Also in this case, the benefit of
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Figure 6. Simulation results (Scenario 6).

considering a lower bound for d is evident by looking at
the delay estimation error.

6 Conclusions
This paper has proposed an improved observer design for
joint state and delay estimation. In particular, the improve-
ment with respect to a similar design previously proposed
in the literature comes from the knowledge of a lower
bound for the time-varying delay, which can be taken into
account during the application of Taylor’s theorem, so that
a generally smaller remainder is obtained. The simulation
results have shown that the proposed design does not im-
prove the state estimation. On the other hand, the delay
estimation is improved sensibly in cases where approxi-
mation errors become non-negligible or when the slowly
changing nature of the input signal (u̇ ≈ 0) causes loss of
observability issues. In particular, it was observed that for
large delays, the performance improvement is outstand-
ing. As a side note, it has been observed so far that
this type of method is fragile when the system is affected
by parametric uncertainties or nonlinearities, so that fu-
ture research should be devoted to increase the robustness
properties of the observer.
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Abstract 

A fluidized bed biomass gasification reactor is used to produce syngas from biomass and municipal wastes. 

Gasification is a flexible technology where many different types of feedstocks can be used. The University of 

South-Eastern Norway has a 20kW gasification reactor which is used to investigate the quality and quantity of the 

syngas produced using different types of feedstocks. At the present, the reactor has the challenge to supply 

feedstock to the reactor via transport screws. The main challenge consists of achieving continuous feeding and 

reduction in the feed rate. Therefore, this work is focused on the optimization of the screw feeder in the gasification 

reactor to obtain a reduced feed rate while maintaining a continuous feeding rate. The aim is to reduce the feed 

rate from approximately 8 kg/h to 3-4 kg/h without missing continuity of the feeding. 

A model of the screw feeder is developed using CAD software SolidWorks and the model is simulated using 

open-source simulation software LIGGGHTS to investigate feed rate and continuity using different combinations 

of transport screw parameters. The simulation results are processed using Excel and viewed graphically with the 

open-source visualization software ParaView. The simulation results are compared to the experimental 

measurements in the gasification reactor. The validated model is further used to investigate the feed rate with 

different combinations of transport screw parameters and the results are compared and discussed. 

Keywords: Biomass, Screw Feeder, Open-source LIGGGHTS, CPFD, Simulation 

 

1. Introduction 

Feeding the biomass to the gasification reactor at the 

required rate is essential to achieve higher-quality 

syngas gas. Therefore, the feeding system for such 

gasification reactors plays a major role in the 

utilization of biomass. The most common method to 

transport feedstock to the reactor has been the use of 

a screw feeder (Cummer et al.,2002). Due to 

physical characteristics, moisture content, and 

heterogeneity of feedstocks, trouble-free 

transportation of feedstock to the reactor is difficult 

to obtain (Bandara et al., 2021; Elliott, 1989). The 

major challenge during the transportation of 

feedstock to the reactor includes blockage and 

bridging of the supply line which disrupts the 

uniform and continuous flow of the feedstock 

(Bandara et al., 2021; Castleman et al.,1994). During 

a gasification process, it is important to maintain the 

required air-to-fuel ratio for the smooth operation of 

such a reactor at higher efficiency (Jaiswal et 

al.,2020). The air-to-fuel ratio in a gasification 

reactor is determined by the amount of oxidizing 

medium available for supplied feedstock (fuel). 

When the feedstock supply is lowered to the 

required air-to-fuel ratio, the quality of syngas is 

reduced due to the increased carbon dioxide fraction 

in the product gas due to partial combustion instade 

of gasification. On the other hand, if the feedstock is 

supplied at a higher rate, the supplied heat may not 

be sufficient for the endothermic reaction to gasify 

the feedstock. Then,  the reactor temperature may 

drop significantly, reducing the conversion 

efficiency. Therefore, it is vital to maintain the 

required flow rate of the biomass.  

The University of South-Eastern Norway has a 

gasification reactor with a capacity of 20 kW and is 

placed in SINTEF’s building that is used for various 

research.  

This work aims to optimize the feeding system for 

this reactor. Currently, the feeding system of the 

reactor delivers a high amount of biomass if the 

reactor is run in continuous mode. The plan for the 

optimization is to design and produce new feeding 

screws while keeping the rest of the reactor system 

in its present condition. These feeding screws need 

to be able to run continuously while keeping the feed 

rate not exceeding 3.0 kg/h to 4.0 kg/h.  

The optimization process is started by measuring the 

rotation speed and feed rate of the current screw 

feeder in the gasification reactor. This measurement 

gave the baseline data for further optimization. In 

the next step, a mechanical model of the screw 
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feeding system is prepared using the CAD software 

SolidWorks and the model is simulated using an 

open-source simulation software LIGGGHTS 

(LAMMPS Improved for General Granular and 

Granular Heat Transfer Simulations) where 

LAMMS is Lare-scale Atomic/Molecular Massively 

Parallel Simulator. A series of simulations were 

performed using different types of screw feeders 

with different parameters. From the simulation 

results, three of the screw feeders that gave the best 

results were taken further for investigation. The 

screw feeders were made in the mechanical 

workshop located at the University of South-Eastern 

Norway. 

The screws are then calibrated, and the feed rates are 

registered. The goal is to optimize the feed rate 

without changing the reactor or the electrical motors. 

Other feeding systems than feeding screws are not 

looked at in this work. 

Under the calibrating and registry, blockage and 

sealing failure and other actual challenges where 

different biomass will be used are not investigated. 

Here, the investigations will be done using only the 

wood pellets as feedstock. 

Experiments are run to verify the best screw for the 

system. This will be done with help from people 

with a wider range of knowledge when it comes to 

running the reactor. 

2.  Material and Methods 

First, an attempt has been made to simulate the 

feeding system using the commercial software 

SolidWorks. It is found that the program is not 

qualified for these types of simulations because 

SolidWorks is more focused on flow simulations 

and not particle simulations. 

After this, another program that USN is licensed to 

use was tested. This program is called Barracuda 

Virtual Reactor and is more focused on a mixture of 

particle and fluid flow simulations. This was 

acknowledged as a possible candidate for the 

simulations.  

Another attempt was made to use the open-source 

simulation software LIGGGHTS. The program is 

found to work a little bit differently than the 

previously mentioned programs but seemed ok to 

use for the simulations. This software uses a 

Discrete Element Method (DEM), and it seems like 

this gives sufficiently good results for the simulation 

of wood pellets transferred through the screw 

feeders. The benefit of using LIGGGHTS is that it 

uses less processor power than the other software 

needed for the same situations. It’s also easier to use, 

both with the setup and the change of parameters and 

variables. Accessibility also has something to say, as 

CPFD only can be used at USN’s campus, which is 

different from LIGGGHTS which can be utilized 

anywhere due to it being open-source. It was also 

checked if LIGGGHTS had been used in earlier 

articles and research. It was found in Science Direct 

552 articles related to LIGGGHTS simulations. The 

software doesn’t have any completed run files 

accessible, only the source code. Therefore this will 

be downloaded and compiled from (LIGGGHTS, 

2022). Some small changes were made to the source 

code to get it to be compiled.  

Further, to visualize the results, it was necessary to 

use a program that could process the files that 

LIGGGHTS was producing. For this, ParaView was 

found as open-source software (Ayachit,2015), and 

downloaded  (ParaView,2022). 

2.1. Simulation of existing feeding system 

To make a model that could be used further in the 

optimizations, it first must be validated. This means 

that the simulation results produced by LIGGGHTS, 

must be, if not exact, approximately accurate with 

the feeding rates from the existing screw feeding 

system. A series of measurements were carried out 

in the gasification reactor to measure the feed rate of 

the biomass pellets using the existing screw feeder. 

The feeding rate was after 1 hour, 7.67 kg/h at 16 % 

motor efficiency. This was done by defining the 

density and size of the particles, different material 

parameters, contact models for particles against 

particles, and particles against walls. Friction 

coefficients also had to be defined for the last-

mentioned parameters. 

First, a CAD model of the feeding system has been 

built. The model can be seen in Figure 1. To make 

the simulations run faster, the model was simplified. 

This means removing all geometry that doesn’t 

affect the feeding rate. Everything except where the 

particles flow from the silo is removed. The hot 

screw also is removed because it was assumed to not 

affect the feeding rate. The hot screw rotates at a 

significantly higher speed and has no variation in the 

pitch. 

 

 
Figure 1: CAD model. 

A container was also modeled and is intended to 

collect all the particles that fall through the descent 

between the two pipes. This results in a model that 

can be seen in Figure 2. The origin is set in the back 
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of the screw because this is the easiest way to make 

the rotation on the screw, as the screw needs an axis 

to be defined that it can rotate around. 

 
Figure 2: Simplified silo and container. 

The model was then exported into STL files that 

LIGGGHTS could process, and it was only selected 

surfaces for each part because this is the only thing 

the software can read. This means 4 different files, 

one file for each of the components such as a silo, 

container, feeding screw, and the feed plane. These 

were exported with a deviation tolerance and an 

angular tolerance of 1.0 mm and 20.0 ⁰, respectively. 

 

 
Figure 3: Simplified model. 

For the silo, only the inner surfaces were selected, 

because these surfaces are the only ones that come 

in contact with the particles. This can be seen in 

Figure 4. 

 

 
Figure 4: Selected surfaces for the silo. 

For the screw, only the outer surfaces were selected, 

because these are the ones that meet the particles. 

This can be seen in Figure 5. 

 

 
Figure 5: Selected surfaces for the screw. 

For the container, only the outer surfaces were 

selected. This can be seen in Figure 6. 

 

 
Figure 6: Selected surfaces for the container. 

For the feeding plane, only the upper surface was 

selected from the modeled plate. This was put in the 

XY plane. This can be seen in Figure 7. 

 

 
Figure 7: Selected surfaces for the feeding plane. 

2.2 Explanation and setup for LIGGGHTS 

DEM is an intuitive method with discrete particles 

colliding with each other and other surfaces through 

dynamic simulation. Usually, each DEM particle 

represents a type of granular material. In simulations 

where particles get exposed to complicated 

deformations, DEM is not a good method to use. 

(DEM,2022) 

Generally speaking, the contact definitions are 

easily expandable to include contacts between DEM 

particles and FEM-based or analytic surfaces. Big 

relative displacements between particles are typical 

for applications where DEM is utilized. Particle-to-

particle interaction can involve both similar and 

different particles. Each particle can be involved in 

many interactions at the same time. (DEM,2022) 

The three situations above in Figure 8 show two 

particles that are just touching, two deformed 

spherical particles that push each other, and two 

rigid spherical particles that get pushed into each 

other with some penetration. (DEM,2022) 

To be able to use LIGGGHTS, a program accessed 

in the form of a text file, that can be obtained from 

(DEM,2022) and examples found in ( LIGGGHTS, 

2022). 

The decent in the model creates problems when the 

simulation is starting to run because it gets exposed 

to many points, and therefore the angles between the 

points are too small for LIGGGHTS to process. 
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Figure 8: Interaction between spherical particles [5]. 

Therefore, this pipe will be drawn as a hexagon. 

The particles have an approximate cylindric form 

but can be simplified to be simulated as spherical 

particles by converting them to spherical equivalent 

particles. These particles get a density of 

1 139.0 kg/m3 and 8.96 mm. (Agu et al., 2019) 

The contact models that are being used are hertz, 

tangential history, and rolling friction EPSD2               

(LIGGGHTS, 2022). 

3 Results and discussion 

A series of simulations were performed using the 

simulation software LIGGGHTS. The main 

parameters used in the simulation are given in 

Table 1. 

Table 1: Simulation Parameters. 

Parameter Value 

Particle - 

Density 1139.0 kg/m3 

Diameter 8.96 mm 

Modulus of elasticity - 

Particle 5.0 N/mm2 

Wall 2.1e5 N/mm2 

Poissons number - 

Particle 0.45 

Wall 0.33 

Coefficient of restituion - 

Particle to particle 0.10 

Particle to wall 0.20 

Frictions coefficient - 

Particle to particle 0.60 

Particle to wall 0.52 

Rolling coefficient of 

friction 

- 

Particle to particle 0.50 

Particle to wall 0.45 

Simulation time > 900.0 s 

Time increment 5e-5 s 

Filling mass (pellets) 7.0 kg 

Filling time 4.0 s 

Rotational speed 32.43 s-1 

Gravitation 9.81 m/s2 

Timestep - 

Visual data 0.2 s 

Mass data 0.2 s 

 
Simulations were run first, using the existing screw 

feeder. Each simulation was run for a minimum of 

900 seconds of simulation time. The flow of 

particles from the silo through the screw feeder is 

shown in figure 9. 

 

 
Figure 9: Visualization of the model after 912-second 

simulation. 

Results from the simulation for the existing screw 

feeder are shown in Figure 10. The results for the 

first 300 seconds of simulation are not used in 

validation to avoid starting fluctuation effects.  

 

 
Figure 10: Results of simulation for the feed rate of the 

existing screw feeder. 

The simulation and experimental results for feed rate 

are found to be 7.30 kg/h and 7.73 kg/h, respectively. 

The results show that the experimental and 

simulation results are in good agreement with each 

other thus the model can be used for further 

investigations. 
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Further, three candidate screw feeders with 

respective diameters of 48mm, 51mm, and 60mm 
are simulated using different parameters as shown in 

Figure 11. 

 
Figure 11: Screw candidates used in simulations. 

Each of the screw-feeder was simulated with a 

varying number of pitches to check the effect of 

screw diameter as well as the pitch on the feed rate. 

Figure 12 shows the variation of feed rate with 

varying diameter and pitch. 

 
Figure 12: Variation of feed rate with diameter and pitch. 

The results of the simulation show that increasing 

the pitch increases the feed rate. The results of the 

simulations for the three candidate screw feeders are 

shown in Figure 13. The results show that all screw 

feeders give the desired reduction of the feed rate. 

However, the screw with a diameter of 60 mm gives 

the minimum feed rate. Therefore, the screw is taken 

further for testing in the gasification reactor which 

gives the desired results.  

 
Figure 13: Results of simulation for a feed rate of the 

three candidate screws. 

The simulation results for the candidate screw 

feeders are compared with the experimental 

measurements and presented in Table 2. 

Table 2: Comparison of the results 

Diameter 
[mm] 

Measured 
[kg/h] 

Simulated 
[kg/h] 

Deviation 
[kg/h] 

48 3.37 4.04 0.67 

51 3.51 3.67  0.16 

60 2.74 3.45 0.71 

The results show that the experimental and 

simulated feed rates for those three candidate screw 

feeders have good agreements. However, the 

measured federate for the screw feeder with a 

diameter of 60 mm gave the minimum federate. 

Therefore the screw is installed in the feeding 

system of the gasification reactor. A gasification 

experiment was performed with the screw to 

investigate the gas composition which is compared 

with the gas composition obtained from the existing 

screw feeder. The results are shown in Table 3. 

Table 3: Comparison of gas composition 

Gass With new 

screw [%] 

With old 

screw [%] 

Oxygen 0.69 0.89 

Nitrogen 47.47 53.25 

Methane 4.78 3.44 

Carbon-monoxide 19.09 14.63 

Carbon-dioxide 15.33 16.08 

Hydrogen 12.62 11.68 

The results show that the energy-containing 

gasses have increased while nitrogen and carbon 

dioxide has decreased with the use of the new 

screw.  
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4 Conclusions 

Experiments were carried out to investigate a feed 

rate for biomass pellets to a biomass gasification 

reactor located at USN. A model of the screw feed 

system of the gasification reactor was made using 

the CAD software SolidWorks and the model is 

simulated using fluid-particle flow software 

LIGGGHTS. The simulation results were compared 

with experimental measurements to validate the 

model. A series of simulations were performed with 

different diameters and pitches of the screw. The 

screw with a diameter of 60mm gives the minimum 

feed rate which is desired for the reactor to get 

continuous feed. Experiments were performed using 

the new screw to verify again the simulation results. 

The experimental and simulation results are in good 

agreement. 
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Abstract 
 

From the gasification of biomass, the produced gas mainly consists of CO, H2, CO2, and CH4. After gas cleaning 

and conditioning, the syngas obtained can be used to produce methanol, dimethyl ether, polymers, biofuels, etc. 

Methanol is one of the important industrial chemicals that can be used directly as a fuel or can be blended into 

conventional fuels. Methanol produced from renewable biomass sources can limit greenhouse gas emissions. 

Based on data on gas composition from experiments and simulations of the fluidized bed gasification reactor at 

the University of South-Eastern Norway, the methanol process is simulated with Aspen Hysys. It is desirable to 

assess how different process parameters affect the yield of methanol production. A Gibbs reactor was modeled 

with three gas-phase exothermic reactions. The product from the reactor is depressurized to separate gas from the 

liquid. The liquid enters the distillation column to give CH₃OH in the distillate and the water as the bottom product. 

The yield of methanol is evaluated with regard to pressure, temperature, and H2/CO ratio. The theoretical H2/CO 

ratio for the methanol synthesis should be approximately between 1,5-2. However, different gas compositions 

were obtained from different types of fluidizing agents in the gasification reactor, and a low ratio of H2/CO gives 

a low yield of methanol. Fluidized bed gasification with steam as gasifying agent is preferable to increase the 

H2/CO ratio and give a higher methanol yield. 

Keywords: Methanol, Aspen Hysys, Gasification, Biomass 

 

1. Introduction 

According to the report, Methanol Market - Growth, 

Trends, and Forecast (2021-2026), the market share 

for methanol in 2020 was 83.8 million tons, and it is 

predicted that from 2021 to 2026 the market would 

experience an average annual growth of around 5% 

(Research and Markets, 2018). All large-scale 

methanol plants currently use steam-reformed 

natural gas and pure oxygen as raw materials in the 

process.  Research to improve current production 

methods to reduce the climate footprint is constantly 

evaluated. At the same time, new studies are 

constantly being evaluated on whether methanol can 

be produced from other sources, such as using 

synthesis gas from biomass gasification, to produce 

green methanol. 

Gasification of biomass is a thermochemical 

conversion process where the chemical bonds are 

broken due to high temperature and partial oxidation 

with air or steam as the oxidizing agent. The product 

gas from the gasification reactor consists of CH4, 

CO, CO2, and H2, as well as other light gases such as 

ethane (C2H6) and propane (C3H8) in addition to 

various condensable gases. The gas will also contain 

some nitrogen (N2). The proportion of N2 will vary 

based on the type of fluidizing agent used. When 

using air, the nitrogen content will be relatively high, 

while when using pure oxygen or steam, the 

proportion will be significantly lower. The product 

gas will also have proportions of sulfuric 

compounds, chlorine, heavy metals, and other trace 

elements from the biomass (Bandara, 2021).  

The composition of feed gas used in methanol 

synthesis has changed in recent years. Earlier, only 

H2 /CO was used, as the producers were convinced 

that the process was re-hydrogenation of CO and 

therefore removed all CO2 from the gas with 

absorption. However, Waugh (Waugh, 2012) found 

that after running parallel experiments with 

H2/CO2/CO and H2/CO, it was discovered that 

H2/CO2/CO produced methanol faster than H2/CO. 

Tests were performed with a Cu/ZnO/Al2O3 catalyst, 

and it turns out that the highest production was 

achieved with a composition of CO/CO2/H2 in the 

ratio of 10:10:80 at a temperature of  290°C (Waugh, 

2012).   



SIMS 63 
  Trondheim, Norway, September 20-21, 2022 

In an exothermic reaction, energy is released, which 

results in an increase in the temperature. According 

to Le Chatelier's principle, the equilibrium will shift 

towards the reactants as energy is consumed from 

the reaction mixture. If the pressure in the mixture is 

increased, the equilibrium of the mixture will be 

shifted towards the product as there will be fewer 

molecules in the mixture (Moulijn J. A., 2013). 

Methanol synthesis from syngas is a low-

temperature, high-pressure exothermic reaction 

(Yang L., 2016). The reactions and the reaction 

enthalpies are given in Tab. 1. Methanol is usually 

produced with high selectivity, although minor 

amounts of side products are found. The synthesis is 

usually conducted at 200–300 °C and 35–

100 bar (Klerk, 2020). Common by-products of 

methanol formation are methane, methyl-formate, 

higher alcohols, and acetone.   

   

Table 1: Reactions and reaction enthalpies for the 

methanol synthesis (Moulijn J. A., 2013) 

Reactions Reaction 

enthalpy 

(kJ/mol)  

CO + 2 H2 ⇌ CH₃OH  -90.64  

CO₂ + 3H₂ ⇌ CH₃OH + H₂O  -49.67  

CO + H₂O ⇌ CO₂ + H₂  -41  

 

The University of South-Eastern Norway has a pilot 

plant bubbling fluidized bed (BFB) gasification 

reactor. Fig. 1 is a sketch of the reactor. The BFB 

reactor with optional equipment consists of a silo 

tank for biomass (1), a hopper for filling bed 

material (2), the gasification reactor (3), feed screws 

for biomass, cold and hot (4 and 5), gas heater for 

the fluidizing agent (6), and a compressor for the 

fluidizing agent (7). At the bottom of the reactor, 

there is an outlet for solid material (8). In several 

places of the reactor, it is mounted connection points 

for pressure and temperature readings (9). The 

gasification reactor is operated within the 

temperature range of 700-1100°C, with atmospheric 

pressure. The temperature is achieved by the heated 

fluidizing agent, heat generated in exothermic 

reactions, and electric heating cables mounted 

around the reactor (Timsina, 2022). Experiments 

were performed using wood chips of an irregular 

shape and with lengths ranging from 1 to 15 mm. 

with air as a fluidizing agent (Timsina R., 2020). The 

experiment was performed at 1100 K. 

Computational Particle Fluid Dynamics (CPFD) 

modeling is applied to simulate the bubbling 

fluidized bed gasifier reactor aiming at finding 

consistency between the experimental results and 

the simulation results. After validating the CPFD 

hydrodynamic model, related to the experimental 

results, the model has been used to investigate the 

effects of temperature on the steam gasification 

process (Samani N.A., 2022).  Based on the 

experimental data from the gasification pilot plant 

and the computational particle fluid dynamic 

simulations, the focus of this study is to determine 

the yield of methanol production based on the gas 

composition from the gasification of wood chips. 

The gas from the gasifier must be purified, cooled, 

and compressed before entering the methanol 

reactor for optimal conversion. 

 

Figure 1: A schematic sketch of the bubbling fluidized 

bed gasifier at the University of South-Eastern Norway 

(Timsina, 2022) 

 

2. Methodology  

Simulations have been performed on the methanol 

synthesis using Aspen Hysys. The flowsheet is 

presented in Fig. 2. The feed consists of purified 

product gas from the gasification of wood chips with 

either air or steam as the fluidizing agent. It is also 

possible to supply the feed with a supplemental 

stream that goes inside the MIX-100 to give the 

possibility to adjust the feed gas ratio. Stream 1 is 

compressed in the K-100 and sent to the MIX-101 

where stream 2 is mixed with 7_RCY which is a 

recycle stream. After the compression, the gas is 

heated or cooled before the gas enters the GBR-100, 

a Gibbs reactor. The gases are converted to 

methanol, and the reactions taking place are shown 

in Tab. 1. Stream 5 is cooled down in the cooler E-

101, before entering V-100, a gas-liquid separator. 

The TEE-100 split the stream 7_gas in 7_Purge, 

while the stream to be recycled goes to 7_RCY and 

back into the MIX-101 together with the feed gas. 

The stream 7_Liquid is depressurized and enters the 

distillation column T-100 where methanol and water 

are separated. The remaining gases go out in the 

stream 8_Gas.  

The Gibbs Reactor of Aspen HYSYS can work 

solely as a separator, a reactor that minimizes the 

Gibbs free energy without an attached reaction set or 

as a reactor using equilibrium reactions. When a 

reaction set is attached, the stoichiometry involved 

in the reactions is used in the Gibbs Reactor  
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Figure 2: Process flowsheet for the Aspen Hysys 

Simulation (M Fossen, 2022) 
 

calculations  (Haydary, 2018). In this study, the 

reaction set is defined based on the 

stoichiometric reactions given in Tab. 1. 
 

Most industrial methanol synthesis plants produce 

methanol with a purity of between 95-99.9% by 

weight (Equinor, 2022), (Timsina R., 2020). The 

requirements set for the distillation column in the 

simulations are 99% by weight.  

Other requirements are set to obtain the lowest 

possible amount of methanol in the bottom product 

and the gas flow is the overhead in the distillate. The 

distillation column has been simulated with 10 

stages, at a pressure of 1 bar. 
Since the methanol synthesis is enhanced by low 

temperatures and high pressures, 200°C and 100 bar 

are chosen for this study.  The feed is set to 200 

kmole/h. The composition of the feed gas for 

methanol synthesis is taken from experiments and 

simulations done at the University of South-Eastern 

Norway, and the ideal ratio suggested by Waugh 

(Waugh, 2012) is used for comparison. The gas 

composition data are presented in Tab. 2. For the 

simulation, the gases N2, H2O, and CH4 are not 

included. A recirculation rate of 1100 kmol/h is used 

in the simulation.  

 

3. Results 

The gas mixtures compositions defined in Tab. 2, are 

used in the simulation in Aspen Hysys. All cases 

have been simulated with and without recirculation.   

The single-pass conversion of the components is 

defined as (Felder R, 1986): 

 
𝐒𝐢𝐧𝐠𝐥𝐞 − 𝐏𝐚𝐬𝐬 𝐂𝐨𝐧𝐯𝐞𝐫𝐬𝐢𝐨𝐧

=  
𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐢𝐧 𝐭𝐨 𝐫𝐞𝐚𝐜𝐭𝐨𝐫 − 𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐨𝐮𝐭 𝐟𝐫𝐨𝐦 𝐫𝐞𝐚𝐜𝐭𝐨𝐫 

𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐢𝐧𝐭𝐨 𝐫𝐞𝐚𝐜𝐭𝐨𝐫
 

 

(1) 

 
               

Table 2: Gas composition in mol% from bubbling 

fluidized bed gasification of wood chips. a. composition 

of produced gas, b.recalculated without N2, H2O and CH4 

 Ideal 

ratio   

Experimental 

data from 

gasification 

with air 

(Timsina, 2022) 

CPFD 

Simulation data 

for gasification 

with steam 

(Samani N.A., 

2022)   
  a. b. a. b. 

CO 10 22.59 42.55 49.47 54.29 

CO2 10 20.46 38.54 9.36 10.27 

H2 80 10.04 18.91 32.3 35.44 

CH4  7.5 - 8.66 - 

H2O  0 - 2.01 - 

N2  38,4 - 0 - 

 

The result of single conversion calculations shows -

that hydrogen is the limiting reactant in gas mixtures 

from the gasification system. In the case of the ideal 

ratio, CO is the limiting reactant. 

The overall conversion of the process is given in 

Tab. 3 and defined as (Felder R, 1986):  

  
𝐎𝐯𝐞𝐫𝐚𝐥𝐥 𝐂𝐨𝐧𝐯𝐞𝐫𝐬𝐢𝐨𝐧

=  
𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐢𝐧 𝐭𝐨 𝐩𝐫𝐨𝐜𝐞𝐬𝐬 − 𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐨𝐮𝐭 𝐟𝐫𝐨𝐦 𝐩𝐫𝐨𝐜𝐞𝐬𝐬

𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐢𝐧 𝐭𝐨 𝐩𝐫𝐨𝐜𝐞𝐬𝐬
 

 

 

(2) 

 

For all cases, the overall conversion is high, where 

losses are in the purge stream 7_Purge, and the 

stream 8_gas, overhead gas from the distillation 

column. 
Table 3: Overall gas conversion 

 Limiting 

component 

without 

recycling 

with 

recycling 

Ideal ratio 

 

CO 98.8 % 99.9% 

Gasification 

with air 

H2 88.3% 95.9% 

Gasification 

with steam 

H2 93.6% 98.9% 

 

Fig. 3 shows the methanol fraction in stream 5, after 

the reactor, as a function of temperature. The 
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methanol formation is higher at low temperatures; 

however, a low temperature will also reduce the 

kinetic energy, and an elevated temperature is 

needed to obtain the activation energy that leads to 

reactions between molecules. Therefore, in this 

study 200°C is used in the further simulations.  The 

formation of methanol for the gas mixture from ideal 

ratio and gasification with steam is approximately 

the same at 200°C and higher temperatures, 

however, at lower temperatures, a high ratio of 

H2/CO gives a higher formation of methanol. Fig. 4 

shows the methanol fraction in stream 5, as a 

function of pressure. 

