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Abstract—This paper presents a private-partial distributed
least mean square (PP-DLMS) algorithm that offers energy
efficiency while preserving privacy and is suitable for applications
with limited resources and strict security requirements. The pro-
posed PP-DLMS allows every agent to exchange only a fraction
of their perturbed data with neighbors during the collaboration
process to minimize communication costs and guarantee privacy
simultaneously. In order to understand how partial-sharing of
perturbed data affects the learning performance, we conduct
mean convergence analysis. Moreover, to investigate the privacy-
preserving properties of the proposed algorithm, we characterize
agent privacy in the presence of an honest-but-curious (HBC)
adversary. Analytical results show that the proposed PP-DLMS
is resilient against an HBC adversary by providing a fair energy-
privacy trade-off compared to the conventional LMS algorithm.
Numerical simulations corroborate the analytical findings.

Index Terms—Distributed learning, energy-efficiency, privacy-
preservation, average consensus, multiagent systems.

I. INTRODUCTION

In the past decade, distributed computing systems have

played a significant role in advancing signal processing and

machine learning over multiagent networks [1]–[5]. The dis-

tributed network structure facilitates local communication be-

tween agents and their neighbors, thus enhancing the learning

performance and robustness against dynamic changes in net-

work topology. The local interactions among agents are real-

ized via radio communication, which consumes large amounts

of power and bandwidth. Local interactions are not only

energy-intensive but also vulnerable to potential adversaries

[6]. Thus, a distributed learning procedure that reduces the

communication load as much as possible without significantly

impairing the privacy of agents and overall estimation perfor-

mance is always preferred.

Cryptography-based methods can provide secure communi-

cation between agents. However, they add substantial com-

munication overhead and require considerable amounts of

power [7]–[9], prohibiting their use in resource-constrained

networks. Furthermore, cryptographic techniques are ineffec-

tive against privacy theft by dishonest network agents. Instead,

low-complexity methods like noise injection-based mecha-

nisms are attractive alternatives for preserving the privacy

of individual agents [10]–[17]. In this category, differential-

privacy techniques inject uncorrelated noise sequences into the
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information exchanged to ensure data privacy [10], [11]. The

privacy-accuracy trade-off was improved in [15]–[18] by in-

jecting correlated noise sequences with decaying variances into

the exchanged information. Meanwhile, decomposition-based

privacy-preserving techniques divide the private information

into two substates, of which only one is shared among agents,

hence making inference more difficult for adversaries [19],

[20].

Distributed computing systems are often associated with

limited computational and power resources, so resource-

intensive local interactions should be minimized. This can

be accomplished by performing dimensionality reduction [21]

and 1-bit quantization [22] on the information before exchang-

ing. Although these methods reduce communication costs,

they are time-consuming and add additional computational

burden to agents. Employing a probabilistic communication

strategy is also an alternative solution to reduce local com-

munication among agents [23]. Furthermore, partial-sharing

concepts proposed in [27]–[29] reduce the consumption of

resources by allowing agents to share only a fraction of

information during each inter-agent interaction. The ease of

implementation has made partial-sharing concepts popular in

distributed learning. These communication-efficient methods,

however, have not been investigated for privacy protection.

To this end, in this paper, we propose a distributed learning

framework that simultaneously attains both energy efficiency

and privacy preservation.

This paper presents a private-partial distributed LMS (PP-

DLMS) algorithm that enables agents to participate in local

interactions by sharing only a fraction of their perturbed

information, thus reducing resource consumption as well as

preserving privacy. To investigate the impact of partial-sharing

of perturbed data on the performance of distributed learning,

we analyze the mean convergence and study the privacy

of agents in the presence of an honest-but-curious (HBC)

adversary. The HBC agent is a legitimate agent in the network

that is curious about the private information of other agents.

