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Abstract. We study when the twisted groupoid Banach ∗-algebra L1(G, σ) is
Hermitian. In particular, we prove that Hermitian groupoids satisfy the weak
containment property. Furthermore, we find that for L1(G, σ) to be Hermitian it
is sufficient that L1(Gσ) is Hermitian. Moreover, if G is ample, we find necessary
conditions for L1(G, σ) to be Hermitian in terms of the fibers Gxx .

1. Introduction

Due to the seminal paper [18], Hermitian Banach ∗-subalgebras of C∗-algebras
have been intimately linked to Wiener’s lemma and the notion of spectral invari-
ance. As such, they appear in a variety of areas of mathematics, such as approxi-
mation theory, time-frequency analysis and signal processing and noncommutative
geometry, see e.g. [10, 19, 20, 21, 22].

We say that a locally compact group G is Hermitian if the convolution algebra
L1(G) is a Hermitian Banach ∗-algebra. In the realm of Hermitian locally compact
groups the literature is very extensive (see for example [31, 32]). The class of Her-
mitian locally compact groups includes compact extensions of nilpotent groups [28]
and famously also all compactly generated groups of polynomial growth [27]. In
[36] it was proved that a Hermitian locally compact group must be amenable. In
another, but related context, it was proved in [25] that if A is a Hermitian Banach ∗-
algebra and Γ is a compact group acting on A by ∗-automorphisms, the generalized
L1-algebra L1(Γ,A) is Hermitian.

One of the main motivations for this article is the use of spectral invariance of
noncommutative tori in time-frequency analysis as in e.g. [22]. Noncommutative tori
can be viewed as the twisted group C∗-algebra C∗(Z2d, σ), where σ is the Heisenberg
2-cocycle. However, this can generalized to the group C∗-algebra C∗(∆, σ) where ∆

is a closed subgroup of the time-frequency plane G×Ĝ, where G is a locally compact
abelian group. This extension has been used to construct finitely generated modules
over noncommutative solenoids [16, 24]. Spectral invariance of L1(∆, σ) was studied
in [4]. Pushing forward this generalization, given a quasicrystal Λ ⊆ R2d one can
construct a twisted groupoid C∗-algebra C∗(GΛ, σ) where GΛ is an étale groupoid.
Finitely generated projective modules over C∗(GΛ, σ) were constructed in [23].

This paper together with [6] is a starting point for a project that aims to extend
the tools of operator algebras applied to Gabor analysis for lattices in the time-
frequency plane (see for example in [5, 16, 29, 35]) to the more general context of
quasicrystals [13, 23]. In particular, in this paper we focus our attention on when
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the Banach ∗-algebra L1(G, σ) associated to a locally compact groupoid G with a
twist σ is Hermitian.

The paper is structured as follows. First, in Section 2 we give the necessary
background and results about groupoids and Banach ∗-algebras.

In Section 3 we use twisted actions of groupoids on Lp-spaces to extend the main
result of [36] to the setting of groupoids with 2-cocycle twists. Indeed, we show
that if L1(G, σ) is (quasi-)Hermitian, then the full and the reduced twisted groupoid
C∗-algebras coincide (also known as the weak containment property). When G is
a group, this is equivalent to amenability. However, in the case of locally compact
groupoids the situation is more subtle.

Then, in Section 4 we give a proof that for ample groupoids satisfying a minor
technical assumption a necessary condition for L1(G, σ) to be quasi-Hermitian is
that the "fibers” L1(Gxx , σx) are quasi-Hermitian for every x ∈ G(0). Thus under
assumptions appearing in applications, the "fibers” present obstructions to L1(G, σ)

being quasi-Hermitian. Using this we give a simple example of an amenable étale
groupoid such that L1(G, σ) is not quasi-Hermitian.

Finally, in Section 5 we give sufficient conditions for L1(G, σ) to be Hermitian.
We construct the twisted groupoid Gσ, and show that L1(G, σ) is Hermitian if the
"untwisted” groupoid Banach ∗-algebra L1(Gσ) is Hermitian. In particular, we prove
that if Γ is a compact group or a locally compact abelian group acting by homeo-
morphisms on a locally compact Hausdorff space X, then L1(XoΓ, σ) is Hermitian
for every group 2-cocycle σ of Γ, where X o Γ is the transformation groupoid.

2. Preliminaries

2.1. Hermitian Banach ∗-algebras. If A is a unital Banach algebra, we denote
by A−1 the set of invertible elements of A. Given a unital Banach algebra A we
denote by

SpA(a) = {λ ∈ C : λ1A − a /∈ A−1} ,
the spectrum of a in A, and by

rA(a) := sup{|λ| : λ ∈ SpA(a)} = lim
n→∞

‖fn‖1/n

the spectral radius of a. If A is not unital, given a ∈ A we define SpA(a) := SpA+(a)

and rA(a) = rA+(a), where A+ is the minimal unitization of A.
Now let A be a Banach ∗-algebra. Then a ∈ A is Hermitian if a∗ = a. If S is a

subset of A, we denote by Sh = {a ∈ S : a∗ = a} the set of Hermitian elements in
S.

Definition 2.1. A Banach ∗-algebra A is Hermitian if

SpA(a) ⊆ R

for every a ∈ Ah. A is called symmetric if

SpA(aa∗) ⊆ [0,∞)

for every a ∈ A.
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Remark 2.2. By the celebrated Shirali-Ford theorem, a Banach ∗-algebra is Hermit-
ian if and only if it is symmetric.

A ∗-representation of a Banach ∗-algebra A is a ∗-homomorphism π : A → B(H),
where B(H) denotes the bounded linear operators on a Hilbert space H. We say A
is reduced if AR = {a ∈ A : π(a) = 0 for every ∗ −representation π of A} = {0}.
All Banach ∗-algebras we consider in the sequel will be reduced. The enveloping
C∗-algebra of a reduced Banach ∗-algebra A is the completion of A with respect to
the norm

‖a‖ := sup{‖π(a)‖ : π : A → B(H) is a ∗-representation}

for every a ∈ A, and it is denoted by C∗(A). The enveloping C∗-algebra of a Banach
∗-algebra always exists [32, Section 10.1].

2.2. Invariant spectral radius.

Definition 2.3. We say that A ⊆ B is a nested pair of reduced Banach ∗-algebras
if A and B are reduced Banach ∗-algebras and A embeds continuously into B as a
dense ∗-subalgebra. A nested triple of reduced Banach ∗-algebras is defined similarly.

Definition 2.4. Let A ⊆ B be a nested pair of reduced Banach ∗-algebras and S a
(not necessarily closed) ∗-subalgebra of A. We say Sh has invariant spectral radius
in (A,B) if

rA(a) = rB(a) ,

for every a ∈ Sh. If Ah has invariant spectral radius in (A,B), we say that Ah
has invariant spectral radius in B. Moreover, we say S is a spectrally invariant
subalgebra of (A,B) if

SpA(a) = SpB(a) ,

for every a ∈ S. If A is a spectrally invariant subalgebra of (A,B), we say A is
spectrally invariant in B.

Clearly, if S is a spectrally invariant subalgebra of (A,B), then Sh has invariant
spectral radius in (A,B). The Barnes-Hulanicki Theorem [7] provides a partial
converse when B is a C∗-algebra.