  

 
 Figure 3: Mole fraction methanol from the reactor vs. 

temperature at 100 bar 

 

 
 

Figure 4: Mole fraction methanol from reactor vs. 

pressure at 200°C. 
 

The methanol mole fraction increases with 

increasing pressure. However, an increase in 

pressure would also be considered related to the 

increased cost of equipment, and energy in the 

compressor and cooling/heating systems. A pressure 

of 100 bar is used in this study. At this pressure the 

formation of methanol for the gas mixture from ideal 

ratio and gasification with steam is approximately 

the same, however, at higher pressures, a higher 

ratio of H2/CO gives a higher formation of methanol. 

At lower pressure, the methanol formation is lower 

for the ideal ratio mixture, indicating a shift in the 

reaction equilibriums. 

The methanol yield is defined as (Felder R, 1986): 

 

𝐘𝐢𝐞𝐥𝐝 =  
𝐦𝐨𝐥𝐞𝐬 𝐨𝐟 𝐝𝐞𝐬𝐢𝐫𝐞𝐝 𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬

𝐦𝐨𝐥𝐬 𝐨𝐟 𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭 𝐟𝐞𝐝
 

 

(3) 

The results are given in Tab. 4. A higher molar yield 

is obtained with a higher H2/CO ratio in the gas 

mixture.  However, the yield is approximately the 

same for the ideal ratio mixture and the mixture from 

the gasification with steam.  Recirculation in the 

system will also enhance a higher methanol yield. 
 

Table 4: Methanol yield  

 without 

recycling  

with recycling 

Ideal ratio 

 

15.9% 19.2% 

Gasification 

with air 

7.6 % 8.3% 

Gasification 

with steam 

16.1% 17.1% 

  

Table 5 gives the mass flow rates of methanol 

produced in the different cases simulated. 

 
Table 5: Methanol from distillation column in kg/h  

 without 

recycling 

with 

recycling 

Ideal ratio 

 

1016.8 1230.8 

 

Gasification 

with air 

488.5 532.4 

Gasification 

with steam 

1030.7 1097.5 

 

15-35% of the reactor product, on a mole basis, is 

sent to the distillation column when recycling is not 

installed. The rest is unreacted gases that can be sent 

out of the system or recycled. Fig. 5 shows that the 

molar flow of methanol is increasing when the 

unreacted gas is sent to recirculation. However, the 

increase is limited to a recycling molar flow of 

around 300 kmol/h. The methanol yield will be 

approximately the same above this recycle flow.  

Fig. 6 illustrates how the mole fraction of methanol 

changes when extra hydrogen is added to the system. 

A hydrogen feed of 150 kmole/ h gives a methanol 

mole fraction of 0.82, for the gas mixture from the 

steam gasification. Also, the gas mixture from air 

gasification gives the highest mole fraction with an 

H2 feed at 150 kmol/h.  The methanol yields for 

these two feed mixtures are approximately 28% and 
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22% respectively. The H2/CO ratio in the feed is 

after adding H2 at 2,0 and 2,2 respectively. 

 

 
Figure 5: The molar flow of methanol in distillate vs. 

recycled flow. 

 

 
Figure 6: Mole fraction methanol from reactor vs. 

additional hydrogen fed to the system 

 

4. Summary and Discussions 

In this study, Aspen Hysys has been used to evaluate 

the conversion of gas mixtures to methanol. Gibbs 

rectors are based on the calculation of minimization 

of Gibbs free energy for the reactions and the results 

are based on reaction equilibrium. In a practical 

situation, the residence time for the reaction is short 

and equilibrium is not likely to occur. The results 

given in this study are thus an optimistic approach, 

and the methanol yield will be lower than estimated.  

Performing the simulation with a continuous stirred 

tank reactor (CSTR), which needs the reaction 

kinetics, would have given a better insight into both 

reaction speed, residence time, and how pressure 

and temperature affect the reaction. In CSTR 

catalytic reactions can also be studied. The results 

from the Gibbs reactor nevertheless give a good 

indication of the process parameters, and the energy 

needs of the process. 

The methanol synthesis is enhanced by low 

temperature and high pressure. In this study, 

different gas mixtures have been evaluated 

regarding temperature, pressure, and H2/CO ratio. 

From the simulation of the mole fraction of 

methanol, the gas mixture from gasification with air 

as a fluidizing agent has the lowest H2/ CO and 

H2/CO2 ratios of 0.44 and 0.49 respectively, giving 

the lowest methanol mole fraction from the reactor, 

and the lowest methanol yield.  The H2/CO ratio for 

the gas mixture from gasification with steam as a 

fluidizing agent has the H2/CO and H2/CO2 ratios of 

0.65 and 3.45 respectively. The H2/CO and H2/CO2 

ratios for the ideal mixture are both 8. The methanol 

mole fraction becomes the same for these two 

mixtures at 200°C and higher temperatures.  The 

impact of the H2/CO and H2/CO2 ratios is not 

significant when reaching these temperatures. For 

the pressure, low H2/ CO and H2/CO2 ratios give low 

methanol mole fraction out of the reactor, however 

increasing the gas ratios an increase in the methanol 

formation and yield is observed. An interesting 

observation is that the gas mixtures from steam 

gasification give a better mole fraction at pressures 

lower than 100 bar compared to the ideal ratio. 

Indicating that there is an optimal gas ratio between 

the two mixtures. At higher pressures high H2/ CO 

ratio is preferable. The methanol yields are given in 

Tab. 4 results from the simulation at 200°C and 100 

bar, and the approximately same result for the gas 

mixtures from steam gasification and the ideal ratio 

is directly related to the analysis above. In this study 

a recycle of 1100 kmole/h is used in the simulation. 

The methanol yield reported in the results will be 

approximately the same with a recirculation stream 

above 300 kmole/h. The disadvantages of having too 

large recirculation streams are the increased energy 

requirements for cooling and heating the gas flows. 

Also, high dilution of stream 5 gives low methanol 

concentrations in the reactor product, which will be 

challenging to the gas-liquid separation in the two-

phase separator and to the distillation columns, 

increasing the cost of the system.  

The addition of extra hydrogen increases the 

methanol yield of the system. The simulation shows 

that an optimal addition of 150 kmole/h hydrogen 

gives the best result. Hydrogen cost versus the extra 

income for the methanol produced must be 

evaluated before hydrogen is chosen as feed to the 

system. The calculations with H2 addition show that 

an H2/CO ratio of approximately 2 is preferable. 

Fluidized bed gasification with steam as gasifying 

agent is preferable compared to air gasification to 

increase the H2/CO ratio to achieve a higher 

methanol yield in the methanol synthesis. 
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Abstract 

 

Biomass such as agricultural waste, forestry waste, municipal solid waste, and industrial waste, are renewable 

energy sources that may be used to produce biofuels. Biomass gasification is an effective and promising technology 

for converting any biomass into valuable products that can contribute considerably to renewable energy generation. 

In the manufacturing industry, computer-based simulations, improving production processes while incorporating 

sustainable industrial strategies, are rising. In the Computational Fluid Dynamics (CFD) scientific community, the 

reliability of computational prediction of findings is a rising problem. Mesh independence is crucial since it may 

determine if the solution obtained is independent of the mesh resolution. In CFD models, there are a variety of 

strategies for discovering a mesh independence test such as the grid resolution, general Richardson extrapolation, 

and Grid Convergence Index (GCI). In the grid resolution technique, the mesh size gradually increases until no 

meaningful performance improvement can be seen due to the larger mesh size. The present study aims to analyze 

the mesh independence test using the grid resolution method on an entrained flow biomass gasifier and investigate 

the model's sensitivity to parameters such as reactants’ inlet temperature, product gas compositions and flow rate. 

To achieve this goal, four different scenarios were defined employing a series of Computational Particle Fluid 

Dynamics (CPFD) simulations using Barracuda® v21.0.1. The results confirmed that within the range of 25000 

and 200000 cells, synthesis gas production decreased by almost 2 percent, which is not significant.  

 

Keywords: mesh sensitivity analysis, mesh independence test, CPFD, gasification, entrained flow gasifier 

 

1 Introduction 

As the fourth-largest source of energy after coal, 

petroleum, and natural gas, biomass contributes a 

significant percentage of global primary energy 

consumption (Shah and Venkatramanan, 2019). 

Biomass now accounts for around 15% of total 

global energy use in all forms (Ankolekar and 

Kulkarni, 2018). 

Biofuels, such as agricultural, forestry, municipal 

solid waste, and industrial waste, are renewable 

energy sources that may be used to produce solid or 

liquid fuels. Gasification, pyrolysis, and direct 

combustion are the main thermochemical 

conversion technologies (Pereira et al., 2012), where 

gasification is the most efficient process (Purohit, 

2009). Gasification is the partial oxidation of 

biomass (carbonaceous materials)  at elevated 

temperatures to generate synthesis gas (commonly 

known as syngas), primarily carbon monoxide and 

hydrogen (Zamarripa et al., 2013). The product gas 

from the gasification process consists of CH₄, CO, 

CO₂, and H₂, as well as other light gases such as 

ethane (C₂H₆) and propane (C₃H₈) in addition to 

various condensable gases. Moreover, this process 

produces some amounts of biochar, tars, and ashes 

(Pereira et al., 2012). Biomass gasification is an 

effective and promising technology for converting 

any biomass into valuable products by 

thermochemical conversion, which contributes 

considerably to renewable energy generation. 

There are various developments and studies of 

numerical simulation tools, such as Computational 

Fluid Dynamics, with high prediction accuracy 

within a reasonable simulation time to predict such 

complex flows. Due to the presence of three-phase 

in the systems, entrained flow reactors are the most 

challenging and most complex systems in 

multiphase modelling. The CFD scientific 

community is becoming increasingly concerned 

with the accuracy of computational outcomes 

prediction. Therefore, several important concerns 

arise (Seeni et al., 2021): Are computational results 

reliable? How can the accuracy or validity of CFD 

predictions be evaluated? These questions are posed 

because of the uncertainty associated with CFD-

generated data. As a result, procedures for 

verification and validation have been created to 

address this developing issue. Code and solution 

verification are both components of verification. 

Analytical, very precise hybrid analytical-

numerical, and manufactured solutions to 

mathematical models can be used for verification. 

Validation often entails determining the accuracy of 

a mathematical model's representation of the 

mailto:ramesh.timsina@usn.no


SIMS 63  Trondheim, Norway, September 20-21, 2022 

physical processes of interest using carefully 

designed and conducted experimental data (Baliga 

and Lokhmanets, 2016).  

A mesh independence study (or so-called mesh 

sensitivity) determines whether or not simulation 

results are independent of the underlying mesh 

(McDavid, 2001). There are several methods for 

determining a mesh independence test in CFD 

issues. The grid resolution, the general Richardson 

extrapolation, and the Grid Convergence Index 

(GCI) are three often utilized methods (Seeni et al., 

2021). Grid Convergence Index - GCI is a technique 

for estimating discretization error even when 

subsequent mesh refinements are not integer 

multiples (Castedo et al., 2019). Richardson's 

extrapolation is a numerical analysis approach for 

predicting the error in the answer by solving the 

issue with two alternative grid sizes, assuming the 

solution's functional form is known (Rao, 2001). In 

the grid resolution technique, the mesh size 

gradually increases until the performance 

improvement cannot be noticed due to the increased 

mesh size. 

The current study aims to conduct a mesh sensitivity 

analysis using the grid resolution method on an 

entrained flow biomass gasifier and investigate the 

model's sensitivity for different parameters such as 

molar concentrations, flow rate, and temperature. 

The paper is organized as follows: Chapter 2 

provides a brief background, and Chapter 3 provides 

a mathematical description of the CPFD model. 

Chapter 4 details the developed computational 

model for the selected gasifier and simulation setup. 

The study's outcome is described in Chapter 5, and 

the conclusion is drawn at last. 

2 Background 

There are different CFD models available in the 

literature to study an entrained flow biomass 

gasification reactor at different levels of accuracy 

and depth (Fletcher et al., 1998, 2000; X. Gao et al., 

2018; X. Y. Gao et al., 2014; Ku et al., 2014; Slezak 

et al., 2010). Most models account for the chemical 

and physical properties inside the gasifier, 

commonly known as the non-equilibrium/kinetic 

model. The models are generally validated using 

data from a certain gasifier. This can create a certain 

room for uncertainty as the operation of commercial 

gasifiers could vary significantly. Variations in 

various aspects include air-blown, oxygen-blown, 

non-pressurized, pressurized, single-stage, multiple-

stage, dry feed, slurry feed, swirling flow, non-

swirling flows, refractory insulations, etc. are the 

common example. The current study aims to 

develop a CPFD model considering these different 

aspects to simulate an entrained flow biomass 

gasification reactor within a reasonable time frame 

with certain efforts and accuracy. Fig. 1 shows the 

relationship between time, effort, and accuracy for 

any computational model.  

 
Figure 1: Inter-relation between time, efforts, and 

accuracy for CFD models. 

The higher the time and effort invested while 

developing a CFD model, the higher the model's 

accuracy and vice versa. Therefore, a compromise 

must be made between efforts to build the model, 

accuracy of calculations, and calculation time 

(Kaczor et al., 2020). In addition to this, model 

validation is an important aspect of their 

applications. A validated CFD model becomes a 

credible engineering tool for further applications.  

3 Mathematical modelling equations 

The continuity gives the gas-phase mass and 

momentum conservation equations, and the Navier-

Stokes equations are represented by Eq. (1) and (2), 

respectively. 

∂(αg ρg)

∂t
+ ∇ ∙ (αgρgu⃗ g) = δmṗ  (1) 

∂

∂t
(αgρgu⃗ g) + ∇ ∙ (αgρgu⃗ gu⃗ g)

=  −∇p + F + αgρgg

+ ∇ ∙ (αgτg) 

(2) 

 

where 𝛼, 𝜌 and �⃗�  represent the volume fraction, 

density, and velocity vector, respectively. 𝛿𝑚𝑝̇  is the 

gas mass production rate per volume formed from 

the particle-gas chemical reaction. In the case of the 

cold flow model with no chemical reaction, 𝛿𝑚𝑝̇  

becomes zero. P is the mean flow gas pressure, 𝑔 is 

the acceleration due to gravity, 𝜏𝑔 is the fluid phase 

stress tensor, and 𝐹 is the inter-phase momentum 

transfer rate per unit volume (particle to fluid phase). 

For a Newtonian fluid, the gas phase stress tensor for 

each species, τg is given by: 

𝜏𝑔,𝑖𝑗 =  𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) −
2

3
𝜇𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘

] (3) 

 

where 𝜇 is the shear viscosity, which is the sum of 

the laminar shear viscosity and the turbulence 

viscosity defined in the Smagorinsky turbulence 

model (Smagorinsky, 1963), the model is given in 

equation 4 (Snider et al., 2011). 
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𝜇𝑡 = 𝐶𝑠 𝜌𝑔∆
2 (

𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) (4) 

 

The Smagorinsky coefficient 𝐶𝑠 has a default value 

of 0.01. ∆ is the subgrid length and is given by: 

Δ = (δxδyδz)
1

3⁄  (5) 

 

The interphase momentum transfer (F) in Equation 

2 is given by: 

F = ∭f [mp {D𝑃(u⃗ g − u⃗ p) −
∇P

ρp

}

+ u⃗ p
dm𝑝

dt
] dmpdu⃗ pd𝑇𝑝 

(6) 

 

In terms of 𝑓, the fluid mass source in Eq. (1) is: 

𝑚𝑝̇ = −∭𝑓
𝑑𝑚𝑝

𝑑𝑡
𝑑𝑚𝑝𝑑u⃗ p𝑑𝑇𝑝 (7) 

 

where the time-rate-of-change of particle mass 

𝑑𝑚𝑝 𝑑𝑡 ⁄ is the rate of change of the particle mass 

produced by chemical processes. The particle 

acceleration can be calculated by: 
𝑑𝑢𝑝

𝑑𝑡
= 𝐷𝑝(u⃗ g − u⃗ p)

∇𝑃

𝜌𝑝

−
∇𝜏𝑝

𝛼𝑝𝜌𝑝

+ 𝑔

+
𝑢𝑝

′ − u⃗ p

𝜏𝐷

 

(8) 

 

where 𝜌𝑝 is the particle mass density, 𝜏𝑝 which can 

be derived by Eq. (9) is the solids contact stress, 

which depends on spatial location, 𝐷𝑝 is the drag 

function, which depends on the particle size, 

velocity, position, and time. 𝑢𝑝
′  is the local mass-

averaged particle velocity. 𝜏𝐷 is a particle collision 

damping time (O’Rourke and Snider, 2010).  

𝜏𝑝 =
𝑃𝑠𝛼𝑝

𝛽

𝑚𝑎𝑥[(𝛼𝑐𝑝 − 𝛼𝑝), 휀(1 − 𝛼𝑝)]
 (1) 

 

Particle normal stress is exerted on a solid until the 

solid reaches the particle-mean velocity (Snider et 

al., 2011).  𝑃𝑠 is a constant (Pa), 𝛼𝑐𝑝 is the particle 

volume fraction at close packing, 𝛽 is a constant 

(between 2 – 5) and 휀 is a very small number in the 

order of 10⁻⁸. The solids volume fraction is related 

to the PDF f by: 

 

𝛼𝑝 = ∭𝑓
𝑚𝑝

𝜌𝑝

𝑑𝑚𝑝𝑑�⃗� 𝑝𝑑𝑇𝑝 (2) 

4 Simulation setup 

The reactor dimensions as well as the reaction 

kinetics were adopted from the author’s previous 

studies (Timsina et al., 2021; Timsina et al., 2020). 

As shown in Fig. 2, the reactor has 0.52 m in 

diameter with a conical outlet and 1.67 m in height. 

The biomass and the fluidizing agent were modelled 

as injection boundaries at the top, and a pressure 

boundary was defined at the bottom for product 

outflow from the reactor. The details of the injection 

boundary can be found in the author’s previous 

study. Barracuda® v21.0.1 was the CFD software 

used for the simulations (Software©, 2022). 

 
Figure 2: Boundary conditions 

The Wen-Yu drag model was chosen due to the 

dilute solid phase where the gas volume fraction is 

higher than 0.8 (Cho et al., 2020; Jayarathna et al., 

2019; Patel et al., 1993), and the chosen particle 

model parameters are presented in Tab. 1. 

 
Table 1: Particle phase model parameter 

Drag model  Wen-Yu 

Closed pack volume fraction 0.2 

Maximum momentum redirection 

from collision 
40% 

Tangent to wall momentum retention 0.85 

Normal to wall momentum retention 0.15 

 

An injection boundary was chosen for the 

introduction of biomass particles into the reactor as 

it does not need an assistance of a fluid stream. The 

blue triangles with spheres at the top represent the 

injection points. A total of 20 injection points along 

the circle and one in the middle were defined in the 

model (Timsina et al., 2021). 

The grid dimensions in x, y, and z directions for each 

mesh are given in Tab. 2. The normalized grid size 

was checked to ensure they lie below the warning 

line. The grid refinements at the wall were not 

performed for all the meshes to have uniformity in 

simulation conditions. The built-in grid generator 

was used in Barracuda to generate the grid, and the 
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cells having a volume fraction less than 0.04 and 

aspect ratio higher than 5:1 were neglected. As a 

result, the Cartesian mesh of 25000 (25k), 50000 

(50k), 100000 (100k), and 200000 (200k) cells gave 

the corresponding number of cells in Tab. 2. 

 
Table 2: cell dimensions 

No. of cells ΔX ΔY ΔZ Case 

22743 19 19 63 1 

48080 24 24 80 2 

97061 31 31 101 3 

193167 39 39 127 4 

 

Four different meshes with 22743, 48080, 97061, 

and 193167 cells were tested, and the cross-sectional 

views are illustrated in Fig. 3. From here onwards, 

the four cases will be mentioned as 25k cells, 50k 

cells, 100k cells, and 200k cells for case numbers 1, 

2, 3, and 4, respectively. 

 

 
Figure 3: Cross-sectional view of different grids  

(top view) 

5 Results and Discussions 

Simulations were performed for four different grids 

with 25k, 50k, 100k, and 200k cells. In the grid 

resolution technique, the mesh size gradually 

increases until no meaningful performance 

improvement can be seen due to the larger mesh 

size. The computation is a three-dimensional non-

isothermal with homogeneous and heterogeneous 

gasification chemistry. Simulations were carried out 

for 300 seconds of simulation time with a number 

density of 125000, and the gas composition, 

temperature, residence time, and flow rates were 

monitored. Average gas compositions were taken 

from the final 150 seconds of simulations. The 

bottom plane of the reactor gives the product gas 

from the reactor. 

It is important to monitor the different grids' fluid 

temperature along the reactor. Fig. 4 shows the 

average fluid temperature along the gasifier. The 

temperature value was radially averaged at t =150s. 

The figure shows the highest fluid temperature at the 

reactor injection burner, suggesting that some 

degree of combustion prevails around this region of 

the gasifier. This is beneficial as it supplies the 

generated heat to the devolatilization of the biomass. 

The average fluid temperature in this region for 25k 

and 50k cells seems to fluctuate more than the 100k 

and 200k cells. This gives some stability to the 

reactor temperature profile in the burner region of 

the gasifier. The average temperature is almost the 

same for all the cases as we move downwards along 

the gasifier. 

 

 
Figure 4: fluid temperature versus elevation. The fluid 

temperature is radially averaged.  

As the thermal and chemical behavior are coupled 

together in such systems, a change in one parameter 

affects the changes in the other ones. Heat is 

supplied from reactor walls, and the gas is fed into a 

biomass gasifier. Chemical transformation, such as 

breaking chemical bonds, gives sensible heat, which 

changes the temperature. Therefore, product gas 

composition and flow rates were monitored for all 

the cases during the simulations. Fig. 5 shows the 

product gas flow rate from the outlet boundary of the 

reactor. After the reactor reached the steady state, 

which took around 50 seconds, the mass flow rate of 
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CO and H2 stabilized around their median value. 

Production of gases starts after around 5 seconds of 

simulation. There was a high fraction of the CO2 at 

the start representing the combustion process; 

however, after the steady-state, the average 

composition for all the gas species varied around 

their mean value. To look closely, only CO and H2 

are taken to compare the four different grids. A 

certain level of variation at steady in the gas 

production illustrates different physical and 

chemical transformations occurring inside the 

reactor. To compare the different cases, the average 

molar composition of major gas species (CO, H2, 

and CH4) is compared in Tab. 3. 

 
Table 3: average molar concentrations 

Case 

Average molar 

concentration 

% Variation wrt  

25k cells 

CO H₂ CH₄ CO H₂ CH₄ 

1 0.20 0.01 0.01 - - - 

2 0.20 0.01 0.01 -0.32 0.16 -0.92 

3 0.20 0.01 0.01 -0.52 0.08 -0.92 

4 0.20 0.01 0.01 -1.72 -0.22 -2.09 

 

As the data show that there is little variation between 

the four different cases. The absolute percentage 

variation of the molar composition of CO, H2, and 

CH4 varies from 0.32% to 2.1%. This shows a minor 

and not significant variation, and there should be a 

trade-off between the number of cells and the 

simulation timing. 

Looking only at the reactor hydrodynamics can be 

tricky when doing resolution studies because the 

number of pixels drawn in Tecplot (an output result 

viewer for Barracuda) corresponds to the number of 

clouds in the simulation. This makes the high-

resolution cases look much denser even if they have 

the same volume fraction and mass of particles. This 

limitation of the Tecplot leads us to present the 

simulation timing for the considered cases. The 

simulation time increased exponentially with the 

increase in the number of cells in the system. The 

simulation time in hours (t) varied according to the  

𝑡 = 24.185𝑒0.00002𝑛, where n represents the total 

number of cells (25000, 50000, 100000 & 200000). 

In numbers, the corresponding simulation time were 

29, 78, 230 and 1100 hrs respectively for the case 1, 

2, 3, and 4 respectively. In order to visualize the 

simulation timing in terms of simulation results, 

CFL is monitored for all the cases. The timestep for 

any transient CFD model is an important parameter. 

The time step must be small enough to represent any 

rapidly changing variables of interest. If the time 

step is too big, an accumulation of errors will occur 

(Zhang et al., 2000). To resolve this problem, a 

varying time step can be utilized with the help of the 

Courant-Friedrichs-Lewy (CFL) number, as shown 

in Eq. (11): 

𝐶𝐹𝐿 =
𝑣 ∆𝑡

∆𝑥
 (3) 

where 𝑣 is velocity, ∆t is time step and ∆𝑥 is cell 

size. Fig. 6 shows the CFL for all the cases. 

Figure 5: carbon monoxide and hydrogen mass flow rate at the outlet boundary 
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Figure 6: CFL for cases with (a) 200k, (b) 100k, (c) 50k 

and (d) 25k cells 

With an increase in cell size, CFL seems to increase 

linearly. However, the velocity of the particle plays 

an important role. As shown in the figure, CFL 

decreased with an increase in the number of cells. 

CFL is comparatively lower for case number four 

compared to other cases. The higher the number of 

cells, the more continuous the CFL profile inside the 

reactor. Courant–Friedrichs–Lewy number gives the 

amount of information traveling across a 

computational cell in a unit of time. CFL number 

higher than one gives an inaccurate solution and 

could potentially lead to divergence of the results. 

The timestep is an important aspect during a CFD 

simulation and should be selected carefully such that 

all the physics of interested parameters are resolved 

in that time step. The additional cells are allowing 

the model to capture more details of the flow profile.  

However, the 100k-cell resolution looks similar to 

that of 200k-cell resolution, so that the 100k-cell 

case could be sufficient in terms of cell resolution. 

6 Conclusions 

A CPFD model was developed in Barracuda® 

v21.0.1 using the MP-PIC modelling approach. The 

model was used to simulate a biomass gasification 

process in an entrained flow gasifier. To conduct a 

mesh sensitivity analysis through a mesh resolution 

technique, the model was simulated with four 

different numbers of cells (from 25k to 200k) to see 

the effect of grid resolution in terms of molar 

concentrations, flow rate, and temperature along the 

gasifier. Although there was a considerable 

difference in hydrodynamics inside the reactor in 

different cases, the results show minor variations 

(maximum 2 percent) in main output variables such 

as reactor temperature, gaseous product flow rate, 

and composition. Therefore, it can be concluded that 

the system was not sensitive to the number of cells 

within the selected mesh sizes. For further studies, it 

is suggested to perform this sensitivity analysis with 

higher resolutions (over millions); however, it will 

be costly. 
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Abstract 

CO2 capture is an important aid to achieve the goals of reduced emissions. Today the market for captured CO2 is 

limited. Injection of CO2 in oil reservoirs is one way of utilizing the captured CO2 and provide permanent storage 

of the CO2. By injecting CO2, the mobility of oil is increased, and the amount of residual oil is reduced. This is 

called enhanced oil recovery. The goal of this study is to show the effects of CO2 injection combined with 

autonomous inflow control valves on oil production. Simulations are carried out using the software OLGA in 

combination with ROCX. The input data to the simulations are based on information obtained from a literature 

study. To show the effect of the autonomous inflow control valves and CO2 injection, the simulations were 

compared with simulations performed without autonomous inflow control valves and CO2 injection. The results 

from the simulations show that CO2 injection contributes to increase the mobility of both oil and water which 

leads to an increase in both oil and water/CO2 production. Autonomous inflow control valves reduce the amount 

of water produced by choking the production in areas with water breakthrough. The combination of CO2 injection 

and autonomous inflow control valves results in a higher oil-water ratio and a considerably lower water 

production.  

