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Abstract—At the heart of most adaptive filtering techniques
lies an iterative statistical optimization process. These techniques
typically depend on adaptation gains, which are scalar
parameters that must reside within a region determined
by the input signal statistics to achieve convergence. This
manuscript revisits the paradigm of determining near-optimal
adaptation gains in adaptive learning and filtering techniques.
The adaptation gain is considered as a matrix that is learned from
the relation between input signal and filtering error. The matrix
formulation allows adequate degrees of freedom for near-optimal
adaptation, while the learning procedure allows the adaption gain
to be formulated even in cases where the statistics of the input
signal are not precisely known.

Index Terms—Adaptive filtering, statistical estimation,
gradient descent, optimization.

I. INTRODUCTION

A concept well understood in mathematics circles, the
introduction of the least mean square (LMS) adaptive
filtering technique [1] planted iterative statistical optimisation
techniques at the heart of filtering solutions [2,3]. In contrast to
its priors, such as the Wiener filtering solution, that calculated
fixed filtering weights based on assumptions on the signal
statistics, the LMS learned its filtering weights from the signal
using an efficient gradient decent technique. The prospect
of learning from the signal of interest has found the LMS
and its numerous derivatives wide-ranging applications, and
has garnered a great deal of interest in iterative optimisation
solutions from the signal processing and machine learning
communities [3,4].

Despite their vantage points, adaptive filtering and learning
techniques built on the gradient descent method rely on
a scalar parameter referred to as the adaptation gain,
which controls the performance of the learning process. The
adaptation gain itself has an acceptable range in which it
has to reside to guarantee convergence [3]. Selection of the
adaptation gain within the acceptable range, produces a design
trade-off. On one hand, if selected on the lower end of the
acceptable range, the adaptation process will be accurate but
slow. On the other hand, if the adaptation gain is set on the
upper end of the acceptable range, a fast learning rate is made
possible at the cost of accuracy. Thus, presenting a speed-
accuracy dilemma [5].

The fundamental role of the adaptation gain has prompted
concerted research thrusts to either format an optimal value
or adjust the adaptation gain itself to the signal statistics

and filtering/learning demands, a chronicle of which can be
found in [5]. Most notable efforts in this direction are the
normalised LMS [2,6,7] that regulates the adaptation gain
using the norm of the input signal, the framework in [8] that
draw a duality between the LMS and Kalman filter in order to
derive an optimal adaptation gain, frameworks akin to [9] that
use fractional-order norms of an error measure and/or input
signal to regulate the adaptation process, and importantly, the
frameworks in [10]–[13] that use gradient descent techniques
to learn the adaptation gain itself. However, to this point,
proposals in this regard are either reliant on signal statistics,
which are rarely available in real-world scenarios, or reliant on
time averages that reduce the elegant simplicity of the LMS.
Perhaps, most importantly, is the issue of a scalar adaptation
gain in of itself. Given the trend towards large-scale sensors
arrays, the need to offer increased degrees of freedom on the
adaptation gain to achieve an acceptable fit for the filtering
weights has become a pressing issue.

This manuscripts revisits the problem of gradient-based
adaptive filtering, where the iterative optimisation process
is conducted using an adaptation gain matrix that offers
the degrees of freedom necessary to fine-tune the learning
process. The derived adaptive filter exploits the relation
between the input signal and filtering error twice. Once to
adapt filtering weights and once to adjust the adaptation
gain matrix. The performance of the derived framework is
analysed, setting convergence criteria and clarifying the effect
of design parameters. Finally, performance of the derived filter
is demonstrated using both synthetically generated signals and
real-world recordings.
Mathematical Notations: Scalars, column vectors, and
matrices are denoted respectively by lowercase, bold
lowercase, and bold uppercase letters, while I denotes an
identity matrix of appropriate size. The transpose, statistical
expectation, and spectral radius operators are denoted by (·)T,
E {·}, and p {·}, with ∇χ indicating the gradient operator with
respect to χ, while vec {·} transforms a matrix into a column
vector. Finally, the Kronecker product is denoted by ⊗.