Theorem 2.5. Let A be a Banach ∗-algebra, S a ∗-subalgebra of A, and π : A →
B(H) a faithful ∗-representation. If A is unital, we assume that π(1A) = 1B(H). If

rA(a) = ‖π(a)‖ ,

for all a ∈ Sh, then
SpA(a) = SpB(H)(π(a))

for every a ∈ S.

In [36, Proposition 2.7] they prove a very useful property related to invariant
spectral radius.

Proposition 2.6. Let A ⊆ B be a nested pair of reduced Banach ∗-algebras, and
let S be a dense ∗-subalgebra of A. Suppose that Sh has invariant spectral radius in
(A,B). Then A and B have the same C∗-envelope.



4 ARE AUSTAD AND EDUARD ORTEGA

2.3. Hermitian and quasi-hermitian Banach ∗-algebras. Let A be a reduced
Banach ∗-algebra. Then the following statements are equivalent:

(1) A is Hermitian,
(2) A is symmetric,
(3) A is spectrally invariant in C∗(A),
(4) rA(a) = rC∗(A)(a) for every a ∈ A.
(see [36, Lemma 2.8] and [26, p. 340]).

Definition 2.7. A dense ∗-subalgebra S of a Banach ∗-algebra A is called quasi-
Hermitian in A if SpA(a) ⊆ R for every a ∈ Sh. We say S is quasi-symmetric in A
is SpA(a∗a) ⊆ [0,∞) for every a ∈ S.

Let S be a dense ∗-subalgebra of a Banach ∗-algebra A. If A is Hermitian, then
S is automatically quasi-Hermitian in A. The converse is not true in general, but
holds whenever A is commutative [36, Proposition 2.10].

2.4. Spectral interpolation.

Definition 2.8. Suppose A ⊆ B ⊆ C is a nested triple of reduced Banach ∗-algebras
and S is a dense ∗-subalgebra of A. We say that (A,B, C) is a spectral interpolation
triple relative to S if there exists θ ∈ (0, 1) such that

rB(a) ≤ rA(a)1−θrC(a)θ

for every a ∈ Sh.

A nice property of spectral interpolation triples of reduced Banach ∗-algebras was
proved in [36, Propostion 3.4].

Proposition 2.9. If (A,B, C) is a spectral interpolation triple of reduced Banach
∗-algebras relative to a quasi-Hermitian dense ∗-subalgebra S of A, then Sh has
invariant spectral radius in (B, C). In particular, C∗(B) = C∗(C) and

rB(a) = rC(a) ,

for every a ∈ Sh.

2.5. Groupoids, twists and associated algebras. We now introduce the Banach
∗-algebras and C∗-algebras associated to a groupoid as described in [33]. Given a
topological groupoid G we will denote by G(0) its unit space and write r, s : G → G(0)

for the continuous range and source maps, respectively. We will also denote by
G(2) = {(α, β) ∈ G × G : s(α) = r(β)} the set of composable elements. G(2) inherits
the subspace topology from G×G. Given x ∈ G(0) we define Gx := {γ ∈ G : s(γ) = x}
and Gx := {γ ∈ G : r(γ) = x}.

Let λ = {λx}x∈G(0) be a Haar system for G, where λx are measures with support
Gx such that

(1) for every f ∈ Cc(G), the function x 7→
∫
Gx f(γ)dλx(γ) is continuous,

(2) for every η ∈ G and f ∈ Cc(G) we have that∫
Gr(η)

f(γη)dλr(η)(γ) =

∫
Gs(η)

f(γ)dλs(η)(γ) .
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If G is a locally compact groupoid, then there always exist Haar systems for G.
A groupoid G is called étale if the range map, and hence also the source map, is

a local homeomorphism. In this case the sets Gx and Gx are discrete sets for every
x ∈ G(0), and the Haar system consists of counting measures. A subset B of an
étale groupoid G is called a bisection if there is an open set U ⊆ G containing B
such that r : U → r(U) and s : U → s(U) are homeomorphisms onto open subsets
of G(0). Second-countable étale groupoids have countable bases consisting of open
bisections.

The orbit of x ∈ G(0) is defined to be OrbG(x) = {r(γ) : γ ∈ Gx}. The isotropy
group of x is given by Gxx := Gx ∩ Gx = {γ ∈ G : s(γ) = r(γ) = x}, and the isotropy
subgroupoid of G is the subgroupoid Iso(G) :=

⋃
x∈G(0) Gxx with the relative topology

from G.
We will consider groupoid twists where the twist is implemented by a normalized

continuous 2-cocycle. To be more precise, let G be a locally compact groupoid. A
normalized continuous 2-cocycle is then a continuous map σ : G(2) → T satisfying

(2.1) σ(r(γ), γ) = 1 = σ(γ, s(γ))

for all γ ∈ G, and

(2.2) σ(α, β)σ(αβ, γ) = σ(β, γ)σ(α, βγ)

whenever (α, β), (β, γ) ∈ G(2). The set of normalized continuous 2-cocycles on G will
be denoted Z2(G,T). Note that this is not the most general notion of a twist of a
groupoid (see [37, Chapter 11]).

Let G be a locally compact groupoid with Haar system λ. We will define the
σ-twisted convolution algebra Cc(G, σ) as follows: As a set it is just

Cc(G, σ) = {f : G → C : f is continuous with compact support},

but equipped with σ-twisted convolution product

(2.3) (f ?σg)(γ) =

∫
Gs(γ)

f(γµ−1)g(µ)σ(γµ−1, µ) dλs(γ)(µ), f, g ∈ Cc(G, σ), γ ∈ G,

and σ-twisted involution

(2.4) f ∗σ(γ) = σ(γ−1, γ)f(γ−1), f ∈ Cc(G, σ), γ ∈ G.

We complete Cc(G, σ) in the "fiberwise 1-norm”, also known as the I-norm, given
by

‖f‖I = sup
x∈G(0)

{
max

{∫
Gx
|f(γ)| dλx(γ),

∫
Gx
|f(γ−1)| dλx(γ)

}}
(2.5)

= sup
x∈G(0)

{
max

{∫
Gx
|f(γ)| dλx(γ),

∫
Gx
|f ∗σ(γ)| dλx(γ)

}}
(2.6)

for f ∈ Cc(G, σ). Denote by L1(G, σ, λ) (or L1(G, σ) when there is no ambiguity on
the Haar system) the completion of Cc(G, σ) with respect to the I-norm. If G is an
étale groupoid, then we denote it by `1(G, σ).
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The (full) twisted groupoid C∗-algebra C∗(G, σ, λ) (or C∗(G, σ) when there is no
ambiguity on the Haar system) is the completion of Cc(G, σ) in the norm

‖f‖ := sup{‖π(f)‖ : π is an I-norm bounded ∗-representation of Cc(G, σ)},

for f ∈ Cc(G, σ). It was observed in [3, Lemma 3.3.19] that if G is a locally compact
Hausdorff étale groupoid, then every ∗-representation of Cc(G, σ) is bounded by the
I-norm. In addition, if G is a transformation groupoid (see Example 2.12), every
∗-representation is bounded by the I-norm. In these cases, since we are completing
with respect to a supremum over ∗-representations, C∗(G, σ) is just the C∗-envelope
of L1(G, σ).