 

1. Introduction 

Due to global warming, countries around the world 

have signed a climate agreement which obliges the 

countries to reduce the emission of climate gases, 

among them CO2. CO2 can be captured from power 

plants, and the captured CO2 can further be injected 

into oil reservoirs or aquifers to reduce the CO2 

emission to the atmosphere. Injection of CO2 into oil 

reservoirs increases the oil recovery and at the same 

time, the CO2 can be permanently stored. CO2 

capture in combination with CO2 enhanced oil 

recovery (CO2-EOR) and CO2 storage is called 

Carbon Capture, Utilization and Storage (CCUS), 

and is a promising way to reduce the CO2 emission 

to the atmosphere. CO2-EOR is used in US and 

Canada, but mainly by using CO2 from natural 

deposits. So far, CO2-EOR is not utilized on the 

Norwegian shelf. However, a mapping including 46 

oil fields has been carried out on the Norwegian 

shelf, and it is indicated that the potential for 

increased oil recovery using EOR methods, 

including CO2-EOR, is 700 MSm3 [1]. The 

Norwegian Petroleum Directorate has also mapped 

the potential of CO2 storage on the Norwegian shelf 

and has concluded that the storage potential is more 

than 80 billion tonnes of CO2 [2]. This corresponds 

to today's Norwegian CO2 emissions for 1600 years. 

 

When CO2 is injected into a reservoir, the CO2 is 

physically mixed with the oil and the properties of 

oil are changed. CO2 reduces the oil viscosity and in 

addition it has a swelling effect which increases the 

oil volume in the reservoir pores [3, 4, 5]. The effect 

of CO2 injection is most significant for heavy oils. 

The solubility of CO2 in oil increases with 

decreasing temperatures, and the effect of CO2 

injection is therefore highest in reservoirs with 

moderate temperatures.  Injection of CO2 can 

contribute to decrease the oil viscosity up to 25% 

[6]. A combination of the effect of reduced oil 

viscosity and the swelling contributes to increase the 

mobility of oil in the reservoir, and thereby decrease 

the residual oil significantly [7]. Laboratory tests 

with CO2 injection in core samples from the Oseberg 

field, have shown that the residual oil saturation can 

be reduced to 0.1 [8]. Fig. 1 gives a schematic of the 

transition zone of CO2 between the injection and the 

production well. Supercritical CO2 is injected into 

the oil reservoir at high pressure. Hydrocarbons 

from the reservoir oil vaporize into the CO2 and a 

part of the injected CO2 dissolves into the oil. The 

two phases become completely miscible without any 

interface effects and contribute to develop a 

transition zone that is miscible with oil in the front 

and with CO2 in the back [9]. 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 
Figure 1: The schematic of the CO2 transition zone 

between the injection and production well [9]. 

 

One of the main problems related to CO2-EOR is a 

direct breakthrough of CO2 or CO2 solved in water 

into the production well. The breakthrough can be 

due to fractures and zones with high permeability in 

the reservoir, or due to frictional pressure drop in 

long horizontal wells. Fig. 2 shows a scenario where 

CO2 is injected into a reservoir and flows together 

with water directly to the production well without 

being distributed in the reservoir and mixed with the 

oil. To avoid this type of breakthrough, different 

types of inflow control devices can be installed in 

the production well. Inflow control devices have the 

option to equalize the production rates along a 

horizontal well as shown in Fig. 3. This will solve or 

reduce the early breakthrough problem of CO2 into 

the production well, and thereby make the CO2-EOR 

process more energy effective.  

 

 
Figure 2: Short circuiting of CO2 between the injector 

and the production well. 

 

 
 Figure 3: Improved distribution of CO2 in the reservoir 

by using inflow control devices. 

 

Different types of inflow control devices are 

developed to delay or avoid early breakthrough of 

unwanted fluids like water and gas/CO2 into the 

production wells. The inflow control devices can be 

divided into two main categories, passive inflow 

control devices (ICDs) and autonomous inflow 

control devices (AICD). In this study, an orifice ICD 

and an autonomous inflow control valve (AICV) are 

used to delay or avoid direct breakthrough of CO2 

and water to the production well.  The description 

and functionality of ICD and AICV are presented in 

the literature [10, 11, 12, 13]. ICDs are commonly 

used in oil fields all over the world to delay water 

and gas breakthrough. AICVs have so far mainly 

been installed in Canada, USA, and the Middle East, 

and have also been tested in a CO2 EOR well in 

Canada [14, 15]. There is a lack of production data 

available regarding CO2-EOR and inflow control 

devices. Aakre et al. [15] simulated the effect of 

AICV in a vertical CO2-EOR well in Canada and 

compared the results with real well data. Hansen and 

Moldestad [16] simulated oil production in a field 

with CO2-EOR and horizontal wells completed with 

ICDs and AICVs. Water/CO2 breakthrough usually 

occurs first in zones with high drawdown or with 

higher permeability than other zones along the 

production well. To avoid water/CO2 to reach the 

other zones via annulus, zone isolation is used by 

installing packers between the different sections. 

Fig. 4 shows a schematic of the production line 

including packers, sand screen and ICDs/AICVs.  

 
 

 
Figure 4: Production line with packers, sand screen and 

ICDs/AICVs. 

 

2. Methodology  

2.1. Simulation tools 

The simulations have been performed using the 

simulation tool OLGA in combination with ROCX. 
OLGA is a software developed to simulate 

multiphase fluid flow in networks of wells, 

flowlines, pipelines and process equipment. ROCX 

is a near-well reservoir simulator and can be 

combined with OLGA. Due to the coupling between 

OLGA and ROCX the dynamic interactions between 

the wellbore and the reservoir are considered [17]. 

Fig. 5 shows an overview of inputs needed for the 

simulations of oil, gas, and water production from a 

reservoir.   
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Figure 5: Overview of input to combined OLGA and 

ROCX simulations. 

  

2.1.1. ROCX  

ROCX calculates the fluid flow in a porous medium 

based on the conservation equations for water, oil 

and gas. Reservoir properties such as porosity, fluid 

saturation, permeability, relative permeability, 

capillary pressure, temperature, and pressure are 

implemented in ROCX. The required fluid 

properties are viscosity, density, bubble point and 

gas/oil ratio. Initial and boundary conditions are set 

for the reservoir and the sources coupled to OLGA. 

ROCX receives information from OLGA regarding 

pressure and pressure drop in the well and through 

the inflow control devices. Based on the reservoir 

and fluid information and the information given in 

OLGA, the production rates into the wellbore are 

calculated for each phase [17].  

The simulations have been performed in two 

different types of reservoirs: a homogeneous 

reservoir and a heterogeneous reservoir. The size of 

the reservoir is 1000 m in x-direction (length), 100 

m in y-direction (width) and 20 m in z-direction 

(height). The reservoir is divided into 2100 cells, 10 

in the x-direction, 21 in the y-direction and 10 in the  

z-direction. The size of the cells is constant in the x- 

and z-direction, 100 m and 2 m respectively. In the 

y-direction the cell sizes are reduced from 10 to 1 m 

towards the well. The horizontal well is located 

along the x-axis 2 m from the top of the reservoir 

and in the middle (cell 11) in the y-direction. The 

porosity of the reservoirs was set to a constant value 

of 0.3. The viscosity of oil was 2 cP for the case 

without CO2 injection and was reduced to 1.5 in the 

cases with CO2 injection to simulate the effect of 

CO2 on viscosity. The reservoir pressure and 

temperature were 130 bar and 100℃ for all the 

simulations. Simulations were carried out in a 

homogeneous and a heterogeneous reservoir. The 

permeability in the homogeneous reservoir was 

1000 mD in the x-and y-direction and 100 mD in the 

z-direction. In the heterogeneous reservoir, a zone 

with permeability 10000 mD in x- and y-direction 

and 1000 mD in z-direction was defined in the heel 

section of the reservoir.  Fig. 6 shows the 

permeability distribution in the heterogeneous 

reservoir. 

 

 
Figure 6: Permeability zones in heterogeneous reservoir. 

 

Tab. 1 shows the input data to ROCX for the 

basecase and the case with CO2 injection.   

 
Table 1: Input data to Rocx. 

Input data Basecase CO2-EOR 

Reservoir pressure 130 bar 130 bar 

Reservoir temperature 100℃ 100℃ 

Pressure, heel (boundary) 120 bar 120 bar 

Porosity 0.3 0.3 

Oil viscosity 2 cP 1.5 cP 

 

The relative permeability curves for the basecase 

and the case with CO2-EOR are presented in Fig. 7. 

The input data for calculation of the relative 

permeability curves are presented in Tab. 2. The 

relative permeability curves are calculated based on 

the Corey equation for the water and the Stone II 

correlation for the oil. The relative permeability 

curves when CO2 is injected in the reservoir are 

modified based on information presented in the 

introduction.  

 

 
Figure 7: Relative permeability curves for basecase and 

CO2-EOR case. 

 

Table 2: Input data for relative permeability curves. 

Input data Basecase  CO2-EOR 

Swc  0.2 0.2 

Sor  0.3 0.1 

Krwoc 0.7 0.9 

Krowc 0.7 0.7 

nw 2 1.5 

now 2 2 
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Swc is the irreducible water saturation, Sor is the 

residual oil saturation, 𝐾𝑟𝑤𝑜𝑐  is the end point relative 

permeability for water at maximum water saturation, 

𝐾𝑟𝑜𝑤𝑐  is the endpoint relative permeability for oil in 

water at irreducible water saturation, 𝑛𝑤 is the 

Correy exponent, and 𝑛𝑜𝑤 is a fitting parameter for 

oil [18]. 

 

2.1.2. OLGA 

OLGA is a transient dynamic multi-phase simulator 

used to predict flow in pipelines and connected 

equipment. The OLGA simulator is governed by 

conservation of mass, momentum, and energy [19, 

20]. 

 

The simulations are carried out using ICD and AICV 

completion. Fig. 8 shows one section of the well set-

up with ICD completion. To be able to include the 

effect of zone isolation, the set-up includes two 

pipelines. The upper one is the production pipe, and 

the lower one is illustrating the annulus and the 

transition of fluids from the annulus via the ICD to 

the production pipe. The source represents the fluid 

flow from the reservoir, and the leak represents the 

fluid flow to the well. The packer is represented by 

a closed valve. The total set-up includes 10 sections 

all including Packer, Source, ICD and Leak.  

Packers are used to isolate the production zones 

from each other, and thereby avoid fluids to flow 

from one zone to another through annulus.  

 

 
 

Figure 8: Set up for ICD in OLGA. 

  

Fig. 9 shows two sections of the OLGA-setup for a 

well with AICV completion. The installations 

Source, Packer and Leak are defined in the same 

way as for the ICD case. The AICV is presented by 

a control valve with transmitter and PID controller.  

Tab. 3 shows the input data to OLGA. The PID 

controller starts to close the valve when the water cut 

(WC) is 75%. The AICV closes gradually from 

100% to 1% opening.     

 

 
Figure 9: Set-up for AICV in OLGA. 

 

Table 3: Input data to OLGA. 

Parameters  

ICD/AICV diameter 0.02 m 

Leak diameter 0.035 m 

Annulus diameter 0.15 m 

Set point AICV (WC) 0.75 

Discharge coefficient ICD/AICV 

Length production well 

0.84 

992 m 

AICV opening (closed position) 1% 

Number of ICDs/AICVs 10 

 

3. Results 

Simulations are performed for a homogeneous 

reservoir with and without CO2 EOR. In addition, 

simulations of a heterogeneous reservoir with CO2 

EOR are carried out. These simulations are 

performed using wells with ICD and AICV 

completion. The CO2 is assumed solved in water, 

and when water is mentioned it also includes CO2. 

  

3.1. Homogeneous reservoir 

Two cases were simulated for the homogeneous 

reservoir, one basecase and one case with CO2 EOR. 

In both cases, the production well is completed with 

ICDs. Fig. 10 shows the water cut versus time for 

the two cases.  

 
Figure 10: Water cut versus time for Base-case and CO2-

EOR case 

The water breakthrough occurs after 90 days for the 

CO2-EOR case and after 126 days for the basecase.  

The associated oil production versus time is 

presented in Fig. 11.  

 

 

 

Packer ICD 

Source Leak 
(flow to the well) 
To well 

Production pipe (well) 

AICV AICV Packer 

Source            To well           Source            To well 
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Figure 11: Comparison of oil flow rates for basecase and 

CO2-EOR case 

 

Initially, the oil production is significantly higher 

when using CO2-EOR compared to the basecase. 

However, after water breakthrough, the oil 

production decreases, and after about 111 days the 

oil production for the CO2-EOR case is lower than 

the oil production rate in the basecase. After 150 

days, the oil production is about equal for the two 

cases.  As can be seen from Fig. 10, the water cut 

increases when CO2 is injected into the reservoir. 

Tab. 4 gives an overview of the production data for 

the basecase and the CO2-EOR case.  

 
Table 4: Production data 

   Basecase     CO2-EOR  

Accumulated oil 190000 m3 210000 m3 

Accumulated water 430000 m3 702000 m3 

Water breakthrough 126 days 90 days 

WC (400 days) 94% 96% 

ΔP toe-heel (400 days) 4 bar 4.6 bar 

   

 

The accumulated oil production increased by 10% 

and the water production increased by 63% when 

CO2 was injected into the reservoir. The increase in 

oil production is because CO2 reduces the oil 

viscosity, and the oil becomes more mobile as 

shown in Fig. 11. When the oil mobility increases, 

the water will follow the oil and move faster. The 

viscosity of water is lower than the oil viscosity and 

therefore the water production exceeds the oil 

production after water/CO2 breakthrough. In 

addition, the changes in the relative permeability 

curves influence significantly on the mobility of the 

fluids. This is observed by the earlier water 

breakthrough for the CO2 case.  Due to frictional 

pressure loss in the production pipe, the pressure in 

the toe section is higher than in the heel section, and 

therefore, the first water breakthrough occurs in the 

heel of the production pipe. When the results from 

the basecase and CO2-EOR case are compared, it is 

shown that the pressure difference (toe-heel) after 

400 days of production is 0.6 bar higher when CO2 -

injection is used. This is due to the higher total flow 

rate, which creates higher friction in the production 

pipe.  

 

 

3.2. Heterogeneous reservoir 

Two different cases were simulated for the 

heterogeneous reservoir, one case with CO2-EOR 

and ICD completion, and one case with CO2-EOR 

and AICV completion. The heterogeneous reservoir 

has a high-permeability zone in the heel section.  

These simulation cases were performed to determine 

whether AICVs can reduce the water production 

compared to the ICDs.  

 

3.2.1. Well with ICD completion 

Fig. 12 shows the volume of accumulated oil and 

water versus time. The water breakthrough occurs 

after 12 days, and the first breakthrough is located in 

the heel section. Fig. 13 shows the water cut versus 

time for the heel, middle and toe sections of the well. 

After about 100 days, water breakthrough is 

observed in all the zones and the water production 

increases rapidly compared to the oil. After 400 

days, the accumulated oil production is 212000 m3 

and the overall water cut is 81%. The water cut in 

the heel section exceeds 90% after 150 days and is 

close to 100% at day 400. 

 

 
Figure 12: Accumulated oil and water for the ICD case.  

 

 
Figure 13: Water cut versus time for the ICD case. 

 

Fig. 14 represents the oil and water flow rates as a 

function of time. After water breakthrough has 

occurred in all the zones, the total flow rate increases 

significantly. Fig. 15 shows the pressure along the 

well at different times. The pressure in the toe 

section (location 0) increases significantly with time 

due to increased total volume flow and thereby 

increased frictional pressure drop in the well.   
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Figure 14: Volume flow rate for oil and water for the 

ICD case.  

 

 
Figure 15: Pressure versus well position for the ICD 

case. 
 

3.2.2. Well with AICV completion 

Fig. 16 shows the accumulated oil and water 

production versus time for the AICV case. The 

water/CO2 breakthrough is observed in the heel 

section after 12 days of production. This is the same 

as for the ICD case. After 400 days, the oil 

production is 164000 m3 and the water production is 

about the same. The water cut curves for the toe, 

middle and heel sections are presented in Fig. 17. 

The AICVs start to close when the water cut reaches 

75% in the current zone. After about 170 days, all 

the AICVs are partly closed, and the production 

capacity is reduced to about 1%. The flow rates 

versus time for oil and water/CO2 are presented in 

Fig. 18. The flow rates for both oil and water/CO2 

vary with time due to the breakthrough of water/CO2 

in the different zones followed by the choking of the 

AICVs.  

 

 
Figure 16: Accumulated oil and water for the AICV case. 

 

 
Figure 17: Water cut versus time for the AICV case. 

 

 
Figure 18: Volume flow rate for oil and water for the 

AICV case.  

Fig. 19 presents the pressure profile in the AICV 

completed well at different times. The well pressure 

in the heel is set constant to 120 bar, and the 

decreasing pressure from the toe to the heel is due to 

the frictional pressure drop in the production pipe. 

The pressure in the toe section decreases from 122 

bar at day 150 to close to 120 bar at day 400. The 

reduction in the pressure is due to the decreasing 

production rates after the choking of the AICVs. The 

low pressure drop at day 50 is due to the water/CO2 

breakthrough in the high permeability zone and the 

following choking of this zone.  

 

 
Figure 19: Pressure versus well position for the AICV 

case. 
4. Summary and Discussions 

Simulations were performed in a homogeneous 

reservoir to study the effect of CO2 EOR on oil 

production. It was observed that CO2 EOR increases 

the oil production rate until breakthrough of 

water/CO2 occurs. The total oil production increased 

by 10% after 400 days of production, but since CO2 

influences the mobility of both oil and water, the 

water/CO2 production increased by with 63%. The 

water cut at day 400 increased from 96% to 98% 

when CO2 was injected. The average water cut based 

on 400 days of production is 69% and 77% for the 
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basecase and the CO2 EOR case, respectively.  This 

indicates that CO2-EOR has the potential to decrease 

the residual oil in the reservoir and increase the total 

oil production. However, a significant amount of 

water will be produced together with the oil. The oil 

and water/CO2 production depends very much on 

the relative permeability. In this study, it was not 

possible to find exact information about relative 

permeability for the simulated type of reservoir. The 

next step was to study the effect of using AICVs 

compared to ICDs in a heterogeneous reservoir with 

CO2 EOR. Fig. 20 shows the comparison between 

water production from a well with AICV completion 

and a well with ICD completion. The AICV well is 

reducing the water production by 82% compared to 

the ICD well.   

 

 
Figure 20: Comparison of accumulated water for AICV 

and ICD in the heterogeneous reservoir. 
 

The simulated oil flow rates versus time for the two 

cases are presented in Fig. 21. The ICD well is 

producing more oil than the AICV well after 

breakthrough of water/CO2 has occurred in all the 

zones. The reason why more oil is produced in the 

case of ICD is that no quantity restrictions have been 

set, which is unrealistic. In the case with ICD 

completion, the accumulated oil/water ratio is 

significantly lower than in the case with AICV 

completion. The normal scenario is to use a choke 

valve to control the total production rate and avoid 

overloading the top-side separation processes. A 

choking of the total flow will result in an even lower 

oil/water ratio for the ICD case because the main 

production will occur from the high permeability 

zone, and after breakthrough, the water/CO2 

production will increase significantly with time.  

 

  
Figure 21: Comparison of oil flow rate for AICV and 

ICD in the heterogeneous reservoir. 

Tab. 5 summarizes the production results from the 

heterogeneous reservoir. 

 
Table 5: Production data for ICD and AICV completed 

wells in heterogeneous reservoir with CO2-EOR 

 ICD AICV 

Accumulated oil 212000 m3 164000 m3 

Accumulated water 902000 m3 166000 m3 

Water breakthrough 15 days 15 days 

Water cut (day 400) 98% 75% 

Total oil/water ratio 0.230 0.988 

   

 

Future simulations will be performed with choking 

of the total flow for both the ICD case and the AICV 

case to obtain more realistic and comparable results 

for the two cases. The set point for a choke valve 

will be chosen based on the capacity of the top-side 

process equipment. 
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Abstract 

 

To numerically study biomass gasification in a three-dimensional bubbling fluidized bed, a CFD-DEM 

(computational fluid dynamics – discrete element method) model with heat transfer and homogeneous and 

heterogeneous chemical reactions is implemented. An ideal reactor model is used for the air-steam bubbling 

fluidized bed (BFB) gasification reactor assuming perfectly mixed solids and plug flow. A validated 

computational particle fluid dynamics (CPFD) model has been applied to investigate the sensitivity analysis of 

mesh grids as well as to find the optimum number of grids. The result shows that 7452 grid cells are the optimal 

number of cells for the existence BFB gasifier. The effects of key process operating parameters such as steam to 

biomass ratio (SB), as well as temperature shows that by enhancing the SB ratio or reactor temperature, gas yields 

increase. H2 and CO2 concentrations promote by increasing the steam to biomass ratio while CO and CH4 

production drop. The optimal value of SB for the gasification process can be found in the range of 0.3 to 1. 

Keywords: bubbling fluidized bed gasifier, CPFD method, Steam-to-biomass ratio, mesh sensitivity analysis, 

Eulerian-Lagrangian simulation 

 

1. Introduction 

Gasification is the partial oxidation of the carbon in 

the biomass in the presence of a gasifying carrier 

such as air, oxygen, steam, or carbon dioxide. The 

biomass gasification process can convert a solid or 

liquid organic material into a multifunctional 

gaseous compound and a solid phase. The gas phase, 

called syngas, has a high heating value and can be 

applied to produce biofuel and generate power. Char 

consists of organic residue and inert material and 

comprises the solid phase (A. Samani et al., 2022). 

The gasification of biomass consists of a sequence 

of successive, endothermic, and exothermic 

reactions that can be divided into the main 

subprocesses as can be seen in Fig. 1.  

The gasification process consists of drying, 

pyrolysis, partial oxidation, reduction (char 

gasification), and cracking (Arena, 2012, Mahinpey 

and Gomez, 2016). 

Heating and drying: The moisture content makes up 

5-35% of the biomass feed. During the drying stage, 

the moisture is released from the feed, and it is 

decreased to 5%. The operating temperature of the 

drying stage depends on the pressure inside the 

reactor, for example, if the reactor is operating on a 

pressure of 1-60 bars, the boiling temperature of the 

water can be between 373 to 550 K. High moisture 

content can lead to some troubles in feeding or 

fluidization like agglomerate formation and 

jamming problems. Furthermore, it can decrease the 

lower heating value (LHV) of the production as well 

as the energy efficiency of the gasification. 

Therefore, the tar content in the syngas is more 

likely to increase due to the reduction of the reaction 

temperature (Arena, 2012, Mishra and Upadhyay, 

2021). 

 

 
Figure 1: Schematic representation of pyrolysis, 

gasification, and combustion processes (Arena, 2012) 

 

Devolatilization (pyrolysis): During the pyrolysis 

stage, the organic materials are decomposed into 

volatile and biochar (carbonaceous solid residue) in 

an oxygen-deprived atmosphere at higher 

temperatures (398–773 K)(Mishra and Upadhyay, 
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2021). This process involves the breaking of the 

transitory bonds of the aromatic clusters in the 

feedstock. Thus, light gases (volatile matter) in the 

cooler part of biomass condense and produce high 

molecular weight hydrocarbons (tar). When dried 

biomass is heated to temperatures ranging from 200 

to 500 °C during the pyrolysis step, it decomposes 

into solid char and volatiles (tar and gases), as shown 

in Fig. 2. 

 

 
Figure 2: Pyrolysis output (Safarian et al., 2019) 

Combustion(oxidation): Although the easiest and 

the most direct way of decomposition of biomass is 

the combustion, the overall heat released from the 

biomass in the combustion zone is lower than in the 

gasification process. Due to the exothermic 

chemical reactions, the temperature can be elevated 

to 1373 to 1773 K in the combustion zone. By 

controlling the gasifying agents, the temperature can 

be controlled in such a way that it does not approach 

the ash-slagging temperature and causes operational 

problems. The amount of pure oxygen or air is in the 

range of 25 to 40 percent. CO, CO2, H2, and H2O are 

formed as the final products, and the heat released 

from the exothermic reactions can be applied to dry 

the particles in the pyrolysis process (Zhang et al., 

2010).  

Gasification/reduction: In this zone, some CO2 and 

H2O are reduced in the reaction of the remaining 

carbonized residue produced from pyrolysis. It can 

produce a gas with a high CO and H2 content. The 

required energy for endothermic reduction reactions 

can be provided by the combustion of char and 

volatiles. Hydrogen, carbon monoxide, and methane 

can be generated through a sequence of reactions. 

Tar is one of the main problems in gasification of the 

biomass and can reduce the overall efficiency of the 

process and increase the cost of the plant (Mularski 

et al., 2020).  

Consequently, gasifier reactors must be designed 

using either experimental data or numerical 

modeling and simulation. Modeling should be 

combined with experimental results as the most 

reliable option. Thus, at the R&D level, modeling, 

and simulation play an important role in the design 

and study of the gasification process. Modeling and 

simulations offer a low-cost method for optimizing 

existing gasifiers as well as scaling up and designing 

new gasifiers in terms of key operational parameters. 

Exploration of these operational parameters can 

provide insight into the relationship between the 

influences of the gasification variables and trends in 

process, cost, and implementation risks. (Baruah and 

Baruah, 2014, Safarian et al., 2019).  

Some of the important operating parameters 

influencing the gasification process are feedstock 

flow rate, gasifying agent flow rate, equivalence 

ratio, reactor pressure, and reactor temperature. Any 

parameter change has a significant impact on the 

end-gas composition and, as a result, the gasifier's 

performance. Mathematical and computational fluid 

dynamics (CFD) models are created to provide a 

good representation of the chemical and physical 

phenomena that occur inside the gasification 

reactors (Basu, 2010). An Eulerian-Lagrangian 

model has been applied to study the influence of 

increasing the temperature, steam-biomass ratio, and 

equivalence ratio on the solid phase's gas voidage, 

fluid force, collision force, dispersion coefficient, as 

well as the various homogeneous reaction rates. The 

model offers important information about the 

hydrodynamics of the bubbling fluidized bed for 

biomass gasification, and they are expected to be 

useful for the operation, scale-up, and optimization 

of such systems for sustainable energy production 

(Yang et al., 2019).  To simulate the gasification of 

pine sawdust in the presence of both air and steam, 

a comprehensive model was developed. The 

proposed model improved on the premise of an 

existing biomass gasification model based on 

ASPEN PLUS. The accuracy of the model's 

predictions was compared to actual experimental 

results to confirm validity. Furthermore, the 

comprehensive model's relative accuracy was 

compared to the original base model to see if there 

was any improvement. The model predicts the 

composition of H2, CO, CO2, and CH4 with 

reasonable accuracy in varying temperature, steam-

to-biomass, and equivalence ratio conditions (Pauls 

et al., 2016).  

