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A B S T R A C T

Damping of the surge and pitch motions, as well as the first lateral sloshing mode in a rigid free-floating
upright circular dock with bilge boxes and open bottom is investigated. Model tests are carried out on a
0.80 m diameter model in regular waves with wave periods near the highest natural sloshing period, and
the internal free-surface elevation and model’s rigid body motions are measured. Perforated and solid annular
baffles of relatively small widths are also installed inside the dock at various submergences. The experimental
results are compared to a semi-analytical approach, where a three-dimensional domain decomposition method
based on linear potential flow theory is adopted to calculate the hydrodynamic coefficients and exciting forces
in heave, surge and pitch. A reduced natural sloshing frequency, as well as a damping ratio estimated from
the energy dissipated due to flow separation from the baffles, are introduced in the free-surface boundary
conditions to model the effects of the baffle. It shows good agreement with experimental data when the ratio
between the draft of the baffle and the internal radius of the cylinder is 𝑑𝐵∕𝑎 = 0.27, and tends to under-predict
the damping ratio for shallower drafts, most likely due to free-surface interactions. The solid baffle damps the
sloshing response most efficiently, reducing the amplitude at the resonant peak by more than 56%.
1. Introduction

This study aims to investigate the rigid-body motions of a free-
floating bottomless upright circular cylinder with bilge boxes, also
referred to as a dock, in regular waves. The dock was suggested for
the assembly of SPAR-type floating offshore wind turbines (FOWT)
directly on site, the walls of the cylinder acting as protecting shields
against external waves. The sloshing resonance becomes a critical issue
at typical operational weather conditions. The heave, pitch, and piston
mode resonance can be moved to higher periods thanks to design
optimisations, as showed by Jiang et al. (2020). However, it is not the
case for the first transverse sloshing mode, which is the main focus of
this paper. Special attention is made to damping introduced by annular
baffles mounted to the interior walls of the dock.

The radiation and diffraction problems are solved in the frequency
domain, under the classical linear potential flow assumptions. A
domain-decomposition approach using matched eigenfunction expan-
sions is adopted, with the advantage of being fast and economical.
Such analytical methods were extensively treated in the literature,
both for two-dimensional (2D) and three-dimensional (3D) geometries.
Miles and Gilbert (1968), later completed by Garrett (1971), solved
the scattering problem of a closed-bottom circular cylinder in finite
water depth. Yeung (1980) and Sabuncu and Calisal (1981) solved the
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radiation problem for the same geometry. The case of a bottomless
circular cylinder with finite wall thickness was considered by Mavrakos
(1988, 1985), and is extended here to include bilge boxes at the bottom.

Annular baffles installed on the cylinder’s internal wall, below the
free surface, to damp the first transverse sloshing mode, are the centre
of attention. Experimental campaigns in cylindrical tanks (Abramson,
1966) pointed out the superior efficiency of baffles over other types of
damping devices. Isaacson and Premasiri (2001) estimated the equiva-
lent linear damping of a baffle in a rectangular tank from the dissipation
of energy over one period of oscillation, caused by the flow separation
at the sharp edge. The baffle is reduced to a flat plate, and Morison
formula (Morison et al., 1950) is used to calculate the viscous work.
Faltinsen and Timokha (2009) introduced such linear damping ratios
in the free-surface boundary condition. Furthermore, they showed how
to estimate shifted natural sloshing frequencies due to the presence
of a small internal body in a tank based on variational formulations,
which can be expressed as function of its added mass. A simple case
is flat plates, for which the hydrodynamic coefficients have been well-
studied (Graham, 1980). Graham (1980) presented explicit expressions
of the inertial and drag coefficients for oscillatory flows around bodies
with sharp corners, valid for low Keulegan–Carpenter (KC) numbers,
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typically KC<2, and provided empirical coefficients for simple geome-
tries. Mentzoni (2020) used the same relations for perforated plates
with good results, determining the empirical coefficients through nu-
merous CFD simulations. In the present work we investigate both solid
and perforated baffles, at different submergences.

Potential flow boundary-value problems in a closed-bottom cylinder
with annular baffles were solved by Gavrilyuk et al. (2006), or by Wang
et al. (2016) for multiple baffles. The latest study set the same domain
decomposition approach used in this work for the open-bottom dock
without baffle. One interesting observation pointed out in their studies
is the dependency of the natural surface modes on the location of the
baffle, in particular on the radial surface profiles (Wang et al., 2016).
We do not account for this local disturbance, something that might be
non-negligible and could be studied in future work.

Baffles are a quite efficient mean of damping the sloshing response,
and therefore the coupled surge-pitch and resonant sloshing inside
the dock. Without baffles, the resonant free-surface responses are 3–
4 times higher than the incident waves. The surge and pitch motions
of the dock are also considerable due to the sloshing-induced loads.
Damping is therefore necessary for the dock to satisfy the criteria of
small relative vertical and horizontal motions between the cranes and
the wind turbine when installing the different components, from the
tower to the blades. The present paper treats the open dock without
the presence of a FOWT, and represents a first step toward a future
fully coupled model including the SPAR of a FOWT. Emphasis is made
on an efficient model, including the damping effect of the baffles based
on physical reasoning. There are several ways to do this, and we have
chosen the following strategy. Our model has two main steps. In the
first step, the rigid-body motions of the dock, without baffles, are solved
by means of a matched eigenfunction expansion, similar to Mavrakos
(1988, 1985), but extended to include the bilge boxes. Next, we study
the interior domain separately in terms of the linear modal analysis
developed by Faltinsen and Timokha (2009), i.e. as if it was a closed
tank with bottom. This is justified by the fact that the draft of the dock
is in the same order as the inner diameter, and we can therefore neglect
the water motions near the bottom when studying the first sloshing
mode. The benefit with the modal analysis is that damping can easily
be included by a damping term in the modal equations. The damping of
the baffles is quadratic in nature and included by means of equivalent
linearisation. We apply the 2D Morison equation on an angular section
of the dock with KC number dependent drag coefficients, and integrate
around the dock. Further, the baffles change the natural period. This is
accounted for by using variational statements, also found in Faltinsen
and Timokha (2009). Iteration is applied to reach a reduced sloshing
amplitude. The loads on the interior walls, as predicted in the first step
is now replaced by the loads predicted in the second step, in terms of
interior added mass and damping coefficients. The number of iterations
needed is modest, typically between 5 and 15, and the model is robust
and fast.

The paper is organised as follows. In Section 2, the diffraction
and radiation problems are solved in surge, pitch and heave for the
dock without baffle. In Section 3, a convergence study is made on the
number of eigenmodes required in the analytical method presented in
Section 2. Added masses and damping coefficients, as well as exciting
forces are compared to the ones obtained with the commercial potential
code WAMIT (Lee and Newman, 2006). In Section 4, the effects of the
annular baffles on sloshing are first studied in closed-bottom circular
cylinder, and in tank-fixed coordinate system, before deriving the
equation of motions in an Earth-fixed referential for the real geometry.
Model tests are presented in Section 5, and the results discussed in
Section 6.

2. Theoretical description

We first neglect the effect of flow separation and work under the
assumption of potential flow theory. Further, we use the wave slope
2

𝑍

to linearise the boundary value problem at hand. The diffraction and
radiation problems associated with the geometry presented in Fig. 1
are solved using a domain-decomposition (DD) approach, for incident
waves propagating along the positive 𝑥-axis. The domain 𝛺 is divided
into four subdomains, denoted I, II, III and IV. The body’s mean wetted
surface is denoted 𝑆0. Complex notations are used to simplify the
calculations, where the physical quantities correspond to the real parts
of the given variables.

2.1. Diffraction problem

Regular linear waves of amplitude 𝐴 and frequency 𝜔 are scattered
y the fixed structure. The velocity potential of the incident waves is
iven by Eq. (1) using cylindrical coordinates:

𝐼 = −𝑖
𝐴𝑔 cosh(𝑘(𝑧 + ℎ))

𝜔 cosh(𝑘ℎ)
𝑒𝑖(𝑘𝑟 cos(𝜃)−𝜔𝑡). (1)

𝑔 = 9.81 m∕s is the gravitational acceleration, and 𝑘 the wave number,
coupled with 𝜔 by the linear dispersion relationship 𝜔2 = 𝑔𝑘 tanh(𝑘ℎ).
The complex exponential is then decomposed in Fourier series, and the
total scattered potential 𝛷𝑆 , summations of the incident and diffracted
flows, can be expressed under the same form:

𝛷𝐼 = −𝑖
𝑔𝐴
𝜔

cosh(𝑘(𝑧 + ℎ))
cosh(𝑘ℎ)

∞
∑

𝑝=0
𝜖𝑝𝑖

𝑝𝐽𝑝(𝑘𝑟) cos(𝑝𝜃)𝑒−𝑖𝜔𝑡, (2)