Now we will construct a faithful ∗-representation of L1(G, σ) called the σ-twisted
left regular representation. In particular, we have that L1(G, σ) is reduced. The
completion of the image of L1(G, σ) under the σ-twisted left regular representation is
called the σ-twisted reduced groupoid C∗-algebra of G and will be denoted C∗r (G, σ, λ)

(or C∗r (G, σ) when there is no ambiguity on the Haar system). Let x ∈ G(0). Then
there is a representation Lσ,2x : Cc(G, σ) → B(L2(Gx)) (here L2(Gx) = L2(Gx, λx))
which is given by

(2.7)
(
Lσ,2x (f)ξ

)
(γ) =

∫
Gx
σ(γµ−1, µ)f(γµ−1)ξ(µ) dλs(γ)(µ)

for f ∈ Cc(G, σ), ξ ∈ L2(Gx) and γ ∈ Gx.
We then obtain a faithful I-norm bounded ∗-representation of Cc(G, σ) given by⊕

x∈G(0)
Lσ,2x : Cc(G, σ)→

⊕
x∈G(0)

B(L2(Gx)) ⊂ B(
⊕
x∈G(0)

L2(Gx)).

C∗r (G, σ) is then the completion of Cc(G, σ) with respect of the image of Cc(G, σ)

under the σ-twisted left regular representation, so given f ∈ Cc(G, σ)

‖f‖r,2 := sup
x∈G(0)

{‖Lσ,2x (f)‖B(L2(Gx))} .

As the representation is I-norm bounded, it extends to a ∗-representation of L1(G, σ),
and C∗r (G, σ) is also the C∗-completion of L1(G, σ) in the extended ∗-representation.
Moreover, since C∗(G, σ) is the completion of Cc(G, σ) with respect to the supre-
mum of the I-bounded norms, the identity map on Cc(G, σ) extends to a (surjective)
∗-homomorphism π : C∗(G, σ)→ C∗r (G, σ).

Definition 2.10. Let G be a locally compact groupoid with Haar system λ and let
σ ∈ Z2(G,T). We say that G twisted by σ has the weak containment property when
the natural map π : C∗(G, σ)→ C∗r (G, σ) is an isomorphism.

If G is an amenable groupoid with Haar measure λ [2], we have that C∗r (G, σ) =

C∗(G, σ) for every σ ∈ Z2(G,T) [2, Proposition 6.1.8], and hence G twisted by σ has
the weak containment property for every σ ∈ Z2(G,T). In [39] it was proved that
amenability is not equivalent to having the weak containment property.

Remark 2.11. It was shown in [33] that the full and reduced C∗-algebras don’t
depend, up to Morita equivalence, on the Haar system. Suppose λ, λ′ are two
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Haar systems for a locally compact groupoid G, let σ ∈ Z2(G,T), and suppose
C∗r (G, σ, λ) = C∗(G, σ, λ). Then C∗r (G, σ, λ) and C∗r (G, σ, λ′) are Morita equivalent,
as are C∗(G, σ, λ) and C∗(G, σ, λ′). However, it is not known to the authors if this
also implies C∗r (G, σ, λ′) = C∗(G, σ, λ′), that is, if weak containment is independent
of the Haar system.

Example 2.12. Let Γ be a locally compact group with left Haar measure λ and with
unit e, and let us consider an action of Γ by homeomorphisms on a locally compact
Hausdorff space X. Then we define the transformation groupoid X o Γ as the set
X × Γ with the product topology, such that

s(x, γ) = (x, e) , r(x, γ) = (γ · x, e) and (γ1 · x, γ2)(x, γ1) = (x, γ2γ1) .

Then X o Γ is a locally compact groupoid. Moreover, if X and Γ are both second-
countable, then so is X o Γ. One defines the Haar system {δx × λ}x∈G(0) where δx
is the Dirac measure, and in this case, given f ∈ Cc(X o Γ) we have that

‖f‖I = sup

{
max

{∫
Γ

|f(x, γ)| dλ(γ) ,

∫
Γ

|f(γ · x, γ−1)| dλ(γ)

}
: x ∈ G(0)

}
= sup

{∫
Γ

|f(x, γ)| dλ(γ) : x ∈ G(0)

}
.

Now let σ ∈ Z2(Γ,T). Then we can extend σ to a 2-cocycle of XoΓ, also denoted
by σ, by defining

σ((x1, γ1), (x2, γ2)) := σ(γ1, γ2) ,

for all x1, x2 ∈ X and γ1, γ2 ∈ Γ for which ((x1, γ1), (x2, γ2)) ∈ (X o Γ)(2). Then

C∗(L1(X o Γ, σ)) ∼= C∗(X o Γ, σ) ∼= C0(X) oσ Γ

is the full twisted crossed product C∗-algebra, and

C∗r (X o Γ, σ) ∼= C0(X) oσ
r Γ

is the reduced twisted crossed product C∗-algebra.

3. Quasi-Hermitian groupoids have the weak containment property.

In this section we prove the main result of the paper, namely that if L1(G, σ)

is Hermitian, then C∗(G, σ) = C∗r (G, σ). As a consequence, we also prove that if
L1(G, σ) is Hermitian, then L1(G, σ) is spectrally invariant in C∗r (G, σ). The general
strategy is to follow [36, Section 4], but not all the steps trivially extend to our
situation.

Definition 3.1. Let G be a locally compact groupoid with Haar system λ and let
σ ∈ Z2(G,T). We say that G is σ-quasi-Hermitian (resp. σ-quasi-symmetric) if
Cc(G, σ) is quasi-Hermitian (resp. quasi-symmetric) in L1(G, σ, λ).

Proposition 3.2. Let G be a locally compact groupoid with Haar system λ and
σ ∈ Z2(G,T). If G is σ-quasi-symmetric, then G is σ-quasi-Hermitian.
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Proof. The proof of [36, Proposition 4.1] adapts trivially to give us the following
result. Let f ∈ Cc(G, σ)h, then by assumption SpL1(G,σ)(f?σf

∗σ) ⊆ [0,∞). Therefore

{λ2 : λ ∈ SpL1(G,σ)(f)} ⊆ SpL1(G,σ)(f ?σ f) = SpL1(G,σ)(f ?σ f
∗σ) ⊆ [0,∞) .

Hence SpL1(G,σ)(f) ⊆ R for every f ∈ Cc(G, σ)h. �

Let G be a locally compact groupoid with Haar system λ, σ ∈ Z2(G,T) and
1 ≤ p ≤ ∞. Now fix x ∈ G(0), so we define the representation Lσ,px : Cc(G, σ) →
B(Lp(Gx)) by

Lσ,px (f)ξ(γ) =

∫
Gx
σ(γµ−1, µ)f(γµ−1)ξ(µ)dλx(µ),

for every f ∈ Cc(G, σ) and γ ∈ Gx. For p = 2 this is just (2.7).
Then we define the Lp-reduced σ-representation of G as

Lσ,p :=
⊕
x∈G(0)

Lσ,px : Cc(G, σ)→
⊕
x∈G(0)

B(Lp(Gx)) .

The following lemma is a straightforward modification of [15, Lemma 4.6] to the
situation of general Lp-spaces.

Lemma 3.3. Let G be a second-countable locally compact groupoid with Haar system
λ and 1 ≤ p ≤ ∞. Then

(3.1) ‖f‖∞ := sup
γ∈G
{|f(γ)|} ≤ ‖Lσ,p(f)‖ = sup

x∈G(0)
{‖Lσ,px (f)‖B(Lp(Gx))} ≤ ‖f‖I ,

for every f ∈ Cc(G, σ).