Since gasification is a thermodynamic conversion 

containing many solid-gas reactions, the gasification 

parameters such as temperature, pressure, feed 

composition, type of the gasification agents, and 

kinetics of the reaction are more likely to affect the 

syngas production. For this reason, the purpose of 

this paper is to apply CPFD simulation to evaluate 

the impacts of the steam to biomass ratio on the 

gasification process.  

2. The CPFD method 

CPFD is a numerical method based on the Eulerian-

Lagrangian approach for the simulation of a large-

scale multiphase (particle-fluid) flow system in three 

dimensions by adopting the multiphase particle-in-

cell (MP-PIC) method and the particle parceling 

algorithm (Andrews and O'Rourke, 1996). The basis 

of the Eulerian-Lagrangian method is that a 

continuum model is considered for the fluid phase 

and a Lagrangian method is applied for the particle 
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phase. This can provide an appropriate numerical 

solution for a wide range of particle sizes, shapes, 

and velocities. For the fluid phase, the Navier-

Stokes equation with coupling between the discrete 

particles is utilized (Samani et al.). However, in 

order to solve the particle phase, the direct element 

method (DEM) fits into the Lagrangian method 

(Jiang et al., 2014).  

The method of solving is that the computational 

domain is divided into several computational parcels 

including particles with the same characteristics. 

Furthermore, conservation equations of momentum, 

mass, and energy are computed, including the 

coupling between the gas/solid phases. Therefore, 

the spatial distribution of key process parameters 

such as temperature, pressure, and velocities in the 

system can be calculated. Such information is 

necessary to find out the fluidization process, and 

that is why the CPFD scheme is widely used for the 

simulation of gas-particle fluidized reactors (Samani 

et al., 2020).  

3. CPFD simulation set-up 

Computational Particle Fluid Dynamics (CPFD) 

modeling is used to simulate the bubbling fluidized 

bed gasifier reactor at the University of South-

Eastern Norway, with the goal of mesh sensitivity 

analysis to find the optimal number of grid cells to 

achieve accurate results. The CPFD hydrodynamic 

model has been validated against the results of 

Timsina's experiment for wood chips as biomass air 

gasification at 1000 K (Timsina et al., 2020) by A. 

Samani (A. Samani et al., 2022). In this paper, the 

model was used to investigate the effects of steam to 

biomass ratio as a key operating parameter on the 

steam gasification process.  

The reactor was modelled as a cylinder with an inner 

diameter of 0.1 m and a height of 1 m. SolidWorks 

was used to create a computer-aided design (CAD) 

model of the reactor in stereolithography (STL) 

format, which was then imported into The CPFD 

Barracuda® VR software. Fig. 3 illustrates the initial 

bed conditions and boundary conditions. 

The proximate and ultimate analysis of biomass 

species used in the experimental studies is shown in 

Tab.1. The rest of the physical and operational 

conditions used in the simulations are represented in 

Tab. 2 (Timsina et al., 2020). 
In Barracuda, the Wen-Yu model takes into account 

the particle packing by including a dependence on 

the fluid volume fraction in addition to the single 

particle drag models upon which it is based. The 

Since Wen-Yu drag model is appropriate for more 

dilute systems, the Wen-Yu drag model has been 

applied with 60% momentum retention for the 

particle collision.  

 

Table 1: Characterization of biomass (A. Samani et al., 

2022) 

Type of biomass Wood chips 

Proximate analysis (wt % basis) 

ash 1.16 

volatiles 80 

Fixed carbon 18.84 

Moisture 11.1 

Ultimate analysis (wt %) 

C 51.0 

H 6.1 

O 42.2 

N 0.11 

S 0.011 

Cl 0.011 

Ash 0.58 

 

 

Figure 3: Boundary conditions and c) initial particle in 

bed (silica sand+char) 
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Table 2: Gasifier operating conditions (A. Samani et al., 

2022) 

Initial bed mass 

Particle: Silica 

Particle size: 100-425µm 

0.49 volume fraction 

Density: 2650 kg/m3 

Initial height: 250 mm 

 

Particle: Char 

Particle size: 500µm 

0.05 volume fraction 

Density: 300 kg/m3 

Initial height: 250 mm 

Solids close pack 

volume fraction 
0.54 

Initial gas in the 

reactor 
Air (80% N2, 20% O2) 

Initial solid and gas 

temperature 
1000 K 

Initial gasifier 

pressure 
101325 Pa 

Sparger inlet gas 

composition by mass 

80% H2O, 20% air (80% N2, 

20% O2) 

Sparger inlet gas 

temperature 
1000 K 

Sparger inlet gas 

superficial velocity 
0.17 m/s 

Biomass 
Temperature: 500 K 

Mass flow rate: 2.08 kg/h 

 

3.1 Main reactions of gasification: 

The main global gasification reactions are divided 

into two groups, heterogeneous and homogenous. 

3.1.1 Heterogeneous (solid-gas phase) reactions 

The heterogeneous reactions are (Hejazi et al., 2017, 

Snider et al., 2011): 

For all reactions, the kinetics rates [molm-3s-1] are 

represented. 1fr and 1rr are kinetics rates for the 

forward and reverse reactions. sm is the mass of the 

solid, the solid volume fraction, and is the 

temperature of the reaction.  

Boudouard: 

2( ) 2C s CO CO+ 
                          

172 /rnxH kJ mol = +
 

1 2

4 2 2

1

22645
1.272 exp( )[ ]

2363
1.044 10 exp( 20.92)[ ]

f s

r s

r m T CO
T

r m T CO
T

−

−
=

−
=  −

   
Water-gas: 

2 2( )C s H O CO H+  +
                                     

131 /rnxH kJ mol = +
 

1 2

4 2

1 2

22645
1.272 exp( )[ ]

6319
1.044 10 exp( 17.29)[ ][ ]

f s

r s

r m T H O
T

r m T H CO
T

−

−
=

−
=  −

 
Methanation: 

2 40.5 ( ) 0.5C s H CH+ 
                                    

75 /rnxH kJ mol = −
 

3

3 2

0.5 0.5

3 4

8078
1.368 10 exp( 7.087)[ ]

13578
0.151 exp( 0.372)[ ]

f s

r s

r m T H
T

r m T CH
T

− −
=  −

−
= −

 
Combustion: 

22 ( ) 2C s O CO+ →
                                          

111 /rnxH kJ mol = −
 

7

6 2

13590
4.34 10 exp( )[ ]f Pr T O

T


−
= 

 
3.1.2 Homogeneous (gas-phase) reaction 

Simple global homogeneous reactions are listed as 

(Snider et al., 2011):  

Steam Methane reforming (SMR): 

4 2 23CH H O CO H+  +
                               

206 /rnxH kJ mol = +
 

5

4 2 4

2

4 2

15042
3 10 exp( )[ ][ ]

32900
0.0265exp( )[ ][ ]

f

r

r H O CH
T

r CO H
T

− −
= 

−
=

 
Water-gas shift (WGS): 

2 2 2CO H O CO H+  +
                                   

41 /rnxH kJ mol = −
 

10 0.5

5 2

9 0.5

5 2 2

36640
7.68 10 exp( )[ ][ ]

39260
6.4 10 exp( )[ ] [ ]

f

r

r H O CO
T

r H CO
T

−
= 

−
= 

 
4. Results and discussion 

4.1. Sensitivity mesh analysis 

The CPFD method of solving is that the 

computational domain is divided into several 

computational cells including particles with the 

same velocity and properties. Furthermore, 

conservation equations of momentum, mass, and 

energy are computed, including the coupling 

between the gas/solid phases. The grid defines the 

spatial resolution for calculating the governing 

equations that result in gas-particle flow properties 

like pressure, velocity, and temperature. In order to 

achieve accurate results, it is necessary to define an 

optimum number of grid cells. As a result, the CPFD 

model for the BFB gasifier has been applied at the 

temperature of 1000 K, and the pressure of 101325 

Pa for wood chips as biomass. The steam to biomass 

ratio of 0.8 and other gasification operating 

conditions are identical to Tab.2. The reason for 

choosing the SB ratio is that based on the results of 

the paper by Sharma (Sharma and Sheth, 2016), at 

this SB ratio, the hydrogen production could be 

maximum. The simulations have been carried out for 

5 different mesh cells, 1450, 3577, 5376, 7452, and 

10000 as shown in Fig.4. With 1450 grid cells, it was 

not possible to achieve results. This number of mesh 

is too coarse to achieve the results. 
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Figure 4: Computational grids, a: 1450, b: 7452, and c: 

10000 grid cells 

Fig. 5 and 6 investigate the effects of the grid sizes 

on the production of gas compositions and the 

concentration of CO production at the outlet cross-

sectional area of the reactor. According to the 

results, since the error for 7452 and 10000 are very 

negligible (almost identical results), 7452 grid 

meshes are selected as an appropriate number of 

meshes for further analysis. By increasing the 

number of cells to more than 7452 grid cells, the 

results of gas production have not changed. 

 

 
Figure 5: Effect of different grid cells on dry and N2-

free product gas composition for steam gasification of 

wood chips at a reactor temperature of 1000 K and 

S/B=0.8 

4.2. The impacts of the gasification parameters 

To investigate the impacts of SB on gas production 

as well as the temperature effects on the gas yield, 

the CPFD method has been applied to simulate the 

BFB gasifier for wood chips. The simulations have 

been conducted for 100 s to make sure that steady-

state condition has been achieved. 

 
Figure 6: Concentration of CO production at the outlet 

cross-sectional of the cylinder for different mesh sizes 

4.2.1. The effects of the steam to biomass ratio 

This section discusses the variation of steady-state 

values of component production on the condition of 

dry and N2 free, for air-steam gasification of wood 

chips at the temperature of 1000 K with steam to 

biomass ratio (SB) to identify the quantitative 

effects of steam addition on gasifier performance. 

Fig.7 presents particle volume fraction, particle 

temperature distribution, speed of the particle, and 

particle species distribution at the temperature at the 

simulation time of 100 s for SB equal to 0.8 and 

reactor temperature of 1000 K. 

Owing to water gas shifts, which are aided by steam 

and are predominant at higher temperatures, 

increasing SB enhances H2 and CO2 concentrations 

and the heating value of syngas while decreasing CO 

and tar concentrations. Furthermore, because of the 

water gas and steam reforming reactions, the H2 

mole fraction in the product gas rises as the SB ratio 

is boosted. An excess of steam reduces temperature, 

favoring tar formation; additionally, the higher the 

SB, the more energy is required by the gasification 

process. The mole fractions of CO and CH4 drop as 

the SB ratio promotes owing to increased WGS and 

SMR reactions as the results show in Fig.8. Higher 

H2 and CO2 concentrations were discovered for SB 

values ranging from 1.5 to 3. As can be seen in Fig.8, 

for the gasification process, the optimal value of SB 

can be found in the range of 0.3 to 1. 
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Figure 7: Bed hydrodynamics at 100 s simulation time, 

(a) Particle volume fractions, (b) Particle temperature 

distribution, (c) the speed of particle, and (d) Particle 

species distribution  
 

 
Figure 8: Effects of steam to biomass ratio on dry and 

N2-free product gas composition for steam 

gasification of wood chips at a reactor temperature of 

1000 K 

4.2.2. The effects of the temperature on products 

yield 

Gasification performance, syngas yield, and 

composition are all determined by the following 

operating parameters: partial pressure of Gasifying 

Agent (GA), heating rate and temperature, and 

gasification pressure. Fig.9 shows that by running 

the gasification process at high temperatures, it is 

possible to achieve high char conversion (the 

conversion of char into gases), low tar content, and 

high CO and H2 contents owing to endothermic 

reactions of water-gas, Boudouard, and SMR. 750–

850°C, 800–900°C, and 850–950°C are typical 

temperature ranges for gasification of agricultural 

waste, refused derived fuel (RFD), and woody 

biomass, respectively (Molino et al., 2018). 

Temperatures above 1000 °C have two major 

drawbacks: ash melting and strict reactor 

specification requirements. Thus, selecting a 

temperature range for operating the reactor is one of 

the most important parameters.  
 

 
Figure 9: Predicted yield distribution of products from 

air-steam gasification of wood chips at different 

temperatures at SB=0.8 

5. Conclusion  

 A validated three-dimensional numerical 

simulation was carried out to characterize the effects 

of the gasification parameters on the air-steam 

biomass gasification process in a BFB gasifier. In 

the first step, the mesh study has been carried out to 

find the optimum number of grid cells to have 

accurate results. It is illustrated that for the geometry 

of BFB in this paper, 7452 grid cells are chosen as 

the optimal number of meshes. By raising the steam-

to-biomass (SB) ratio or reactor temperature, gas 

yields promote. Owing to the water gas, SMR, and 

WGS reactions, the H2 mole fraction in the product 

gas rises by enhancing the SB ratio for steam 

gasification of wood chips in a BFB gasifier at a 

temperature of 1000 K. The CO2 mole fraction rises 

as the SB ratio rises, most likely because the water-

gas shift reaction becomes dominant at high gasifier 

temperatures. Due to increased WGS and SMR 

reactions, increasing the SB ratio brings the mole 

fractions of CO and CH4 to drop. It is concluded that 

the optimal value of SB for the gasification process 

can be in the range of 0.3 and 1. By applying a more 

complex reaction for tar reforming and cracking, as 

well as using fuel-specific biomass gasification 

reaction kinetics to account for the catalytic 

influence of ash, the major factors affecting syngas 

production and composition such as gasification 

technologies (fixed bed reactors, fluidized bed 

reactors, entrained flow reactors), feedstock 

properties (biomass type, moisture content, particle 
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size, ash content), and operating gasification 

conditions (bed material, temperature, pressure, gas 

agent, equivalence ratio, SB) can be investigated. 

References 

 
A. Samani, N., K. Thapa, R., Moldestad, B. M. E., & S. Eikeland, 
M. (2022) ‘Evaluating the impacts of temperature on a bubbling 

fluidized bed biomass gasification using CPFD simulation 

model’, MATHMOD 2022.   
Andrews, M. J., & O'Rourke, P. J. (1996) ‘The multiphase 

particle-in-cell (MP-PIC) method for dense particulate flows’, 

International Journal of Multiphase Flow. 22(2), 379-402.  
Arena, U. (2012). ‘Process and technological aspects of 

municipal solid waste gasification. A review’, Waste 

management. 32(4), 625-639.  
Baruah, D., & Baruah, D. (2014) ‘Modeling of biomass 

gasification: A review’, Renewable and Sustainable Energy 

Reviews. 39, 806-815.  
Basu, P. (2010) ‘Biomass gasification and pyrolysis: practical 

design and theory’, Academic press.  

Hejazi, B., Grace, J. R., Bi, X., & Mahecha-Botero, A. s. (2017) 

‘Kinetic model of steam gasification of biomass in a bubbling 

fluidized bed reactor’, Energy & Fuels, 31(2), 1702-1711.  

Jiang, D., Liu, Q., Wang, K., Qian, J., Dong, X., Yang, Z., Du, 
X., & Qiu, B. (2014) ‘Enhanced non-enzymatic glucose sensing 

based on copper nanoparticles decorated nitrogen-doped 

graphene’, Biosensors and Bioelectronics, 54, 273-278.  
Mahinpey, N., & Gomez, A. (2016) ‘Review of gasification 

fundamentals and new findings: Reactors, feedstock, and kinetic 

studies’, Chemical engineering science, 148, 14-31.  
Mishra, S., & Upadhyay, R. K. (2021) ‘Review on biomass 

gasification: gasifiers, gasifying mediums, and operational 

parameters’, Materials Science for Energy Technologies, 4, 329-
340.  

Molino, A., Larocca, V., Chianese, S., & Musmarra, D. (2018) 

‘Biofuels production by biomass gasification: A review’, 
Energies, 11(4), 811.  

Mularski, J., Pawlak-Kruczek, H., & Modlinski, N. (2020) ‘A 

review of recent studies of the CFD modelling of coal gasification 
in entrained flow gasifiers, covering devolatilization, gas-phase 

reactions, surface reactions’, models and kinetics, Fuel, 271, 

117620.  
Pauls, J. H., Mahinpey, N., & Mostafavi, E. (2016) ‘Simulation 

of air-steam gasification of woody biomass in a bubbling 

fluidized bed using Aspen Plus: A comprehensive model 
including pyrolysis, hydrodynamics and tar production’, Biomass 

and bioenergy, 95, 157-166.  

Safarian, S., Unnþórsson, R., & Richter, C. (2019) ‘A review of 
biomass gasification modelling’, Renewable and Sustainable 

Energy Reviews, 110, 378-391. 
SAMANI, N. A., JAYARATHNA, C. K. & TOKHEIM, L.-A. 

(2020)  ‘Fluidized bed calcination of cement raw meal: 

Laboratory experiments and CPFD simulations’, Linköping 
Electronic Conference Proceedings (Proceedings of the 61st 

SIMS, September 22nd-24th, virtual conference), pp. 399–406.  

Samani, N. A., Jayarathna, C. K., & Tokheim, L.-A. (2020) 
‘CPFD simulation of enhanced cement raw meal fluidization 

through mixing with coarse, inert particles’.  

Sharma, S., & Sheth, P. N. (2016) ‘Air–steam biomass 
gasification: experiments, modeling and simulation’, Energy 

conversion and management, 110, 307-318.  

Snider, D. M., Clark, S. M., & O'Rourke, P. J. (2011) ‘Eulerian–

Lagrangian method for three-dimensional thermal reacting flow 

with application to coal gasifiers’, Chemical engineering science, 

66(6), 1285-1295.  
Timsina, R., Thapa, R. K., Moldestad, B. M., & Eikeland, M. S. 

(2020) ‘Experiments and computational particle fluid dynamics 

simulations of biomass gasification in an air-blown fluidized bed 
gasifier’, International Journal of Energy Production and 

Management. Vol. 5. Iss. 2, 5(2), 102-114.  

Yang, S., Wang, H., Wei, Y., Hu, J., & Chew, J. W. (2019) 
‘Eulerian-Lagrangian simulation of air-steam biomass 

gasification in a three-dimensional bubbling fluidized gasifier’, 
Energy, 181, 1075-1093.  

Zhang, L., Xu, C. C., & Champagne, P. (2010) ‘Overview of 

recent advances in thermo-chemical conversion of biomass’, 
Energy conversion and management, 51(5), 969-982.  

 



SIMS 100  Trondheim, Norway, September 20-21, 2022 

 

CFD simulations of flow jetting impact and high erosion region in 

a production choke and its downstream spool  

 

Agastian Perinpasivam a,*, Nikhil Bagalkot b, Arvind Keprate3 b 

  
a Westcon Yard AS Haugesund Norway, 

 b Department of Mechanical Engineering, Oslo Metropolitan University, Norway 

nikhilba@oslomet.no 

 

Abstract 

 

Erosion wear is a rather well-known problem in the petroleum and transport industry. Over the years there have 

been many different models suggested to estimate the erosion. Each model uses unique equations and is suited for 

different types of geometries, which gives different flow profiles and erosion patterns. It is critical to know where 

the erosion wear occurs and at what magnitude the system is located at to predict and economically create a choke 

valve design. The erosion study additionally, helps in accessing location and thickness of cladding required to 

prolong the life of components. In this study, computational fluid dynamics (CFD) is used to investigate erosion 

on a production choke valve and its downstream spool. There are three main steps to predicting erosion wear using 

CFD analysis: flow model, particle tracking and calculating the erosion wear from particle interaction. The results 

indicate that pressure drop affects the velocity jet shape and impact region. In the 50% opening case, the pressure 

drop creates a wide jet stream region that, in turn, will cause an increased wall impact region. When the opening 

decreases, to 35% and 25%, the jet stream gets more focused. The velocity jet impacts a smaller area of the pipe 

wall, which in turn creates possibilities for increased erosion rate. The high pressure drop in the 15% opening case 

creates a high-focused jet stream in the middle of the downstream pipe, leading to low wall interaction. 

 

1. Introduction 

For the production of oil and gas (surface and 

subsea), Production Choke Valves (PCVs) are used 

to control the flowrate and pressure further 

downstream. PCVs are valves designed to take the 

brunt of the pressure of the line components, as this 

helps to increase the life expectancy of the system. 

The primary task of the PCV is to lower the pressure 

to a manageable level, so that the oil and gas can be 

transported safely (McLaury, Shirazi et al. 2000).By 

restricting the flow to a very small orifice, it reduces 

the well pressure downstream. PCVs have the ability 

to change the cross-section area (throat) either 

manually or by using sensors. The change in the area 

would lead to varying of the pressure resulting in a 

pressure drop and increase in velocity, which makes 

the choke valve most subjected to erosion.  

Generally, a mixture of oil, gas and water is flowing 

through the system, which will contain small 

impurities like sand particles. In most of the cases 

there will be sand filters installed, which are 

effective in removing the large sand particles. 

However, smaller size sand particles (<150 

micrometer), end up in the production lines, which 

are the main reason for erosion. As the production 

choke reduces the pressure, the loss in pressure 

energy will result in increase in the kinetic energy. 

Therefore, the reduction in pressure will cause the 

flow and the particles to move up to sonic velocities. 

Erosion rates at these high velocities will become 

substantially high, which will eventually lead to 

repair, replacement or leakage of the components.  

The damage of choke valves and the downstream 

production flow lines is dangerous for workers in the 

area, and the replacement cost is extremely high 

(Haugen, Kvernvold et al. 1995, Raghavendra, 

Shivashankar et al. 2014). Thus, the need for good 

materials (Wheeler, Wood et al. 2006) and design 

optimization is very desirable. Increasing the 

longevity of a choke valve will have a significant 

cost reduction on top of the area being more secure.  

Erosion is an occurrence that happens when mass is 

worn away from the material surface due to either 

chemical or physical interaction. In the industry, any 

process that transports solid particles in a fluid phase 

is vulnerable to erosion damage (Haugen, 

Kvernvold et al. 1995, Oka, Okamura et al. 2005, 

Desale, Gandhi et al. 2009). It often occurs in line 

components such as pipe bends, tubes and structures 

that alter the flow field. Pipelines that bend cause 

shifts in the flow, which makes the particles hit the 

wall of a surface with high pressure or velocity.  

Over the years researchers have spent a significant 

amount of time trying to understand erosion models, 

what type of mechanisms and material needed when 

developing pipeline systems (DNV 2015). Both 
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fluid (velocity, density, pressure to name a few) and 

particle properties (size, shape, density, and 

concentration) play a critical role in erosion 

phenomena and has been well researched (Wallace, 

Dempster et al. 2004, Mathew 2017, Bishnoi, 

Kumar et al. 2021).  The effect of particle size and 

shape have been a big topic of investigation with 

many researchers. Oka, Okamura et al. (2005) 

created an erosion model that defines that erosion 

rate caused by sand particles on stainless steel is 

dependent on the shape, velocity and impact angle 

of the particle. In their study they find that erosion 

rate increases as the particle size becomes bigger. 

Similarly, Feng and Ball (1999) came to the 

conclusion that particle size increases the erosion 

rate. The size affects both the particle impact 

velocity and the kinetic energy. 

In addition to fluid and particle properties, the 

design of the production choke plays a critical role. 

Changes in valve geometry can impact the erosion 

wear significantly. Given time, erosion can 

drastically change the flow field, which can affect 

production and later result in equipment failure. 

McLaury, Shirazi et al. (2000) explains this in a 

computational study where the effects of erosion 

wear and geometry changes were compared between 

experimental erosion results and an erosion 

prediction model. A waterflow mixed with sand 

particles was directed through a choke geometry 

with a sharp entrance profile, and the rounding of the 

leading edge began immediately after starting the 

test. In addition, the turbulent kinetic energy near the 

entrance was large which, in turn, led to turbulent 

fluctuations in the flow. As a result of the high 

turbulent fluctuations, more sand particles struck the 

geometry wall, causing increased erosion. Results 

showed that the predicted erosion rates were larger 

than the experimental results, but when the rounded 

edge was accounted for, the predictions matched the 

experimental results very well. This shows the 

importance of accounting for changes in the 

geometry to attain accurate predictions. 

Wallace, Dempster et al. (2004) investigated the 

capability of computational fluid dynamics 

techniques to estimate the erosion rate in two 

different valve geometries, a simple geometry with 

basic geometric features and a more complex choke 

geometry. Measurements from a parallel experiment 

were used as comparison regarding erosion rates and 

flow coefficient predictions. The test resulted in 

underestimated erosion rates; however, erosion 

location matched the experimental data, along with 

the flow characteristics. It is suggested that 

neglecting the changes in the model geometry due to 

erosion could be one contributing factor to the faulty 

erosion rate predictions.  

The main objective for the current work is to 

simulate erosion in a PCV. In the industry, and in 

previous research on this topic it is always assumed 

that the maximum erosion or the erosion hot spot is 

mainly at the first “U” bend downstream of the 

choke. Therefore, there is a thicker cladding on the 

“U” bend section than other regions. Some of the 

analytical models are also based on this assumption. 

The novelty of the current work is identifying the hot 

zones (high erosion zones) with respect to opening 

of the choke valve and mass flow rates. The findings 

of the study will help in accessing where the 

cladding is necessary. The analysis will cover the 

danger zones on three critical parts of the choke 

valve, the needle, the seat, and the downstream 

piping region. To achieve this, we will also need to 

simulate multiple high speed, compressible flow 

cases. We will discuss the relation between 

downstream jet impact regions and the pressure 

drop. Finally, we will compare erosion impact areas 

between the cases and see which cases produce the 

highest erosion rates. 

 

2. Methodology  

Figure 1 shows the methodology employed in the 

present study. The study starts with the gathering of 

a CAD model and simplifying it to suit the CFD 

simulations; this is followed by meshing and finally 

CFD simulations. The following section 2.1 to 2.3 

will give a detailed description about each of the 

steps mentioned in Figure 1. 

 

 
Figure 1: Flowchart of the methodology. 

2.1. CAD Model Simplification 

The model shown in the Figure 2A, was obtained 

from open-source platform called GrabCAD. A 

needle seat type production choke valve is used to 

carry out the present study. The needle and seat 

valve is adjustable, which means it can be used to 

change and control the flow and the pressure 

parameters. When the choke is completely closed, 

the needle sits tight into the seat, restricting all flow. 

The current study investigates a valve where the 

inlet and outlet dimensions are 2” and 1”, 
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respectively. When simulating a flow field, the 

important part of the valve geometry is the internal 

volume. The internal volume was isolated, and all 

other unnecessary parts of the valve were discarded. 

The inlet and outlet regions were also extended to 

ensure fully developed flow through the choke valve 

as seen in Figure 2B.  

 
Figure 2: Original and Simplified CAD model. 

2.2. Meshing 

A finite volume unstructured meshing was used to 

mesh the CFD domain shown in the Figure 2B using 

the inbuilt ANSYS Meshing tool. To decide the 

number of the mesh elements and to get accurate 

results using CFD, a mesh sensitivity analysis is 

necessary. The idea is to run the same simulation 

with different mesh element sizes and compare the 

results. When the results do not change even though 

the number of elements is increasing, the desired 

mesh size to continue the analysis is found. CFX 

settings for mesh sensitivity analysis, were to set 

steady state, with air ideal gas at 25 degrees Celsius. 

A mass flow intel rating 25 kg/s, and a static pressure 

outlet that is 200 bar. 

The analysis consisted of five different mesh sizes 

with 1.5, 3.1, 4.6, 6 and 8.1 million elements, 

respectively. Maximum velocity at a fixed point in 

the downstream region and maximum velocity at 

inlet was compared between the different meshes 

and results are shown in the Figure 3 below. As the 

graph shows (Figure 3), the values do not change 

noteworthy after 4.6 million elements, so choosing a 

finer mesh would result in increased computational 

requirements without increased accuracy. Further, 

inflation layers were created, whose first layer size 

is driven by the size of the particle to be analyzed. 

The particle size used in the present work is 

100*10−6 m, hence the first layer inflation size is 

105*10−6 m, with 10 layers and growth factor of 1.2. 