Since an HBC agent is a member of the network, it has

access to the information exchanged in the neighborhood

as well as to the information of the partial-sharing-based

communication mechanism. As a result, the network becomes

more vulnerable to information leakage. The privacy analysis

shows that the proposed PP-DLMS provides a fair energy-

privacy trade-off against HBC adversaries. Finally, we provide
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numerical simulations that corroborate our analytical findings.

Mathematical notation: Scalars are denoted by lowercase

letters, column vectors by bold lowercase, and matrices by

bold uppercase. Superscripts (·)T and (·)−1 denote the trans-

pose and inverse operators, respectively. The symbol 1K

represents the K × 1 column vector with all entries equal to

one and IK is the K×K identity matrix. The right Kronecker

product of two matrices is denoted by ⊗, while λi(A) denotes

the ith eigenvalue of matrix A.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a sensor network modeled as a connected graph

G = {N , E}, where the node set N represents the agents of the

network and E is the set of edges that represent bidirectional

communication links between the nodes, i.e., (k, l) ∈ E if

nodes k and l are connected. Additionally, the set Nk indicates

the neighborhood of the node k that includes itself and the

cardinality of the set Nk is denoted by |Nk|, while K = |N |
is the number of agents in the network. At time instant n

and agent k, the input signal xk,n and desired signal yk,n are

assumed to be described as

yk,n = xT
k,n w⋆ + ǫk,n, (1)

where w∗ ∈ R
L is an optimal parameter vector to be

estimated, xk,n = [xk,n, xk,n−1, . . . , xk,n−L+1]
T is the input

signal vector, and the observation noise ǫk,n is a zero-mean

Gaussian random sequence. The estimate of w⋆ at time instant

n, i.e., wn is chosen so that it minimizes

Jn =
1

K

∑

k∈N

E[e2k,n], (2)

where ek,n = yk,n − ŷk,n with ŷk,n as the estimated filter

output at agent k. At every time instant n, wn can be updated

via steepest-descent approach as

wn+1 = wn −
η

2
∇Jn = wn + η

∑

k∈N

ek,nxk,n, (3)

where η is the step size. The operation in (3) can be modeled

as wn+1 = 1
K

∑

k∈N
ψk,n+1 with

ψk,n+1 = wn + µ ek,n xk,n, (4)

being the intermediate estimate of w⋆ at node k and time

instant n, and µ = ηK is the new step size. The average of the

intermediate estimate ψk,n+1 across the entire network can be

evaluated in a distributed manner using an average consensus

filter (ACF) [24]–[26].

In the process of obtaining an average consensus, agents

exchange local information ψk,n+1 with their neighbors that

contains node-sensitive information and might be exploited by

potential adversaries. To protect the node-sensitive information

from being inferred by adversaries, agents exchange perturbed

versions of their private information [15]–[17]. Thus, the state

of the ACF after m consensus iterations is

hk,(m) =
∑

l∈Nk

alkh̃l,(m−1), (5)

where alk is the consensus weight between agents l and k,

h̃l,(m−1) = hl,(m−1) + ωl,(m−1) is the perturbed local infor-

mation with hl,(0) = ψl,n+1, and ωl,(m−1) is the perturbation

noise at agent l and (m − 1)th consensus iteration [15]. The

perturbation noise at agent l and consensus iteration m is given

by

ωl,(m) =

{

νl,(0), m = 0

φmνl,(m) − φm−1νl,(m−1), otherwise,
(6)

where constant φ ∈ (0, 1) is same for all agents, and νl,(m) ∈
R

L is a zero-mean Gaussian sequence with E[νl,(m)ν
T
l,(m)] =

σ2
νIL. If A with [A]l,k = alk is a doubly stochastic matrix that

satisfies the conditions stated in [25] and the perturbation noise

follows (6), all agents reach consensus on the exact average,

given by

lim
m→∞

hk,(m) =
1

K

∑

l∈N

hl,(0), (7)

asymptotically.