𝑆 = −𝑖𝜔𝐴
∞
∑

𝑝=0
𝜖𝑝𝑖

𝑝𝜙𝑝(𝑟, 𝑧) cos(𝑝𝜃)𝑒−𝑖𝜔𝑡, (3)

here 𝐽𝑝, 𝑝 ∈ N is the Bessel function of the first kind and 𝑝𝑡ℎ order, 𝑖
he imaginary unit, 𝜖𝑝, 𝑝 ∈ N the Neumann’s notation
{

𝜖0 = 1
𝜖𝑝 = 2, 𝑝 ∈ N∗,

(4)

nd where N∗ = N∖{0}. The modal potentials 𝜙𝑝, 𝑝 ∈ N are solved
ndependently, due to the orthogonality of the cosine function that we
xploit in the matching of pressure and normal velocities later on. They
atisfy the Laplace Eq. (5) and the conditions (6), (7) and (8) on the
oundaries of 𝛺:
𝜕2𝜙
𝜕𝑧2

+ 1
𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝜙
𝜕𝑟

)

−
𝑝2

𝑟2
𝜙 = 0 in𝛺, (5)

𝜕𝜙
𝜕𝑧

= 𝜔2

𝑔
𝜙 on 𝑧 = 0, (6)

𝜕𝜙
𝜕𝑧

= 0 on 𝑧 = −ℎ, (7)
𝜕𝜙
𝜕𝑛

= 0 on𝑆0. (8)

In addition, outgoing diffracted waves should vanish far from the
body, this radiation condition can be expressed (Sommerfeld, 1948):
lim
𝑟→∞

√

𝑘𝑟(
𝜕(𝛷𝑆 −𝛷𝐼 )

𝜕𝑟
− 𝑖𝑘(𝛷𝑆 − 𝛷𝐼 )) = 0. The free-surface elevation

is then obtained from the linearised kinematic free-surface boundary
condition, i.e. 𝜕𝜁

𝜕𝑡
=
𝜕𝛷𝑆
𝜕𝑧

.
The dispersion relationship

𝜔2

𝑔
+ 𝛼𝑞 tan(𝛼𝑞ℎ) = 0 (9)

is solved in domains I and IV (cf. Fig. 1), 𝛼𝑞 , 𝑞 ∈ N∗ are the real
solutions by increasing order of Eq. (9), and 𝛼0 = −𝑖𝑘. Similar relations
hold in domain III, above the bilge boxes, for the local water depth 𝑑.
𝛽𝑞 , 𝑞 ∈ N∗ are the real solutions of

𝜔2

𝑔
+ 𝛽𝑞 tan(𝛽𝑞𝑑) = 0, (10)

here 𝛽0 = −𝑖�̃�, and �̃� is the wave number in domain III for the water
epth 𝑑.

The set of orthonormal functions

(𝑧) = 𝑁
− 1

2 cos(𝛼 (𝑧 + ℎ)), 𝑞 ∈ N (11)
𝑞 𝑞 𝑞
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Fig. 1. Sketch of the upright, circular, bottomless floating dock with bilge boxes. Explanation of parameters and the division of the domain 𝛺 into the four subdomains denoted
I–IV used for the present analysis. A Cartesian Earth-fixed coordinate system 𝑂𝑥𝑦𝑧 is adopted with the origin at the mean free-surface and the 𝑧-axis positive upwards.
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are introduced, solutions in 𝑧 of the Laplace equation in domains I
and IV. 𝑁𝑞 , 𝑞 ∈ N are normalised coefficients, assuring the orthonor-
mality condition (explicit expressions of 𝑁𝑞 are given in the online
supplement). Similar functions are defined for the domain III:

�̃�𝑞(𝑧) = �̃�
− 1

2
𝑞 cos(𝛽𝑞(𝑧 + 𝑑)), 𝑞 ∈ N. (12)

2.1.1. Potential expansions
The potential 𝜙𝑝 are determined by separation of variables as the

summation of the solutions of the Laplace equation,

𝜙𝐼𝑝 (𝑟, 𝑧) =
[

𝐽𝑝(𝑘𝑟) −
𝐽𝑝(𝑘𝑐)
𝐻𝑝(𝑘𝑐)

𝐻𝑝(𝑘𝑟)
]

𝑍0(𝑧)
𝑍′

0(0)
+ 𝑏

∞
∑

𝑞=0
𝐴𝐼𝑝,𝑞

𝐾𝑝(𝛼𝑞𝑟)
𝐾𝑝(𝛼𝑞𝑐)

𝑍𝑞(𝑧), (13)

𝐼𝐼
𝑝 (𝑟, 𝑧) = 𝑏

∞
∑

𝑞=0
𝜖𝑞[𝐴𝐼𝐼1,𝑝,𝑞𝑃

𝐼𝐼
𝑝,𝑞 (𝑟) + 𝐴

𝐼𝐼
2,𝑝,𝑞𝑄

𝐼𝐼
𝑝,𝑞(𝑟)] cos

(

𝑞𝜋(𝑧 + ℎ)
𝑙

)

, (14)

𝜙𝐼𝐼𝐼𝑝 (𝑟, 𝑧) = 𝑏
∞
∑

𝑞=0
[𝐴𝐼𝐼𝐼1,𝑝,𝑞𝑃

𝐼𝐼𝐼
𝑝,𝑞 (𝑟) + 𝐴𝐼𝐼𝐼2,𝑝,𝑞𝑄

𝐼𝐼𝐼
𝑝,𝑞 (𝑟)]�̃�𝑞(𝑧), (15)

𝜙𝐼𝑉𝑝 (𝑟, 𝑧) = 𝑏
∞
∑

𝑞=0
𝐴𝐼𝑉𝑝,𝑞

𝐼𝑝(𝛼𝑞𝑟)
𝐼𝑝(𝛼𝑞𝑎)

𝑍𝑞(𝑧). (16)

In domain I, it includes the contribution of the incident waves (Garrett,
1971), cf. Eq. (13), where 𝐼𝑝 and 𝐾𝑝 are the modified Bessel functions
𝐻𝑝 is the Hankel function of the first kind, and we have the relationship
𝐾𝑝(−𝑖𝑘𝑟) = 1

2𝜋𝑖
𝑝+1𝐻𝑝(𝑘𝑟) and 𝐼𝑝(𝛼0𝑟) = 𝐽𝑝(𝑘𝑟). The eigen-modes are

multiplied by the external radius 𝑏 to keep the unknowns 𝐴𝐼𝑝,𝑞 non-
dimensional. The expansions of the 𝑝th potential mode in the domains
II and III are given by Eqs (14) and (15), where the functions 𝑃𝑝,𝑞(𝑟)
and 𝑄𝑝,𝑞(𝑟) have been defined similar to Mavrakos (1985) in order to
implify the matching conditions for the potential at the boundaries
ith adjacent domains, and to lighten the notations (their explicit
xpressions are given in the online supplement). Finally, the potential
xpansions in the domain IV are given by (16).

.1.2. Matching
For each mode 𝑝 ∈ N, we have introduced an infinite number of

nknowns 𝐴𝑝,𝑞 , 𝑞 ∈ N, which remain to be determined by establishing
he matching conditions on all the vertical boundaries.

First, the continuity of the dynamic pressure between two consecu-
ive domains is enforced over the corresponding boundary, in the way
f Garrett (1971):

−(𝑑+𝑠)
𝜙𝐼𝐼𝑝 (𝑎, 𝑧) cos

(

𝑞𝜋(𝑧 + ℎ)
)

𝑑𝑧
3

∫−ℎ 𝑙 t
= ∫

−(𝑑+𝑠)

−ℎ
𝜙𝐼𝑉𝑝 (𝑎, 𝑧) cos

(

𝑞𝜋(𝑧 + ℎ)
𝑙

)

𝑑𝑧, (17)

∫

−(𝑑+𝑠)

−ℎ
𝜙𝐼𝐼𝑝 (𝑐, 𝑧) cos

(

𝑞𝜋(𝑧 + ℎ)
𝑙

)

𝑑𝑧

= ∫

−(𝑑+𝑠)

−ℎ
𝜙𝐼𝑝 (𝑐, 𝑧) cos

(

𝑞𝜋(𝑧 + ℎ)
𝑙

)

𝑑𝑧, (18)

∫

0

−𝑑
𝜙𝐼𝐼𝐼𝑝 (𝑐, 𝑧)�̃�𝑞(𝑧)𝑑𝑧 = ∫

0

−𝑑
𝜙𝐼𝑝 (𝑐, 𝑧)�̃�𝑞(𝑧)𝑑𝑧. (19)

Then the continuity of the normal velocity, as well as the non-
enetration condition on the vertical walls are assured by integration
ver the whole water depth,

∫

0

−𝑑

𝜕𝜙𝐼𝐼𝐼𝑝

𝜕𝑟
(𝑏, 𝑧)�̃�𝑞(𝑧)𝑑𝑧 = 0, (20)

∫

0

−ℎ

𝜕𝜙𝐼𝑝
𝜕𝑟

(𝑐, 𝑧)𝑍𝑞(𝑧)𝑑𝑧 = ∫

−(𝑑+𝑠)