Figure 4 shows the final mesh with inflation layer 

distribution. 

 

2.3. CFD Simulation and Validation 

A transient CFD simulations was carried out using 

ANSYS CFX. A SST turbulence model was 

employed and the simulations were carried out for 

four opening of the valve (15%, 25%, 35% and 50%) 

and for two flow rates of gas (2.5 kg/s and 12.5 kg/s). 

A minimum of 30,000 particles were injected. The 

erosion model and its prediction is based on the 

DNV method (DNV 2015). First, Steady state 

simulation (only flow) was carried out, the results of 

the steady state simulations was then used as 

initialization for the transient state simulation (flow 

and sand injection), which was run for 1 second, 

with a max time step of 0.001s and minimum 

timestep of 0.00001s. During the transient 

simulations the sand particles were injected at the 

rate of 100000 per second. After one second the sand 

injection was stopped and simulation was run until 

at least 90% of the sand particles were traced back 

at the outlet.  

 

 
Figure 3: Mesh sensitivity analysis. 

 
Figure 4: Mesh Distribution on the model. 
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3. Results 

In this section results are discussed. Figure 5 shows 

the results for 50% opening at 2,5 kg/s mass flow 

rate showing the results of pressure, velocity, and 

particle tracks. The results show a pressure drop 

around the needle tip, causing the velocity to 

increase. At 50% opening, the velocity jet stream 

spreads the particles downstream, causing a wide 

impact region, which is different than the results are 

for 15% opening at 2,5 kg/s mass flow rate shown in 

Figure 6. At 15% opening there is greater pressure 

drop around the needle tip compared to 50% 

opening, causing the velocity to increase. The 

velocity jet stream carries the particles far 

downstream with a focused jet shape, causing almost 

none wall impact. Therefore, flow details the 

possible hot spots for the erosion to occur.  

 

 
Figure 5: Pressure, velocity, and particle tracks for 50% 

opening and 2.5kg/s mass flow rate. 

 
Figure 6: Pressure, velocity, and particle tracks for 15% 

opening and 2.5kg/s mass flow rate. 

Figure 7 and 8 takes the analysis into erosion 

estimation. As mentioned before, the erosion 

estimation was carried out using DNV model, with 

the inputs like velocity and angle of impact 

calculated by the CFD analysis. Figure 7 shows the 

results are for the downstream region at 50% 

opening and 2,5 kg/s mass flow rate and shows 

erosion rate density at user defined values. It may be 

observed that most of the erosion happened 

immediately downstream of the choke, as predicted 

by the velocity results. Similar, Figure 8 shows the 

erosion profile for 15% opening at 2.5 kg/s. It may 

be clearly observed that the jet does not significantly 

impact the downstream walls. Again inclining with 

the velocity observations. 

  

 
Figure 7: User defined erosion values at 50% opening 

and 2.5 kg/s mass flow for entire geometry. 

 
Figure 8: User defined erosion values at 15% opening 

and 2.5 kg/s mass flow for entire geometry. 

The simulations were also carried out at different 

flows rate and when comparing the simulated 

maximum erosion rates, it is seen that the highest 

value appears at the needle with 15% opening and 

17,5 kg/s mass flow rate. This is also the scenario 

where the highest pressure drop and velocity 

appears. Overall, the needle and seat are subject to 

high erosion rate, especially at higher flow rates. 

Erosion in the downstream (DS) region seems to 

depend on the velocity profile. At 50% opening the 

velocity jet profile is wide and reaches far DS. The 

erosion is spread on a large portion of the pipe walls. 

When the opening decreases, the velocity jet profile 

gets more focused, leading to higher erosion rate at 

a smaller area of the pipe wall. At 15% the jet is so 

focused that the particles are carried out of the model 

nearly without impacting the walls.  An example of 
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the observed erosion rates at 15% open for different 

flow rates is given in Table 1. 
 

Table 1: Comparing erosion rates at 15% opening. 

  Max erosion simulated 

(kg/m2) 

Opening  Mass 

flow rate 

kg/s 

DS Needle 

(108 ) 

Seat 

(108 ) 

15 % 2.5 4382 6.74 0.535 

15 % 7.5 0 90.6 9.37 

15 % 12.5 0 180 11.8  

15 % 17.5 306161 835 35.8  

 

4. Summary and Discussions 

The carried-out simulations have in the study shown 

that pressure drop affects the velocity jet shape and 

impact region. In the 50% opening case, the pressure 

drop creates a wide jet stream region that, in turn, 

will cause an increased wall impact region. When 

the opening decreases, to 35% and 25%, the jet 

stream gets more focused. The velocity jet impacts a 

smaller area of the pipe wall, which in turn creates 

possibilities for increased erosion rate. The high 

pressure drop in the 15% opening case creates a 

high-focused jet stream in the middle of the DS pipe, 

leading to low wall interaction. Overall, the 50% 

valve opening shows the lowest pressure drops and 

velocities. This is the case with the largest erosion 

regions, but the lowest erosion rates. The erosion is 

evenly distributed between the three critical parts, 

relative to the other opening cases. 
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Abstract 

 

In this paper scenarios are made simulating how demand can be predicted for different materials and resources 

for the future when we develop new technologies to build the sustainable society for everyone. How does recycling 

efficiency impact total demand for virgin resources? This also means a fair distribution including all people, but 

with a bit different demand depending on where people live. In hot countries cooling is important, while heating 

in cold. But how will global warming affect this? And how can solutions like EV with batteries and H2 with fuel 

cells (FC), new materials for heat and cold storage etc change the demand for different materials and resources? 

Different scenarios are simulated, and the results discussed. 

Key words: Resources, simulations, scenarios 

 

1. Introduction 

 

Normally we don´t think too much about what 

resources we have available. Most people want to 

see that everyone should have access to what we see 

as a minimum standard, and as this minimum 

standard is continuously increasing, more resources 

will be needed. Renewable energy conversion 

techniques demand a lot of material, as well as all 

other appliances we demand, like vehicles and 

communication appliances. When a resource is 

scarce, we try to find other solutions instead. This 

makes it very difficult to predict the use of different 

elements by just extrapolating from the last few 

years utilization. On the other hand, these types of 

extrapolations can be very useful to give an insight 

in what will happen if we don´t take actions. 

 

2. Simulation model 

 

The assumptions now can be to look for what it 

would mean if all persons globally would have the 

same usage pattern as EU-27 population today. How 

would that change the annual demand for materials? 

At the same time there are strong indications that the 

world population will increase significantly during 

the next 50 – 80 years. Especially in Africa south of 

Sahara the birth rate is very high, although hopefully 

it will decrease if the population get better living 

conditions. This has been the case in many parts of 

Asia during the last 50 years. As no one knows how 

many we will be year 2100 we calculate for an 

increase by 1500 million respectively 3000 million, 

which will cover the predictions made by different 

organizations and researchers. A second aspect is 

how much virgin materials are needed respectively 

how much can be recycled when we have reached 

steady state at the living standard of the average EU-

27 citizen. In table 1 below we see estimates for 

material use from Eurostat [1] respectively the 

authors own calculations [2] . As Sweden is a 

producer of a lot of virgin metals and paper products 

the energy use is higher than for the average EU 

citizen but gives a reasonable average if we include 

that there is a lot of import to EU from other parts of 

the world. Thus, energy figures for EU may be too 

low if we don´t include energy for production of the 

imported materials. 

EU-27 had 447 million inhabitants 2019, while the 

global population was 7 674 million. Of the global 

population 1 236 million are in high-income 

countries, 5 769 in middle-income and 668 in low-

income countries according to World bank data [3]. 

The average GDP in US$/capita was 44 618 for 

high-income, 5573 for middle-income and 810 for 

low-income 2019. 

Table 1. 

Per capita use of materials in EU-27 according to 

Eurostat and energy per capita in Sweden for 

different uses. Aggregated material groups 2019 in 

EU-27 with 447 million inhabitants. 
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Sources: [1],[2] and [4]. 

EU-27 will represent the high income countries, but 

we should also be aware of the uneven distribution 

of wealth inside EU as well as in eg China and India. 

For the calculations we will use the equations below 

for material use: 

A basic unit is ai = ton/capita,year for 

component/material i. 

If we multiply this with the number of people in a 

group (Nk) like human population today (7 674 

million people), forecasts for the end of this century 

according to different UN analysis, 9 000 resp 

10 500 million people. We also can look at the 

number of people in low-income, middle-income, or 

high-income societies according to world bank 

definitions [3]. 

The amount consumed per year Xi,k  then will be for 

component or material i for the population-group k: 

Xi,k = Nk * ai     (in ton/y)   (1) 

We identify the known or estimated sources of 

component or material i to be zi million tons. The 

amount of years Yi the known resources will last 

then will be calculated by 

Yi = zi/xi,k    (2) 

For many important materials we will recycle a large 

portion of the material. The recycling rate is R %. 

The consumed amount Xi,k,V  of virgin material i 

then will be:  

Xi,k,V = xi,k (100-R)    (3) 

and the number of remaining years Y i,k,R  of nown 

resources will be 

Y i,k,V = zi/ Xi,k,V   (4) 

If we want to study how much would be consumed 

of material i if all countries had the same use level 

as EU-27 we calculate this for the world (G 

i,EUlevel) from per capita figures for EU-27 for eg 

the global population (Nk) 

G i,EUlevel =  a i,EU27level* Nk   (5) 

Sometimes it is interesting also to look for usage of 

several different materials and we then can 

summarize Gi for M components or materials i: 

Gtot = ∑ 𝐺𝑖𝑀
𝑖=1     (6) 

Concerning energy, we have a slightly different 

procedure as the usage is split at different 

applications like transport, residential, industry and 

others.  

The total energy Ei used for material i will be the 

sum of mass in kg times energy per kg for virgin 

material E pkgV,i  respectively recycled material 

EpkgR,i : 

Ei = (100-R)/100*Xi,k,V *E pkgV,i + R/100* X i,k,R *   

EpkgR,i     (7) 

When it comes to replace fossil fuels by renewables, 

we will have three main cases. The first will be just 

to replace fossil fuel with a biofuel. Then we will 

have the energy per kg for fossil fuel x, Ex,i,  with 

efficiency for conversion ηx,i for eg reduction of 

metal oxide MeO to metal Me and the corresponding 

energy per kg for biomass, E bio,i, and conversion 

efficiency η bio,i .  The correlation between the two 

will be 

E bio,i, = Ex,i,  *( η bio,*i / η x,i )  (8) 

For some specific reaction and processes we can also 

add several conversion steps with separate 

conversion efficiencies. If we take the case with 

using H2 instead of C we will first have the actual 

chemical reactions to consider: 

2MeO + 1 C ------- 2Me + 1 CO2 

2 MeO + 2 H2 ------ 2 Me + 2 H2O 

What we can see here is that we need twice as many 

moles to convert 1 MeO with H2 compared to C, 

assuming the same conversion efficiency ηc for both 

cases. If we then look at the losses on the way, we 

will have small extra losses for the C case while the 

production of H2 from water using an electrolyzer 

will have efficiency ηelectrolyser and compression 

of the H2 gas will have efficiency ηcompression . If 

the gas is to be used for EVs (Electric vehicles) using 

Fuel Cells (FC) we will need to add the fuel cell 

efficiency ηFC. 

The total efficiency (ηtot,H2) for the H2 compared 

to C then would be: 

η tot,H2 = ½ ( Cmol)* ηelectrolyser * ηcompression * ηFC 

     (9) 

where ηFC =1.0 if no Fuel Cell in the system. 

Normally we can assume approximately the 

following efficiencies today: ηelectrolyser = 0.5-0.7  ; 

ηcompression  = 0.9 if 250 bar ; ηFC = 0.5-0.7. If we 

multiply this assuming reasonable figures of today 

EU-27 Sweden 

kg/c MWh/c

Agri+food 2235 3

Wood+paper 534 0,89

Metals 1436 2,3

Fossil oil,coke,….. 526

Chemicals+pharma+rubber 232 1,2

Sand, cement (construction) 4690

 -Electricity 12,7

House hold el ca 1.5-3 

 -Heat 13,9

 -Transports 9,2

Total counted here 9653 43,19

Total including everything (2019) 14445

Energy MWh/c (2019) 30,3 43,6

We use 2019 figures as 2020 exeptional due to Covid-19



SIMS 63  Trondheim, Norway, September 20-21, 2022 
Paper no 97 

we get η tot,H2 =  η electrolyser * η compression * ηFC  = 0.6 * 

0.9* 0.6 = 0.32 or 32 %. To this we have twice as 

many moles of H2 compared to C. 

For a conversion of a vehicle with ICE (internal 

combustion engine) using fossil fuel to an EV we 

have the conversion efficiency η c,ICE in the ICE 

engine at approximately 0.30-0.45 depending on 

driving in the city or at the highway. This means that 

we normally need some 0.5-0.7 liter/10 km or some 

5-7 kWh/10 km with the internal combustion engine. 

If we drive an EV with battery the corresponding 

calculation ηbattery including both charging and 

discharging is 0.9-0.95. The electric engine 

efficiency ηeleng will be very high; 0.95-0.97 is 

realistic. This gives a total efficiency η tot,el  around 

0.86-0.92.  

η tot,el  = ηbattery * ηeleng  (10) 

For the case with H2 we can use the equation from 

earlier and then get approximately ηtot,FC =  0.32. 

This shows that from an energy perspective it is 

much more efficient to use battery electric solutions 

compared to H2/FC. On the other hand – H2 can be 

stored easier at a large scale than electricity in 

batteries, which can still give advantages with H2 

from a storage perspective, at least for more long-

term storages. Hydrogen also can be stored in 

chemicals like NH3. 

Concerning emission of CO2 equivalents from 

power production we have principally the 

conversion relation that 1 C consumes 1 O2 to 

produce 1 CO2. If we know the fuel composition 

CxHyOvNzSp we thus can easily calculate the 

emissions, if we know the amount of fuel being used. 

Unfortunately, the composition can vary a lot for 

coal, oil and biomass, which can give high 

uncertainties. In table 2 we have the total global 

figures for energy “consumption” respectively 

“production” in ton per capita in ton oil equivalent 

per year. 

Table 2. ‘ 

Global use in ton per capita for different usage areas 

and different energy sources [5]  

 

Unfortunately collected data is primarily distributed 

on NG, oil, coal, and electricity as the values for 

biomass and waste are so uncertain. Thus, the sum 

of use here is only giving 86.3% of the estimated 

total energy use. In the last column thus % of what 

is measured is given as well. What we can see is that 

Industry and Transport sectors are dominating. 

Another interesting variable is how much CO2 

equivalents that is emitted in the different 

applications as well. In table 3 we see the energy 

utilization annually as well as estimated emission of 

CO2 equivalents for three of the major emitters.  

Table 3. 

Global use of energy and emission of CO2 eq 2018. 

Data for energy use [6]

 

The high and low figures for buildings and industry 

is if construction industry should be included in one 

or the other post. The total emission globally is 

approximately 36 GtonCO2eq/y, where most of the 

rest is for energy use (electricity and heat/cooling). 

When we summarize these components, we reach 

35.1 GtCO2eq/y. Especially battery or fuel 

cell/Hydrogen vehicles or industrial processes as 

replacement of fossil fuels can be studied as 

described earlier. If we assume EVs with battery the 

global energy use can be reduced as batteries with 

electric motors are much more efficient than ICE 

internal combustion engines. Assuming that the 

electricity is made from renewables or nuclear the 

CO2,eq emissions will be dramatically reduced, but 

also the total energy reduced to roughly 1/3 of the 

demand today [7]. For production of Hydrogen by 

electrolysis, storage and then combustion in a fuel 

cell gives an increased energy demand by 

approximately 2.5-2.7 times compared to what is 

used with coal or other fossil fuel [8]. On the other 

hand, also here the CO2 emissions can be reduced in 

the same way as with batteries. 

So, what would it mean in material use to produce 

the electricity with wind, PV, hydropower or 

biomass-CHP? In table 4 below approximate figures 

for how much material is needed per MW installed 

capacity. The electricity production still will depend 

on the capacity factor Cp. Eurostat gives the average 

figure Cp for EU 2019 to be 26%, with 24% on-

shore and 38% off-shore. For PV cells it is lower but 

depend a lot on the geographic site. For CHP and 

hydropower with reservoir for storage the Cp can be 

varied intentionally, which is an advantage 

compared to wind and PV.  

Table 4. 

How much material is needed per MW installed 

capacity and how much of first year electricity 

production is needed to compensate for energy input 

in building plants. [9], [10], [11], [12] and [13] 

Globally ton/capita NG oil coal electricity "Total" % of consumption

Total Mtoe final consumption 0,20993 0,527886 0,129528 0,250065 1,295022 (excl bio/other)

Total Mtoe production 0,441723 0,578447 0,482799 0 1,861089 of all of measured

Industry 0,077912 0,038168 0,100514 0,105027 0,321622 24,83564 28,77659

Residential 0,062744 0,028506 0,009715 0,067268 0,168232 12,99091 15,05233

Transport 0,015272 0,344182 0 0,004251 0,363705 28,08536 32,54197

Commercial &public service 0,027 0 0 0,053764 0,080764 6,236623 7,226258

Non-energy use 0,025192 0,088157 0,006735 0 0,120084 9,2729 10,74433

other 0,001889 0,029034 0,012564 0,019755 0,063243 4,883591 5,658525

Total exclud bio+waste+other 1,11765 86,30503 100

Global use 2018

TWh/y and Gton CO2eq/y TWh/y GtonCO2eq/y Mtoe/y

Industry 43 610 8,5  3180-3677

Transport 30479 7,3 2783

Agriculture&forestry (non-energy) 5800 9,3 922

Buildings 34881 10 2981- 3478

Total use 116269 36 9938
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To operate the transport fleet with EVs we would 

need some 15 000 TWh/y of electricity. From Table 

4 we can see that the amount of materials in ton per 

MW is 129-840 ton/MW. In table 5 we have how 

many GWh/GW we get according to statistics on 

installed capacity and production per year. If we 

assume a mix with 1/3 of each Wind, PV and 

Thermal power we get 5000 000 GWh/2197 = 2275 

GW wind, 5 000 000 GWh/1145 = 4366 GW solar 

power and 5 000 000 GWh/4366 = 1145 GW 

thermal, assuming same efficiency for coal fired and 

biomass fired CHP plants.  

Table 5. 

Energy as TWh/y, GW installed capacity 2019 and 

GWh/GW  

 

From table 4 we have 840 ton/MW for PV cell 

system, meaning 840 ton/MW* 4 366 000 MW= 

3,67 Gton. For wind power we get 515 ton/MW* 

2 275 000 MW= 1.17 Gton and for thermal power 

129 ton/MW* 1 145 000 MW= 0.148 Gton 

materials. For wind and thermal power, we will put 

in approximately 10 % of first year production into 

the manufacturing, while approximately 4 times as 

much for PV cells with today´s technology [9]. From 

this we see that CHP demands least materials for 

construction but on the other hand demand fuels for 

operation. 

 

3. Results – Scenarios 

 

There are two major challenges for the human 

population. The first is the issue with fair 

distribution of resources. What would it mean if 

everyone would have the same living standard as the 

average EU-27 person, for world resource 

utilization? The second big challenge is what it will 

mean if world population proceed to increase 

significantly. In table 6 we see how demand for 

resources would be impacted under these conditions. 

Table 6. 

Scenarios for demand for resources if everyone 

globally should use same amount of resources as an 

average EU-27 citizen respectively how much will 

be needed if population increase to 9000 

respectively 10500 million inhabitants. 

 

 What we can see here is that food and agriculture is 

of highest importance. The total production and use 

today are approximately 8 000 million tons/y but 

would be more than double this if we extrapolate 

EU-27 figures to all people globally. Roughly twice 

as much biomass is produced including stalks and 

leaves giving approximately 16000 Mton/y. 

Approximately 30% of what we produce is wasted 

due to different reasons like poor storage, food 

getting to old and thus thrown away etc. In figure 1 

we see annual consumption today compared to if all 

at EU-27 level, and if we become 9000 or 10500 

million inhabitants at EU-27 level. 

 

 

Figure 1. Annual consumption in million tons for 

different world populations – A. As reference we 

have the total global use today, 7 674 million 2021 

(today). B. same assuming same level as EU-27 and 

scenarios with C. 9 000 respectively D. 10 500 

million inhabitants.  

 

For wood and paper products we have a similar 

discussion. If we use EU-27 average per capita we 

get 4098 Mton/y globally while official figures on 

Type TWh/y GW installedGWh/GW

2019 2019

PV 720 629 1145

Wind 1430 651 2197

Coal 9168 2100 4366

NG 6250 1812 3449

Nuclear 2500 390 6410

Population Assuming EU-27 level Total todayDiff today Diff today Diff today 

Population in millions 447 7674 9000 10500 Today  - to EU-27 level - to 9000  - to 10500

EU-27 Sweden Mton/y Mton/y Mton/y Mton/y Mton/y Mton/y Mton/y

ton/c MWh/c Wrld if Eulev Global

Agri+food 2,235 3 17151 20115 23468 8000 9151 12115 15468

Food including stalks etc 17151 20115 23468 16000 1151 4115 7468

Wood+paper 0,534 0,89 4098 4806 5607 600 3498 4206 5007

Forest products totally 4098 4806 5607 2999 1099 1807 2608

Metals 1,436 2,3 11020 12924 15078 2000 9020 10924 13078

Fossil oil,coal, NG 2,35 10,9 18034 21150 24675

Plastics, Chemicals+pharma+rubber0,232 1,2 1780 2088 2436 300 1480 1788 2136

Cement 0,317 2433 2853 3329 4100 -1667 -1247 -772

Sand, cement (construction) 4,69 35991 42210 49245

0

20000

40000

60000

Annual global consumption of 
materials in tons 

If EU-level 9000 M 10500 M Today
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global level says 2999 Mton forest products/y. If we 

then take the production of pulp + paper this is 600 

Mton/y. A significant amount of the rest is for direct 

use of wood for constructions but also as biomass 

fuel. Still, we have a difference between the average 

global use per capita and the EU-27 level. As 

internet trading is increasing, we see more packages 

and boxes, but less printing and journal paper 

demanded. Tissue like toilet paper is increasing 

where it has not been used so much before. But also, 

we see a new demand for replacement of oil and 

plastic by wood fibers.  

For metals it is complex to take averages as in some 

countries we have a very high recycling rate of 

metals in relation to virgin materials compared to 

others. Even if you use the same amount as kg/capita 

it can still be very big differences with respect to 

amount of virgin material. This gives a very high 

amount if we multiply average use in kg/c,y in EU-

27 with number of people in the world, as a lot of the 

EU-27 use is recycled metals. For Iron for instance, 

recycling rate is in the range of 88%. Thus, it may 

be more interesting to look at the total metal 

production which is 2000 Mton/y. A fact is that if 

everyone should have their own Electric vehicle the 

amount of metal will increase a lot, as many of the 

existing population still hasn´t any car. If we then 

add 1500 million or 3000 million people, we can see 

that the demand increases dramatically (see figure 

1). From weight perspective cars are very important, 

but also armament in concrete buildings or metal as 

construction material. Batteries and wind power 

plants as well as power transmission and distribution 

will affect the total use a lot next 20 years for transfer 

into non-fossil energy, but also even more if the 

world population increases even further. This will 

include also more demand for cement and other bulk 

materials like sand and gravel.  

Energy is another aspect of resources. In table 2 we 

see how energy is used per capita in Sweden, which 

is one of the EU-27 countries with a high energy 

demand per capita. The total use is 43 MWh/c,y 

from which 10.9 MWh/c,y from fossil sources. 

Approximately 3 MWh/c,y is for food and food 

production while 0.89 MWh/c,y for wood and paper. 

2.3 MWh/c,y is for metals and metal production 

while 1.2 MWh/c,y for plastics and chemicals. This 

is for a country with relatively high amount of virgin 

wood fibers and metals, so average EU-27 will be 

significantly less if the share of recycled materials is 

high, as the case with pulp and paper and metals 

generally. We still can see that the amount of energy 

for materials (7.4 MWh/c,y) is significantly less than 

the amount used for transport (9.2 MWh/c,y), 

heating (13.9 MWh/c,y) and electricity (12.7 

MWh/c,y). The total use varies between countries 

and especially the national power mix varies a lot. In 

Sweden more than 90% of electric power is from 

renewables or nuclear and most of the fossil CO2 

emissions comes from other countries through 

different products, fuel for transportation or for 

industry use. As at average 23 TWh out of 158 TWh 

produced is exported annually, the “net” electricity 

production is close to 100% non-fossil. In a country 

like Poland with large amount of coal the situation 

is the opposite, although also Poland is driving 

renewable energy a lot, and the same goes for 

Germany, Denmark and Finland, although with 

different mix of technologies.  

Without going too deep into the relation between 

energy and materials, we can see that the average 

energy input per kg for several products was 

presented in table 1. When recycling e.g. iron the 

kWh/kg decreases by 75%, which shows that we 

both get a positive effect with respect to demand for 

new metal, but also reduces the energy demand per 

kg dramatically. This shows us that from a material 

use perspective increased material recycling is an 

important move to take.  

The power demand for electric vehicles, replace 

fossil fuels in process industries and similar will be 

both higher and lower than today. For an electric 

vehicle consuming 5-10 kWh/10 km an electric 

vehicle may consume 1.5-2 kWh/10 km. This means 

only 1/3 of the energy demand compared to today. 

For energy calculations we use the set of equations 

presented earlier. 

 

4 Discussion about uncertainties 

 

Concerning energy, we have a lot of data on 

production and consumption of oil, coal and natural 

gas, but also electricity, biomass, waste and 

“others”. Usually, you recalculate all to be TWh/y or 

Mtoe/y, million-ton oil equivalents, for global 

figures. Then we must be aware of that heating 

values differ a lot between different qualities. For 

NG we have 13.5+- 1.8 kWh/kg; for crude oil 12.4+- 

0,7; for coal 5.8+- 1.1. Even for Hydrogen, H2, we 

have a span 36.4+- 3.1 [14]. If you have detailed 

analysis of all materials and summarize these it 

should be very accurate, but we will have to expect 

that some values are more accurate than others. Even 

if everyone is trying to collect and report as correct 

as possible, we still will have uncertainties as this is 

done in many stages and with several recalculations 

from one sort to another. We see that the reported 

total production is 14 282 Mtoe 2018 for all 

products, while final consumption ends up at 9938 

Mtoe 2018. The difference is losses in one way or 

another. If we for instance look at the deviation 

between produced and consumed electric power, we 

see losses of approximately 7% in many countries, 

but with extremes of more than 50% in e.g. Benin. 

Do people steal power or are the measurements just 

poor? If we extend the transmission of power over 
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long distances we can expect higher losses, but with 

new technologies they can be reduced as well. 

Another uncertainty is how materials are defined. 

When we look at official figures of cement the value 

is 4100 Mton/y, but in some official sources we have 

4100 Mton/y of concrete as well, while others report 

30 000 Mton/y for concrete, which makes more 

sense. These are all official figures, but the 

nomenclature has obviously not been correct. 

When it comes to grouping data into categories it is 

also difficult to compare data from one source to 

data from another. If we look at the EU-27 data these 

are valid from 2020, but EU-28 before UK left the 

union, up to 2019. It is also difficult to know what 

components are aggregated in different sources. 

