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Abstract
There is a bounded Hankel operator on the Paley–Wiener space of a disc in R

2 which
does not arise from a bounded symbol.
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1 Introduction

Let D be the unit disc in R
2. The Paley–Wiener space PW(D) is the subspace of

L2(R2) comprised of functions f whose Fourier transforms ̂f are supported in D.
For a tempered distribution ϕ, we consider the Hankel operator Hϕ defined by the
equation

Ĥϕ f (η) =
∫

D

̂f (ξ)ϕ̂(ξ + η) dξ, η ∈ D, (1)

on the dense subset of PW(D) comprised of functions f such that ̂f is smooth and
compactly supported in D.

We are interested in the characterization of the symbols ϕ such thatHϕ extends by
continuity to a bounded operator on PW(D). If ϕ is in L∞(R2), then clearly

‖Hϕ f ‖2 ≤ ‖ f ‖2‖ϕ‖∞. (2)
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Since ξ + η is in 2D whenever ξ and η are in D, Hϕ = Hψ for any ψ such that the
restrictions of ̂ψ and ϕ̂ to 2D coincide (as distributions in 2D). We thus find that

‖Hϕ‖ ≤ inf
{‖ψ‖∞ : ̂ψ

∣

∣

2D = ϕ̂
∣

∣

2D

}

. (3)

We say that the Hankel operatorHϕ has a bounded symbol if the quantity on the right
hand side of (3) is finite. We have just demonstrated that ifHϕ has a bounded symbol,
then Hϕ is bounded. We wish to explore the converse.

Question Does every bounded Hankel operator on PW(D) have a bounded symbol?

In the classical one-dimensional setting, where the role of D is played by the half-
line R+ = [0,∞), Nehari [6] gave a positive answer to this question. We therefore
refer to affirmative answers to analogous questions as Nehari theorems. Our question
for PW(D) was first raised implicitly by Rochberg [9, Sec. 7], after he had proved that
Nehari’s theorem holds for the Paley–Wiener space PW(I ) of a finite interval I ⊆ R.

It was conditionally1 shown in [1] that the Nehari theorem holds for the Paley–
Wiener space PW(P) of any convex polygon P. However, in view of C. Fefferman’s
negative resolution [3] of the disc conjecture for the Fourier multiplier of a disc, it
would not be surprising to see differing results for PW(P) and PW(D).

The main purpose of the present note is to establish the following.

Theorem 1 There is a bounded Hankel operator on PW(D) which does not have a
bounded symbol.

Minor modifications of our proof show that if Pn is an n-sided regular polygon,
then the optimal constant in the inequality

inf
{‖ψ‖∞ : ̂ψ

∣

∣

2Pn
= ϕ̂

∣

∣

2Pn

} ≤ Cn‖Hϕ‖PW(Pn)

satisfies Cn ≥ cεn1/2−ε for any fixed ε > 0. Here, cε > 0 denotes a constant which
depends only on ε. Conversely, the conditional argument of [1] yields thatCn ≤ cn for
some absolute constant c > 0. Analogous estimates for Fourier multipliers associated
with polygons were considered in [2].

Finally, let us remark that Ortega-Cerdà and Seip [7] have shown that Nehari’s theo-
rem also fails for (small) Hankel operators on the infinite-dimensional torus. However,
Helson [4] proved that if the Hankel operator is in the Hilbert–Schmidt class S2, then
it is induced by a bounded symbol. We are led to the following.

Question Does every Hankel operator on PW(D) in S2 have a bounded symbol?

In this context, we mention that Peng [8] has characterized when Hϕ is in the
Schatten class Sp, for 1 ≤ p ≤ 2, in terms of the membership of ϕ in certain Besov
spaces adapted to 2D. In particular, Hϕ is in S2 if and only if

∫

2D
|ϕ̂(ξ)|2(2 − |ξ |)3/2 dξ < ∞.

1 The arguments in [1] rely on Nehari’s theorem for R+ × R+ as a black box. It was long believed that the
Nehari theorem had been proven in this setting, but a significant flaw was recently observed in the available
reasoning. We refer to [5, Sect. 10] for a detailed discussion.

123



The Nehari Problem for the Paley–Wiener... Page 3 of 7 16

2 Proof of Theorem 1

If the Nehari theorem were to hold for PW(D), there would by the closed graph
theorem exist an absolute constant C < ∞ such that

inf
{‖ψ‖∞ : ̂ψ

∣

∣

2D = ϕ̂
∣

∣

2D

} ≤ C‖Hϕ‖ (4)

for every bounded Hankel operator on PW(D). To prove Theorem 1, we will construct
a sequence of symbols which demonstrates that no such C < ∞ can exist.