−ℎ

𝜕𝜙𝐼𝐼𝑝
𝜕𝑟

(𝑐, 𝑧)𝑍𝑞(𝑧)𝑑𝑧

+ ∫

0

−𝑑

𝜕𝜙𝐼𝐼𝐼𝑝

𝜕𝑟
(𝑐, 𝑧)𝑍𝑞(𝑧)𝑑𝑧, (21)

∫

0

−ℎ

𝜕𝜙𝐼𝑉𝑝
𝜕𝑟

(𝑎, 𝑧)𝑍𝑞(𝑧)𝑑𝑧 = ∫

−(𝑑+𝑠)

−ℎ

𝜕𝜙𝐼𝐼𝑝
𝜕𝑟

(𝑎, 𝑧)𝑍𝑞(𝑧)𝑑𝑧. (22)

Because of the orthogonality properties of the functions 𝑍𝑞 , �̃�𝑞 ,
and cos, respectively, these equations result in a linear system for the
coefficients 𝐴𝑝,𝑞 , 𝑞 ∈ N, independently for each 𝑝 ∈ N. In practice, the
sums from the potential expansions must be truncated. We write 𝑁𝑆
the total number of potentials describing the diffracted flow in Eq. (3),
and 𝑁𝐼 , 𝑁𝐼𝐼 , 𝑁𝐼𝐼𝐼 and 𝑁𝐼𝑉 the numbers of modes kept in the domains
, II, III and IV, i.e. in the expansions (13), (14), (15) and (16) for the
otential 𝜙𝑝. The same number of modes in the domains I to IV are
hosen for each 𝑝 ∈

[

0, 𝑁𝑆
]

for the sake of simplicity.
Eqs. (17) to (20) give a relationship between each unknown coeffi-

ients 𝐴𝐼𝐼 and 𝐴𝐼𝐼𝐼 as a function of the coefficients 𝐴𝐼 and 𝐴𝐼𝑉 , which
an be substituted in the right hand side of Eqs (21) and (22). The order
f the linear systems resulting from the matching conditions is then
educed to 𝑁𝐼 +𝑁𝐼𝑉 for all fixed 𝑝 ∈

[

0, 𝑁𝑆
]

. This system is condensed
y the matricial equation
𝑆 = B𝑆𝑨𝑆 + 𝑪𝑆 (23)

for the variable 𝑨𝑆 =
[

𝐴𝐼𝑝,1 ⋯𝐴𝐼𝑝,𝑁𝐼 𝐴
𝐼𝑉
𝑝,1 ⋯𝐴𝐼𝑉𝑝,𝑁𝐼𝑉

]𝑇 . The upper
ndex 𝑆 stands here for ‘‘Scattering’’. The coefficients of the matrices
𝑆 , 𝑪𝑆 and the relation to the remaining coefficients 𝐴𝑝,𝑞 are given in

he online supplement.
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2.1.3. Exciting forces and moment
The hydrodynamic exciting forces and moments are derived by

integrating the dynamic pressure on the walls of the structure:

𝐹𝑆𝑗 = 𝜌∫ ∫𝑆0

𝜕𝛷𝑆
𝜕𝑡

𝑛𝑗𝑑𝑆 = −𝜔2𝐴𝜌
∞
∑

𝑝=0
𝜖𝑝𝑖

𝑝

×

[

∫ ∫𝑆0
𝜙𝑝(𝑟, 𝑧) cos(𝑝𝜃) 𝑛𝑗𝑑𝑆

]

𝑒−𝑖𝜔𝑡 𝑗 ∈ [1, 6]. (24)

𝒏 = [𝑛1 𝑛2 𝑛3]𝑇 is the unit vector pointing outward the body, 𝒓 =
[𝑟 cos(𝜃) 𝑟 sin(𝜃) 𝑧]𝑇 is the position vector, and [𝑛4 𝑛5 𝑛6]𝑇 = 𝒓 × 𝒏. 𝜌 is
the water density. Their analytical expressions are given in the online
supplement.

2.2. Radiation problem

Due to symmetry of the body geometry, and mooring, we only
consider surge, heave and pitch motions, respectively denoted 𝜂𝑗 =
𝜂𝑗𝑒−𝑖𝜔𝑡, 𝑗 ∈ [1, 3, 5]. The forced pitch motion is defined about the 𝑂𝑦
axis (cf. Fig. 1). 𝜂𝑗 is the complex amplitude. �̇� is the body’s velocity
for each of the three degrees of freedom (DoFs). In the framework of
linear potential flow theory, the response of the fluid can be expressed
by

𝛷𝑅(𝑟, 𝜃, 𝑧, 𝑡) = 𝜙(𝑟, 𝑧)�̇� cos(𝑝𝜃), (25)

𝑝 = 0 corresponds to the symmetric DoF, heave, and 𝑝 = 1 to
the anti-symmetric DoFs, surge and pitch. The potentials 𝜙 satisfy the
Laplace Eq. (5), the free-surface and bottom-boundary conditions (6)
(7), the body-boundary condition 𝜕𝜙

𝜕𝑛
= 𝑛𝑗 , 𝑗 = 1, 3 and 5 for each DoF

respectively, as well as the radiation condition for outgoing radiated
waves lim𝑟→∞

√

𝑘𝑟(
𝜕𝜙
𝜕𝑟

− 𝑖𝑘𝜙) = 0.

.2.1. Potential expansions
The potentials in the domains I and IV correspond to the symmetric

nd anti-symmetric modes of the diffraction problem, with the differ-
nce that there is no incident waves and all the radiated potentials have
o vanish for large 𝑟 in domain I. They are given by

𝐼 (𝑟, 𝑧) = 𝜓
∞
∑

𝑞=0
𝐴𝐼𝑞

𝐾𝑝(𝛼𝑞𝑟)
𝐾𝑝(𝛼𝑞𝑐)

𝑍𝑞(𝑧), (26)

𝜙𝐼𝑉 (𝑟, 𝑧) = 𝜓
∞
∑

𝑞=0
𝐴𝐼𝑉𝑞

𝐼𝑝(𝛼𝑞𝑟)
𝐼𝑝(𝛼𝑞𝑎)

𝑍𝑞(𝑧), (27)

where 𝜓 = 𝑏 for the problems in heave and surge, and 𝜓 = 𝑏2 for the
problem in pitch.

The expansions are chosen to satisfy exactly all the horizontal
boundary conditions in their corresponding domain. In the domains II
and III, where a horizontal body-boundary condition is present, and
similar to Yeung (1980), the potential is decomposed in:

• A particular solution 𝜙𝑚 that satisfies the Laplace equation, and
all the horizontal boundary conditions when the forced motion
is applied, but without any condition on the vertical boundaries
(taken care of by 𝜙ℎ).

• A homogeneous solution 𝜙ℎ that satisfies the Laplace equation
when the structure is fixed, and which assures that the vertical
matching with adjacent domains or body-boundary conditions are
satisfied.

The potentials in the domain II and III are thus expressed as 𝜙𝐼𝐼 =
𝜙𝐼𝐼ℎ + 𝜙𝐼𝐼𝑚 and 𝜙𝐼𝐼𝐼 = 𝜙𝐼𝐼𝐼ℎ + 𝜙𝐼𝐼𝐼𝑚 . The functions (28) to (31) are
proposed for the particular solutions, and the homogeneous parts are
given by (32) and (33):

𝜙𝐼𝐼 =
(𝑧 + ℎ)2 − 𝑟2

2 in heave, (28)
4

𝑚 2(ℎ − (𝑑 + 𝑠)) p
𝜙𝐼𝐼𝑚 = −
𝑟(𝑧 + ℎ)2 − 𝑟3

4
2(ℎ − (𝑑 + 𝑠))

in pitch, (29)

𝜙𝐼𝐼𝐼𝑚 = 𝑧 +
𝑔
𝜔2

in heave, (30)

𝜙𝐼𝐼𝐼𝑚 = −(𝑧 +
𝑔
𝜔2

)𝑟 in pitch, (31)

𝜙𝐼𝐼ℎ (𝑟, 𝑧) = 𝜓
∞
∑

𝑞=0
𝜖𝑞[𝐴𝐼𝐼1,𝑞𝑃

𝐼𝐼
𝑚,𝑞(𝑟) + 𝐴

𝐼𝐼
2,𝑞𝑄

𝐼𝐼
𝑚,𝑞(𝑟)] cos

(

𝑞𝜋(𝑧 + ℎ)
𝑙

)

, (32)

𝜙𝐼𝐼𝐼ℎ (𝑟, 𝑧) = 𝜓
∞
∑

𝑞=0
[𝐴𝐼𝐼𝐼1,𝑞 𝑃

𝐼𝐼𝐼
𝑚,𝑞 (𝑟) + 𝐴𝐼𝐼𝐼2,𝑞 𝑄

𝐼𝐼𝐼
𝑚,𝑞 (𝑟)]�̃�𝑞(𝑧). (33)

e note that for the problem in surge, 𝜙𝐼𝐼𝑚 = 𝜙𝐼𝐼𝐼𝑚 = 0.