Concerning CO2 equivalent emissions, we come to 

even more tricky considerations. For agriculture we 

see figures stating that 9.3 GtCO2eq/y is emitted, 

from which 5.3 Gt from crops and livestock and 4 

Gt from change in land use. These figures are built 

on some few measurements in a few countries and 

then extrapolated for the globe. The uncertainty is 

huge. If we look at N2O we have seen in 

measurements that almost all is emitted during a few 

weeks when the land is covered by melting ice, and 

there has been a lot of Nitrogen left in the soil. If we 

avoid fertilizing before the crop has come up to some 

10 cm, we can almost eliminate this. For methane 

the water level in wet land is very important. When 

water is almost up to the surface, we get larger 

emissions than if it is some 0.8 m below the surface, 

but it also depends on how the water is flowing 

through the wet land. We mostly guess how much is 

emitted by extrapolating from very uncertain 

measurements. 

 

4. Summary and Conclusions 

 

From the simulations we can determine effects of 

different developments with respect to population 

increase, fair distribution of materials, energy use 

from different sources and how long it will take until 

resources are depleted without recycling 

respectively with recycling. This is important for 

how politicians should make their decisions on rules 

to direct use of materials and how to reduce fossil 

CO2 emissions. If all had EU-27 level of living 

standard the impact on metals, plastic and some 

chemicals will be very high while marginal on food, 

forest products and concrete. For increased 

population the increase will be in proportion to how 

many more people there will be. 
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Abstract

Ammonia as a fuel has gotten attention in the past years to enable decarbonization for internal combustion engines. There is
a need to understand the behavior of the liquid fuel in direct injection engines, a crucial step of the engine cycle. Injection
impacts the mixture formation in the cylinder, equivalence ratio, combustion and pollutants formation. Liquid ammonia is
expected to behave significantly different than traditional fuels during the injection phase and hence requires to be investigated.
Indeed, recent experimental research has highlighted the appearance of flash boiling during injection of ammonia spray under
engine-relevant conditions. The high volatility is also expected to influence the cavitation behavior. Cavitation is the partial
vaporization of the liquid typically caused by locally increased velocity resulting in a pressure drop, when the fluid enters an
orifice with sharp edges. One parameter controlling cavitation is therefore the geometry, but cavitation is also influenced by the
fuel’s property and the boundary conditions. This study presents 3-D RANS simulations performed with CONVERGE CFD
of the internal flow of a Gasoline Direct Injector (GDI), operating with liquid ammonia. The transient simulations account for
the injector needle movement. Simulations capture the presence of both vapor and liquid in the nozzle head. These results
from the simulations will provide input data for separate spray simulations with the same engine geometry, as well as support
the development of a 0-D model that will be important for design purposes. Preliminary results predict a liquid discharge
coefficient of less than 0.1 at the outlet for injection in atmospheric conditions.

1. Introduction

Reduction of greenhouse gas emissions to mitigate climate
change requires a change for the transportation sector
both in the form of vehicles electrification or towards the
usage of carbon-free fuels for internal combustion engines
(ICE). Ammonia (NH3) is one of the fuels of interest
and has been investigated as a promising fuel for internal
combustion engines (Lhuillier et al., 2020; Mounaïm-
Rousselle et al., 2022): it can be stored in liquid form
at an ambient temperature at 9 bar, has a high hydrogen
content and no carbon. However, the fuel characteristics
are very different from conventional fuels, including its
behaviour in the injection system. The fuel injection in
the engine is an important process deciding on mixture
formation, equivalence ratio, combustion, and pollutant
formation. So far the majority of ammonia applications
in ICE have been performed with port injection, with
the fuel in gaseous phase, leading to purely premixed
combustion (Mounaïm-Rousselle et al., 2021; Niki et al.,
2016). On the other hand, direct liquid ammonia injection
allows for other combustion modes with more strategies
to explore and can potentially reduce ammonia slip
(unburned ammonia in the exhaust) (Reiter and Kong,
2008). In other words, studying the injection of liquid
ammonia is of interest to optimize internal combustion
engine performances and emissions with this fuel. There
is little literature on ammonia sprays relevant for engine
conditions, yet recent experimental works (Pelé et al.,
2021; Cheng et al., 2022) shed some light on this topic. To

gain further insights, numerical investigations of fuel in-
nozzle flow allows to compare the fuel’s behavior during
injection, capture phase change in the injector (Torelli
et al., 2017), and study spray formation in the engine (Saha
et al., 2017).

This study aims to investigate numerically the internal
flow of liquid ammonia in a gasoline direct injector (GDI).
GDIs, which are solenoid activated injectors for high-
pressure direct injection, are used in ICEs as they allow
rapid response, increased engine efficiency, and reduced
emissions (Wang et al., 2014). The flow travels throughout
the injector due to a strong pressure gradient between the
fuel system, where the fuel is stored at high pressure,
and the engine’s combustion chamber. The injector’s
internal geometry, the nozzle material, the tank and engine
pressure and temperature, and the fuel’s property affect
the fluid flow. It is therefore expected that the fuel
arriving at the injector’s outlet will not have the same
properties as in the tank. In particular, the sharp edges
of the injector’s nozzle hole cause a large pressure drop
inducing vapor formation in the injector if the pressure
drops below the saturation pressure of the fuel. This
phenomenon is called cavitation. Cavitation can be
destructive as a vapor bubble can collapse under high
pressure and create a shockwave that can damage the
nozzle material. Flash boiling denotes a condition where
liquid undergoes a rapid pressure reduction and partial
vaporization occurs due to the fuel’s property and local
pressure and temperature. These conditions occur during



SIMS 63 Trondheim, Norway, September 20-21, 2022

spray formation in the combustion chamber but may
also happen inside the injector during the injection: the
latter phenomenon is referred to as internal flash boiling.
Therefore, two sources of energy can be the cause for
fuel vapor formation inside an injector : kinetic energy,
or heating of the fuel. Studying the fuel’s evolution, and
more specifically its interaction with the injector needle
motion and the nozzle holes, will provide useful inputs on
the thermodynamic state of the fuel when it is injected into
the engine. Previous research has been carried out with
various fuels such as diesel or biodiesel, showing that each
fuel behaves differently and cavitates at varying degree in
identical injectors due to their physical properties (Torelli
et al., 2017). Experiments have shown that in-nozzle
flow cavitation for traditional fuels impact spray formation
(Serras-Pereira et al., 2010). However, it remains
unknown how ammonia behaves during the injection and
how this contributes to the untypical ammonia spray
characteristics observed in a recent studies (Pelé et al.,
2021). This forms the motivation for the present work
to gain further insights by looking at the internal flow of
ammonia inside of an injector numerically. Additionally,
the obtained results will be needed in future work for
two purposes: as valuable information and input data for
Lagrangian spray setup in separate simulations in similar
ICE configurations; and to support the development of a
0-D model that can be used during design process of new
and optimised injectors.
First, the numerical setup will be outlined with the
description of the model equations, the injector’s
geometry, and a mesh convergence study. Then in the
second part of the paper, results will be discussed with
a focus on the flow characteristic at the injector’s outlet.
A comparison with iso-octane will also be presented.
Finally, parameters such as the output pressure, the wall
temperature will be modified to see the impact on the
injection.

2. CFD setup and mesh study
In this work, a six-hole counter bore GDI fuel injector
with ammonia is investigated. The geometry of the
injector was obtained using molds of the physical
injector and measurements conducted with a scanning
electron microscope. The 3-D CFD simulations are
carried out using the software CONVERGE 3.0 (Richards
et al., 2017) within the Reynolds-averaged Navier Stokes
(RANS) framework. The Navier Stokes solver is set
to Pressure Implicit with Splitting of Operator algorithm
(PISO). The simulation is transient with automatically
adapted variable time step. The adaptative mesh
refinement as allowed with CONVERGE is used to
capture the fine nozzle details and the flow around the
needle as it moves. The needle in the injector moves
to open and close the passage of the fluid at the nozzle
head. Turbulence is modeled with a Re-Normalization
group (RNG) k-ϵ model. For the sake of brevity, details
of the models are not discussed here.

2.1. Multi-phase flow model
To capture the effect of cavitation in the injector, a multi-
phase approach is needed to describe both liquid and vapor
flow and the interactions between the two. In this work,
this is done using the volume of fluid (VOF) method.
The liquid phase is represented with the subscript l, and
the gaseous phase by the subscript g. The global density
equation is written as follow:

ρ = αρg + (1− α)ρl. (1)

Where α, the void fraction, is equal to 0 when the cell
contains only liquid, 1 when the cell contains only gas,
and in between when the cell contains both gas and liquid.
The void fraction is transported indirectly. The species
transport equation solves the species mass fraction in the
cell:

∂ρm
∂t

+
∂ρmuj

∂xj
=

∂

∂xj

(
ρD

∂Ym

∂xj

)
,m = 1 . . . n (2)

with ρm = Ymρ being the density of the species m, Ym

its mass fraction and n is the total number of species. D
is the diffusion coefficient. The total mass of gas (mg) in
the cell is calculated and the mass of liquid (ml) can be
deducted knowing ml = 1 − mg and mg =

∑ng

m=1 Ym

with ng as the number of gas species. Finally, the void
fraction is calculated with:

α =
mg

ρg

(
mg

ρg
+

ml

ρl

)−1

. (3)

2.2. Cavitation model
Cavitation is here modeled using the flash-boiling
hypothesis of Shields et al. (Shields et al., 2011). The
mass exchange between vapor and liquid is modeled by
describing the rate at which the mass fraction of vapor
(Yv) in a two-phase mixture approaches its equilibrium
value. The rate follows the equation by Bilicki and Kestin
(Bilicki and Kestin, 1990):

DYv

Dt
=

Ȳv − Yv

θ
(4)

with Yv being the instantaneous mass, Ȳv the equilibrium
mass and θ the time scale over which Yv relaxes to Ȳv

(Richards et al., 2017). Ȳv is a function of the local
enthalpy:

Ȳv =
h− hl

hv − hl
(5)

and the time scale for evaporation is defined as (Downar-
Zapolski et al., 1996) :

θ = 3.84.10−7α−0.54ϕ−1.76 (6)

with ϕ as the non dimensional pressure ratio:

ϕ =
Psat − P

Pcrit − Psat
. (7)

Here Psat and Pcrit are the saturation pressure and the
critical pressure respectively. The ideal gas equation of
state is used to couple density, pressure and temperature
of the vapor phase:

P

ρ
=

RT

W
(8)

with R as the universal gas constant and W the molecular
weight of the gas. The pressure below which ammonia
becomes gaseous at the range of temperature studied is
low enough for the ideal gas law to be sufficiently accurate
in this study.

2.3. Domain description
The geometry of the 6 holes counter bore injector is shown
in Fig. 1. The nozzle holes have a diameter of 227 µm
and a counter bore diameter of 453 µm as determined
following the technique in (Macian et al., 2003).
At the inlet, liquid ammonia at a temperature of 300 K and
a pressure of 200 bar enters the domain. At the outlet, a
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(a) (b)
Figure 1: Geometry of the simulated injector: full injector and
zoom on the nozzle head.

pressure of 1 bar and a temperature of 300 K is imposed.
Liquid ammonia is specified in case of backflow. The rest
of the domain is composed of walls following the law-
of-the-wall boundary condition for velocity, and the heat
transfer model is set to O’Rourke and Amsden (Amsden,
1997). The needle inside the injector is a moving wall with
a translating motion up and down. The needle movement
mimics open and closed conditions during which the fuel
is either injected or not injected into the engine. As
common in numerical simulation, the injector cannot be
entirely shut by resting the needle directly against the
nozzle seat. The minimum needle lift is here defined
with 2e-4 mm and a numerical separation between the two
volumes. A secondary region at the bottom of the nozzle
is defined in order to capture this (see Fig. 1b). When
the needle is at its minimal lift, the injector is considered
closed, and no flow travels between the region, and when
the needle lifts again, the injection starts, and the flow
travels between the region.

2.4. Grid convergence
A grid convergence study is carried out with a base grid
of 110 µm, 70 µm, and 50 µm. Details about the setup are
presented in Table 1. The mesh for a slice in the middle of
the domain is shown in Fig. 2.

Figure 2: Mesh of the nozzle head.

Figure 3 shows the comparison of the three meshes’
influence on the mass flow rate at the outlet. The
normalized lift profile is also plotted. Mass flow rate is
selected for the grid convergence study here. The internal

Table 1: Comparison of mesh convergence.
Coarse Medium Fine

Base mesh size [µm] 110 70 50
Average time step [s] 3.97e-8 3.25e-8 7.27e-8
Peak cell count [cells] 2e6 2.1e6 4.8e6

flow distribution may require further grid refinement,
which would be relevant to study for spray injection, but
this is outside this work’s scope.

Figure 3: Comparison of the liquid ammonia flow rate during
injection from the three meshes: coarse, medium and fine. The
normalized lift profile is also plotted.

The results indicate accurate numerical prognosis for the
three meshes. Oscillations seem to be diminished with the
finer mesh but are reasonable for the other meshes. Going
forward, the base grid of 70 µm is selected to study the
results.

3. Results and discussion

3.1. Reference case : Ammonia at 300K
The reference case is as described in the domain
description : liquid ammonia at 300 K is injected at
200 bar at the inlet, the outlet is set to 1 bar, the wall
temperature is at 300 K. The mass flow rate, discharge
coefficient and temperature evolution during the fuel’s
injection are investigated hereafter.

3.1.1. Mass flow rate during injection
Figure 3 shows the total mass flow rate through the 6 holes.
When the needle reaches its final lifted position at 0.4 ms,
a jump in mass flow rate injection is seen, then again at
0.5 ms when the needle starts to move down again. This is
linked to a pressure surge that occurs as the needle stops in
its trajectory, and then again when it starts to move from
its idle position. This pressure jump, shown Fig. 4 is a
numerical artefact, linked to the simulated movement of
the needle in the injector. The fuel at the inflow is injected
at a pressure of 200 bar, but as can be seen in Fig. 4, the
average outflow pressure during the injection is around 40
bar due to the pressure losses in the injector and cavitation
effect. The shown pressure is an average of the liquid and
vapor pressure at the outlet. In future studies it would be
interesting to evaluate the partial pressures of vapor and
liquid, and also identify pressure losses due to friction.

3.1.2. Discharge coefficient
One of the objectives of this paper is to identify the
discharge coefficient, a coefficient comprised between 0
and 1 that is an indication of how smoothly the flow
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Figure 4: Time evolution of the pressure during injection at the
inlet and the outlet.

passes through an orifice. This information can then be
used as input for Lagrangian spray simulations or 0-D
modeling. The discharge coefficient Cd is defined as the
ratio between the theoretical ideal liquid mass flow rate
through the outlet and the actual liquid mass flow rate.
The theoretical liquid mass flow rate is determined using
the following formula based on Bernoulli equation:

ṁideal = A
√

2ρ∆P (9)

with A being the nozzle outlet area, ρ the inlet density, and
∆P the difference between the upstream and downstream
pressure. The discharge coefficient is defined as:

Cd =
ṁreal

ṁideal
(10)

with ṁreal as the computed mass flow rate of liquid
ammonia through the outlet.
To obtain the liquid mass flow rate, the fraction of liquid at
the outlet can be computed using the averaged density at
the outlet, as well as the density of gaseous ammonia (10
kg/m3) and liquid ammonia (600 kg/m3):

ρavg = Xgρg +Xlρl (11)

with
Xl +Xg = 1. (12)

The resulting liquid fraction of ammonia is shown in Fig.
5, comparing the outflow and inflow liquid fraction. A
significant reduction of the liquid fraction is predicted
inside the injector, from a fully liquid fuel at the inlet
to only 20% of liquid fuel remaining at the outlet. This
indicates a significant degree of cavitation that has to
be taken into account when studying ammonia sprays in
practical systems.
Finally, a liquid discharge coefficient of less than 0.05
is computed, as seen Fig. 6. This is a very low value,
and is likely due to the shape of the injector, especially
the impact of the counter bore that is causing cavitation,
vaporizing the fuel inside the nozzle.
Figure 7 shows the void fraction during the fuel
injection when the injected flow has reached steady-state
corresponding to Fig. 5. Here it is noticeable that vapor is
starting to form when the flow enters the nozzle, caused,
among other things, by the sharp edge of the orifices. As
the flow interacts with the counter bore, more vapor is
formed due to the area expansion. Indeed, the nozzle
geometry causes the flow to accelerate (Fig. 8 and Fig.
9). The strong acceleration causes a pressure drop in
the nozzle as seen in Fig. 10 due to the high kinetic
energy of the fuel. When the pressure is below the

Figure 5: Time evolution of the fraction of liquid during injection
at the inlet and the outlet.

Figure 6: Time evolution of the discharge coefficient at the outlet
during injection.

Figure 7: Contours of void fraction at steady state condition.

saturation pressure at the given temperature, the phase
change occurs. This is observed here in the nozzles as
the pressure drops below 11 bar at 300 K.

Figure 8: Average velocity at the outlet during the injection.

3.1.3. Temperature evolution during the injection
The average temperature at the inlet of the injector and
its outlet during the injection is shown in Fig. 11. This
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Figure 9: Contour of velocity component v at steady state
condition (the values are negative due to the axis orientation).

Figure 10: Contour of pressure at steady state condition.

plot shows the average contributions of both the vapor and
the liquid phase. Before the start of injection (t < 0.3
ms), the fuel at the outlet is fully vaporized. The velocity
(Fig. 8) indicates that the gas is slowing down due to its
expansion in the nozzle counter bore. This is because the
flow is subsonic as seen in Fig. 12. The gas undergoing
expansion cools down, explaining the temperature drop to
almost 270 K. This can be explained by the positive Joule-
Thomson coefficient at 300 K that describes the cooling
of gaseous ammonia during expansion (Beattie, 1930).
During the injection (0.3 > t > 0.6 ms), the liquid fuel
undergoes phase change with the liquid fuel in the injector
vaporizing. Energy from the fuel is lost to the system
during the phase change with latent heat exchanged with
the boundaries such as the walls. The injected fuel’s
temperature therefore remains below the inlet temperature.
Figure 13 compares the fuel’s heat and kinetic energy. The
negative heat illustrates that energy from the fuel is lost to
the system. Despite this, vapor formation still occur due
to the pressure drop caused by the increased kinetic energy
of the fuel, as explained in the previous section.

3.2. Influence of the fuel : Comparison with iso-octane
An additional simulation is set up with iso-octane to
compare ammonia’s behavior to a traditional fuel in the
same injector. Iso-octane is a surrogate for gasoline,
a well-known fuel used in engines, notably in direct
injection (Zhuang et al., 2017). Because iso-octane will

Figure 11: Time evolution of the temperature during injection at
the inlet and the outlet.

Figure 12: Time evolution of Mach number during injection at
the inlet and the outlet.

Figure 13: Energy evolution at the outlet during the injection.

not undergo phase change at the given pressure range
at 300 K, the temperature is raised to 500 K in this
simulations (see Fig. 14). Comparing the two fuels
allows the evaluation of the fuel’s property’s influence
on the injection process. Figure 15 shows the time
evolution during the injection for both ammonia and iso-
octane. A higher liquid fraction of fuel is found at the
outlet for ammonia, resulting in a higher liquid discharge
coefficient. Despite similar saturation pressure for the two
fuels at the operating temperature, the saturation heat of
vaporization of iso-octane is lower at the present study’s
temperature (Fig. 16). This can be the reason for higher
vapor generation for iso-octane at the given temperature
since less energy from the boundary is needed to vaporize
the fuel. Furthermore, it seems based on Fig. 17 that
more kinetic energy is provided to the fuel, likely due
to iso-octane’s lower viscosity that makes it flow faster
than ammonia. This higher kinetic energy then cause
higher vapor formation. This confirms that the injector’s
geometry and its counter bore are not the sole responsible
for cavitation generation and that the fuel’s property and
boundaries have a strong influence.
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Figure 14: Liquid-vapor curve for ammonia and iso-octane:
below the saturation curve, the fuel is gaseous, above it is liquid.

Figure 15: Time evolution of the fraction of liquid during
injection at the outlet for ammonia and iso-octane.

Figure 16: Heat of vaporization saturation curve for ammonia and
iso-octane. The vertical lines indicate the temperature of the fuels
in the present study (300 K for ammonia, 500 K for iso-octane).

Figure 17: Time evolution of kinetic energy during injection at
the outlet for ammonia and iso-octane.

3.3. Influence of the outlet condition: Pressure
Other parameters at the outlet need to be investigated

to get more realistic engine conditions. The study at
1 bar shows that there was no backflow of fuel in the
injector, therefore, the specified temperature at the outlet
will not be investigated further in this study. The wall
temperature can have an impact as it would be heating the
fuel and will be investigated in the next section. In this
section, the pressure at the outlet is modified to imitate
the pressure in an engine. Figure 18 shows the liquid
discharge coefficient at different outlet pressures. As
the outlet pressure increases, the discharge coefficient is
increased. Indeed, since the pressure difference between
the inlet and the outlet is smaller, the velocity decreases,
the proportion of liquid at the outlet is higher and therefore
the predicted cavitation is lower (Fig. 19 and Fig. 20). At
an outlet pressure of 40 bar, almost none of the fuel has
vaporized. The surrounding conditions and especially the
pressure difference drives the velocity of the flow across
the nozzle and dictates whether or not cavitation will
occur. In (Saha et al., 2017), liquid fraction between 0.4
and 0.5 was found when injecting iso-octane pressurized
at 200 bar in a chamber at 6 bar. In our case, at 5 bar the
liquid fraction is between 0.3 and 0.4, a similar order of
magnitude. The difference in value can be linked to the
nature of the fuel used and the different geometries.

Figure 18: Time evolution of discharge coefficients during
injection for different outlet pressures.

Figure 19: Time evolution of fraction of liquid at the outlet during
injection for different outlet pressures.

3.4. Influence of the boundary condition: Wall
temperature
To assess the impact of the heat transfer on the fluid,
the wall temperature of the nozzle is varied. The outlet
pressure is kept the same as the reference study at 1
bar to isolate the effect of the heat transfer. Figure 21
shows the liquid fraction of the fuel during the injection
with different wall temperatures imposed: 300 K, 400
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Figure 20: Contour of the void fraction during injection for
different outlet pressures at 3.7 ms.

K and 600 K. As the wall temperature increases, energy
is provided to the fuel as illustrated Fig. 22, the fuel
temperature also increases as expected. The kinetic energy
however remains the same for all cases. When the
wall temperature is at 300 K, the fluid looses energy
to the system, and the kinetic energy only causes vapor
formation. However, for the wall temperature of 400
K and 600 K, positive values of heat shows that energy
coming from the wall is provided to the fuel. This causes
the fuel to further vaporize.

Figure 21: Time evolution of fluid liquid fraction during injection
at the inlet and at the outlet for different wall temperature.

Figure 22: Time evolution of the fuel’s heat during injection at
the outlet for different wall temperature.

4. Conclusion
3-D RANS simulations were performed using
CONVERGE CFD to study the internal flow of a
6-holes injector. Two energy sources seem to cause
vapor formation : heat provided to the fuel from the
boundary, and kinetic energy causing a pressure drop
below the saturation pressure. This study first showed the
impact of the nozzle geometry on the vapor formation

of ammonia: the sharp edges in this given geometry
(based on a real commercialized injector) accelerate the
flow causing a pressure drop. When the pressure drops
below the saturation pressure, vaporization of the liquid
fuel occurs. The presence of the counter bore inducing
an expansion causes the gaseous fuel to cool down
due to the Joule-Thomson effect. The amount of fuel
vaporizing depends not only on the geometry, but also
on the outlet conditions, and especially the pressure at
the outlet. Higher pressure at the outlet will decrease the
fuel vaporization and improve the discharge coefficient of
the nozzle. At engine-relevant condition, the discharge
coefficient is typically around 0.2. Furthermore, it is
found that the wall’s temperature affect the amount of
fuel cavitating, which is increased with increased wall
temperature.
The fuel’s properties also impact the amount of cavitation.
Fuels with high saturation pressure will cavitate more than
fuels with lower saturation pressures. Furthermore, the
fuel’s viscosity impact the velocity of the flow and hence
the cavitation amount.
This study shows that it is indeed possible to adapt to
ammonia fuel in ICE with possibly minor changes to the
injector design. More work will be needed in the future
to understand the cavitation of ammonia in more detail
and in different injector’s geometry. Coupling of in-nozzle
flow with Lagrangian spray simulations will provide
further information on ammonia spray formation before
computing reacting flows in full engines simulations.
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Abstract 

Pyrolyzing biosolids can decrease volume and increase value of solids while anaerobic digestion of gas and liquids 

from the process could increase overall methane production. Prediction of process behavior and biogas yield 

through simulation is valuable when considering new substrates for anaerobic digestion. In this study, gas and 

liquids from biosolids pyrolysis were implemented in Anaerobic Digestion Model No 1 (ADM1) together with a 

stream of thermally hydrolyzed sludge/food waste used in an industrial biogas plant. Average operational data 

from the industrial plant was used to calibrate the base scenario in ADM1, achieving a good fit.  Simulation 

scenarios evaluating two hydrolysis constants for the pyrolysis liquid showed minor differences at the load 

simulated and simulated variations in composition of the liquid showed minor differences. Simulation of adding 

a relevant stream of pyrolysis liquid and gas together increased methane production by 7 % but decreased overall 

methane yield from 63 % to 61 % compared to the base scenario. 

 

1. Introduction 

Pyrolysis is a thermochemical process that converts 

dry biomass into gas, solids, and liquids at high 

temperatures without oxygen. The process can yield 

value added products such as biochar, pyrolysis gas, 

and condensable liquids. Biochar offers carbon and 

nutrient capture (Lehmann et al., 2021) and 

pyrolysis gas and condensable liquids are energy 

carriers or chemicals precursors (Jahangiri et al., 

2021). Anaerobic digestion (AD) is a biochemical 

process where microorganisms decompose wet 

biomass in the absence of oxygen, to simple 

chemicals such as acetate, H2, and CO2. These 

simple chemicals are then converted to methane by 

methanogens. The resulting mix of methane and 

CO2 is called biogas. The residual biomass, 

digestate, is normally dewatered to reduce volume 

and is then called biosolids. Biogas can be used to 

produce heat and electricity or be upgraded to 

biomethane for use as a fuel similar to fossil 

(“natural”) gas. Biosolids can normally be applied to 

land as a fertilizer, but if sewage sludge is the source, 

there are many limitations to its use making its 

disposal a large cost for AD plants. 

Pyrolysis gas contains varying amounts of H2, CO2, 

CO, CH4, and other C2+ gases, and has been 

successfully converted to biogas via anaerobic 

digestion (Luo and Angelidaki, 2012; Luo et al., 

2013; Li et al., 2020; Torri et al., 2020). AD of 

pyrolysis liquids from various feedstocks has also 

been studied (Seyedi et al., 2020; Ghimire et al.,  

2021). Successful co-digestion of liquid and gaseous 

pyrolysis products in an industrial process might 

increase biogas production from initial feedstock, 

but it might also upset process behavior. Prediction 

through simulation is valuable when considering 

new AD substrates or new process conditions. The 

Anaerobic digestion model No. 1 (ADM1) was 

developed by the International Water Association to 

predict AD process behavior by many substrates and 

conditions (Batstone et al., 2002). However, 

simulations using the standard ADM1 cannot predict 

process behavior for AD of unusual substrates such 

as pyrolysis gas and liquids and needs modification 

when implementing such substrates. 