III. PP-DLMS ALGORITHM

As shown in (5), the collaboration between agents is vital

for distributed learning. Privacy-preserving distributed learning

techniques are no exception. However, although collaboration

among agents improves learning accuracy, it is resource-

intensive. As nodes in sensor networks have limited battery

power, reducing the inter-node communication overhead is

essential while maintaining inter-node cooperation benefits. By

promoting partial-sharing [27]–[29] among agents in privacy-

preserving distributed learning systems, we aim to achieve

both privacy and energy efficiency in a single framework.

In the proposed PP-DLMS, during each consensus iteration

m, every agent shares only a portion of the perturbed version

of its private information with neighbors (i.e., M out of L

entries in hk,(m)) to reduce the communication load while

maintaining privacy. The entry selection procedure at each

agent k is characterized by a diagonal selection matrix of size

L×L, the main diagonal of which consists of M numbers of

ones and L − M numbers of zeros. The selection matrix of

agent k at time instant n and consensus iteration m is denoted

by Sk,n,(m), where the position of ones indicates which entries

of the private information are to be shared with neighbors. The

selection of M out of L entries can be made stochastically, or,

sequentially as in [27], [28]. We adopt a coordinated partial-

sharing scheme, which is a special case of sequential and

stochastic partial-sharing methods [28]. In coordinated partial-

sharing, all agents are initialized with the same selection

matrices, i.e., S1,0,(0) = S2,0,(0) · · ·SK,0,(0). Since we are

using the coordinated partial-sharing, we drop node index in

Sk,n,(m) and continue with Sn,(m). Additionally, the selection

matrix at the current consensus iteration, i.e., Sn,(m), can be

obtained by applying a right-circular shift operation on the

main diagonal elements of the selection matrix during the

previous consensus iteration, i.e., Sn,(m−1). We also consider

Sn,(0) = Sn−1,(m) at each time index n. This process has an

entry-sharing probability of p = M
L

because each entry will be
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Algorithm 1: Private-Partial DLMS (PP-DLMS)

• For each agent k ∈ N
Initialize: Sn,(0), τ ,

ŷk,n = xT
k,nwk,n

ek,n = yk,n − ŷk,n
Local Update:

ψk,n+1 = wk,n + µ xk,n ek,n

Average Consensus Update:

Set hk,(0) = ψk,n+1

For m = 1 to T

Perturb the local data h̃k,(m−1) = hk,(m−1)+ωk,(m−1)

Share Sn,(m−1)h̃k,(m−1)

Receive
{

Sn,(m−1)h̃l,(m−1) : ∀l ∈ N−
k

}

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−

k

alk

(

Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃k,(m−1)

)

Sn,(m) = circularshift
(

Sn,(m−1), τ
)

Endfor

wk,n+1 = hk,(T )

shared M times during L subsequent iterations. By using the

selection matrices, the privacy-preserving average consensus

state update at each agent k can be expressed alternatively as

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−

k

alk
(

Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃l,(m−1)

)

,

(8)

where N−
k indicates the neighborhood of node k excluding

itself. As a result of partial information sharing, agents do

not have access to the portion of the information that was

not shared. However, by allowing each node to use its own

internal information instead of the unshared information of

neighboring agents, this challenge can be solved. At each agent

k, we therefore substitute (I−Sn,(m−1))h̃k,(m−1) in the place

of (I− Sn,(m−1))h̃l,(m−1) for each l ∈ N−
k as

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−

k

alk

(

Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃k,(m−1)

)

·

(9)

After a sufficient number of consensus iterations, say T ,

the parameter vector wk,n is updated to wk,n+1 = hk,(T ).

The workflow of the proposed PP-DLMS is summarized in

Algorithm 1.

IV. PERFORMANCE ANALYSIS

In this section, we examine the impact of partial sharing of

information on convergence and privacy.