We begin with an upper bound for ‖Hϕ‖. Guided by the following lemma, our plan
is to construct ϕ such that Hϕ admits an orthogonal decomposition. For a symbol ϕ,
define

Dϕ = {

η ∈ D : ξ + η ∈ supp ϕ̂ for some ξ ∈ D
}

.

Lemma 2 Suppose that ϕ = ϕ1 + ϕ2 and that Dϕ1 ∩ Dϕ2 = ∅. Then,

Hϕ = Hϕ1 ⊕ Hϕ2 .

Proof Let f be any function in PW(D) such that ̂f is smooth and compactly supported
in D . Since Hϕ f = Hϕ1 f + Hϕ2 f by linearity of the integral (1), it is sufficient to
demonstrate that Hϕ1 f ⊥ Hϕ2 f . It follows directly from the definition of the Hankel
operator (1) that

supp Ĥϕ1 f ⊆ Dϕ1 and supp Ĥϕ2 f ⊆ Dϕ2 .

By the assumption that Dϕ1 ∩ Dϕ2 = ∅, we therefore conclude that

〈Hϕ1 f ,Hϕ2 f 〉 = 〈Ĥϕ1 f , Ĥϕ2 f 〉 = 0. ��
In particular, if Dϕ1 ∩ Dϕ2 = ∅, then

‖Hϕ‖ = max(‖Hϕ1‖, ‖Hϕ2‖).

Let us next explain the construction of ϕ. Consider a radial smooth bump function
̂b which is bounded by 1, equal to 1 on 1

2D and compactly supported in D. For a real
number 0 < r < 1/2, set̂br (ξ) = ̂b(ξ/r). Note that

‖̂br‖1 ≤ πr2. (5)

For j = 1, 2, . . . , n, we let ϕ̂ j be the function obtained by translatinĝbr by 2−r units
in the direction θ j = 2π( j − 1)/n, as measured with respect to the positive ξ1-axis in
the ξ1ξ2-plane. We set
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Fig. 1 Plots of D(w) and the corresponding disc sector from the proof of Lemma 3, for w = 1.1, w = 1.5,
and w = 1.8

ϕ = ϕ1 + ϕ2 + · · · + ϕn . (6)

Since 0 < r < 1/2, it is clear that supp ϕ̂ ⊆ 2D \ D. Let r0 = 1 − 1√
2

= 0.29 . . ..

Lemma 3 If n ≥ 2 and r = min(r0, (2/n)2), then

Dϕ j ∩ Dϕk = ∅

for every 1 ≤ j �= k ≤ n.

Proof Throughout this proof, we identify R
2 with C. We consider first a simpler

situation. For a point w in 2D \ D, let

D(w) = {

η ∈ D : ξ + η = w for some ξ ∈ D
}

.

In otherwords, D(w) is the intersection of the discs defined by |ξ | < 1 and |w−ξ | < 1.
To find the intersection of the corresponding circles, we set ξ = eiθ and let θ± denote
the solutions of the equation

1 = |w − eiθ | ⇐⇒ θ± = argw ± arccos

( |w|
2

)

.

Let P0 denote the origin, P± the points eiθ
±
, and Pw the point w. The law of cosines

implies that the angle∠P0P±Pw is greater than or equal toπ/2 if and only if |w| ≥ √
2.

If this holds, then the intersection of the two discs is contained in the disc sector defined
by the origin and the two points P±. See Fig. 1.

Suppose therefore that |w| ≥ √
2 and set I (w) = (θ−, θ+). If ξ is in D(w), we

have just seen that arg ξ is in I (w). It follows that ifw1 andw2 are points in 2D\√
2D,

then

I (w1) ∩ I (w2) = ∅ �⇒ D(w1) ∩ D(w2) = ∅. (7)

Our goal is now to estimate

Iϕ j =
⋃

w∈supp ϕ̂ j

I (w).
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Since supp ϕ̂ j is contained in a discwith center (2−r)eiθ j and radius r , straightforward
geometric arguments show that if w is in supp ϕ̂ j , then

|w| ≥ 2(1 − r) and | argw − θ j | ≤ arctan

(

r

2 − r

)

.

To ensure that |w| ≥ √
2 we require that r ≤ r0 = 1− 1√

2
.Moreover, if θ± correspond

to the point w as above, then

|θ± − θ j | ≤ arccos(1 − r) + arctan

(

r

2 − r

)

≤ 2
√
r + r ≤ 3

√
r .