Definition 3.4. Let G be a second-countable locally compact groupoid with Haar
system λ, σ ∈ Z2(G,T) and 1 ≤ p ≤ ∞. The reduced groupoid Lp-Banach algebra,
denoted by F p(G, σ, λ), is the completion of Cc(G, σ) with respect to the norm

‖f‖r,p := sup
x∈G(0)

{‖Lσ,px (f)‖B(Lp(Gx))}

for all f ∈ Cc(G, σ). We will denote F p(G, σ, λ) by F p(G, σ) when there is no
ambiguity on the Haar system λ.

Let 1 ≤ p ≤ q ≤ ∞ with 1 = 1
p

+ 1
q
. Then, given any x ∈ G(0), there is a duality

relation (Lp(Gx))∗ ∼= Lq(Gx) given by

〈ξ, ζ〉 :=

∫
Gx
ξ(γ)ζ(γ) dλx ,

for ξ ∈ Lp(Gx) and ζ ∈ Lq(Gx).

Lemma 3.5. Let G be a second-countable locally compact groupoid with Haar system
λ, let σ ∈ Z2(G,T), and let 1 ≤ p, q ≤ ∞ be such that 1 = 1

p
+ 1

q
. Then

〈Lσ,px (f ∗σ)ξ, ζ〉 = 〈ξ, Lσ,qx (f)ζ〉 ,

for every x ∈ G(0), f ∈ L1(G, σ, λ), ξ ∈ Lp(Gx, λx) and ζ ∈ Lq(Gx, λx).
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Proof. Fix x ∈ G(0), f ∈ L1(G, σ), ξ ∈ Lp(Gx) and ζ ∈ Lq(Gx). Then

〈Lσ,px (f ∗σ)ξ, ζ〉 =

∫
Gx

(∫
Gx
σ(γµ−1, µ)f ∗σ(γµ−1)ξ(µ)dλx(µ)

)
ζ(γ) dλx(γ)

=

∫
Gx

(∫
Gx
σ(γµ−1, µ)σ((γµ−1)−1, γµ−1)f((γµ−1)−1)ξ(µ)dλx(µ)

)
ζ(γ) dλx(γ)

=

∫
Gx
ξ(µ)

(∫
Gx
σ(γµ−1, µ)σ((γµ−1)−1, γµ−1)f(µγ−1)ζ(γ) dλx(γ)

)
dλx(µ)

=

∫
Gx
ξ(µ)

∫
Gx

(
σ(µγ−1, γ)f(µγ−1)ζ(γ) dλx(γ)

)
dλx(µ)

=

∫
Gx
ξ(µ)Lσ,qx (f)ζ(µ) dλx(µ) = 〈ξ, Lσ,qx (f)ζ〉.

Here we used that σ(γµ−1, µ)σ((γµ−1)−1, γµ−1) = σ(µγ−1, γ), or equivalently, that

σ(µγ−1, γµ−1) = σ(µγ−1, γ)σ(γµ−1, µ)

for every µ, γ ∈ Gx. We get this from (2.2) using µγ−1, (µγ−1)−1, µ instead of α, β,
γ, and then applying (2.1). �

Proposition 3.6. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T), and suppose 1 ≤ p, q ≤ ∞ with 1 = 1

p
+ 1

q
. The algebra

L1(G, σ, λ) is a normed ∗-algebra with norm

‖f‖],p := max{‖f‖r,p, ‖f‖r,q} ,

for f ∈ Cc(G, σ), with the convolution and involution in L1(G, σ, λ).

Proof. We will adapt the proof of [36, Proposition 4.2] to our setting. Given f ∈
Cc(G, σ) we have that

‖f‖],p = max{ sup
x∈G(0)

{‖Lσ,px (f)‖}, sup
x∈G(0)

{‖Lσ,qx (f)‖}}

= sup
x∈G(0)

{‖Lσ,px (f)‖, ‖Lσ,qx (f)‖} ≤ ‖f‖I ,

by (3.1), so ‖f‖],p is well defined. It is easy to check that (L1(G, σ), ‖ · ‖],p) is a
normed algebra. We only have to prove that the involution is an isometry with
respect to ‖ · ‖],p. Let f ∈ L1(G, σ). Given x ∈ G(0), by Lemma 3.5 we have that

‖Lσ,px (f ∗σ)‖B(Lp(Gx)) = sup{|〈Lσ,px (f ∗σ)ξ, ζ〉| : ‖ξ‖p ≤ 1, ‖ζ‖q ≤ 1}
= sup{|〈ξ, Lσ,qx (f)ζ〉| : ‖ξ‖p ≤ 1, ‖ζ‖q ≤ 1}
= ‖Lσ,qx (f)‖B(Lq(Gx)) .

Similarly, switching p and q we obtain that

‖Lσ,qx (f ∗σ)‖B(Lq(Gx)) = ‖Lσ,px (f)‖B(Lp(Gx)) ,

and therefore ‖f ∗σ‖],p = ‖f‖],p, as desired. �
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Definition 3.7. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T), and let 1 ≤ p ≤ ∞. The Banach ∗-algebra F p

] (G, σ, λ)

(F p
] (G, σ) when there is no ambiguity on the Haar system) is defined to be the

completion of L1(G, σ, λ) with respect to the norm ‖ · ‖],p.

Given 1 ≤ p, q ≤ ∞ with 1 = 1
p

+ 1
q
, the Banach ∗-algebras F p

] (G, σ, λ) and
F q
] (G, σ, λ) are isometrically isomorphic. Moreover, F 2

] (G, σ, λ) = C∗r (G, σ, λ).
The following result is a combination of [9, Theorem 5.1.1] and [14, Section 10.1].

Lemma 3.8. Let G be a second-countable locally compact groupoid with Haar system
λ, let x ∈ G(0), and let 1 ≤ p1 ≤ p2 ≤ p3 ≤ ∞. Suppose that T is a bounded
operator defined on Lp1(Gx, λx) ∩ Lp3(Gx, λx) such that it extends continuously to
bounded operators on both Lp1(Gx, λx) and Lp3(Gx, λx): Then T extends continuously
on Lp2(Gx, λx). Furthermore, if Mi is the norm of the extension of T on Lpi(Gx, λx)
for i = 1, 2, 3, then

M2 ≤M1−θ
1 M θ

3 ,

for 0 < θ < 1 satisfying
1

p2

=
1− θ
p1

+
θ

p3

.

Proposition 3.9. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T), and suppose 1 < p < 2. Then

(L1(G, σ, λ), F p
] (G, σ, λ), C∗r (G, σ, λ))

is a spectral interpolation triple of reduced Banach ∗-algebras relative to L1(G, σ, λ).

Proof. Let q ∈ (2,∞) such that 1 = 1
p

+ 1
q
, and let

θ =
2p− 2

p
∈ (0, 1) ,

and hence
1

p
=

1− θ
1

+
θ

2
.

Then, for x ∈ G(0) and f ∈ L1(G, σ), using Lemma 3.8 and (2.5) we have that

‖Lσ,px (f)‖B(Lp(Gx)) ≤ ‖Lσ,1x (f)‖1−θ
B(L1(Gx))‖L

σ,2
x (f)‖θB(L2(Gx))

≤ ‖f‖1−θ
],1 ‖f‖

θ
r,2 ≤ ‖f‖1−θ

I ‖f‖
θ
r,2 ,

and therefore ‖f‖r,p ≤ ‖f‖1−θ
I ‖f‖θr,2. On the other hand,

1

q
= 1− 1

p
= 1−

(
1− θ

1
+
θ

2

)
= 1− (1− θ)− θ

(
1− 1

2

)
= 0 +

θ

2
=

1− θ
∞

+
θ

2
,
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so we can apply the same above argument to show that ‖f‖r,q ≤ ‖f‖1−θ
I ‖f‖θr,2.