II. DUAL GRADIENT-DESCENT ADAPTATION

A. Problem Formulation

In general the goal is to find weighting matrix Wopt that best
relates an input vectors sequence, {xn, n = 1, 2, 3, . . .} to an
observed output vector sequence {yn, n = 1, 2, 3, . . .}. This



task is performed through an iterative optimisation process so
that we have

Wn+1 = Wn +Gnϵnx
T
n (1)

where Gn is an adaptation gain matrix and

ϵn = yn −Wnxn (2)

is the filtering error. The iterations of (1) is aimed at
minimising the second-order norm of ϵn, and thus, ensuring
Wn → Wopt as n → ∞. The main issue becomes that of
selecting a suitable adaptation gain matrix. In what follows, a
mechanism for learning the adaptation gain matrix is derived.

B. Learning the Adaptation Gain Matrix

The aim is to find an adaptation gain matrix that will result
in the updated weight matrix, Wn+1, that is the best fit relating
xn and yn. To this end, we consider the post update error
expressed as

ϵ̃n = yn −Wn+1xn. (3)

Substituting (1) into (3) yields

ϵ̃n = yn −Wnxn −Gnϵnx
T
nxn

where using (2) we have

ϵ̃n =
(
I−Gnx

T
nxn

)
ϵn

which allows a cost function to be formulated as

Jn = ϵ̃Tnϵ̃n = ϵTn
(
I−Gnx

T
nxn

)T (
I−Gnx

T
nxn

)
ϵn. (4)

The cost function in (4) allows the gain matrix to be learned
in a gradient descent manner so that we have

Gn+1 =Gn − µ∇Gn
Jn

=Gn + µ
(
I−Gnx

T
nxn

) (
xT
nxn

)
ϵnϵ

T
n

=Gn

(
I− µ

(
xT
nxn

)2
ϵnϵ

T
n

)
+ µxT

nxnϵnϵ
T
n

(5)

where all constant terms have been incorporated into the real-
valued positive adaptation gain µ.

The overall operation of the derived dual gradient descent
technique is shown in Fig. 1, demonstrating the mechanism
that allows the filtering error and input to be used twice. Once
to adapt the filtering weight and once to learn the adaptation
gain matrix. The performance of the derived framework is
analysed in the sequel.

III. PERFORMANCE ANALYSIS AND CONVERGENCE

Assume, without loss of generality, that W1 = 0 and yn =
Woptxn. Then, from the expression in (2), we have

ϵ1 = Woptx1

and therefore, (1) yields

W2 = G1Woptx1x
T
1 .

xn Wn Wnxn yn

ϵn

Σ− +

First Gradient Descent:

Updating  with Wn Gn

Second Gradient Descent:

Updating  with Gn μ

Fig. 1. Schematic showing the operations of the derived dual gradient descent
mechanism.

Repeating this procedure n times, allows the weight matrix at
time instant n to be expressed as

Wn =

n−1∑
i=1

GiWoptxix
T
i (6)

−
n−1∑
j=2

j−1∑
i=1

GjGiWoptxix
T
i xjx

T
j

+

n−1∑
k=3

k−1∑
j=2

j−1∑
i=1

GkGjGiWoptxix
T
i xjx

T
j xkx

T
k − · · ·

The expression in (6) can be reformulated in a more elegant
manner as

vec {Wn} = Γnvec {Wopt} (7)

where

Γn =

n−1∑
i=1

(
xix

T
i

)
⊗Gi −

n−1∑
j=2

j−1∑
i=1

(
xjx

T
j xix

T
i

)
⊗ (GjGi)

+

n−1∑
k=3

k−1∑
j=2

j−1∑
i=1

(
xkx

T
kxjx

T
j xix

T
i

)
⊗ (GkGjGi)− · · · .