Here, we used that 2 − r ≥ 1 and that arctan r ≤ r for 0 ≤ r ≤ 1. This shows that

Iϕ j ⊆ (

θ j − 3
√
r , θ j + 3

√
r
)

.

Since |θ j − θk | ≥ 2π/n for every 1 ≤ j �= k ≤ n and since π > 3, it follows
that if we choose r = min(r0, ( 2n )2), then we guarantee that Iϕ j ∩ Iϕk = ∅ for every
1 ≤ j �= k ≤ n. The proof is completed by appealing to (7). ��

Let ϕ be as in (6), with n ≥ 2 and r = min(r0, (2/n)2). It then follows from
Lemmas 2, 3, (2), and (5) that

‖Hϕ‖ = ‖Hϕ j ‖ ≤ ‖ϕ j‖∞ ≤ ‖ϕ̂ j‖1 = ‖̂br‖1 ≤ πr2. (8)

A lower bound for the left hand side in (4) will be established through duality.

Lemma 4 Suppose that ̂f is smooth and compactly supported in 2D. Then,

|〈 ̂f , ϕ̂〉|
‖ f ‖1 ≤ inf

{‖ψ‖∞ : ̂ψ
∣

∣

2D = ϕ̂
∣

∣

2D

}

.

Proof Obviously,

|〈 f , ψ〉|
‖ f ‖1 ≤ ‖ψ‖∞,

and when ̂f is supported in 2D and ̂ψ |2D = ϕ̂|2D, we have that

〈 f , ψ〉 = 〈 ̂f , ̂ψ〉 = 〈 ̂f , ϕ̂〉. ��
We now need to choose a test function f adapted to the symbol ϕ of (6). It turns

out that f = f1 + f2 + · · · + fn , where f j = ϕ j for j = 1, 2, . . . , n, will do. By our
choice of n ≥ 2 and r = min(r0, (2/n)2), it is clear that supp ̂f j ∩ supp ̂fk = ∅ for
every 1 ≤ j �= k ≤ n, since the converse statement would contradict Lemma 3.
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Exploiting this, we find that

|〈 f , ϕ〉| = ‖ f ‖22 = ‖ ̂f ‖22 = n‖̂br‖22 ≥ π

4
nr2. (9)

To get an upper bound for ‖ f ‖1, we split the integral at some R > 0,

‖ f ‖1 =
∫

|x |≤R
| f (x)| dx +

∫

|x |>R
| f (x)| dx = I1 + I2.

For the first integral, we use the Cauchy–Schwarz inequality,

I1 ≤ √
πR

( ∫

|x |≤R
| f (x)|2 dx

) 1
2 ≤ √

πR‖ f ‖2 = √
πR‖ ̂f ‖2 ≤ πR

√
nr ,

where we again exploited that supp ̂f j ∩ supp ̂fk = ∅ for 1 ≤ j �= k ≤ n. For the
second integral, we note that b is rapidly decaying, sincêb is smooth and compactly
supported. In particular, for every κ ≥ 1, there is a constant Aκ such that

∫

|x |>


|b(x)| dx ≤ Aκ


κ−1 , (10)

holds for every 
 > 0. We constructed ̂f j by translatinĝbr by 2− r units in direction
θ j , so there is a unimodular function g j such that

f j (x) = g j (x)br (x) = g j (x)r
2b(r x).

Thus | f (x)| ≤ nr2b(r x) and (10), with 
 = Rr , yields

I2 ≤ n
∫

|x |>R
r2|b(r x)| dx = n

∫

|x |>r R
|b(x)| dx ≤ Aκ

n

(Rr)κ−1 .

Combining our estimates for I1 and I2 and choosing R = n1/(2κ)/r , we find that

‖ f ‖1 = I1 + I2 ≤ (π + Aκ)n1/2+1/(2κ). (11)

Inserting the estimates (9) and (11) into Lemma 4, we obtain

πr2n1/2−1/(2κ)

4(π + Aκ)
≤ inf

{‖ψ‖∞ : ̂ψ
∣

∣

2D = ϕ̂
∣

∣

2D

}

. (12)

Final part of the proof of Theorem 1 To finish the proof of Theorem 1, we combine (8)
and (12) to conclude that the constant C in (4) must satisfy

n1/2−1/(2κ)

4(π + Aκ)
≤ C
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for any fixed κ ≥ 1 and every integer n ≥ 2. Choosing some κ > 1 and letting
n → ∞, we obtain a contradiction. ��
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