Hence,

(3.2) ‖f‖],p ≤ ‖f‖1−θ
I ‖f‖

θ
r,2 ,

for every f ∈ L1(G, σ).
Therefore given f ∈ L1(G, σ), we have that

‖fn‖
1
n
],p ≤ ‖f

n‖
1−θ
n
I ‖f

n‖
θ
n
r,2 ,

for every n ∈ N. Then taking the limit as n→∞ we have that

(3.3) rF p] (G,σ)(f) ≤ rL1(G,σ)(f)1−θrC∗r (G,σ)(f)θ ,

for every f ∈ L1(G, σ).
To finish the proof we only need to prove that (L1(G, σ), F p

] (G, σ), C∗r (G, σ)) is a
nested triple of reduced Banach ∗-algebras.

Let θ ∈ (0, 1) be such that
1

2
=

1− θ
p

+
θ

q
.

Then for f ∈ L1(G, σ),

‖f‖],p = sup
x∈G(0)

{‖Lσ,px (f)‖B(Lp(Gx)), ‖Lσ,qx (f)‖B(Lq(Gx))}

≥ sup
x∈G(0)

{‖Lσ,px (f)‖1−θ
B(Lp(Gx))‖L

σ,q
x (f)‖θB(Lq(Gx))}

≥ sup
x∈G(0)

{‖Lσ,2x (f)‖B(L2(Gx))} = ‖f‖r,2 ,

by Lemma 3.8. Therefore the identity map on L1(G, σ) extends to a contractive
∗-homomorphism

πp,2 : F p
] (G, σ)→ C∗r (G, σ) .

Now we want to see that πp,2 is injective. Let f ∈ ker(πp,2). Then there exists a
sequence {fn}∞n=1 in L1(G, σ) such that lim fn = f in F p

] (G, σ). Then given x ∈ G(0)

and ξ ∈ Cc(Gx) we have that

lim
n→∞

Lσ,2x (fn)ξ = 0 in L2(Gx) ,

that is
0 = ‖ lim

n→∞
Lσ,2x (fn)ξ‖L2(Gx)

=

(∫
Gx

lim
n→∞

|Lσ,2x (fn)ξ(γ)|2 dλx(γ)

)1/2

=

(∫
Gx

lim
n→∞

∣∣∣∣∫
Gx
σ(γµ−1, µ)fn(γµ−1)ξ(µ) dλx(µ)

∣∣∣∣2 dλx(γ)

)1/2

,

which forces

(3.4) lim
n→∞

∣∣∣∣∫
Gx
σ(γµ−1, µ)f(γµ−1)ξ(µ) dλx(µ)

∣∣∣∣ = 0 .
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Now observe that the map

Ψ : L1(G, σ)→ B (⊕x∈G(0) (Lp(Gx)⊕ Lq(Gx))) ,

defined by f 7→
⊕

x∈G(0)(L
σ,p
x (f)⊕ Lσ,qx (f)), extends isometrically to a map

Ψ : F p
] (G, σ)→ B (⊕x∈G(0) (Lp(Gx)⊕ Lq(Gx))) .

Now fix x ∈ G(0) and i ∈ {p, q}. Then given ξ ∈ Cc(Gx) we have that

Ψ(f)ξ = lim
n→∞

Ψ(fn)ξ ,

but
‖Ψ(f)ξ‖Li(Gx) = ‖ lim

n→∞
Ψ(fn)ξ‖Li(Gx)

= ‖ lim
n→∞

Lσ,ix (fn)ξ‖Li(Gx)

= lim
n→∞

(∫
Gx

∣∣∣∣∫
Gx
σ(γµ−1, µ)fn(γµ−1)ξ(µ) dλx(µ)

∣∣∣∣i dλx(γ)

)1/i

= 0

because of (3.4). Thus, Ψ(f) = 0 and since Ψ is isometric we have that f = 0.
Hence πp,2 is injective.

Now, by (3.2) and the fact that the regular representation is I-norm bounded, we
get

‖f‖],p ≤ ‖f‖1−θ
I ‖f‖

θ
r,2 ≤ ‖f‖1−θ

I ‖f‖
θ
I = ‖f‖I ,

for every f ∈ L1(G, σ). Hence, the identity map on L1(G, σ) extends to a contraction

Φp,I : L1(G, σ)→ F p
] (G, σ) .

Observe that then (πp,2 ◦ Φp,I) : L1(G, σ) → C∗r (G, σ) is the regular representation
of L1(G, σ), which is injective. It follows that Φp,I : L1(G, σ)→ F p

] (G, σ) is injective
too. �

Proposition 3.10. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T). Then the following statements are equivalent:

(1) G is σ-quasi-symmetric,
(2) G is σ-quasi-Hermitian,
(3) rL1(G,σ,λ)(f) = rC∗r (G,σ,λ)(f) for every f ∈ Cc(G, σ)h,
(4) SpL1(G,σ,λ)(f) = SpC∗r (G,σ,λ)(f) for every f ∈ Cc(G, σ).

Proof. (1) ⇒ (2) was proved in Proposition 3.2. (3) ⇒ (4) is proved in Theorem
2.5, and (4)⇒ (1) is clear. So we only need to prove (2)⇒ (3).

Suppose that G is σ-quasi-Hermitian and 1 < p < 2. Then

(L1(G, σ), F p
] (G, σ), C∗r (G, σ))

is a spectral interpolation triple of reduced Banach ∗-algebras relative to L1(G, σ)

by Proposition 3.9. Hence, by Proposition 2.9 we have that

rF p] (G,σ)(f) = rC∗r (G,σ)(f) ,

for every f ∈ Cc(G, σ)h.
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Now fix f ∈ Cc(G, σ)h. Then the sets U = Supp(f) and s(U) are compact sets.
Replacing U by U ∪ U−1 we can assume that r(U) = s(U), and that given any
x ∈ s(U), the map Gx∩U → Gx∩U given by γ 7→ γ−1 is a bijection. Then since G is
locally compact, using a partition of the unit, there exists a function g1 ∈ Cc(G, σ)

such that g1(γ) = 1 for every γ ∈ U . Then since the map x 7→
∫
Gx g1(γ) dλx(γ) is

continuous we have that

(3.5) K := sup

{∫
Gx
g1(γ) dλx(γ) : x ∈ s(U)

}
<∞ .

Observe that given x ∈ s(U) we have that∫
Gx
g1(γ) dλx(γ) = λx(Gx ∩ U) ≤ K .

Now given n ∈ N, we denote by fn the n’th convolution power f ?σ · · · ?σ f . Then
we have that

Supp(fn) ⊆ U (n) = {γ1 · · · γn : γi ∈ U such that r(γi) = s(γi+1) for i = 1, . . . , n−1} .