(8)
Now consider the deviation of weight matrix Wn from its

optimal value Wopt, given by

En = vec {Wopt} − vec {Wn} . (9)

Substituting (7) into (9) gives

En = (I− Γn) vec {Wopt} (10)

Then, from (10) and (8) it follows that for En, and by extension
ϵn, to be exponentially bounded in the mean square sense, it
is required that Gn be positive definite with

p {Gn} <
1

E {xT
nxn}

(11)

which highlights the effect of Gn on filtering performance.
Thus, the role and evolution of Gn including a number of
special cases which will be investigated in the sequel.



Remark 1. From (11), the safeguard step

if p {Gn} >
1

E {xT
nxn}

then Gn ← Gn
1

xT
nxnp {Gn}

to ensure (11) is satisfied can be incorporated. Moreover, if
the second-order statistic of xn is not available, ∥xn∥2 can
replace E

{
xT
nxn

}
.

In order to present an initial guideline and considering
evolution of the adaptation gain matrix sequence, as given in
(5), the adaptation gain is considered within the range of

0 < µ <
1

(xT
nxn)

2
p {ϵnϵTn}

· (12)

Needless to state that for the lower end of (12), that is,
as µ → 0, the adaptation gain matrix, Gn becomes time
invariant and the algorithm operates akin to the LMS, where
using an adaptation gain matrix offers the degrees of freedom
necessary in array processing applications to tailor the filtering
performance in a more accurate manner than the classical
LMS. On the other hand, as

µ→ 1

(xT
nxn)

2
p {ϵnϵTn}

the adaptation gain matrix evolutions in (5) have a stable point

Gn ≈
1

xT
nxn

I.

Thus, making the filtering operation akin to that of the NLMS.

Remark 2. Note that, in most adaptive filtering scenarios, it
would be prudent to assume ∥ϵn∥2 << ∥xn∥2. Therefore,
µ = 1

(xT
nxn)

2 falls within the range given in (11) and presents
an normalised adaptation process for the adaption gain.

Finally, in order to present an overall perspective on the
filtering operations, (5) is substituted into (1) to give

Wn+1 =Wn +Gn−1

(
I− µ

(
xT
n−1xn−1

)2
ϵn−1ϵ

T
n−1

)
ϵnx

T
n

+ µxT
n−1xn−1ϵn−1ϵ

T
n−1ϵnx

T
n

which after some mathematical manipulation yields

Wn+1 =Wn +Gn−1ϵnx
T
n

− µGn−1

(
xT
n−1xn−1

)2
ϵn−1ϵ

T
n−1ϵnx

T
n

+ µxT
n−1xn−1ϵn−1ϵ

T
n−1ϵnx

T
n.

(13)

Now, assuming that the filtering iterations have converged to
the point that assuming Gn ≈ Gn−1 and ϵn ≈ ϵn−1, from
(13), we have

Wn+1 ≈Wn +Gnϵnx
T
n

− µGn

(
xT
n−1xn−1

)2 ∥ϵn∥2ϵnxT
n

+ µxT
n−1xn−1∥ϵn∥2ϵnxT

n

=Wn +Gnϵnx
T
n (14)

+ µ
(
xT
n−1xn−1I−Gn

(
xT
n−1xn−1

)2)︸ ︷︷ ︸
Mn

∥ϵn∥2ϵnxT
n.

The expression in (14) can be reformulated as

Wn+1 =Wn −Gn∇Wn

(
∥ϵn∥2

)
−Mn∇Wn

(
∥ϵn∥4

) (15)

From (15), notice that the update to filtering weights
Wn consists of two terms. The first term, Gnϵnxn, is
the matrix LMS update minimising the second-order error
measure, ∥ϵn∥2, using the matrix gain Gn. The second
term, µ′∥ϵn∥2ϵnXT

n, that is, in its essence, minimising
the forth-order error measure ∥ϵn∥4. Given this mixture
and the behaviour of gradient-based adaptation techniques
using higher-order measures of the filtering error, the derive
algorithm is expected to achieve higher convergence rates that
the LMS. This is shown in the next section using simulation
examples.