A. Network Global Model

At each time instant n, we define the optimal model

parameter vector w⋆
net = 1K ⊗w⋆, estimated model parame-

ter vector wnet,n = col{w1,n,w2,n, . . . ,wK,n}, input data

matrix Xn = blockdiag{x1,n,x2,n, . . . ,xK,n}, observation

noise vector ǫnet,n = col
{

ǫ1,n, ǫ2,n, . . . , ǫK,n

}

, and private

information

h(0) = col{h1,(0),h2,(0), . . . ,hK,(0)}

= col{ψ1,n,ψ2,n, . . . ,ψK,n}, (10)

where the column-wise stacking and block diagonalization

operations are represented by col{·} and blockdiag{·}, respec-

tively. Using the above definitions, data model and error vector

at network-level are

yn = col{y1,n, y2,n, . . . , yK,n} = XT
nw

⋆
net + ǫn

en = col
{

e1,n, e2,n, . . . , eK,n

}

= yn −XT
nwnet,n.

(11)

According to definitions in (11), the average consensus state

update in (9), and

ψk,n+1 = wk,n + µ xk,n ek,n, (12)

the network-level model of the PP-DLMS can be stated as

wnet,n+1 = Bn

(

wnet,n + µXn en
)

+ cn (13)

with

Bn =
m−1
∏

i=0

Bn,(i) and cn =
m−1
∑

i=0

(

m−1
∏

j=i

Bn,(j)

)

ω(i), (14)

where Bn,(m) = A ⊗ Sn,(m) + IK ⊗ (IL − Sn,(m)), ω(i) =
col{ω1,(i),ω2,(i), . . . ,ωK,(i)}, and the network-level pertur-

bation noise vector is given by

ω(i) =

{

ν(0), i = 0

φiν(i) − φi−1ν(i−1), otherwise,
(15)

where ν(i) = col{ν1,(i),ν2,(i), . . . ,νK,(i)}. In order to obtain

the convergence condition for PP-DLMS, we assume the

following:

A1. For all k ∈ N , the input signal vector xk,n is drawn from

a WSS multivariate random sequence with correlation

matrix Rk = E[xk,nx
T
k,n]; in addition, the input signal

vectors xk,n and xl,m are independent for all k 6= l and

n 6= m.

A2. The noise process ǫk,n is assumed to be zero-mean i.i.d.

and independent of any other quantity.

A3. For all k ∈ N , the selection matrix Sn,(m) is assumed

to be independent of any other data.

B. First-order Convergence

Considering w̃net,n = w⋆
net − wnet,n, and using the fact

that w⋆
net = Bnw

⋆
net (since Bn,(m)w

⋆
net = w⋆

net for all m),

then form (13), w̃net,n+1 can be recursively expressed as

w̃net,n+1 = Bn

(

ILK−µXnX
T
n

)

w̃net,n−µBnXnǫnet,n−cn.

(16)
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Applying expectation E[·] on the both sides of (16) and using

the assumptions A1 − A3, we obtain

E[w̃net,n+1] = E[Bn]
(

ILK − µR
)

E[w̃net,n], (17)

where R = E[XnX
T
n ] = blockdiag{R1,R2, . . . ,RK}. From

(17), one can see that limn→∞ E[w̃net,n] attains finite value if

and only if ‖E[Bn]
(

ILK −µR
)

‖ < 1 for all n, where ‖ · ‖ is

any matrix norm. Here, we use the block maximum norm of

the matrix, i.e., ‖·‖b,∞ in [30], to obtain the mean convergence

condition. From the properties of block maximum norm, one

can obtain

‖E[Bn]
(

ILK − µR
)

‖b,∞ ≤ ‖E[Bn]‖b,∞‖ILK − µR‖b,∞·

Additionally, we have

‖E[Bn]‖b,∞ = ‖
m−1
∏

i=0

E
[

Bn,(i)

]

‖b,∞ ≤
m−1
∏

i=0

‖E[Bn,(i)]‖b,∞ ≤ 1,

and using the similar procedure in [27], [28], one can prove

that

‖E[Bn,(i)]‖b,∞ = ‖p(A⊗ IL) + (1− p)ILK‖b,∞ ≤ 1·

By using [31, Lemma D. 5], it is seen that E
[

w̃net,n

]

con-

verges under the condition ρ
(

ILK−µR
)

< 1, or, equivalently,

∀k, i : |1 − µλi(Rk)| < 1, where ρ(·) denotes the spectral

radius of the argument matrix. As a result, we obtain the mean

convergence condition as

0 < µ <
2

max
∀i,k

{λi(Rk)}
· (18)

Accordingly, as long as the step size µ satisfies (18), the

operations will converge in the mean.