By continuity of the groupoid product U (n) is a compact subset of G. Now given
x ∈ s(U (n)) we define U (n)

x := U (n) ∩ Gx, so

λx(U
(n)
x ) =

∫
U

(n−1)
x

λs(γ)(Ur(γ)γ) dλx(γ) ≤
∫
U

(n−1)
x

λr(γ)(Ur(γ)) dλx(γ)

≤
∫
U

(n−1)
x

K dλx(γ) = Kλx(U
(n−1)
x )

≤ K2λx(U
(n−2)
x ) ≤ · · · ≤ Kn−1λx(Gx ∩ U)

≤ Kn ,

by using the invariance of the Haar measures.
Now, fix n ∈ N and x ∈ s(U (n)). Let 1

U
(n)
x
∈ L1(Gx) be the characteristic function

on U (n)
x . Then we have that

‖fn|Gx‖L1(Gx) = ‖fn|Gx1U(n)
x
‖L1(Gx)

≤ ‖fn|Gx‖Lp(Gx)‖1U(n)
x
‖Lq(Gx) (where 1 =

1

p
+

1

q
)

≤ ‖Lp,σx (fn−1)‖B(Lp(Gx))‖f|Gx‖Lp(Gx)K
n
q

≤ ‖fn−1‖],p‖f|Gx‖Lp(Gx)K
n
q .

In a similar way we have that

‖(f ∗σ)n|Gx‖L1(Gx) ≤ ‖(f ∗σ)n−1‖],p‖f ∗σ|Gx‖Lp(Gx)K
n
q = ‖fn−1‖],p‖f ∗σ|Gx‖Lp(Gx)K

n
q .

Now using (3.5) but replacing g1 with |f |p and |f ∗σ |p, we have that

sup
x∈G(0)

{max{‖f|Gx‖Lp(Gx), ‖f ∗σ|Gx‖Lp(Gx)} = C <∞ ,
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and then

‖fn‖I = sup
x∈G(0)

{max{‖fn|Gx‖L1(Gx), ‖(f ∗σ)n|Gx‖L1(Gx)}}

≤ ‖fn−1‖],p sup
x∈G(0)

{max{‖f|Gx‖Lp(Gx), ‖(f ∗σ)|Gx‖Lp(Gx)}}K
n
q

≤ ‖fn−1‖],pCK
n
q .

Therefore,

‖fn‖
1
n
I ≤ ‖f

n−1‖
1
n
],pC

1
nK

1
q ,

and then when n→∞, we have that

rL1(G,σ)(f) ≤ rF p] (G,σ)(f)K
1
q = rC∗r (G,σ)(f)K

1
q .

Then, taking the limit for p→ 1+, we have that q →∞, so rL1(G,σ)(f) ≤ rC∗r (G,σ)(f).
But we always have that rC∗r (G,σ)(f) ≤ rL1(G,σ)(f), and hence

rC∗r (G,σ)(f) = rL1(G,σ)(f) .

�

Theorem 3.11. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T). If G is σ-quasi-Hermitian, then C∗r (G, σ) is the C∗-
envelope of L1(G, σ). In particular, G with Haar system λ and the twist σ has the
weak containment property.

Proof. By Proposition 3.10, if Cc(G, σ) is quasi-Hermitian in L1(G, σ, λ), then for
every f ∈ Cc(G, σ)h we have rC∗r (G,σ)(f) = rL1(G,σ)(f). Therefore by Proposition 2.6
we have that C∗r (G, σ, λ) is the C∗-envelope of L1(G, σ, λ). But this means that the
reduced norm is the maximal norm, and so C∗r (G, σ, λ) = C∗(G, σ, λ). �

Finally, we address the problem of spectral invariance. Recall that spectra in
non-unital algebras are defined in terms of the spectra in their minimal unitizations.
Since a Banach ∗-algebra A is Hermitian if and only if its minimal unitization is
Hermitian [34, Theorem (4.7.9)], we obtain the following corollary.

Corollary 3.12. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T). Then L1(G, σ, λ) is Hermitian if and only if L1(G, σ, λ)

is spectrally invariant in C∗r (G, σ, λ).

Proof. Suppose that L1(G, σ) is Hermitian. Then C∗(L1(G, σ)) = C∗r (G, σ) by The-
orem 3.11. But as L1(G, σ) is Hermitian, it must be spectrally invariant in its
enveloping C∗-algebra, hence it is spectrally invariant in C∗r (G, σ). The converse
implication is trivial.

�
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4. Non-Hermitian ample amenable groupoids

In the previous section we proved that if G is a second-countable locally com-
pact quasi-Hermitian groupoid, then G satisfies the weak containment property, i.e.
C∗r (G) ∼= C∗(G). In the case G is a group, this translates to the fact that quasi-
Hermitian groups are amenable. In the case of groupoids the situation is more
subtle, since the weak containment property is not equivalent to G being amenable.
There are examples of non-amenable groupoids with the weak containment property
in [1, 39]. In this section we will see that when G is an ample groupoid, an obstruc-
tion to G being quasi-Hermitian is that the isotropy groups are not quasi-Hermitian.
We can then easily construct an amenable ample groupoid that is not Hermitian.

Definition 4.1. A locally compact Hausdorff étale groupoid is called ample if it
has a basis consisting of open and compact bisections.

Let G be an ample groupoid and let σ ∈ Z2(G,T). Then, given x ∈ G(0), the
restriction of σ to the isotropy group Gxx is a group 2-cocycle. We denote this
restricted 2-cocycle by σx.

Proposition 4.2. Let G be a second-countable ample groupoid and σ ∈ Z2(G,T),
with G(0) compact. Suppose that for every γ ∈ Iso(G) there exists a clopen bisection
U ⊆ G such that γ ∈ U and r(U) = s(U) = G(0). If G is σ-quasi-Hermitian, then
Gxx is a σx-quasi-Hermitian group for every x ∈ G(0).

Proof. Let us suppose that there exists x ∈ G(0) such that Gxx is not σx-quasi-
Hermitian. Then there exists f ∈ Cc(Gxx , σx)h such that Sp`1(Gxx ,σx)(f) * R. Observe
that f must be of the form

f =
m∑
i=1

λiδγi +
m∑
i=1

λiσ(γ−1
i , γi)δγ−1

i
,

where λi ∈ C and γi ∈ Gxx . Let λ ∈ Sp`1(Gxx ,σx)(f) \ R. By assumption, for every
γ ∈ Gxx there exists a bisection Uγ ⊆ G such that γ ∈ Uγ and r(Uγ) = s(Uγ) = G(0).
Then f̂ =

∑m
i=1 λi1Uγi +

∑m
i=1 λiσ(γ−1

i , γi)1U−1
γi
∈ Cc(G, σ)h. We claim that λ ∈

Sp`1(G,σ)(f̂), that is λ1G(0)− f̂ is not invertible in `1(G, σ). Suppose that λ1G(0)− f̂ is
invertible in `1(G, σ), so there exists ĝ ∈ `1(G, σ) such that (λ1G(0) − f̂) ?σ ĝ = 1G(0) .
Let {ĝn}∞n=1 be a sequence in Cc(G, σ) such that ĝn → ĝ in `1(G, σ), and hence
(λ1G(0) − f̂) ?σ ĝn → 1G(0) in `1(G, σ). In particular, ((λ1G(0) − f̂) ?σ ĝn)(x)→ 1 and
((λ1G(0) − f̂) ?σ ĝn)(γ) → 0 for every γ ∈ Gxx \ {x}. Let ĝn =

∑ln
j=1 βj,n1Vj,n where

the Vj,n’s are compact open bisections. Then

(λ1G(0) − f̂) ?σ ĝn = (λ1G(0) − f̂) ?σ (
ln∑
j=1

βj,n1Vj,n)

=
ln∑
j=1

λβj,n1Vj,n −
ln∑
j=1

βj,n(f̂ ?σ 1Vj,n) .