.2.2. Matching
As for the diffraction problem, the continuity of the dynamic pres-

ure between two domains is assured by integration over the domains’
ommon boundary, while the conditions on the normal velocity for the
roblems in surge, heave, and pitch, respectively, are imposed over the
hole water depth.

The sums are once again truncated, and the modes kept in the
our domain for each DoF denoted 𝑁𝐼 , 𝑁𝐼𝐼 , 𝑁𝐼𝐼𝐼 and 𝑁𝐼𝑉 . Similar to
he diffraction problem, the matching equations are expressed by the
atrical equation
𝑅 = B𝑅𝑨𝑅 + 𝑪𝑅 (34)

f order 𝑁𝐼 + 𝑁𝐼𝑉 for each DoF, and for the variable 𝑨𝑅 =
𝐴𝐼1 ⋯𝐴𝐼𝑞 𝐴

𝐼𝑉
1 ⋯𝐴𝐼𝑉𝑞

]𝑇 . The analytical expressions of these matrices,
nd the relation to the remaining coefficient 𝐴𝑞 are given in the online
upplement.

.2.3. Added mass and damping coefficients
Once the potential is known in each domain, the hydrodynamic

oefficients can be determined (Newman, 1977) by

⎧

⎪

⎨

⎪

⎩

𝑎𝑖,𝑗 = −𝜌Re
[

∫ ∫𝑆0 𝜙𝑗 cos(𝑝𝜃)𝑛𝑖𝑑𝑆
]

𝑏𝑖,𝑗 = −𝜌𝜔 Im
[

∫ ∫𝑆0 𝜙𝑗 cos(𝑝𝜃)𝑛𝑖𝑑𝑆
]

(𝑖, 𝑗) ∈ {1, 3, 5}2. (35)

y symmetry, when there is no current or forward speed, 𝑎1,5 = 𝑎5,1 and
1,5 = 𝑏5,1, and all the coefficient expressing a coupling between heave
nd either surge or pitch are null.

The analytical expressions of these coefficients are given in the
nline supplement.

. Verification of the potential code

Our theory is compared with the commercial Boundary Element
ethod (BEM) software WAMIT (Lee and Newman, 2006) to investi-

ate the convergence of the results. The results of these convergence
tudies are presented in Figs. 2 and 3 for 𝑎∕𝑏 = 0.75, 𝑐∕𝑏 = 1.22,
∕𝑏 = 0.13, (𝑑 + 𝑠)∕𝑏 = 2 and ℎ∕𝑏 = 5.

As illustrated in Figs. 2 and 3, the convergence for the radiation
roblem in surge is reached for only 10 modes in each domain, and
he radiation problem in pitch for 50 modes in each domain. In forced
eave, a higher number of modes in the domain I relative to the
omains II and III is required to represent the flow in the vicinity of
he bilge boxes at the bottom of the dock. It is chosen to use 𝑁𝐼 = 100,
𝐼𝐼 = 𝑁𝐼𝐼𝐼 = 20 and 𝑁𝐼𝑉 = 50 for all simulations. The convergence of

he exciting force in heave, particularly its phase, is very numerically
ensitive, due to that the waves are short compared to the dock’s
raft, and the pressures are very small at the bottom of the dock. In
ddition, a study carried out for the free-surface elevation and the
ynamic pressure field at several locations showed that 𝑁𝑆 = 12 was a
easonable number of modes to achieve convergence in Eq. (3), while
𝑆 = 2 provides the desired forces and moments from the diffraction

roblem. This latter number will be retained, since the incident waves
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Fig. 2. Non-dimensional added mass (left axis) and damping coefficients (right axis) computed by the present DD method and the panel code WAMIT. Surge in the top left corner,
heave in the top right corner, pitch in the bottom left corner, and coupled coefficients in surge and pitch in the bottom right corner. In the legend, 𝑎 and 𝑏 stand for the added
mass and damping coefficients, respectively, and the number of modes associated to the domain decomposition (DD) method are given in the order from 𝑁𝐼 to 𝑁𝐼𝑉 .
Fig. 3. Non-dimensional amplitude of exciting forces and moments (left axis) and their phases (right axis) computed by the present DD method and the panel code WAMIT. Surge
in the top left corner, heave in the top right corner, and pitch in the bottom. The same number of modes are tested as in Fig. 2.
are too small to cause any perturbation of the free surface inside the
dock when this one is fixed.

The peak at 𝜔2𝑏∕𝑔 = 0.40 observed from the problems in heave (cf.
upper right figure in Fig. 2) corresponds to the piston-mode frequency
described by Molin (2001). The second peak at 𝜔2𝑏∕𝑔 = 2.45 observed
for the added mass in surge and pitch, cf. Fig. 3, corresponds to the
first lateral sloshing mode. Analytical formulas for cylinders with closed
bottom (Faltinsen and Timokha, 2009) give a very good estimation of
this natural frequency when the draft of the dock is large.

4. Modelling of the annular damping baffles based on linear
modal sloshing theory

A thin annular baffle of width 𝑎𝐵∕𝑎 = 0.17, submergence 𝑑𝐵 and
thickness 𝑡∕𝑎 = 0.017 is installed on the internal wall of the dock, as
5

in Fig. 4. The baffle is assumed to always remain fully submerged. In
order to include it in our model without introducing any additional
domains in the DD method, we use established solutions for sloshing
inside closed-bottom upright circular tanks, referred to as linear modal
theory (Faltinsen and Timokha, 2009). The dock is indeed designed
such that the draft 𝑑 fulfils 𝜆∕𝑑 < 2 near resonance of the first sloshing
mode, 𝜆 being the wave length of the incident waves, and such that
the natural periods in heave and pitch are higher than the considered
wave periods. It results that the fluid motion at the bottom of the dock
is negligible. For instance, the dynamic pressure calculated with the
method presented above reaches less than 1% of its maximal value at
the free surface, and is mainly caused by pitch motions. We note in
particular that the diffraction problem is unchanged when the baffle is
installed.
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Fig. 4. Sketch of the centre-plane of the internal domain of the floating dock which is
represented with a closed-bottom (closed) tank in our combined DD method to include
the effect of baffles in the linear modal equations. The baffle draft 𝑑𝐵 and width 𝑎𝐵 are
illustrated. The draft 𝑑 + 𝑠 in Fig. 1 is re-written 𝑑 in this section for lighter notations.
𝑂𝑥𝑦𝑧 is here a tank-fixed coordinate system.

The baffle introduces two main effects: a shift in the natural sloshing
frequencies, as well as the desired damping. We consider that they
affect only the first sloshing mode in the following analysis, as this
is the one that is excited mainly, and it will therefore dominate the
internal flow entirely.

4.1. Linear modal theory

The absolute potential 𝛷(𝑥, 𝑦, 𝑧, 𝑡) inside a closed upright circular
cylinder is given by Eq. (36), where 𝛺 is the Stokes–Joukowski poten-
tial associated with pitch motion, cf. Eq. (38), 𝜑𝑞 the eigenfunctions
determined from the spectral problem (Faltinsen and Timokha, 2009),
cf. Eq. (37), and 𝑅𝑞(𝑡) unknown time-dependent coefficients:

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = �̇�1𝑟 cos(𝜃) + �̇�5𝛺 +
∞
∑

𝑞=1
𝑅𝑞(𝑡)𝜑𝑞(𝑟, 𝜃, 𝑧), (36)

𝜑𝑞(𝑟, 𝜃, 𝑧) =
𝐽1

(

𝑘𝑞𝑟
)

𝐽1(𝑘𝑞𝑎)
cosh

(

𝑘𝑞(𝑧 + 𝑑)
)

cosh
(

𝑘𝑞𝑑
) cos(𝜃), (37)

𝛺(𝑟, 𝜃, 𝑧) =
[

𝑟𝑧 − 4𝑎
∞
∑

𝑝=1

𝐽1
(

𝑘𝑝𝑟
)

𝐽1
(

𝑘𝑝𝑎
)

𝑘𝑝
(

𝑘2𝑝𝑎2 − 1
)

sinh(𝑘𝑝(𝑧 +
𝑑
2 ))

cosh(𝑘𝑝
𝑑
2 )

]

cos(𝜃).

(38)

The potential 𝛷 is caused by the surge and pitch motions of the dock.
The first two terms of Eq. (36) describe the motion of the internal
water volume with a rigid free surface when the cylinder is under
forced motions, while the third term represents standing waves in the
tank-fixed coordinate system.