IV. NUMERICAL EXAMPLES

A. Test Signal

In the first set of simulations, a signal was generated, where
Wopt was a randomly selected 6×4 matrix and the input signal
xn was a white Gaussian process. The LMS and the derived
filtering technique were used to estimate the output sequence.
Fig. 2, shows the mean square error (MSE) performance of the
LMS, the derived filtering technique, i.e., adaptive gain matrix
LMS, and the derived filtering technique with µ = 1/(xT

nxn),
i.e., normalised adaptive gain matrix LMS. The adaptation
gains were set so that all filtering techniques achieved the
same steady-state MSE, allowing the convergence rates to
be compared. From Fig. 2, note that the derived filtering
techniques converged and achieve faster convergence rates
than that of the LMS.
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Fig. 2. MSE performance of the LMS and derived filtering techniques using
synthetically generated signal, with adaptation gains set so that all filtering
techniques achieve similar steady-state MSE.

In the second set of simulations, we had G1 = ηI where η
indicates the adaptation gain of the traditional LMS algorithm.
In order to demonstrate the ability of the derived filtering
techniques to learn from the input signal, η was selected to
result in divergent filtering behaviour. Fig. 3, shows the MSE
performance of the LMS and the adaptive gain matrix LMS.
Observe that, despite the initial value of the adaptation gain



matrices falling outside the convergence criteria, the derived
techniques were able to adapt the gain matrix values resulting
in convergent filtering behaviour, demonstrating their ability
to learn these values form the data itself.
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Fig. 3. MSE performance of the LMS and derived filtering techniques using
synthetically generated signal, with initial adaptation gain matrices set to
G1 = ηI where η indicates the adaptation gain of the LMS filter.

B. Real-World Recording

The data set used in this set of simulations was collected
at the University of North Carolina at Greensboro [14]. The
data set was obtained from a single-hop and a multi-hop
wireless sensor network using TelosB motes and contains
four sensors located indoor and outdoor, recording humidity
and temperature. Recordings were collected for 6 hours at 5
seconds intervals. Labelled anomalies injected into the data-
set were discarded, and only the temperature recordings of a
single indoor and a single outdoor sensor from the multi-hop
section of the data set were considered in this simulation1.

The derived filtering techniques were used to predict
temperatures in the next two time steps using the data of the
past six observations (i.e., a sliding window). The performance
of the derived filtering techniques is benchmarked against
that of the LMS in Fig. 4. Note that the derived technique
with adaptation of the gain matrix converged and followed
statistical changes of the data in an agile manner, while
achieving a comparable steady-state MSE to that of the LMS.

Finally, the same simulation was carried out on data
recorded using outdoor sensors. The performance of the
derived filtering technique is shown in Fig. 5. Observe that
once more, the derived techniques achieved similar steady-
state MSE performance to that of the LMS while exhibiting
faster initial convergence and response to statistical changes
in the data.

V. CONCLUSION

The concept of iterative optimisation techniques used
in adaptive filtering has been revisited and an adaptive
gradient-descent technique for adaptive array processing has

1The WSN data set is publicly available and can be found online at https:
//home.uncg.edu/cmp/downloads/lwsndr.html
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Fig. 4. Temperature prediction performance using indoor sensor recordings.
Top graph displays the full situation result while performance during initial
stages and change of underlying statistics is shown in the bottom graphs.
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Fig. 5. Temperature prediction performance using outdoor sensor recordings.
Top graph displays the full situation result while performance during initial
stages and change of underlying statistics is shown in the bottom graphs.

been derived. The use of a matrix adaptation gain, which
is learned from the input signal, allows for processing
of high-dimensional signals encountered in array signal
processing. The derived filtering concept have shown promise
in simulations using real-world data and the operations of the
derived filtering solution has been analysed, indicating that
more elaborate solutions await derivation; thus, opening a new
area of research.

https://home.uncg.edu/cmp/downloads/lwsndr.html
https://home.uncg.edu/cmp/downloads/lwsndr.html
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