16 ARE AUSTAD AND EDUARD ORTEGA

Therefore, defining ηj,n := xVj,nx ∈ Gxx and gn =
∑ln

j=1 βj,nδηj,n ∈ `1(Gxx , σx), we
have that the sequence {gn}∞n=1 converges in `1(Gxx , σx) because {ĝn}∞n=1 converges
in `1(G, σ), and

(λ1− f) ?σx gn → (λ1− f) ?σx g = 1 .

Therefore λ /∈ Sp`1(Gxx ,σx)(f), a contradiction. �

Remark 4.3. It was observed in [30, Lemma 4.9] that the condition that for every
γ ∈ Iso(G) there exists a clopen bisection U ⊂ G such that γ ∈ U and r(U) =

s(U) = G(0) is satisfied if |OrbG(x)| ≥ 2 for every x ∈ G(0).

Example 4.4. Willett constructed in [39] a second-countable locally compact ample
groupoid G with G(0) compact that satisfies the weak-containment property. G is a
group bundle so it clearly satisfies the assumptions in Proposition 4.2. Moreover, G
has an isotropy group isomorphic to the free non-abelian group with two generators,
which is not quasi-Hermitian by [36, Corollary 4.8]. Therefore, by Proposition 4.2
we have that G is not quasi-Hermitian.

Example 4.5. Let Γ be a countable discrete group with unit e, and let us consider
an action of Γ on a second-countable compact Hausdorff space X. Then X o Γ is
a second-countable locally compact Hausdorff étale groupoid. Let us suppose that Γ

contains a free semigroup on two generators z, t. Given γ ∈ Γ we define the bisection
Uγ = (X, γ) of X o Γ. Observe that given γ, γ′ ∈ Γ we have that UγUγ′ = Uγγ′. Let
us consider

f = a01Ue + a11Uz + a21Uz2 ∈ Cc(X o Γ) ,

where a0, a1, a2 ∈ C satisfy |a0| = |a1| = |a2| = 1
3
and

sup{|a0 + a1x+ a2x
2| : x ∈ T} < 1 .

Observe that 1Ue is the unit of `1(X o Γ). We then have

r`1(XoΓ)(f) < 1 ,

by using the spectral mapping theorem and maximum modulus principle, and since
f is normal, i.e. ff ∗ = f ∗f , we obtain

‖f‖C∗r (XoΓ) = rC∗r (XoΓ)(f) < 1 .

Now, since 1Ut is a unitary in C∗(X o Γ) it follows that

‖f ?σ 1Ut‖ = ‖a01Ut + a11Uzt + a21Uz2t‖ .

Then since t, z generate a free non-abelian group we have that

(a01Ut + a11Uzt + a21Uz2t)
n

has 3n linearly independent terms. Hence, since Uγ ∩ Uγ′ = ∅ if and only if γ 6= γ′,
we have that

‖(a01Ut + a11Uzt + a21Uz2t)
n‖`1(XoΓ) = 1

for every n ∈ N, and so r`1(XoΓ)(a01Ut + a11Uzt + a21Uz2t) = 1. Thus we have that

Sp`1(XoΓ)(a01Ut + a11Uzt + a21Uz2t) 6= SpC∗r (XoΓ)(a01Ut + a11Uzt + a21Uz2t) ,
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and hence by Proposition 3.10 we have that X o Γ is not quasi-Hermitian.
Then, let F2 be the non-abelian free group with two generators. It is known that

there exists a locally compact space X and an amenable free action of F2 on X (see
for example [38]). Hence, X o F2 is an amenable groupoid but not quasi-Hermitian
and with no non-trivial isotropy groups.

5. Hermitian twisted groupoid Banach ∗-algebras

Let G be a second-countable locally compact groupoid with Haar system λ and
let σ ∈ Z2(G,T). In this section we give a sufficient condition for the Banach ∗-
algebra L1(G, σ, λ) to be Hermitian. As a consequence we are able to give conditions
for twisted transformation groupoids so that the associated twisted transformation
groupoid Banach ∗-algebras are Hermitian.

Definition 5.1. Given a second-countable locally compact groupoid G with Haar
system λ and σ ∈ Z2(G,T), we define the twisted groupoid Gσ to be the groupoid
G × T with product topology and operations defined by

(γ1, z1) · (γ2, z2) = (γ1γ2, z1z2σ(γ1, γ2)) if (γ1, γ2) ∈ G(2) ,

and
(γ, z)−1 = (γ−1, zσ(γ, γ−1)) .

The Haar system of Gσ is the one given by λ × η = {λx × η}x∈G(0) , where η is the
normalized Lebesgue measure on T.

Proposition 5.2. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T). The map

j : L1(G, σ, λ)→ L1(Gσ, λ× η) ,

given by j(f)(γ, z) = zf(γ) is an isometric ∗-homomorphism.

Proof. First we prove that j is a ∗-homomorphism. Fix f, g ∈ L1(G, σ), γ ∈ G and
z ∈ T. Then we have that

j(f ?σ g)(γ, z) = z(f ?σ g)(γ) = z

∫
Gs(γ)

σ(γµ−1, µ)f(γµ−1)g(µ) dλs(γ)(µ)

=

∫
Gs(γ)

zσ(γ, µ−1)σ(µ, µ−1)f(γµ−1)g(µ) dλs(γ)(µ)dt

=

∫
T

∫
Gs(γ)

zσ(γ, µ−1)σ(µ, µ−1)f(γµ−1)g(µ) dλs(γ)(µ)dt

=

∫
T

∫
Gs(γ)

tσ(γ, µ−1)zσ(µ, µ−1)f(γµ−1)tg(µ) dλs(γ)(µ)dt

=

∫
T

∫
Gs(γ)

j(f)(γµ−1, tσ(γ, µ−1)zσ(µ, µ−1))j(g)(µ, t) dλs(γ)(µ)dt

=

∫
T

∫
Gs(γ)

j(f)((γ, z)(µ, t)−1)j(g)(µ, t) dλs(γ)(µ)dt

= (j(f) ? j(g))(γ, z) ,
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where, at the third equality, we have used σ(γµ−1, µ)σ(γ, µ−1) = σ(µ−1, µ). This
identity follows from (2.2) by using γ, µ−1, µ instead of α, β, γ and then applying
(2.1). We then use that σ(µ−1, µ) = σ(µ, µ−1), which follows from (2.2) using µ,
µ−1, µ instead of α, β, γ and then applying (2.1).

Moreover,

j(f ∗σ)(γ, z) = zf ∗σ(γ) = zσ(γ, γ−1)f(γ−1)

= j(f)(γ−1, zσ(γ, γ−1))

= j(f)((γ, z)−1)

= j(f)∗(γ, z) .

Finally, ∫
Gx
|f(γ)| dλx(γ) =

∫
T
|z|
∫
Gx
|f(γ)| dλx(γ) dz

=

∫
T

∫
Gx
|zf(γ)| dλx(γ) dz

=

∫
T

∫
Gx
|j(f)(γ, z)| dλx(γ) dz

and ∫
Gx
|f(γ−1)| dλx(γ) =

∫
T
|z|
∫
Gx
|f(γ−1)| dλx(γ) dz

=

∫
T

∫
Gx
|zσ(γ, γ−1)f(γ−1)| dλx(γ) dz

=

∫
T

∫
Gx
|j(f)(γ−1, zσ(γ, γ−1))| dλx(γ) dz

=

∫
T

∫
Gx
|j(f)((γ, z)−1))| dλx(γ) dz .