The draft 𝑑 + 𝑠 of the dock is re-written 𝑑 in this section for
lighter notations. Because the problem is anti-symmetric, only the
eigenfunctions in cos(𝜃) appear in Eq. (37). The wave numbers 𝑘𝑞 are
the roots by increasing order of 𝐽 ′

1(𝑘𝑞𝑎) = 0, and the corresponding
natural frequencies obtained from the dispersion relationship:

𝜎𝑞 =
√

𝑔𝑘𝑞 tanh
(

𝑘𝑞𝑑
)

=
√

𝜅𝑞𝑔. (39)

While the expansions from the DD method are chosen based on the
exciting frequency 𝜔 of incident waves, the expansion in Eq. (36) is
based on natural sloshing modes which only depend on the geometry
of the structure.

The same eigen-functions are used to express the free-surface eleva-
tion relative to 𝑧 = 0:

𝜁 (𝑟, 𝜃, 𝑡) =
∞
∑

𝑞=1
𝛽𝑞(𝑡)𝜑𝑞(𝑟, 𝜃, 0), (40)

where 𝛽𝑞(𝑡) are unknown modal coefficients.
Making use of the orthogonality properties of the eigen-functions

𝜑 in 𝑟 and 𝜃, the modal Eqs. (41) and (42) for 𝑅 and 𝛽 are obtained
6

𝑞 𝑞 𝑞
Table 1
Empirical coefficients from Graham’s formulas provided by Mentzoni (2020) for flat
plates of perforation ratio 𝜏 in infinite fluid.
𝜏 𝛼0 𝛼1 𝛼2
0 1.000 0.216 10.1
0.15 0.281 0.271 8.72
0.30 0.017 0.181 5.48

by multiplying the kinematic and dynamic free-surface boundary con-
ditions by 𝐽1

(

𝑘𝑞𝑟
)

, 𝑞 ∈ N∗ and integrating over the water surface area
𝛴0 in the cylinder:

�̇�𝑞 = 𝜅𝑞𝑅𝑞 , (41)

𝛽𝑞 + 2𝜉𝑞𝜎𝑞 �̇�𝑞 + 𝜎2𝑞𝛽𝑞 = 𝐾𝑞(𝑡). (42)

An equivalent linear damping term, expressed by the damping ratio 𝜉𝑞
is added to include the viscous damping when a baffle is installed.

The excitation term of the sloshing 𝐾𝑞(𝑡) = −𝜔2𝑃𝑞,1𝜂1𝑒−𝑖𝜔𝑡 − 𝜔2

𝑃𝑞,5𝜂5𝑒−𝑖𝜔𝑡, is linearly dependent on the anti-symmetric rigid body mo-
tions. The coefficients 𝑃𝑞,1 and 𝑃𝑞,5 are given in the online supplement.
The transient part of the solution vanishes exponentially in time at the
rate −𝜉𝑞𝜎𝑞 , and only the forcing part remains, given for 𝑅𝑞 by

𝑅𝑞(𝑡) =
𝑔
𝜎2𝑞

𝑖𝜔𝐾𝑞(𝑡)

2𝑖𝜔𝜎𝑞𝜉𝑞 + 𝜔2 − 𝜎2𝑞
= 𝑓𝑞(𝜔)𝐾𝑞(𝑡). (43)

4.2. Shifted sloshing frequency due to an annular baffle

The eigen-functions 𝜑𝑞 are assumed unchanged when the baffle is
introduced, however the natural sloshing frequency 𝜎1 is shifted due
to the added mass of the baffle. According to Faltinsen and Timokha
(2009), this effect can be expressed as:

𝜎′21
𝜎21

= 1 −
∫ 2𝜋
0

𝜕𝜑1
𝜕𝑧

2
|

|

|

𝑟=𝑎
𝑧=−𝑑𝐵

𝐴𝑝𝑙𝑎𝑡𝑒𝑎d𝜃

𝜌𝜅1 ∫𝛴0
𝜑2
1d𝑆

, (44)

where 𝐴𝑝𝑙𝑎𝑡𝑒 is the two-dimensional added mass of a flat plate perpen-
dicular to a wall. It is given analytically by Eq. (45) as half of the added
mass of a flat plate of length 2𝑎𝐵 in infinite fluid (Newman, 1977):

𝐴𝑝𝑙𝑎𝑡𝑒0 = 1
2
𝜋𝜌𝑎2𝐵 . (45)

In addition, flow separation causes in general an increase in the added
mass. Further, it causes a quadratic viscous damping, strongly depen-
dent on the KC number, defined here as 𝐾𝐶 = 𝑈𝑚𝑇 ∕(2𝑎𝐵), where 𝑈𝑚
is the amplitude of the relative ambient flow velocity on the baffle
(cf. Eq. (49)), and 𝑇 its period. In the present cases, the resulting KC
numbers in 𝜃 = 0◦ are less than 0.75 near the sloshing resonance,
making Graham (1980)’s formulas (46) and (47) well-suited for the
determination of the inertial and drag coefficients:

𝐴𝑝𝑙𝑎𝑡𝑒

𝐴𝑝𝑙𝑎𝑡𝑒0

= 𝛼0 + 𝛼1KC
2
3 , (46)

𝐶𝐷 = 𝛼2𝐾𝐶
− 1

3 . (47)

The empirical coefficients 𝛼0, 𝛼1 and 𝛼2 are given in Table 1 for both
solid and perforated flat plates in infinite fluid, as given by Mentzoni
(2020) from curve-fitting with numerical simulations. The perforation
ratio of the baffle 𝜏 is defined as the ratio between the perforated area
divided by the total area of the baffle. 𝜏 = 0 corresponds to a solid plate
without perforation.

The added mass of the baffle tends to 0 when the perforation ratio
increases, and the fluid velocity decreases for increasing submergence.
Consequently, the shifted natural frequency 𝜎′1 converges to 𝜎1 in both
cases, as shown in Fig. 5. Faltinsen and Timokha (2009) compare
the formula (44) to numerical and experimental results for different
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Fig. 5. Effect of baffles on the lowest natural frequency, 𝜎1, for solid (𝜏 = 0), and
erforated baffles (𝜏 = 0.15 and 𝜏 = 0.30), at different submergences 𝑑𝐵 using the
ormulas (44) to (47), and the coefficients from Table 1. The equations of motions are
olved for incident waves of period 𝜔 = 𝜎1 and wave steepness 𝜖 = 1∕60. The rest of
ur work focus on three submergences, indicated here by square points. Baffles’ width:
𝐵∕𝑎 = 0.17.

ubmergences of solid baffles, with a good match for 𝑎𝐵∕𝑎 ≤ 0.3, and
ith the additional condition that the baffle should not be too close

o the free surface, especially because of the apparition of local non-
inearities at the free surface that are not included in the analysis,
ased on linear potential flow theory. Even the smallest submergence
ested in our study remains however in the range showing an acceptable
atching with Faltinsen and Timokha’s numerical and experimental

omparisons.

.3. Estimation of the damping ratio through the energy dissipation

The local transverse, KC-dependent force of an angular section of
he baffle is expressed by Morison’s 2D Eq. (48) for a flat plate:

𝐷(𝐾𝐶, 𝜃, 𝑡) =
1
2
𝜌 𝑎𝐵 𝐶𝐷(𝐾𝐶, 𝜃) 𝑣𝑟(𝜃, 𝑡)|𝑣𝑟(𝜃, 𝑡)|, (48)

𝑣𝑟(𝜃, 𝑡) = 𝑅1(𝑡)
𝜕𝜑1
𝜕𝑧

|

|

|

𝑟=𝑎
𝑧=−𝑑𝐵

+ �̇�5(𝑡)

[

𝜕𝛺
𝜕𝑧

|

|

|

𝑟=𝑎
𝑧=−𝑑𝐵

+ 𝑎 cos(𝜃)

]

. (49)

he relative velocity 𝑣𝑟 is given by Eq. (49) at 𝑟 = 𝑎 and 𝑧 = −𝑑𝐵
n the tank-fixed coordinate system. Its first term corresponds to the
ode 𝑞 = 1 of the eigenfunction-expansion in Eq. (36), assuming

hat the first sloshing mode predominates near its resonant frequency.
his approximation is expected to be adequate since the amplitudes of
igher modes represent less than 3% of the first mode’s amplitude in
imulations with baffles for incident waves with frequencies near 𝜎′1.
he second term is due to internal fluid motions caused by pitch.

The rate of energy dissipation during one period corresponds to the
ork produced by the drag force, expressed by Eq. (48), during the

ame period (Isaacson and Premasiri, 2001):

𝐵 = 1
𝑇 ∫

𝑇

0 ∫

2𝜋

0

1
2
𝜌 𝑎𝐵𝐶𝐷𝑣

2
𝑟 |𝑣𝑟|𝑑𝜃𝑑𝑡. (50)

Finally the rate of dissipation is found from:

�̇�𝑀 = −𝐷𝐵 ≃ −2𝜎′1𝜉1𝐸𝑀 . (51)

ere 𝐸𝑀 is the mechanical energy of a standing wave oscillating at
he highest natural sloshing period when the dock is not moving, with
he amplitude |𝛽1|. It is defined as the summation of the kinetic and
otential energies, 𝐸𝑀 = 𝐸𝑘 + 𝐸𝑝, and remains constant when there is
o dissipative forces. Because the kinetic energy is maximum when the
otential energy is null, and vice versa, 𝐸𝑀 can be calculated either
y 𝐸𝑘 or 𝐸𝑝. The latter leads to easier calculation, and is given in the
7

nline supplement.
The damping ratio 𝜉1 is obtained by Eq. (51). It is determined
hrough an iterative scheme in the equations of motions discussed
urther. It reaches a local maximum at the coupled sloshing resonance,
here |𝛽1| is also maximum, and increases with either decreasing
erforated ratio or increasing submergence of the baffle, as shown
ig. 6.