Currently, some works have focused on 

implementing mixtures of CO, H2, and CO2 (syngas) 

into ADM1, providing explanations of the model 

and necessary extensions (Shah et al., 2017; Sun et 

al., 2021). Simulation of combined pyrolysis liquid 

and gas has not been explored in the literature, and 

in the few experimental works on AD of real 

pyrolysis gas, it has been cleaned and condensed 

first (Giwa et al., 2019; Torri et al., 2020). The 

authors have argued that the liquid may be inhibitory 

and have either disposed of or digested it in a 

separate reactor from the gas. Possible inhibition 

from pyrolysis liquid from lignocellulosic materials 

implemented in ADM1 was presented at 

EUROSIMS 2021 (Raya et al., 2021), while Seyedi 

(2020) experimented with several methods to 

decrease AD toxicity from biosolids pyrolysis 

liquid. Results from Seyedi (2020) were not 

implemented in any AD model, but the data showed 

most success in reducing toxicity from biosolids 

pyrolysis liquid when using acclimated inoculum 
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and a low loading rate (0.03 gCOD L-1d-1) with 

correspondingly long solids retention time. 

Pyrolysis liquid from biosolids have different 

properties compared to liquid from lignocellulosic 

materials, such as much higher total ammonia 

nitrogen (TAN) content (Seyedi et al., 2019). In 

ADM1, inhibition from NH3 on acetate degrading 

organisms is modelled using a non-competitive 

reversible inhibition term (Eq. 1) (Batstone et al., 

2002). 

𝐼 =
1

1 + 𝑆1/𝐾1

(1) 

Where the total inhibition, I, is calculated using the 

inhibitor concentration S1 (NH3, M) and the 

inhibition parameter K1, set to 0.0018 M as the 

inhibitory free ammonia concentration. The higher 

the inhibitor concentration S1 goes, the lower the 

total inhibition value, I, gets, corresponding to more 

inhibition. A lower loading rate, such as suggested 

by Seyedi (2020) would reduce inhibitor 

concentration and reduce total inhibition (increase 

I). Simulations of co-digestion with high TAN 

pyrolysis liquid in an industrial process can give 

indications of tolerance limits for the microbial 

processes. Simulating at industrially relevant 

loading rates and co-digestion ratios gives rapid 

results on whether the process and loading are 

hypothetically viable in an industrial setting. 

 

1.1. Goal and scope 

Through this study, we aim to implement gas and 

liquid from biosolids pyrolysis in ADM1 and 

simulate anaerobic co-digestion of pyrolysis 

products using industrially relevant ratios of 

pyrolysis products to main substrate. 

The study includes the following: a base scenario 

simulating and calibrating an industrial AD process 

using operational and laboratory data, an 

implementation of pyrolysis liquid using a 

combination of laboratory and literature based 

compositional data, an evaluation of hydrolysis 

constant for the implemented pyrolysis liquid, a 

comparison of effect of pyrolysis liquid composition 

on simulation results, and a combination scenario 

including pyrolysis liquid and gas. 

We do not address additional inhibition from 

pyrolysis liquid products, as we hypothesize that our 

loading rate is sufficiently low and diluted by the 

main substrate, and that the high total ammonium 

nitrogen concentration will make inhibition by 

ammonia more important than other potential 

inhibitors. 

 

2. Methodology  

Samples of the main substrate, hydrolyzed sludge 

(HS), digestate, and pyrolysis products were 

collected and analyzed for relevant compositional 

data to implement in ADM1. ADM1 extended with 

syngas addition from Shah et al. (2017) was used as 

a basis and extended with an extra product stream of 

pyrolysis liquid with separate hydrolysis constant. 

 

2.1. Materials 

Main substrate and digestate was sampled from a 

mesophilic sewage sludge/food waste continuously 

fed stirred tank (CSTR) industrial AD plant. At this 

plant, a thermal hydrolysis process (THP) at 160°C 

is used to pre-treat and sterilize the substrate. HS for 

analysis was sampled after the THP, prior to 

entering the AD bioreactors. 

Pyrolysis liquid was provided by Scanship AS and 

produced from pyrolysis at 600°C of dried and 

pelletized biosolids from AD at the same plant, 

using the Biogreen® technology. Pyrolysis gas was 

condensed down to 5-8°C and the condensate, 

pyrolysis liquid (PL), was collected. The PL was a 

heterogeneous liquid: an emulsion of unevenly 

distributed organic phases in an aqueous phase. It 

was not possible to separate the liquid into an 

organic and an aqueous phase by gravity. 

 

2.2. Analytical methods 

Main substrate and digestate was analyzed for 

Chemical Oxygen Demand (total and soluble: tCOD 

and sCOD), total ammonium nitrogen (TAN), pH 

and volatile fatty acids (VFAs: acetic acid, propionic 

acid, butyric acid, iso-butyric acid, valeric acid, iso-

valeric acid, caprioic acid, iso-caprioic acid and 

heptanoic acid), previously described (Bergland et 

al. 2015).  

Dried samples of substrate and digestate were 

analysed for Total Kjeldahl Nitrogen (TKN) to 

estimate protein content, crude fat (EC, 2009) to 

estimate lipids content, and water soluble 

carbohydrates (Randby et al., 2010) to estimate 

sugars. 

Pyrolysis liquid was analysed for TAN, pH, VFAs, 

and total acid capacity (Supelco test kit no. 101758, 

for an indication of inorganic carbon) in addition to 

elemental analysis (ASTM D1552-16, 2021; ASTM 

D5291-21, 2021). 

Pyrolysis gas was sampled in a gas bag during 

pyrolysis and composition was analysed using gas 

chromatography with two detectors: Pulsed 

Discharge Helium Ionisation Detector (PDHID, 

VIDI) and Thermal Conductivity Detector (TCD, 

Agilent). Helium was used as carrier gas and two 

different columns were used (Restek MXT Molsieve 

5Å,30 m, and Varian Poraplot Q, 25 m). 

 

2.3. Modelling and Simulation 

A full-scale AD bioreactor was simulated (base 

scenario) using ADM1 in AquaSim Version 2.1f. 

Relevant biogas production data was obtained from 

biogas plant operators and used as input data for the 

model. Known compositional data from the 

pyrolysis products PL and pyrolysis gas was then 

added, using relevant pyrolysis yields obtained from 
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pyrolysis operators. Simulation of PL evaluates 

hydrolysis rate and PL composition. Simulation of 

pyrolysis gas addition does not include the process 

of diffusion solubilizing the gas into the bioreactor 

volume and assumes the whole syngas volume flow 

is available for the microorganisms. Operational 

data to compare with simulation results was only 

available for the base scenario. 

 

2.3.1. Base scenario 

The base scenario was calibrated against average 

operational data (Tab. 1) from an ongoing industrial 

biogas plant running on thermally hydrolyzed 

sludge/food waste. 

 
Table 1: Average production data from industrial AD 

plant, used for calibrating the base scenario. HS = 

hydrolyzed sludge, HRT = hydraulic retention time. 

Production data Unit Average value 

HSload m3 d-1 183 

Volumebioreactor m3 3500 

HRT d 19.1 

Productionbiogas Nm3 d-1 8374 

%vol CH4 %vol 63.0 

tCODdigestate kg m-3 54.0 

sCODdigestate kg m-3 5.30 

pHdigestate  7.87 

TANdigestate kmol N m-3 0.104 

Compositional results of the dry substrate for 

protein, lipids and sugar were adjusted to 9 % Total 

Solids (TS, typical value for the AD plant), while 

measured VFAs were input additionally, assuming 

these had been lost during drying while measuring 

TS. Complex VFAs (caprioic acid, iso-caprioic acid 

and heptanoic acid), not included in the model, were 

input as sugars. Amount of inerts were estimated 

from operational data. Lipids were estimated based 

on crude fat results, while proteins were estimated 

based on TKN results after subtracting TAN values. 

Carbohydrates were estimated as the difference 

needed to make up measured tCOD. Tab. 2 lists the 

inputs used for the simulation. 

 
Table 2: Input compositional concentrations for base 

scenario. COD values add up to a total COD of 130 kg 

m-3. Soluble input values for amino acids, inerts, and 

long chain fatty acids are not listed. 

Input data Unit Value 

Lipids kg COD m-3 36.7 

Carbohydrates kg COD m-3 53.4 

Protein kg COD m-3 11.7 

Sugar kg COD m-3 0.223 

Acetic acid kg COD m-3 1.84 

Propionic acid kg COD m-3 0.686 

Butyric acid kg COD m-3 0.806 

Valeric acid kg COD m-3 0.491 

Total inert kg COD m-3 23.4 

Inorganic nitrogen kmol N m-3 0.0976 

Inorganic carbon kmol HCO3
- m-3 0.0800 

Measured total COD at 9 % TS was 130 kg m-3, 

while soluble COD was 21.8 kg m-3. Soluble amino 

acids were set to 7.2 % of protein COD, as the 

average solubilization from two sludges treated with 

thermal hydrolysis in Chen et al. (2019). Soluble 

inerts were set to 8.9 % of inerts based on 

operational data. Soluble long chain fatty acids were 

used to make up measured sCOD difference. 

Inorganic carbon is not known but is assumed based 

on biogas composition operational data (63% 

methane, Tab. 1). Additional ions may be present, 

used in pH simulation, requiring adjustment of the 

ion balance. The base scenario has a relatively high 

pH (7.87, Tab. 1), so an adjustment term was added 

to the cations (0.35 M) to reach the target. 

 

2.3.2. Pyrolysis liquid input 

Due to the emulsified nature of the PL, only water-

soluble COD could be tested with good accuracy. 

Because of this, the total COD of PL was 

represented by theoretical oxygen demand, 

calculated based on elemental composition (OECD, 

1992). 

PL was added to ADM1 as an additional substrate 

load, without changing volume load from HS or total 

volume of reactor, thus reducing the overall 

hydraulic retention time (HRT). 

The PL load (Tab. 3) was based on the pyrolysis 

mass yield when pyrolyzing biosolids from the same 

AD process, assuming all PL goes back into the 

process. Fig. 1 outlines the mass load estimation for 

PL and pyrolysis gas. In our case, residual mass in 

digestate is dewatered and dried to 86 % TS, 

pyrolyzed, yielding 50 % mass pyrolysis gases and 

liquids, divided between 33 % mass liquids (4 t) and 

17 % mass gases (2 t). 

 

 
Figure 1: Simplified mass balance of industrial anaerobic 

digestion (AD) with pyrolysis of biosolids. DW = 

dewatering. 

The biomethane potential (BMP) of the PL is 

unknown, and to simulate PL digestion the amount 

     2 t               4 t 
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of inert must be estimated. Seyedi et al. (2019) tested 

the BMP of pyrolysis liquid produced from 

biosolids, spiked with acetate. They found that 

methane production was highly affected by the 

organic load of PL. To estimate the concentration of 

inerts in our PL, a linear curve was fitted to methane 

% yield data estimated from the three lowest COD 

loadings from Seyedi et al. (2019) adjusted for the 

control (Fig. 2). The two lowest loadings gave 

relatively high methane yield (%), while the third 

lowest, 0.6 g COD L-1, resulted in less methane 

production than the control and was adjusted to 0 

when fitting a linear model. The linear model gave a 

methane yield of 40 % based on our calculated 

loading of 0.41 g COD L-1 (Fig. 2, X), corresponding 

to 60 % inert. 

Figure 2: Methane yield of pyrolysis liquid from 

biosolids pyrolysis based on COD loading. Adjusted for 

control sample, based on data from (Seyedi et al., 2019). 

Blue dots show all COD loadings tested by Seyedi et al. 

(2019), some have a negative yield because they 

produced less than the control sample. Red dots show the 

two loadings with a positive yield and the first negative 

yield adjusted to 0. The black X shows the calculated 

value for our data. 

 

Compositional data was not available for PL, but 

analyses of the digestate gave an indication of 

protein and lipid content going into the pyrolysis. 

As a simplification and approximation of PL 

composition, the mass yield of compounds relevant 

for AD (Tab. 4) were used to adjust the protein and 

lipid content in the digestate to input values for 

protein and lipids from PL (Wang et al., 2017). 

To account for the uncertainties concerning the 

composition of PL, an additional three 

compositional variations were simulated (Tab. 5). 

For all scenarios PL inorganic nitrogen and 

inorganic carbon was set to the measured TAN and 

total acid capacity values, 1.085 mol/L for IN and 

0.700 mol/L for IC. Soluble inerts were used to add 

up the sCOD and are added together with particulate 

inerts in Tab. 5. 
 

Table 3: Load data when adding pyrolysis liquid (PL) to 

the base scenario. HRT = hydraulic retention time. 

Production data Unit Value 

PLload m3 d-1 4.08 

Total load(HS+PL) m3 d-1 187 

Volumebioreactor m3 3500 

HRT d 18.7 

tCODPL kg m-3 352 

sCODPL kg m-3 194 

LoadtCOD_PL kg d-1 1440 

LoadtCOD_(HS+PL) kg d-1 25200 

HSloading rate kg COD m-3 d-1 6.80 

PLloading rate kg COD m-3 d-1 0.410 

(HS+PL)loading rate kg COD m-3 d-1 7.21 

 
Table 4: Mass yields (%) of relevant compounds for AD, 

from liquid from pyrolysis of proteins and lipids 

extracted from a microalga. From Wang et al. (2017). 

Compounds type Protein Lipid 

Amines and Amides (<C8) 1.94 0.43 

Carboxylic acids 0.45 44.46 

Ketones and Aldehydes (<C8) 4.82 0.53 

Alcohols (<C8) 0 2.23 

Alcohols (>C8) 0 0.36 

Phenols 2.87 0 

Esters 8.19 15.25 

Ethers 1.92 0.12 

Total 20.19 63.38 

 
2.3.3. Hydrolysis constants 

In the original ADM1, Batstone et al. (2002) used a 

complex particulates variable as a general variable 

for particulates in a substrate. 

 

Table 5: Input compositional data for four scenarios with additional pyrolysis liquid. All units are concentration, kg COD m-

3. COD values add up to a total COD of 352 kg m-3.  

Input data PLmost relevant PLlipids=carbs PLlow protein PLhigh protein 

Lipids 37.4 23.5 41.2 21.6 

Carbohydrates 9.53 23.5 9.53 9.53 

Protein 7.66 7.66 3.83 23.5 

Sugar 18.1 18.1 18.1 18.1 

Acetic acid 40.6 40.6 40.6 40.6 

Propionic acid 9.45 9.45 9.45 9.45 

Butyric acid 10.3 10.3 10.3 10.3 

Valeric acid 8.23 8.23 8.23 8.23 

Inert 111 111 111 111 

y = -1.6307x + 1.0707

R² = 0.8571

-20%

0%

20%

40%

60%

80%

100%

0 1 2 3 4

%
y
ie

ld
 C

H
4

COD loading (g/L)
Seyedi et. al.
Adjusted for curve fitting
Calculated yield
Linear (Seyedi et. al.)



SIMS 63  Trondheim, Norway, September 20-21, 2022 

A disintegration process was the rate limiting step 

for this variable. The variable was especially 

designed for complex sludge such as waste activated 

sludge and for microbial biomass and uses a 

disintegration constant of 0.5 d-1 as standard.  

However, this input decomposes into 30 % each of 

lipids, carbohydrates, protein and 10 % inert. Our 

substrates have more accurate compositional data to 

input directly, making the hydrolysis process the rate 

limiting step. The standard hydrolysis constant, khyd, 

in the original ADM1 is 10 d-1, which is a very high 

value meaning that the hydrolysis step goes very 

quickly and is not rate limiting. 

Koch and Drewes (2014) compared two common 

methods of fitting biomethane potential (BMP)-

curves to estimate the hydrolysis constant and 

derived an alternative approach where the only input 

necessary is the time, t, it takes for the daily methane 

production to drop to <1 % of accumulated value, 

and keep this low production for at least three days, 

according to the German Guideline VDI 4630 (VDI 

4630, 2016). The alternative calculation of khyd 

based on BMP-time, t, is shown as Eq. 2 below: 

𝑘ℎ𝑦𝑑 =  
𝑡 − 100

𝑡 − 𝑡2
(2) 

Raya (2021) tested a sample of the main substrate 

inoculated with its digestate and got a clear end of 

the experiment by day 10. Substituting t with     days 

gives khyd = 1 d-1 for the main substrate, double of 

the original disintegration constant. This seems like 

a probable value for thermally hydrolyzed sludge, 

which normally is digested faster than untreated 

sludge. 

When evaluating hydrolysis constant for the 

pyrolysis liquid (PL), the data, however, is not clear. 

The BMP tests performed by Seyedi et al. (2019) 

drops to <1 % daily production after 17 days, but the 

production goes higher again some days later, the 

latest being 30 days when no daily production higher 

than 1% is seen. This corresponds to khyd values of 

0.3 (17 days) and 0.08 (30 days). To evaluate the 

effect of the different khyd values, both were tested 

using the most relevant PL composition (Tab. 5). 

 

2.3.4 Gas addition 

Evaluating the gas effect on the processes occurring 

in AD is done by simplification where technical 

dissolution challenges are assumed solved by 

ignoring physical barriers and adding the gas as an 

extra source of COD without increasing the total 

liquid substrate volume stream (Shah et al., 2017). 

This has been achieved in laboratory experiments 

(Corbellini et al., 2021) where hydrogen gas has 

been injected at similar organic loading rate below 

surface level and with high mixing speed, achieving 

90-99 % conversion efficiency, which might 

improve with further acclimation. Since hydrogen 

gas is the least soluble in water, we assume carbon 

monoxide can be transferred with similar efficiency 

(solubility H2 at 38°C: 0.0014 g gas/kg water, 

solubility CO at 38°C: 0.021 g gas/kg water, 

(Engineering ToolBox, 2008)).  

 
Table 6: Load of non-condensable gases, based on 

composition of gas measured during pyrolysis. 

Gas loaded Unit Value 

CO kg COD d-1 182 

H2 kg COD d-1 434 

CH4 kg COD d-1 600 

CODgas loading rate kg COD m-3d-1 0.347 

CODHS+PL+Gas loading rate kg COD m-3d-1 7.56 

CO2 kmol d-1 32.8 

CO2_input conc. in HS+PL vol kmol m-3 d-1 0.170 

 

3. Results 

3.1 Base scenario 

The simulation results had a good fit with AD 

operational data and were within 1 % deviation 

(Tab. 7) except for total VFA. 
 

Table 7: Measured and simulated values for the base 

scenario. Value units are kg COD m-3 for all unlabeled 

except for gas production (m3), Total Ammonium 

Nitrogen (TAN, M d-1), and pH. 

Target data Valuemeas Valuesim %Diff 

Productionbiogas 8374 8409 0.418 

ProductionCH4 5275 5278 0.0569 

% vol CH4 63.0 62.8 -0.317 

tCODdigestate 54.0 54.0 0.000 

sCODdigestate 5.30 5.33 0.566 

pHdigestate 7.87 7.83 -0.508 

TANdigestate 0.104 0.103 -0.962 

totVFAdigestate 0.172 3.22 1782 

 

3.2 Variation of hydrolysis constant 

The simulation results of two scenarios with PL 

added with two different khyd, 0.3 d-1 and 0.08 d-1, 

had very small differences, less than 0.6 % for all 

parameters. The main effect from the reduction of 

khyd was a higher tCOD concentration in the 

digestate (+0.4 %), a small decrease in biomass and 

biomass growth rates, and a minor decrease in 

biogas production (-0.3 %). 

Due to the low difference between the simulation 

results using different hydrolysis constants, the 

higher and most likely value (0.3 d-1) was used for 

further simulations on composition and gas addition. 

 

3.3 PL composition 

3.3.1 Lipids and carbohydrates 

To see the impact on simulation from lipid and 

carbohydrate distribution in PL, lipids concentration 

was reduced, and carbohydrate concentration was 

increased to a scenario where these would contribute 

equal amounts of COD. This scenario was compared 

to the most relevant compositional distribution (Tab. 

5). All the differences in simulation results at stable 

conditions were less than 1 %, except for simulated 
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total VFA in digestate, which was reduced by 1.15 

% compared to the most relevant scenario. 

 
3.3.2 Changing PL protein input 

Higher protein content changed the simulation 

results to a much larger extent than the other 

compositional changes. The parameters most 

affected by the changes (Fig. 3) were: Acetic acid 

(9% increase), sCOD (4% increase), amino acid 

degrading organisms’ biomass and growth rate (3% 

increase), TAN (2% increase) and inorganic carbon 

(1% decrease). The low protein content scenario 

decreased acetic acid and sCOD by 2 and 1 %, 

respectively, and otherwise showed small changes 

(Fig. 3). 

 
Figure 3: The parameters with the largest % change when 

comparing the three different composition scenarios to 

the most relevant composition (Tab. 5). ac = acetic acid 

left in digestate, sCOD = soluble chemical oxygen 

demand left in the digestate, Xaa = amino acid degrading 

organisms and their growth rate, TAN = total ammonium 

nitrogen left in digestate, IC = inorganic carbon in 

digestate. 

Figure 4: Daily simulated methane production when 

different PL input compositions are tested. 

Simulated methane production only changed 0.1-

0.5% by changing the protein load to the 

concentrations used in these scenarios (Tab. 5), but 

when comparing the results scaled (Fig. 4), it looks 

like a small trend where higher protein content affect 

methane production negatively. Like for the 

methane production, inhibition from NH3 increases 

slightly (lower inhibition value) with higher protein 

input (Fig. 5). 

Figure 5: Inhibition values from ammonia (NH3) on 

acetoclastic methanogens and the difference between 

simulated PL compositions. Lower inhibition value means 

more inhibition. 

3.4 Simulation of gas addition 

Gas addition increased the simulated methane 

production with 7 %, 375 Nm3 d-1 more than the 

simulated base scenario (Fig. 6 and 9). The pyrolysis 

gas contained 210 Nm3 of CH4, which accounts for 

about 56% of the increase in methane production. 

Inhibition from ammonia that increased (lower 

inhibition value) with PL addition, normalized 

somewhat when gas was added (from 0.19 with PL 

to 0.196 with PL and gas, Fig. 7). 

Figure 6: Daily simulated methane production for base 

scenario, added pyrolysis liquid and liquid and gas added 

together. 

 
Figure 7: Inhibition values from NH3 on acetoclastic 

methanogens for base scenario, added pyrolysis liquid 

and liquid and gas added together. Lower inhibition 

value means more inhibition. 

 

The largest change from the base scenario was the 

acetic acid concentration in digestate that nearly 

tripled (from 1.6 kg COD m-3 in base scenario to 4.5 

kg COD m-3, Fig. 8) when adding PL alone. The 

largest change for the gas scenario was the residual 

sCOD in the digestate, which increased by 55 % 

from the base scenario (Fig. 8). Biogas also had a 

significant increase of 14 % for th PL+Gas scenario 

(Fig 9). TAN increased by about 20 % for both the 

scenarios (Fig. 8). 
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Figure 8: Percentage change from base scenario on acetic 

acid, soluble COD (sCOD) and TAN (total ammonium 

nitrogen) when adding pyrolysis liquid (PL) or pyrolysis 

liquid and gas (PL+Gas). 

 
Figure 9: Percentage change from base scenario on 

methane concentration (%vol CH4), produced methane, 

produced biogas, ammonia inhibition (Inhib. NH3) and 

CO2 concentration (%vol CO2) when adding pyrolysis 

liquid (PL) or pyrolysis liquid and gas (PL+Gas). 

 
4. Discussions and Summary 

4.1 Base scenario 

The simulated base scenario was well calibrated to 

match operational and measured data for the 

industrial process, except for VFAs (Tab. 8), these 

are previously reported with low fit for thermally 

hydrolyzed sludge in ADM1 (Donoso-Bravo et al., 

2020). 

 

4.2 Variations of PL hydrolysis and composition 

Despite reducing the hydrolysis constant for the 

added PL to a fourth of the most relevant value, from 

0.3 d-1 to 0.08 d-1, the differences in the simulation 

results after stabilization were small at the simulated 

PL load. Reductions in biomass growth rates and 

increase in residual tCOD (section 3.3) are expected 

with slower solubilization of particulates caused by 

reducing the hydrolysis constant without changing 

the HRT. The % difference in biogas production, 

however, was less than the % difference between the 

simulated base scenario and measured operational 

data, so they would most likely not be noticed in an 

experimental or industrial setting. 

Changing the simulated protein input had more 

effect than changing lipid and carbohydrate 

distribution. More protein leads to higher TAN 

(0.127 M for the high protein scenario, up from 

0.125 M for the most relevant scenario), which 

increases inhibition by ammonia of acetoclastic 

methanogenesis (Fig. 5) causing a higher 

concentration of acetic acid in the digestate (Fig. 3, 

8 % increase in this scenario) and lower overall 

methane production (Fig. 4). In our scenario, the 

process is still stable as the pH has not decreased by 

much, but it gives a clear indication of what happens 

with too much loaded protein. 

Most likely, however, the PL does not contain 

“traditional” lipids, carbohydrates and protein, as 

these are decomposed and changed into other 

compound groups through pyrolysis (e.g. Tab. 4 and 

Wang et al. (2017)). PL from biosolids does contain 

a lot of nitrogen, however. From our total nitrogen 

analysis there is still 1.4 M nitrogen bound to 

unknown compounds, after correcting for 

ammonium-N. Whether these compounds are 

anaerobically digested with an effect like proteins, 

whether they stay inert or whether they are 

inhibitory to the process is difficult to predict 

without conducting carefully planned, long-term 

continuous experiments. 

 

4.3 Effects on industrial process from pyrolysis 

liquid and gas 

The simulated methane production drops slightly 

when adding PL alone but increases 7 % when gas 

is added. From the overview figures (Fig. 8 and 9) 

we see that acetic acid concentration triples when PL 

is added, and TAN concentration increases, causing 

more inhibition from ammonia on acetoclastic 

methanogens. This might explain why the methane 

production drops slightly despite the PL contributing 

extra COD to the process (0.4 kg COD m-3 d-1, Tab. 

3). 

The overall methane yield drops compared to the 

base scenario when adding these pyrolysis products 

(Fig. 10), most likely due to the high load of 

inorganic nitrogen in the liquid fraction. 

 
Figure 10: %Methane yields for the overall processes. 

 

In combination, the slightly inhibitory effect from 

the PL is “diluted” by the gas, so the actual methane 

production still increases overall, however with less 

overall efficiency compared to the extra added COD. 

Despite the possible problems with PL in AD, the 

result from the combined addition indicates that the 

processes occurring in AD may tolerate an 

uncondensed pyrolysis gas co-substrate and increase 

methane production moderately. 
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Abstract

Today, expanders for Organic Rankine Cycles (ORC) are either inefficient or expensive. One reason for this is that expanders
of power conversion systems usually operate under different conditions over an annual perspective. Still, they are designed to
perform best at a single operating point. In view of this limitation, it is suggested that the overall expander performance can
be improved by taking into account off-design operation in the design process. As the first step in this direction, this paper
presents a two-fold method for design optimization and performance analysis of one-stage axial turbines. The method utilizes
the same mean-line model for performance analysis and design optimization, ensuring consistency between the two modes. In
addition, the proposed method evaluates the turbine performance at three stations for each blade row: inlet, throat and exit,
and employs a novel numerical treatment of flow choking that automatically determines which blade rows are choked as part
of the solution. Furthermore, the method was validated against cold-air experimental data from three different one-stage axial
turbines, at both on- and off-design conditions. The model predicts design point efficiencies between 1.1 and 4.5 percentage
points off the experimental values. The model was also able to capture the trend of mass flow rate as a function of total-to-static
pressure ratio and angular speed. However, an unphysical behavior was observed as the pressure ratio approaches the critical
value, and further developments of the model are required. It is envisioned that the proposed method will serve as foundation
for a robust design methodology that will enable higher expander performance over a range of operating conditions.

1. Introduction

The Rankine Cycle technology is used to convert heat
from external sources into electrical power, making it suit-
able to exploit low-carbon energy sources such as geother-
mal reservoirs, concentrated solar radiation and waste heat
from industrial processes (Colonna et al. 2015). The
Rankine cycle in its simplest form consist of four ele-
ments: condenser, pump, evaporator and expander (Fig-
ure 1). Electrical power is generated as the working
fluid flows through the expander, and produces a torque
on a shaft coupled to an electrical generator. After the
expander, the working fluid is condensed, pressurized
through the pump and heated before it enters the expander
once again. When the heat source temperature is limited, it
becomes beneficial to utilize organic compound as work-
ing fluid, to avoid condensation within the expander, and
the cycle is referred to as Organic Rankine Cycle (ORC).