C. Privacy Analysis

This section examines the privacy of agents in the presence

of an HBC agent. The HBC agent is an adversary, but a

legitimate agent of the network that has access to informa-

tion associated with the selection of elements in the partial

sharing process and consequently increases the likelihood of

information leakage. Let us assume that agent k is an HBC

agent trying to estimate the private information of other agents

at each time instant n, i.e., hl,(0) = ψl,n+1 for l ∈ N \ {k}.

The privacy of agent l is defined as the mean squared esti-

mation error at the adversary attempting to infer the private

information as

El,(m) , tr
(

E[(ĥl,(m) − hl,(0))(ĥl,(m) − hl,(0))
T]
)

(19)

where ĥl,(m) denotes the estimate of the private information

hl,(0) after m consensus iterations at the adversary.

The HBC agent has access to its own information and

the information exchanged in the neighborhood at each con-

sensus iteration m, i.e., {hk,(m),Sn,(m),Sn,(m)h̃l,(m)}, for

l ∈ N−
k . Since the HBC agent already knows its own

information, the corresponding entries are removed from

ω(m),ν(m),h(0), and,Bn,(m), and denote the quantities with

reduced dimensions as ω̌(m), ν̌(m), ȟ(0), and, B̌n,(m), respec-

tively. From (9), the network-level consensus operation with

reduced dimensions can be stated as

h̃(m) =
(

m
∏

i=0

B̌n,(i)

)

ȟ(0) +

m
∑

i=0

(

m
∏

j=i

B̌n,(j)

)

ω̌(i). (20)

Without loss of generality, we consider the case where agent

K is an HBC agent. At the HBC agent, let θ(m) = Ch̃(m)

be the observation vector that comprises the information

captured at mth consensus iteration with C = C̄T ⊗ IL where

columns of C̄ ∈ R
(K−1)×|N−

K
| consist of the canonical vectors

corresponding to neighbors of agent K. The canonical vector

corresponding to agent l, el ∈ R
K−1, is a vector with 1 in

the lth entry and zeros elsewhere. Then, following similar

procedure as in [15] and substituting (6) in (9), observation

model at the HBC agent, after m consensus iterations, is

described as

ϑ(m) = H(m)ȟ(0) + F(m)υ(m) (21)

where ϑ(m) = col{θ(0), · · · ,θ(m)}, H(m) =
col{H(0), · · · ,H(m)} with H(m) = C

∏m

i=0 B̌n,(i), ȟ(0) =
col{h1,(0), · · · ,hK−1,(0)}, υ(m) = col{ν̌(0), · · · , ν̌(m)}, and

F(m)=















CB̌n,(0) 0 0 · · · 0

CF(1),(0) φCB̌n,(1) 0 · · · 0

CF(2),(0) φCF(2),(1) φ2CB̌n,(2) · · · 0
...

...
...

. . .
...

CF(m),(0) φCF(m),(1) φ2CF(m),(2) · · · φmCB̌n,(m)















with F(m),(i) =
∏m

t=i+1 B̌n,(t)(B̌n,(i) − I). Using the model

in (21) the HBC agent can obtain the maximum likelihood

(ML) estimate of ȟ(0), with associated error covariance

P(m) =
(

HT
(m)

(

F(m)ΓF
T
(m)

)−1
H(m)

)−1

(22)

where Γ = E{υ(m)υ
T
(m)} = σ2

νI. As the HBC agent collects

more information from neighbors, the mean squared error of

the ML estimator decreases and the privacy metric (19) at each

agent k is obtained as

Ek,(m) = tr
(

(eT
k ⊗ IL)P(m)(ek ⊗ IL)