.4. Equations of motions

The loads in this internal domain of the closed-bottom model with
affle are integrated from the dynamic pressure predicted by the po-
ential 𝛷 in Eq. (36):

1 =

−𝑎filled
1,1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝜌𝑎2𝜋(𝑑 + 𝑠) �̈�1 +

−𝑎filled
1,5

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜌𝑎2𝜋
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2
�̈�5
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∞
∑
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)
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−𝑎filled
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(
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)

𝑘2𝑞 cosh
(
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)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔𝑞,5

�̇�𝑞 (𝑡). (53)

e distinguish added mass terms 𝑎filled
1,1 , 𝑎filled

1,5 , 𝑎filled
5,1 and 𝑎filled

5,5 caused
y the internal fluid motion when the free-surface is rigid, and forces
roportional to �̇�𝑞(𝑡) caused by the sloshing waves in a tank-fixed ref-
rential. These latter terms can be written as added mass and damping
oefficients 𝑎slosh

𝑗,𝑘 and 𝑏slosh
𝑗,𝑘 , (𝑗, 𝑘) ∈ {1, 5}2 in the equations of motions:

slosh
𝑗,𝑘 + 𝑖

𝜔
𝑏slosh
𝑗,𝑘 = 𝑖𝜔

∞
∑

𝑞=1
𝑔𝑞,𝑗𝑓𝑞(𝜔)𝑃𝑞,𝑘(𝜔) (𝑗, 𝑘) ∈ {1, 5}2 (54)

The solution (43) of the modal equations for �̇�𝑞(𝑡) contains indeed a
erm in phase with the dock’s acceleration, and a term in phase with
he dock’s velocity. If the damping ratio 𝜉1 = 0 (absence of baffle), the
otential becomes totally in phase with the dock’s acceleration and the
amping coefficients 𝑏slosh disappear. We note that the magnitudes of
he 𝑏slosh coefficients are dependent on both the damping ratio, and the
atural sloshing frequency. Consequently, the efficiency of the baffle
epends on both its drag coefficient and its added mass.

The 𝑎filled coefficients come from the first two terms of Eq. (36).
hey are the results of radiation problems in surge and pitch in the
losed-bottom cylinder with a rigid free-surface, and without baffle.

It is possible to modify the radiation problem in Section 2.2 to
eplace these 𝑎filled coefficients, and account for the open bottom. A
igid free-surface fixed to the dock is imposed in the domain IV, and
he expansion (27) is replaced by 𝜙𝐼𝑉 = 𝜙𝐼𝑉ℎ + 𝜙𝐼𝑉𝑚 , defined as:

𝜙𝐼𝑉ℎ (𝑟, 𝑧) = 𝜓𝜖0𝐴
𝐼𝑉
0
𝑟
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+ 𝜓

∞
∑
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𝑝𝜋
ℎ
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𝐼1(
𝑝𝜋
ℎ
𝑎)
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( 𝑝𝜋
ℎ

(𝑧 + ℎ)
)

in surge/pitch

𝜙𝐼𝑉𝑚 (𝑟, 𝑧) = 0 in surge

𝜙𝐼𝑉𝑚 (𝑟, 𝑧) = −
𝑟(𝑧 + ℎ)2 − 𝑟3

4

2ℎ
in pitch

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(55)
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Fig. 6. Linear equivalent damping ratio due to the baffle as a function of the frequency of the incident wave as computed by our method involving Morison drag model with
KC-dependent drag coefficient and strip theory and integration along the azimuthal direction (see Eqs (48) to (51)). The steepness of the incident waves is constant and equal to
𝜖 = 1∕60.
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Fig. 7. Non-dimensional added moment of inertia in the internal domain IV calculated
y several versions of the present DD method. 𝑎𝐼𝑉5,5 is obtained with the full DD model
ithout baffle, as described in Section 2. 𝑎𝐼𝑉 ,𝑅𝑖𝑔𝑖𝑑𝐹𝑆5,5 is obtained with the DD model

hat imposes a rigid free surface in the domain IV, i.e. using the expansions (55).
𝑓𝑖𝑙𝑙𝑒𝑑
5,5 is the added moment of inertia of a cylinder with a rigid free surface and closed
ottom, as defined Eq. (53), they do not account for the baffle. 𝑎𝑠𝑙𝑜𝑠ℎ5,5 are the added
oment of inertia of standing sloshing waves in a fixed tank, for which the effects

f the baffles have been imposed through the modal equations, and defined Eq. (54).
he total added moment of inertia 𝑎𝑓𝑖𝑙𝑙𝑒𝑑5,5 +𝑎𝑠𝑙𝑜𝑠ℎ5,5 in the closed-bottom cylinder has been
eplaced by 𝑎𝐼𝑉 ,𝑅𝑖𝑔𝑖𝑑𝐹𝑆5,5 + 𝑎𝑠𝑙𝑜𝑠ℎ5,5 to account for the open bottom. When the effects of the
affles are set to 0 (𝜎′ → 𝜎 and 𝜉1 → 0), we verify that this model converges now to
𝐼𝑉
5,5 developed in Section 2.

he improvement is illustrated by Fig. 7 for the contribution of the
dded moment of inertia in pitch in the domain IV. 𝑎𝐼𝑉 ,𝑅𝑖𝑔𝑖𝑑𝐹𝑆5,5 (solid
ed curve), calculated from the DD method for an open-bottom dock,
sing the expansion (55) above, is improved by 46% compared to 𝑎filled

5,5
(dash red curve) for the closed-bottom dock.

The 𝑎slosh and 𝑏slosh coefficients in Eq. (54), caused by standing
waves in fixed tank, remain under the closed-bottom approximation,
and describe entirely the effects of sloshing when an annular baffle is
installed.

In addition, the moment in pitch caused by the loads acting on the
baffle is expressed from Morison’s 2D equation as follow:

𝐹𝑀5 = −∫

2𝜋

0
𝑎
[

1
2
𝜌 𝑎𝐵 𝐶𝐷(𝐾𝐶, 𝜃) 𝑣𝑟(𝜃, 𝑡)|𝑣𝑟(𝜃, 𝑡)|

+1
4
𝜌𝜋𝑎2𝐵𝐶𝑀

𝜕𝑣𝑟(𝜃, 𝑡)
𝜕𝑡

]

cos(𝜃)𝑑𝜃, (56)
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here 𝐶𝑀 = 𝐴𝑝𝑙𝑎𝑡𝑒∕𝐴𝑝𝑙𝑎𝑡𝑒0 is the mass coefficient (Mentzoni, 2020),
efined Eq. (46) for solid and perforated plates. Finally, the equations
or the coupled surge and pitch motions are expressed in the Earth-fixed
oordinate system presented Fig. 1:
∑

=1,5

[

−𝜔2(𝑀𝑝,𝑗 + 𝑎𝑝,𝑗 + 𝑎𝑠𝑙𝑜𝑠ℎ𝑝,𝑗 ) − 𝑖𝜔(𝑏𝑝,𝑗 + 𝑏𝑠𝑙𝑜𝑠ℎ𝑝,𝑗 ) + 𝑐𝑝,𝑗
]

𝜂𝑗 = 𝐹𝑝 𝑝 ∈ {1, 5}

(57)

where 𝑀1,1 = 𝑀 is the mass of the dock, 𝑀1,5 = 𝑀5,1 = 𝑀𝑧𝐺
where 𝑧𝐺 is the centre of gravity, 𝑀5,5 is the moment of inertia in
pitch, and 𝑐𝑝,𝑗 are restoring terms, from hydrostatic forces and mooring.
The added mass and damping coefficients 𝑎𝑝,𝑗 and 𝑏𝑝,𝑗 are derived
from Eq. (35) with a rigid free surface in the domain IV. 𝐹𝑝 are the
exciting loads from the diffraction problem (cf. Eq. (24)), as well as
the moment (56) in pitch: 𝐹1 = 𝐹𝑆1 and 𝐹5 = 𝐹𝑆5 + 𝐹𝑀5 . The moment
𝐹𝑀5 is linearised in time, but remains non-linear with regard to the
motions’ amplitudes �̄�1 and �̄�5. The Eqs. (57) are solved in the frequency
domain, and the moment 𝐹𝑀5 calculated through an iterative process.
Heave motion does not excite any sloshing mode under the closed-
bottom approximation, and is uncoupled to surge and pitch. Noting
furthermore that the natural frequencies of heave and piston mode
are much lower than the wave frequencies of interest, we disregard 𝜂3
hereafter.