Therefore,

‖f‖I = sup
x∈G(0)

max

{∫
Gx
|f(γ)| dλx(γ) ,

∫
Gx
|f(γ−1)| dλx(γ)

}
= sup

x∈G(0)
max

{∫
T

∫
Gx
|j(f)(γ, z)| dλx(γ) dz ,

∫
T

∫
Gx
|j(f)((γ, z)−1)| dλx(γ) dz

}
= ‖j(f)‖I .

�

Proposition 5.3. Let G be a second-countable locally compact groupoid with Haar
system λ and σ ∈ Z2(G,T). Suppose that L1(Gσ) is Hermitian. Then L1(G, σ) is
Hermitian.

Proof. By Proposition 5.2 L1(G, σ) is a closed Banach ∗-subalgebra of L1(Gσ). Then
by [10, Proposition 7.10] L1(G, σ) is Hermitian. �
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Example 5.4. Let X be a second-countable locally compact Hausdorff space, and
let Γ be a second-countable locally compact group acting on X by homeomorphisms.
Let G = X oΓ be the transformation groupoid, which is locally compact. Recall that
G is étale if and only if Γ is discrete. Let σ ∈ Z2(Γ,T), and extend σ to a 2-cocycle
of XoΓ as shown in Example 2.12. We define Γσ to be the group that is Γ×T with
the product topology, and

(γ1, z1)(γ2, z2) = (γ1γ2, z1z2σ(γ1, γ2)) ,

for every z1, z2 ∈ T and γ1, γ2 ∈ Γ. Now if we define the action of Γσ on X by

(γ, z) · x := γ · x ,

then the transformation groupoid X o Γσ is isomorphic to (X o Γ)σ.

Let X be a second-countable locally compact Hausdorff space, and let Γ be a
second-countable locally compact group with modular function ∆, acting on X by
homeomorphisms. Further, let σ ∈ Z2(Γ,T), and let C0(X) be the Banach ∗-algebra
of continuous functions on X that vanish at infinity with the supremum norm ‖·‖∞.
Then Γ acts on C0(X) by γ · f(x) = f(γ−1 · x) for every f ∈ C0(X) and γ ∈ Γ. Let
us define the generalized L1-algebra L1(Γ, C0(X), σ) to be the completion of

Cc(Γ, C0(X), σ) = {f : Γ→ C0(X) : f is continuous with compact support}

with respect to the norm

‖f‖ :=

∫
Γ

‖f(γ)‖∞ dλ(γ) ,

where λ is a left Haar measure of Γ. Then L1(Γ, C0(X), σ) becomes a Banach
∗-algebra with the operations

(f ?σ g)(γ)(x) =

∫
Γ

σ(γµ−1, µ)f(γµ−1)(µ · x)g(µ)(x) dλ(µ) ,

and
(f ∗σ)(γ)(x) = ∆(γ−1)σ(γ, γ−1)f(γ−1)(γ · x) ,

for every f, g ∈ L1(Γ, C0(X), σ), γ ∈ Γ and x ∈ X.
If σ is the trivial twist, we denote L1(Γ, C0(X), σ) by L1(Γ, C0(X)). The C∗-

envelope of L1(Γ, C0(X), σ) is the twisted crossed product C∗-algebra C0(X) oσ Γ.

Lemma 5.5. Let X be a second-countable locally compact Hausdorff space, and let
Γ be a second-countable locally compact unimodular group (∆ ≡ 1) acting on X by
homeomorphisms. Let σ ∈ Z2(Γ,T). Then there exists a surjective ∗-homomorphism
Φ : L1(Γ, C0(X), σ)→ L1(XoΓ, σ). Consequently, if L1(Γ, C0(X), σ) is Hermitian,
then so is L1(X o Γ, σ).

Proof. First observe that Cc(Γ, Cc(X), σ) is a dense ∗-subalgebra of L1(Γ, C0(X), σ).
The map Φ : Cc(Γ, Cc(X), σ) → Cc(X o Γ, σ) given by Φ(f)(x, γ) = Φ(f)(γ)(x)

defines a ∗-homomorphism. Indeed, given f, g ∈ Cc(Γ, Cc(X), σ), γ ∈ Γ and x ∈ X
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Φ(f ?σ g)(x, γ) = (f ?σ g)(γ)(x)

=

∫
Γ

σ(γµ−1, µ)f(γµ−1)(µ · x)g(µ)(x) dλ(µ)

=

∫
Γ

σ(γµ−1, µ)Φ(f)(µ · x, γµ−1)Φ(g)(x, µ) dλ(µ)

= (Φ(f) ?σ Φ(g))(x, γ) ,

and

Φ(f ∗σ)(x, γ) = f ∗σ(γ)(x) = σ(γ, γ−1)f(γ−1)(γ · x)

= σ(γ, γ−1)Φ(f)(γ · x, γ−1) = Φ(f)∗σ(x, γ) .

Observe that clearly Φ is a bijection. Now given f ∈ Cc(Γ, Cc(X), σ) we have that

‖Φ(f)‖I = sup

{∫
Γ

|Φ(f)(x, γ)| dλ(γ) : x ∈ X
}

= sup

{∫
Γ

|f(γ)(x)| dλ(γ) : x ∈ X
}

≤
∫

Γ

sup{|f(γ)(x)| : x ∈ X} dλ(γ)

=

∫
Γ

‖f(γ)‖∞ dλ(γ) = ‖f‖ .

Thus, ‖Φ(f)‖I ≤ ‖f‖ for every f ∈ Cc(Γ, Cc(X), σ), and so Φ extends to a continu-
ous surjective ∗-homomorphism Φ : L1(Γ, C0(X), σ)→ L1(X o Γ, σ).

Finally, the last statement follows by the fact that quotients of Hermitian ∗-
algebras are Hermitian [32, Theorem 10.4.4]. �

Corollary 5.6. Let X be a second-countable locally compact Hausdorff space, and
let Γ be a second-countable compact group or a locally compact abelian group acting
on X by homeomorphisms. Let σ ∈ Z2(Γ,T). Then L1(XoΓ, σ) is Hermitian, and,
in particular, L1(X o Γ, σ) is spectrally invariant in C∗r (X o Γ, σ).

Proof. By Example 5.4 we have that (X o Γ)σ ∼= X o Γσ. Then by Proposition 5.3
L1(XoΓ, σ) is Hermitian if L1(XoΓσ) is Hermitian. By Lemma 5.5 L1(XoΓσ) is
Hermitian if L1(Γσ, C0(X)) is Hermitian. Now if Γ is compact, then Γσ is compact
too, and if Γ is abelian, then Γσ is nilpotent, and hence L1(Γσ, C0(X)) is Hermitian
[8, pg. 1285]. So in both cases L1(X o Γ, σ) is Hermitian, and it then follows by
Theorem 3.11 that X o Γ has the weak containment property with respect to σ.
Finally, by Corollary 3.12 it follows that L1(X o Γ, σ) is spectrally invariant in
C∗r (X o Γ, σ). �
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