Figure 1: Simple ORC configuration.

Furthermore, adopting an organic fluid in the Rankine
cycle paves the way towards compact and cost-efficient
turbo-expanders. The higher molecular weight of these
fluids leads to a lower enthalpy drop compared to conven-
tional steam cycles (Macchi and Astolfi 2017). This en-
ables turbo-expanders with a low number of stages, and
operation at relatively low rotational speed. However,
the expansion ratio for each stage is usually very high in
compact ORC turbines, and combined with a low speed
of sound this often leads to transonic or even supersonic
flows. In addition, non-ideal gas effects could be promi-
nent as the expansion process usually occurs in the dense
vapor region. These effects combined result in additional
losses and non-conventional turbine designs, where tra-
ditional design methods are insufficient (Persico and Pini
2017).

The first step of the design process for ORC turbines is
to decide which type of architecture to use. This could
be axial turbine, radial turbine or a hybrid solution. This
choice is usually based on statistical data or overall ma-
chine correlations (Macchi and Astolfi 2017). The next
step is the preliminary design phase. The purpose of this
phase is to subdivide the the expansion process between
turbine stages, thus specifying the thermodynamic and ki-
netic state at inlet and exit for each cascade. For this rea-
son, the preliminary design is crucial for the whole design
process. Furthermore, this phase makes use of mean-line
models, which assume that the flow is uniform in the cir-
cumferential and spanwise directions (Denton 1993). In-
let and exit conditions for each cascade are determined
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by solving the mass, momentum and energy conservation
equations along with an equation of state. In addition, the
mean line approach requires empirical correlations to es-
timate entropy generation throughout the turbine, referred
to as loss models. The turbine performance is predicted
with the mean-line model, given a geometry and a set
of thermodynamic boundary conditions for the turbine.
Thus, the preliminary design can be accomplished com-
bining the mean-line model with an optimization routine
that finds the best geometry that optimizes an objective
function, commonly being the isentropic efficiency (Per-
sico and Pini 2017).

In most cases, the turbine design process only takes into
account the performance at one operation point (i.e., the
design point). However, ORC power systems are fre-
quently connected to heat sources and sinks with vari-
able load. Heating and cooling duties from sources such
as exhaust from gas turbines or cooling by ambient air
are very likely to vary, and this will propagate to change
expander conditions (Jiménez-Arreola et al. 2018; Mac-
chi and Astolfi 2017). In order to improve efficiency
of ORC expanders it is therefore suggested that the de-
sign process should account for variable expander condi-
tions. In other words, rather than designing an expander
for one single design point, the expander is designed con-
sidering a range of operating conditions. This multi-
point optimization strategy has been adopted in several
high-fidelity design methods, and shows great promise to
rise the efficiency of the turbine at off-design conditions
(Aissa et al. 2019; Bonaiuti and Zangeneh 2009; Châtel,
Verstraete, and Coussement 2020; M. Pini, G. Persico,
and Dossena 2014; Sanchez Torreguitart, Verstraete, and
Mueller 2018). However, to the authors’ knowledge, the
use of multipoint optimization strategies for preliminary
turbine design has not been considered yet.

The objective in this paper is to formulate a two-fold
method for the design optimization and performance anal-
ysis of one-stage axial turbines. The method uses the same
mathematical model for performance analysis and design
optimization, and both modes are formulated as nonlinear
programming problems, which are solved using gradient-
based optimization algorithms. The mathematical model
follows a mean-line approach and, in contrast to most of
the methods available in the open literature, evaluates the
turbine performance at three stations for each blade row:
inlet, throat and exit, making it suitable for choked flow
conditions. The model is validated against numerical cases
from the literature and experimental data, at both on- and
off-design conditions. It is envisaged that the methods pre-
sented herein will serve as building blocks to develop a ro-
bust design methodology for axial turbines that will enable
higher performance over a range of operating conditions.

The outline is as follows: the next section describes the
mathematical model used for the two-fold method, fol-
lowed by a section on the differences of the two modes.
The model validation is then given before a design case
study is presented. At last, the content is summarized be-
fore suggestions for further work are made.

2. Mathematical model

This section describes a mathematical model for assess-
ment of one-stage axial turbines. This model is used for
both performance analysis and preliminary design of one-
stage axial turbines. The variables used to define the tur-
bine geometry are presented first, followed by modelling

Figure 2: Geometry of the cross-sectional shape of the blades.

of velocity triangles, thermodynamic properties and loss
prediction. The mathematical model presented here is
based on the work of Agromayor and Nord, who pro-
posed a method for the design optimization of axial tur-
bines (Agromayor and Nord 2019). However, the objec-
tive here is to extend the method and include performance
analysis in addition to design optimization, leading to cer-
tain model differences. Notably, the mass flow rate is com-
puted, rather than being an input variable, because the per-
formance analysis should predict the mass flow rate. Fur-
thermore, thermophysical properties and velocity triangles
are assessed at the throat, in addition to the inlet and exit
of each cascade, to predict choked flow. Consequently,
the set of input variables will deviate from the the work of
Agromayor and Nord.

The model is implemented in the Python programming
language and is released under an open source license.
This does not only increase the transparency and repro-
ducibility of the results, but also enables other researchers
and industry practitioners to use the code for their needs
or contribute to its development.

2.1. Turbine geometry

The geometrical variables considered in the mean-line
turbine model include parameters related to the cross-
sectional shape of the blades, distance between adjacent
blades and extent in radial direction. Figure 2 illustrates
the geometrical variables related to the cross sectional
shape of the blades. The chord c is the distance be-
tween leading and trailing edge, while the camberline is
the line halfway between pressure and suction surfaces
of the blade. Axial chord cax is the axial component of
the chord. The blade thickness is the distance between
pressure and suction surfaces, perpendicular to the cam-
ber. Furthermore, the metal angle θ is defined as the angle
between axial direction and tangential component of the
camber line. The pitch s is the distance between two adja-
cent blades, and the opening o is the distance between the
trailing edge to the suction surface of the adjacent blade,
measured normal to the outlet metal angle. The stagger ξ
is the angle between axial direction and chord line. Max-
imum thickness tmax and trailing edge thickness tte must
also be considered for loss prediction (Kacker and Okapuu
1982).

In addition, the parameters describing the shape of the
blade in radial direction are also included in the model,
such as mean radius rm, blade height H and tip-clearance
gap tcl (see Figure 3). The blade height may vary from
inlet to outlet of the blade cascade, and the flaring angle
δfl describes this variation.

In order to reduce the number of input variables, some re-
lations between geometrical variables are used. The first



SIMS 63 Trondheim, Norway, September 20-21, 2022

Figure 3: Geometry of turbine blades in radial direction.

relation is the cosine rule, which relates the blade opening
with the exit metal angle (Saravanamutto et al. 2017):

o ≈ s · cos(θout) (1)

Furthermore, Kacker and Okapuu proposed a formula to
approximate the maximum thickness to chord ratio as a
function of the blade camber angle (∆θ = |θin − θout|)
(Kacker and Okapuu 1982):

tmax

c
=


0.15, ∆θ ≤ 40°
0.15 + 1.25 · 10−3 · (∆θ − 40)

0.25, 120°≤ ∆θ

(2)

If one assumes that the camber line is a circular arc, the
stagger angle is given by (Dixon 2014):

ξ =
1

2
(θin + θout) (3)

Using the definition of stagger angle, the axial chord can
be determined from the chord:

cax = c · cos(ξ) (4)

The mean radius is assumed to be constant, meaning the
blade converge/diverge equally at the inner and outer wall
of the flow passage, then the stator inlet and exit blade
heights are determined by the mean blade height and stator
flaring angle:

Hin,s = Hs − tan(δfl,s) · cax,s (5)

Hout,s = Hs + tan(δfl,s) · cax,s (6)

Furthermore, the blade height at stator exit is assumed to
be equal to rotor inlet, meaning no flaring between blade
rows. Consequently, for rotor row, the flaring angle is de-
termined from inlet and mean blade height, which further
gives the exit blade height:

δfl,r = arctan(
Hr −Hout,s

cax,r
) (7)

Hout,r = Hr + tan(δfl,r) · cax,r (8)

Another parameter needed for loss calculations is the hub-
to-tip ratio:

rht =
rh
rt

=
rm −H/2

rm +H/2
(9)

At last, the area at inlet, exit and throat of each blade row
is calculated by the following equations:

Ain = 2π · rm ·Hin (10)

Aout = 2π · rm ·Hout (11)

Athroat = 2π · rm ·Hthroat · cos(θout) (12)

Table 1: Geometrical variables of the axial turbine.

Variable Stator Rotor

Mean radius rm
Blade height Hs Hr

Aspect ratio (H/c)s (H/c)r
Pitch to chord ratio (s/c)s (s/c)r
TE thickness to opening ratio (tte/o)s (tte/o)r
Inlet metal angle - θin,r
Outlet metal angle θout,s θout,r
Flaring angle δfl,s -
Tip clearance - tcl

Figure 4: Velocity triangles. Sign convention for the angles is
illustrated in the upper right corner.

In total, the geometry of the stage is defined using fourteen
variables. The geometrical variables are listed in Table 1
and are inputs to the model.

2.2. Velocity triangles

The velocity triangles (Figure 4) are evaluated at each sta-
tion of the turbine, and are calculated with the following
equations:

vm = v · cos(α)
vθ = v · sin(α)
wm = w · cos(β)
wθ = w · sin(β)
wθ = vθ − u

(13)

Where the blade velocity u is calculated from the mean
radius and the rotational speed Ω:

u = Ω · rm (14)

The stator inlet flow angle is fixed to zero, while the flow
angles at throats are assumed to equal the exit metal an-
gles, which imply zero deviation:

βthroat = θout + δ ≈ θout (15)

Thus, the velocity at each station, exit flow angles and ro-
tational speed are input variables. These are listed in Ta-
ble 2, except for the rotational speed, which is treated sim-
ilarly as the geometrical variables (see Section 3).
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Table 2: Velocity, flow angles and static pressure variables that
are inputs for the model.

Variable Symbol

Stator inlet velocity vin,s
Stator throat velocity vthroat,s
Stator exit velocity vout,s
Rotor throat relative velocity wthroat,r

Rotor exit relative velocity wout,r

Stator exit absolute flow angle αout,s

Rotor exit relative flow angle βout,r

Stator throat static pressure pthroat,s
Stator exit static pressure pout,s
Rotor throat static pressure pthroat,r

Table 3: Thermodynamic boundaries for the turbine.

Variable Symbol

Working fluid -
Inlet stagnation temperature T0,in

Inlet stagnation pressure p0,in
Outlet static pressure pout

2.3. Thermodynamics

The thermodynamic boundaries for the turbine model
must also be specified. These variables are usually ob-
tained from a system-level analysis of the power cycle and
include states at inlet and outlet of the turbine, as well as
the working fluid. These variables are listed in Table 3.

In addition to these input variables, other thermophysical
variables need to be evaluated through the turbine stage.
Similarly as for the velocity triangles, these are assessed at
each station of the turbine. For simple compressible sys-
tems, the state is completely specified for two independent
intensive properties (Moran et al. 2015). A library of ther-
mophysical properties is required for these calculations,
and in this method CoolProp is used (Bell et al. 2014).
Since the stagnation state is prescribed at the turbine inlet,
entropy and enthalpy are used to calculate thermophysical
properties at this station:

[ρ, a, p, µ]in = f(sin, hin) (16)

where ρ is the fluid density, a speed of sound, and µ is the
dynamic viscosity. Through the rest of the turbine, static
pressure and enthalpy are used to determine the dependent
thermophysical properties. This means static pressure at
stator throat, between blade rows and rotor throat must be
provided as input (see Table 2). This was found to be more
robust than using entropy and enthalpy as input variables.

[ρ, a, s, µ] = f(p, h) (17)

The enthalpy at each station of the turbine is calculated by
the conservation of rothalpy:

h+
1

2
w2 − 1

2
u2 = constant (18)

Through the stator row this is reduced to conservation of
stagnation enthalpy:

h0,s = constant (19)

With the velocity triangles and thermophysical properties,
the mass flow rate, Mach and Reynolds number may be
evaluated:

ṁ = ρvA (20)

Ma =
v

a
(21)

Re =
ρV c

µ
(22)

2.4. Loss model

What is left is to predict the entropy generation in the tur-
bine. For this purpose, a loss coefficient must be defined,
and a loss model to predict this loss coefficient must be
selected. In this work, the Kacker and Okapuu loss model
is adopted for its maturity and accuracy (Kacker and Oka-
puu 1982), but the loss model may easily be switched to
another if desired. The loss coefficient may be defined in
several ways (Denton 1993), but is here formulated as the
total pressure loss between inlet and exit of a blade row,
divided by the exit dynamic pressure:

Ydefinition =
p0,rel,in − p0,rel,out
p0,rel,out − pout

(23)

This is referred to as the total pressure loss coefficient, and
it is adopted because the Kacker and Okapuu loss model
is based on this definition. The deviation between the total
pressure loss coefficient computed from its definition and
the value determined by the loss model must be assessed:

Yerror = Ydefinition − Ylossmodel (24)

This error should be zero, and the states through the tur-
bine must be such that this is satisfied. This is discussed
further in Section 2.5 and 3. Furthermore, the loss co-
efficient is here assessed at both throat and exit for each
blade row. The loss model itself is formulated to predict
losses between inlet and exit of a blade row and not be-
tween inlet and throat. However, the alternative is to as-
sume isentropic flow between inlet and throat, but it was
observed that this strategy predicted losses less accurately
compared to the original formulation. A logical explana-
tion behind this is that the state at the throat is more likely
to be similar to the exit rather then the inlet.

2.5. Closing of equations

With the use of the equations above, the mass flow rate,
loss coefficient and Mach number can be evaluated at each
station using the variables in Tables 2 and 3. However,
by only using the equations above, the mass flow rates at
each station are not necessarily equal, the Mach number
at the throat is not necessarily maximum one and the er-
ror between the loss model coefficient and loss coefficient
obtained from its definition is not necessarily zero. This
forms a set of equations that must be satisfied for each
blade row in order for the flow to be physically feasible:

ṁin − ṁthroat = 0

ṁin − ṁout = 0

Mathroat,rel −min(1,Maout,rel) = 0

(Ydef − Yloss)throat = 0

(Ydef − Yloss)out = 0

(25)
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Figure 5: Workflow for the preliminary design objective and per-
formance analysis.

In other words, this is a set of ten equations on the form
F⃗ (x⃗) = 0, where x⃗ is a vector with the ten variables in
Table 2. The thermophysical states and velocity triangles
can be determined by ensuring that Eq. (25) is satisfied.
The strategy to ensure this is different for the two modes of
the two-fold method, and are presented in the next section.

3. Optimization vs. performance analysis

The model described above is used for two purposes: pre-
liminary design and performance analysis of one-stage ax-
ial turbines. Figure 5 presents the workflow for the prelim-
inary design mode, and where the performance analysis
fits into this. The turbine model is used for both prelim-
inary design and performance analysis to ensure consis-
tency between the two modes, but there are certain differ-
ences in problem formulation, which will be described in
this section.

3.1. Optimization

The goal of the optimization objective is to find the op-
timal geometry given the thermodynamic fixed variables.
In this case, the thermodynamic boundaries (Table 3) are
fixed parameters, while the geometry, rotational speed and
input velocity/static pressure (Tables 1 and 2) are indepen-
dent variables. This mode makes use of an optimization al-
gorithm to tune the independent variables such that the op-
timal value of the objective function is reached while a set
of bounds and constraints are respected. The optimization
algorithm used in this method is the sequential quadratic
programming (SQP) algorithm, available in the Scipy li-
brary (Virtanen et al. 2020). The objective function is de-
fined as the total-to-static efficiency (Eq. (26)), but may
easily be changed to other performance related parame-
ters such as total-to-total efficiency or work output. The
closing equations (Eq. (25)) are specified as a set of equal-
ity constraints to ensure a physical solution, while bounds
may be defined for all independent variables. Other con-
straints may be added, both equality and inequality. For
example, if the user desires to treat mass flow rate as an in-
put variable, it can be imposed with an equality constraint.

ηts =
h0,in − h0,out

h0,in − h0,is
(26)

Table 4: Operating conditions and comparison of performance
parameters between the numerical design reference (Agromayor
and Nord 2019) and model presented in this paper.

Variable Agromayor and Nord 2019 Present work

Fluid R125 -
T0,in 428.15 K -
p0,in 36.18 bar -
pout 15.34 bar -
Ω 34 738.2 -

ηts 88.72% 88.44%
ṁ 11.90 kg/s 11.85 kg/s
Ẇ 227.76 kW 226.12 kW

3.2. Performance analysis

The goal of the performance analysis is to assess the
thermodynamic and kinetic variables given a geometry,
rotational speed and thermodynamic boundaries. This
means that the thermodynamic, geometrical variables (Ta-
bles 3 and 1) and rotational speed are fixed parameters,
while the velocity and static pressure inputs (Table 2) are
unknown variables. The unknown variables are deter-
mined by solving the system of equations from section
2.5 (Eq. (25)), with a root finder method from the Scipy
library (Virtanen et al. 2020).

4. Model validation

The turbine model has been used to simulate the perfor-
mance of three experimentally investigated turbines, in ad-
dition to one numerical test case. The numerical case cor-
responds to the case considered in (Agromayor and Nord
2019), and present work is validated against this case due
to the similarities of the models. The three experimental
cases are cold-air tests of one-stage axial turbines, both
at subsonic and transonic conditions (Haas and Kofskey
1975; Moffitt et al. 1980; Nusbaum and Kofskey 1972).
The experimental values where attempted to be replicated
at design pressure ratio and design rotational speed. The
metal angles were assumed to equal the design flow angles
(Eq. (15)). Note that the values in the experimental reports
are given in terms of equivalent conditions, and are here
converted to ordinary values, using the conditions at stan-
dard sea-level (temperature: 288.15 K; pressure: 1.01325
bar).

4.1. Numerical case

The operating conditions, and corresponding performance
parameters are presented in Table 4. Note that the ref-
erence case includes a diffuser model after turbine exit,
which is not considered here, and the efficiency is deter-
mined with the state at the exit of the turbine. As expected
the results match well as the models used in the reference
case and this work are similar.

4.2. Experimental case 1

The first experimental case to be simulated is the turbine
documented in (Nusbaum and Kofskey 1972). Table 5
show the operating conditions and corresponding perfor-
mance parameters at design pressure ratio and rotational
speed. The results show a deviation in total-to-static ef-
ficiency of 3.52 percentage points, which is larger than
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Table 5: Operating conditions and comparison of performance pa-
rameters between the first experimental reference (Nusbaum and
Kofskey 1972) and model presented in this paper.

Variable Nusbaum and Kofskey 1972 Present work

Fluid Air -
T0,in 295.6 K -
p0,in 13.8 bar -
p0,in/pout 2.298 -
Ω 15533 -

ηts 80.00% 76.48%
ṁ 2.696 kg/s 2.740 kg/s
Ẇ 134.14 kW 131.58 kW

Figure 6: Total-to-static efficiency as a function of rotor inlet inci-
dence. The relation looks linear, but it is observed that it becomes
nonlinear outside this region.

the uncertainty of the loss model by Kacker and Okapuu
(±1.5 percentage points) (Kacker and Okapuu 1982). The
predicted mass flow rate exceed the experimental value
with 1.64%, while the predicted work out is 1.91% less
than the actual value. The deviation in predicted design-
point efficiency was unexpected as Agromayor and Nord
used the same loss model and same reference case for val-
idation, but predicted an efficiency within the loss model
uncertainty (78.85%). Nevertheless, the report explains
that the rotor inlet whirl is greater than design, and hence
the assumption from Eq. (15) is not satisfied. Therefore,
simulations with incidence were performed and Figure 6
shows the total-to-static efficiency as a function of rotor
incidence. The figure illustrate that an efficiency of 80%
was achieved at about 3.5°incidence.

In addition, the predictions of the turbine model are also
evaluated at off-design conditions. Figure 7 show the mass
flow rate as a function of total-to-static pressure ratio and
rotational speed. The lines represent predicted mass flow
rate, while the markers illustrate the experimental val-
ues. The figure show that the model predicts similar be-
haviour as the experimental case, but with certain differ-
ences. Most noticeable is the unphysical "bump" that oc-
cur as the pressure ratio approaches the critical value. It
is observed that the bump is non-existent for isentropic
flow, and becomes more significant as the efficiency de-
creases. Thus, it is likely that this behaviour is related to
the way losses are predicted throughout the turbine. Fur-
thermore, similar as for the design point comparison, the
predicted choked mass flow rate exceed the experimental
value slightly. The choked mass flow difference in per-
centage is approximately 1.12% and 2.61% at design ro-

Table 6: Operating conditions and comparison of performance
parameters between the second experimental reference (Haas and
Kofskey 1975) and model presented in this paper.

Variable Haas and Kofskey 1975 Present work

Fluid Air -
T0,in 300 K -
p0,in 8.27 bar -
p0,in/pout 3.16 -
Ω 32 100 rpm -

ηtt 83.2% 84.3%
ṁ 0.185 kg/s 0.184 kg/s
Ẇ 11.73 kW 11.92 kW

tational speed and 30% of design rotational speed, respec-
tively. As expected the deviation is larger for off-design
rotational speed. Moreover, it can be observed that the
critical pressure ratio is slightly higher then experimental
value (approximately 2.7 vs. 2.6).

4.3. Experimental case 2

The second experimental reference is the case presented in
(Haas and Kofskey 1975). The operating conditions and
performance parameters are shown in Table 6. Note that
the efficiency here is the total-to-total efficiency. The re-
sults show that the efficiency is predicted well, with a de-
viation of 1.1 percentage points, while the predicted mass
flow rate and work output differs from the experimental
value by 0.66% and 1.56% respectively. The original re-
port indicates that the stator throat area was fabricated
5.5% smaller than the design specification, which is ac-
counted for in the simulations. Otherwise, the deviation in
both mass flow rate and work output would exceed 4.5%.

4.4. Experimental case 3

Information on the third experimental turbine is presented
in (Moffitt et al. 1980). This study presents a turbine oper-
ating at transonic conditions with relatively high specific
work output. The experimental conditions and results are
shown in Table 7. Note that the pressure ratio here is the
total-to-total pressure ratio. The results show a deviation
of 4.5 percentage points in efficiency, 3.36% in mass flow
rate and 6.11% in work output. The results suggest that
the model predicts performance of transonic turbines less

Figure 7: Mass flow rate as a function of total-to-static pressure
ratio and percentage of design rotational speed. The lines repre-
sent predicted values, while the markers are the measured values
for Experimental case 1. The vertical dashed line indicates the
design pressure ratio.
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Table 7: Operating conditions and comparison of performance
parameters between the third experimental reference (Moffitt et
al. 1980) and model presented in this paper.

Variable Moffitt et al. 1980 Present work

Fluid Air -
T0,in 378 K -
p0,in 24.13 bar -
p0,in/p0,out 3.44 -
Ω 10 600.8 rpm -

ηtt 88.6% 84.1%
ṁ 8.018 kg/s 7.748 kg/s
Ẇ 799.33 kW 750.52 kW

Table 8: Case definition and results for the design case study.
The results are compared to the reference design case described
in (Agromayor and Nord 2019).

Variable Agromayor and Nord 2019 Present work

Fluid R125 -
T0,in 428.15 K -
p0,in 36.18 bar -
pout 15.34 bar -
ṁ 11.90 kg/s -

ηts 88.72% 89.56%
Ω 34 738.2 rpm 28 647.9 rpm
Ẇ 227.76 kW 229.89 kW

Row Stator Rotor Stator Rotor
rm 4.04 cm 4.30 cm
H 2.02 cm 2.02 cm 2.02 cm 2.02 cm
(H/c) 1.772 2.000 1.900 2.000
(s/c) 0.579 0.693 0.588 0.690
(tte/o) 0.0479 0.0489 0.0500 0.0500
θin - -15.00° - -15.01°
θout 80.00° -74.49° 80.00° -74.44°
δfl 0° 0° -8.83° 10.00°

accurately than subsonic turbines, which is consistent with
the high uncertainty associated with the supersonic correc-
tion factor of the Kacker and Okapuu loss model.

5. Design case study

A design case study was conducted to showcase the de-
sign optimization method. The results obtained for this
design exercise are compared to the design obtained with
the method described in (Agromayor and Nord 2019). As
mentioned, the mass flow rate is an input variable for refer-
ence model. Thus, the mass flow rate was here constrained
to match the reference case and obtain comparable results.
The rest of the bounds and constraints where set such that
they also match for the two models. The fixed input vari-
ables, key performance parameters and geometry are pre-
sented in Table 8.

The results show that this model predicts a design with
0.84 percentage points higher efficiency, and a very simi-
lar geometry except for the flaring angle. Indeed, the pro-
posed model predicts highest efficiency at -8.83°flaring of
stator row, and 10°of rotor row, with ±10°being the upper
and lower bounds. The exact same constraint is applied
for the reference case, while that model predicts highest
efficiency at 0° flaring.

6. Summary and Discussions

In this paper a method for preliminary design and perfor-
mance analysis of one-stage axial turbines have been pre-
sented. This method is intended to be the basis for a robust
design optimization method that takes into account off-
design operating conditions. Both the performance anal-
ysis and design optimization modes have been tested and
compared against relevant data.

The validation section showed that the model performed
variably for the different reference cases. As expected,
the model predicted similar performance for the numerical
case study, but deviated significantly in some of the exper-
imental cases. It is likely that the assumption of zero in-
cidence/deviation is violated, which could cause the error
in predicted efficiency. Differences in fabricated turbine
vs. design could also cause deviations in performance pa-
rameters. Moreover, the model error was also observed
to be greater for transonic conditions compared to sub-
sonic, which is explained by the high uncertainty of the su-
personic correction factor of the Kacker and Okapuu loss
model. In addition, unphysical behavior of the mass flow
vs. pressure ratio curve was observed when the pressure
ratio approached the critical value, which could cause the
model to be less accurate. It is likely that this behaviour
is a consequence of how the losses are calculated at the
blade throats. As discussed previously, the loss coefficient
is evaluated at the throat in the same way as the exit, while
a strategy to split the losses could solve this problem.

The design case study resulted in a geometry similar to
the reference case, with converging-diverging flaring an-
gles being the most noticeable difference. This affect the
flow area and hence the flow velocities, making the veloc-
ity higher at stator exit and lower at rotor exit compared to
the reference case. The difference of flaring angle could
arise as the reference case included a diffuser model at tur-
bine exhaust, which recovers a fraction of the exit kinetic
energy. Nevertheless, the preliminary design optimization
method is confirmed to give similar results as comparable
preliminary design tools.

7. Further work

To improve the accuracy of the model, it is suggested to
do a comparative analysis of several loss models for axial
turbines, and to account for incidence in the loss calcu-
lation. All loss models considered should be compared
against experimental data, and a data collection should be
conducted, either from available literature or experimen-
tal investigation. The data collection should also contain
data from transonic/supersonic turbines to validate models
in this flow regime. Only when this is conducted one can
assess which loss model to use in this method.

In addition, the design method will be extended to account
for off-design conditions. The objective function for this
purpose will be extended to be a weighted average of effi-
ciencies at several design points. The efficiencies could be
weighted according to the occurrence of the corresponding
conditions over an annual perspective.
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