5. Model tests

5.1. Set-up of the installation

Dedicated model tests were conducted by the authors in 2019 in the
extension of the large towing tank at SINTEF OCEAN, at an imagined
model scale 1:100. Two photos are provided in Fig. 8. The tank is 85
metres long from the wave maker to the parabolic beach, 10.5 metre
wide, and 10 metre deep. The model was placed in the centre of the
tank, fixed by four near-horizontal mooring lines and springs, each one
stretched with a 65N pre-tension force. The main structure is made of
aluminium, while a part of the bilge boxes was made of foam of lower
density.

The internal and external radii are respectively 0.3 m, and 0.4 m.
The ballast was adjusted to obtain a 0.8 m draft, while keeping the
centre of gravity at 0.25 m from the bottom of the model. The moment
of inertia in pitch is 𝐼5,5 = 76.2 kg m2. The dimensions of the bilge
boxes are 𝐻𝑠𝑘𝑚 = 0.05m high and 𝐵𝑠𝑘𝑚 = 0.09m wide, as presented in

Fig. 9. The dimensions of the model are summarised in Table 2.
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Fig. 8. Photos from the presently conducted experiments performed in the Towing Tank at SINTEF Ocean. Left: Side view. The dock is placed in the middle of the tank, fixed
by four mooring lines. Rigid body motions were recorded by an optical measurement system (Oqus) with four cameras and reflectors. Right: Top view. Four wave probes fixed to
the structure measure the relative free-surface elevation inside the dock.
Table 2
Dimensions of the model — Notations referring to the geometry are defined in Fig. 1.

Parameter Unit Value Description

𝑎 [m] 0.30 Inner radius
𝑏 [m] 0.40 Outer radius
𝑑 + 𝑠 [m] 0.80 Draft
𝐻𝑠𝑘𝑚 = 𝑠 [m] 0.05 Bilge box’s height
𝐵𝑠𝑘𝑚 = 𝑐 − 𝑏 [m] 0.09 Bilge box’s width
𝑧𝐺 [m] −0.55 Vertical location of the centre of gravity
𝐼5,5 [kg m2] 76.2 Moment of inertia in pitch

Regular waves of wave period 𝑇 = 0.5s to 1.6s were tested, with a
particular focus on the periods around the first sloshing resonant mode.
The natural uncoupled sloshing period for a fixed-cylinder is given
by (39): 𝑇𝑠𝑙𝑜𝑠ℎ = 2𝜋∕𝜔1 = 0.81s. The coupled sloshing resonant peak
appeared to be around 𝑇 = 0.73s, apparent as clear local maxima for
surge and pitch motion, as well as the internal free surface. The wave
elevation was measured at different positions by eight wave probes
(denoted WP1-8). Four were fixed to the dock, and four others were
fixed to the tank: two in front of the structure measuring the incident
waves, and two on the side aligned with the dock. The 6 DoFs of rigid-
body motion of the model were recorded using both a video positioning
system and accelerometers.

5.2. Damping devices

Three types of annular baffles with perforation ratio 𝜏 = 0, 0.15
and 0.30 were successively installed at 𝑑𝐵 = 0.03, 0.05 and 0.08 m
below the free-surface, cf. Fig. 10. Their width is 𝑎𝐵 = 0.05m, and their
thickness 0.005 m. The porosity of the baffles was obtained by piercing
evenly circular holes of 0.015 m diameter.

5.3. Decay tests

Decay tests were carried out with and without the baffles, giving
indications on the natural periods of the different DoFs, the results are
presented in Table 3. The natural period in surge was chosen to be far
away from the wave periods. We note that pitch and heave resonance
periods are also much higher than the sloshing natural period. They are
both in the same range as the piston mode natural period, estimated
from the radiation problem at 𝑇𝑝𝑖𝑠𝑡𝑜𝑛 = 2.0s.

5.4. Time-series

The time series of WP1 to 4 were measured in a body-fixed coor-
dinate system. The wave elevation in an Earth-fixed coordinate system
was then obtained as 𝜁Earth fixed = 𝜁Body fixed + 𝜂3 − 𝑥𝜂5. Example of
time series are given in Fig. 11. The signals were band-pass filtered
9

Table 3
Natural periods estimated from the decay tests, in seconds, model scale. Both baffles
are installed at 5 cm below the free surface.

Dock alone Dock+solid baffle Dock+ Perforated baffle (𝜏 = 0.30)

Surge 10.89 10.86 10.88
Heave 2.29 2.26 2.28
Pitch 2.20 2.23 2.22

and post-processed before reflections from the end of the tank reached
back to the model, assuming deep water to calculate the group velocity
of the waves: 𝐶𝑔 =

𝑔
2𝜔

. The same formula was applied to remove the
part of the signal from when waves reflected from the model reached
WP8. Beating with the natural sloshing period was observed, especially
for 𝑇 < 𝑇𝑠𝑙𝑜𝑠ℎ. A special care was brought to calculate the mean
amplitude of the dock’s motions and WP1 to 4 over a whole number
of beating periods 𝑇𝑏𝑒𝑎𝑡𝑖𝑛𝑔 = 1∕|1∕𝑇𝑤𝑎𝑣𝑒𝑠 − 1∕𝑇𝑠𝑙𝑜𝑠ℎ|, and through a
standard Fourier analysis. The transient phase before the sloshing to
be fully established was about 60%–70% shorter with the presence of
the baffle, thanks to the additional viscous damping.

5.5. Sources of error and uncertainty

Measurements.
The model’s motions during the experiments were very small, and

reaching the limit of the accuracy range that could be measured by the
video positioning system. In addition, light reflections in the water were
suspected to cause spurious data. Hence, accelerometers were preferred
to obtain the motions of the dock.

Wave reflection and seiching
Longitudinal standing waves (seiching) were sometimes observed in

the time series for the longest waves. However, their period 𝑇𝑠𝑒𝑖𝑐ℎ𝑖𝑛𝑔 =
2𝐿∕

√

𝑔ℎ = 17.16s was filtered efficiently. Reflection from the lateral
walls was also an issue. The waves’ amplitude measured by WP6 and
WP7 at the walls could differ up to 30% compared to WP8 in front of
the model, especially for short waves.

Symmetry
The model was not perfectly symmetric, due to several factors: the

compartmentation of the ballasts, a variation of few millimetres in
the internal and external radii from the fabrication, non-identical pre-
tension in each mooring line. This may explain partially the observation
of very small roll and sway motions during the tests.

Repetition tests
Selected regular wave conditions were repeated to investigate the

importance of random error. The average standard deviation was in
the range of 1.5%–3% for the motions of the dock, and 5%–10% for the
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Fig. 9. Side and bird’s-eye views of the experimental set-up. The wave probes WP1 to WP4 are fixed inside the model, and WP5 to WP8 are fixed to the tank. Two vertical and
one horizontal accelerometers (acc) are fixed on the top of the model. Four mooring lines with four springs are stretched symmetrically with a pretencion of 65N, and an angle
of 11◦ to the horizontal.
Fig. 10. Photos showing the three different baffles that were tested in November 2019. Top left: solid baffle. Top right: perforated baffle (𝜏 = 0.15). Bottom: perforated baffle
(𝜏 = 0.30).
free-surface elevation, with the largest error near the coupled resonant
peak. The shortest incident regular waves that were tested had among
the highest frequencies that could be generated by the wave-maker.
During two identical repetition tests, the measured wave frequency
could differ by 1%–2%.

6. Results

We first present results from the case without baffles, and next with
baffles.
10
6.1. RAOs for the dock without baffle

The response amplitude operator (RAO) of the dock’s surge and
pitch motions, and of the wave elevation inside the dock, located at
WP1 and given in the Earth-fixed coordinate system, are presented in
Fig. 12 for the case without baffle. Results from the linear DD method
developed in Section 2 are compared to experimental results for three
wave steepnesses, 𝜖 = 2𝐴∕𝜆 = 1∕60, 1∕45 and 1∕30, where 𝐴 is the
wave amplitude and 𝜆 the wave length of the incident waves. At the
non-dimensional natural sloshing frequency 𝜔2𝑏∕𝑔 = 2.45, small dock
motions cause large sloshing waves, increasing significantly the added
mass of the system as discussed Section 3. Consequently, both the RAOs
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Fig. 11. Examples of experimental time series of the wave elevation in an Earth-fixed reference frame. Cases with baffle submergence 𝑑𝐵∕𝑎 = 0.17. Top: 𝑇 = 0.60𝑠, the vertical
bars delimit two beating periods . Middle: 𝑇 = 0.74𝑠. Bottom: 𝑇 = 1𝑠.
in surge and pitch are converging to nearly 0 at this frequency. The
maximum amplitude of both the internal free-surface elevation and
motions are observed at the coupled resonant frequency 𝜔2𝑏∕𝑔 = 3.0,
in particular our model gives

(

𝜁𝑊𝑃 1∕𝐴
)

𝑚𝑎𝑥 = 3.62. Inaccuracies when
modelling the inertial and restoring coefficients of the floating dock
similar to the model tests are suspected to cause a slight shift between
analytical and experimental results.