)

. (23)

V. NUMERICAL SIMULATIONS

To demonstrate the effectiveness of PP-DLMS, we con-

ducted simulations for identifying an unknown system of

length L = 32. For this, we considered a network of K = 5
agents with the adjacency matrix of

E =













0 1 0 0 1
1 0 1 0 0
0 1 0 0 1
0 0 0 0 1
1 0 1 1 0













,

as in [15]. The input signal xk,n and observation noise se-

quence ǫk,n, were drawn from zero-mean Gaussian distribution

with variance σ2
x = 1 and σ2

ǫ ∈ U(0.008, 0.03) where U(·)
is the uniform distribution. The average consensus weights
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Fig. 1: Network-level MSE (in dB) versus time.

are non-negative coefficients and were obtained through the

Metropolis rule [25]. The ACF was iterated for T = 40 itera-

tions to approximate the required averages and the perturbation

noise sequence at each agent follows (6) with φ = 0.9. The

proposed PP-DLMS was simulated under coordinated partial-

sharing scheme for different values of M (say 0.75L, 0.5L,

0.25L) and the network-level MSE (NMSE) was considered as

the performance metric. The results were obtained against the

injected noise variance σ2
ν , by averaging over 500 independent

experiments.

Firstly, the learning curves (i.e., NMSE in dB vs iteration

index n) for perturbation noise variance σ2
ν = 5 are shown

in the Fig. 1. Next, for different values of σ2
ν , the steady-

state NMSE is displayed in Fig. 2. From these plots, it can be

observed that the proposed PP-DLMS scheme simultaneously

achieves energy efficiency and privacy at the cost of a slight

degradation in the NMSE. This performance degradation is

inversely proportional to the amount of information shared

during the average consensus operations. The degradation in

performance increases with less information shared at each

iteration, smaller M , resulting in a larger NMSE.

Finally in the presence of an HBC agent, agent 5 in the

network, the privacy metric (23) versus σ2
ν for different values

of M is illustrated in Fig. 3. A similar breach of privacy occurs

with agent 4 as in [15], and agent 3 obtains identical privacy

as agent 1 due to symmetric topology, they are omitted in

Fig. 3. From Fig. 3, it can be seen that the proposed PP-DLMS

provides a reasonable privacy-energy trade-off. For the case of

sharing M = 0.75L, the algorithm achieves the same level of

privacy as in the case of full information sharing. In the case

of sharing less information, M = 0.5L and M = 0.25L, the

level of privacy decreases, however since smaller portions of

information are shared at each consensus iteration, the HBC

agent must collect information for more consensus iterations

to accurately estimate the private information of other agents.

0 2 4 6 8 10

-17

-16

-15

-14

-13

-12

-11

-10

-9

Fig. 2: Network-level MSE (in dB) for different values of M ,

i.e., the portion of the shared information, versus injected noise

variance σ2
ν .
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-30

-20
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0

10

20
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40

Fig. 3: Agent privacy (in dB) for different values of M versus

injected noise variance σ2
ν .

VI. CONCLUSIONS

This paper proposed an energy-efficient and privacy-

preserving distributed LMS algorithm. By allowing each agent

to share only a fragment of perturbed local information with

its neighbors, the proposed private-partial distributed LMS

(PP-DLMS) simultaneously achieved both energy-efficiency

and privacy-preservation. A mean-convergence analysis of the

proposed PP-DLMS algorithm has been conducted to examine

the impact of partial-sharing of information on the estimation

performance. Further, agent privacy has been characterized in

the presence of an honest-but-curious (HBC) adversary, in

order to investigate the privacy-preserving properties of the

proposed algorithm. Analytical results revealed that the PP-

DLMS is resilient to the perturbation sequence and provides a

fair energy-privacy trade-off against HBC agents. Numerical
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simulations have validated the analytical findings.
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