The variations due to the different wave steepnesses are in overall
quite small. Despite some scattering near the resonant peak, the general
trend shows that the peak amplitude tends to decrease for increasing
incident wave steepness. The most notable difference is observed in
surge near 𝜔2𝑏∕𝑔 = 3.0, the response for 𝜖 = 1∕60 being about 12.4%
higher than for 𝜖 = 1∕30, and is suspected to be caused by viscous
damping in surge. In order to account for this viscous dissipation, a
quadratic drag force in surge is introduced in the equations of motions:

𝐹𝐷 = −1
2
𝜌𝐶𝐷2𝑏(𝑑 + 𝑠)�̇�1|�̇�1|. (58)

The force is linearised, such that the energy dissipated over one
period of oscillation is identical:

𝐹𝐷 ≃ 𝑖𝜔2 8
3𝜋
𝐶𝐷𝑏(𝑑 + 𝑠)�̄�1|�̄�1|𝑒−𝑖𝜔𝑡. (59)

Because of the low KC numbers (KC≤ 0.7), flow separation is most
likely to occur at the bottom of the body. The results presented in
Fig. 12 are obtained for 𝐶 = 3, and show a reduction of the resonant
11

𝐷

peak’s amplitude between 8.8% for 𝜖 = 1∕60 and 15.8% for 𝜖 = 1∕30.
Similar rates are observed for 𝜁𝑊𝑃1, suggesting that viscous forces on
the dock could also be used as a mean to damp sloshing waves.

6.2. RAOs for the dock with solid and porous baffles

We next investigate the effectiveness of the baffles. The surge
motion of the dock is given in Fig. 13, and WP1 in Fig. 14, for
three baffle submergences 𝑑𝐵∕𝑎. The presence of the baffle reduces
significantly the amplitude of the surge motions and of the internal free-
surface elevation near resonance. The best baffle efficiency is obtained
experimentally for the solid baffle at the lowest submergence, with
a maximum sloshing amplitude as low as

(

𝜁𝑊𝑃 1∕𝐴
)

𝑚𝑎𝑥 = 1.58, as
predicted by our numerical method for the lowest baffle submergence
𝑑𝐵∕𝑎 = 0.27. Increasing perforated ratio reduces the viscous damping
𝜉1, and the resonant natural frequency converges to the case without
baffles (see Fig. 14, 𝜏 = 0.3). We mention that similar damping as for
surge was obtained for the pitch motion (not shown), with a maximum
decrease of the resonant peak amplitude in pitch of 27% from the
case without baffle, as obtained analytically for the solid baffled at
𝑑𝐵∕𝑎 = 0.17.

Because the total damping also depends on the natural frequency 𝜎1,
the analytical method predicts almost the same reduction of the RAOs’
amplitudes in Figs. 13 and 14 for 𝜏 = 0.15 as for the solid baffle.

The analytical method succeeds to catch the shift of natural fre-
quency, and presents a quite good agreement with the experimental
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Fig. 12. RAO of the dock’s surge (top) and pitch (middle), and RAO of the wave elevation inside the dock at WP1 (bottom), calculated from the DD approach and compared
o experimental results for three different wave steepnesses, for the case without baffles. The dash curves show the motions calculated analytically without any viscous damping,
hile a drag force (cf. (58)) is added in the equation of surge for the solid curves.
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i

esults for the highest submergence 𝑑𝐵∕𝑎 = 0.27. However, the damping
t lower submergence is under-predicated for the solid baffle, resulting
n higher predicted responses than found in the model tests. This means
hat our model is conservative. The increase of the damping coefficient
or flat plates at low submergence has been pointed out in studies as
ong and Faltinsen (2013) and Vottestad (2020) through experimental
nd numerical works. They also show that the added mass coefficient of
he plates is expected to be lower at low 𝑑𝐵∕𝑎 than in infinite fluid for
ow KC numbers. Local non-linear behaviour of the free-surface flow
as observed from videos of the experiments for 𝑑𝐵∕𝑎 = 0.10, which

ould also explain somewhat more scatter in the experimental RAOs
or the two lower submergences, and especially the wide span of results
btained for the two repetition tests with a solid baffle.

In order to investigate the effect of free-surface interaction, the 𝛼𝑖
oefficients in Eqs (46) and (47) can be tuned to match the experimen-
al results. Examples are provided in Figs. 13 and 14 for the solid baffle,
epresented by the dashed curves denoted DD2 in the legend. Similar
ariations as found in the literature (Vottestad, 2020) of the added
ass and damping coefficients of a flat plate oscillating from deep to

ower submergences are applied. The coefficients from Table 1 are here
eplaced (dash lines) by 𝛼 = 0.21 and 𝛼 = 18.18 for 𝑑 ∕𝑎 = 0.10, and
12

1 2 𝐵 o
𝛼1 = 0.19 and 𝛼2 = 19.70 for 𝑑𝐵∕𝑎 = 0.17. This means that the drag
oefficient is almost doubled. The results indicate that improvements
an be made to our model by studying forced motion of solid and
erforated 2D plates near a free surface, or as a first estimation, near a
olid wall.

The phases of 𝜂1 and 𝜁𝑊𝑃 1 are given in Fig. 15 without and with
olid baffle. The sudden shift of 𝜋 in the surge’s phase (also observed
n pitch) at the natural sloshing frequency results from the change
f sign in Eq. (43) when 𝜉1 = 0. The surge acceleration becomes
hen in opposition of phase with the wave elevation, and the surge
otion in phase, for higher frequencies. Some of the measured signals
resented unexpected phases, which could not be explained by physical
henomena that would have been visible from the videos. However, in
eneral the main trends remain clearly distinguishable, and tend to be
onsistent with the analytical approach. A main observation is that the
hase shift is significantly less pronounced when baffles are included.

. Comments

The method is restricted to circular shaped dock. Further, the damp-
ng model is restricted to draft-to-diameter ratios that are in the order
f unity or more. Therefore, the hybrid analytical model that includes
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Fig. 13. RAOs in surge for three different submergences 𝑑𝐵∕𝑎 of the baffles. Top: solid baffle. The dashed lines (DD 2) are obtained for lower, respectively higher, added mass
and damping coefficients of the baffle, in order to account for free-surface interaction. Bottom left: 𝜏 = 0.15. Bottom right: 𝜏 = 0.30.
Fig. 14. Earth-fixed RAOs of the free-surface elevation at WP1 inside the dock for three different submergences 𝑑𝐵∕𝑎 of the baffles. Top: solid baffle. Bottom left: 𝜏 = 0.15. Bottom
right: 𝜏 = 0.30. Same legend as Fig. 13.
13
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Fig. 15. Phases of surge motion (top) and WP1 (bottom) relative to the incident wave at the origin of the Earth-fixed coordinate system for the dock with a solid baffle. Same
egend as Fig. 13.
he baffles is not very general. However, compared to, for instance, a
anel code, the method allows for extensive parameter studies of the
eometry and the mass, as well as the size, the position, and perforated
atio of the baffle, without the work of re-meshing. Multiple baffles
an readily be modelled by using added mass and damping coefficients
or two or more parallel plates (cf. Mentzoni (2020)). Other damping
echanics, like for instance moving walls or pumps along the internal
alls can also be modelled with a limited effort.

The method is coded in Python, the CPU time is of few seconds per
ave frequency on an Intel i7 desktop, and few minutes for one run
ith 80 frequencies.

. Conclusion

A floating dock for installing deep-draft offshore floating wind tur-
ines was studied. Wave frequencies in the vicinity of the first sloshing
ode was considered through both analytical and experimental works.

A potential flow code based on a domain decomposition approach
as first developed to solve linear diffraction and radiation problems,

aking advantage of the symmetry of revolution. Added mass and
amping coefficients, as well as exciting forces and moments were
ompared to results obtained from the panel code WAMIT with good
greements.

Solid and perforated baffles were introduced inside the structure
o damp the sloshing and corresponding surge and pitch motions. The
nalytical method was extended using known theories for annular baf-
les in closed-bottom cylinders (cf. Faltinsen and Timokha (2009)). The
est efficiency was achieved by the solid baffles, for which comparisons
ith the experimental results showed good agreement when the baffles
ere far from the free surface (𝑑𝐵∕𝑎 = 0.27), but under-predicted the

damping due to the baffles for lower submergences, most probably due
to interactions with the free-surface. Baffles with a perforation ratio
𝜏 = 0.15 were shown to be almost as efficient as solid baffles in reducing
the amplitudes of the free-surface elevation and dock’s motions, and
could provide lighter and cheaper alternatives.

Further work will include the free-floating SPAR of a FOWT inside
the dock, in the light of limiting criteria for wind turbine assembly in
order to investigate the feasibility of the such a floating dock to be an
installation vessel for FOWT farms.
14
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