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Abstract—Conventional adaptive filters which assume Gaus-
sian distribution for signal and noise, exhibit significant per-
formance degradation when operating in non-Gaussian envi-
ronments. Recently proposed fractional-order adaptive filters
(FoAFs) address this concern by assuming the signal and noise
are symmetric alpha-stable random processes. However, the
literature does not include any VLSI architectures for these
algorithms. Toward that end, this paper develops hardware-
efficient architecture for fractional-order correntropy adaptive
filter (FoCAF). We first reformulate the FoCAF for its efficient
real-time VLSI implementation, and then demonstrate that these
reformulations cause negligible performance degradation under
the 16-bit fixed-point implementation. Using this reformulated
algorithm, we design a FoCAF architecture. Further, we analyze
the critical-path of the design to select the appropriate level of
pipelining based on the sampling rate of the application. Accord-
ing to the critical-path analysis, the FoCAF design is pipelined
using retiming techniques to obtain delayed-FoCAF (DFoCAF),
which is then synthesized using 45nm CMOS technology. Synthe-
sis results reveal that DFoCAF architecture requires a minimal
increase in hardware over the prominent least mean square
(LMS) filter architecture and achieves a significant increase in
the performance in symmetric alpha-stable environments where
LMS fails to converge.

Index Terms—Alpha-stable signals, adaptive filters, fractional-
order correntropy criterion, logarithmic number system, VLSI
architectures.

I. INTRODUCTION

In real-world applications, adaptive signal processing algo-
rithms are commonly used to learn the underlying unknown
system from a limited number of observations [1]. In order to
achieve mathematical tractability and computational efficiency,
these algorithms often consider a Gaussian statistical model
for signal and noise [2]. The Gaussian assumption on input
and noise signals, however, is not the best choice in large
number of modern applications, such as seismic activity,
climatology and weather, ocean wave variability, acoustic
emissions from cracks growing in engineering materials under
stress [3], underwater acoustics [4], wideband communications

This work is partly supported by the Science and Engineering Research
Board (SERB), Department of Science and Technology, Government of India
‘Startup Research Grant’ (SRG/2020/000858) and the Research Council of
Norway. Daney Alex and Vinay Chakravarthi Gogineni contributed equally to
this work.

Daney Alex and Subrahmanyam Mula are with the Department of Electrical
Engineering, Indian Institute of Technology, Palakkad 678557, India (e-mail:
122003001@smail.iitpkd.ac.in, svmula@iitpkd.ac.in).

Vinay Chakravarthi Gogineni and Stefan Werner are with the Depart-
ment of Electronic Systems, NTNU-Norwegian University of Science and
Technology, Trondheim 7491, Norway (e-mail: vinay.gogineni@ntnu.no, ste-
fan.werner@ntnu.no).

[5], financial data modeling [6], and neuroimage process-
ing [7], in which the signals exhibit sharp spikes. These
signals can be effectively modeled by symmetric α-stable
(SαS) distributions, having heavier tails than those of Gaussian
distributions [8]. Since SαS signals do not have finite second-
or higher-order moments, the performance of adaptive filters
based on minimizing second-or higher-order moments of error
deteriorates when operating in such an environment [9].

Adaptive filters based on the maximum correntropy criterion
(MCC) [10]–[15] demonstrate better performance in a non-
Gaussian noise environment compared to conventional adap-
tive filters. However, MCC adaptive filters cannot replicate
this performance when both signal and noise are SαS random
processes, since the cost function of MCC is defined over
second- or higher-order moments of the error [16]. To address
this issue, fractional-order adaptive filters (FoAFs) that min-
imize fractional-order errors using fractional-order calculus
were proposed in [17]. Although the FoAFs show improved
performance over conventional adaptive filters, the FoAFs are
sensitive to the characteristic exponent α. Moreover, residual
jitters may still be present in their steady-state estimates [16],
which is undesirable in real-time implementations. Recently,
fractional-order correntropy adaptive filters (FoCAF) were
proposed to solve these problems by blending the concepts
of fractional-order calculus and a correntropy-type similarity
measure [9], [16]. The FoCAF has been demonstrated to be an
effective solution for tracking dynamic systems in SαS signal
and noise environments [16].

Adaptive filtering algorithms are iterative in nature; thus,
their implementation involves a high degree of computational
complexity and memory access. Software solutions for adap-
tive filters cannot meet the power and throughput requirements,
especially in real-time applications such as channel estima-
tion [18], where performance is directly influenced by the
speed and precision of channel estimation. Thus, tailored VLSI
architectures are necessary for such applications to implement
adaptive filters in real-time [19]. Numerous efforts were made
in the literature toward high-performance architectures for
adaptive filters and their variants when the noise alone is
modeled as non-Gaussian [20], [21]. To the best of our
knowledge, no architectures have been developed for adaptive
filters when input and noise are both modeled as non-Gaussian
signals. Although FoCAF exhibits good performance in non-
Gaussian signal and noise environments, direct implementation
of FoCAF in hardware is highly challenging. Weighted-sum
operations and fractional-order operations result in a long
critical-path. This long critical-path limits the throughput
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in applications such as underwater acoustic channel estima-
tion [2], [22]–[24], where the required operating frequency
is in MHz and GHz range. In order to address this issue,
this paper proposes several reformulations that minimize the
algorithm complexity in a VLSI implementation. The main
contributions of this work are summarized as follows:
• We propose reformulations for the FoCAF algorithm to

make it suitable for VLSI implementation which includes
a hardware-friendly scheme for exponentiation functions
with base ∈ (0, 1] using Maclaurin series and we design a
pipelined VLSI architecture for the reformulated FoCAF.

• A detailed critical-path analysis of the FoCAF architec-
ture is presented. Based on this analysis, we propose an
optimal architecture considering the area-delay product
as the metric.

• The proposed DFoCAF architecture is synthesized for
ASIC using 45nm CMOS technology and the synthesis
results are compared with the state-of-the-art pipelined
DLMS architecture, to show that the area and power over-
head are minimal despite the performance improvement.

The remaining paper is organized as follows. Section II
briefly reviews SαS signals and FoCAF algorithm. Section III
presents the implementation of the exponentiation function,
the reformulation of the FoCAF algorithm, and the VLSI
architecture design of DFoCAF. Section IV discusses the
application-specific integrated circuit (ASIC) synthesis results.
Finally, Section V concludes the paper.

II. PRELIMINARIES

Consider the system identification problem illustrated in
Fig. 1. Here, the unknown system is modeled by an L-tap
coefficient vector wopt. At time index n, the system takes un
as input and produces the desired output dn = wT

optun + νn,
where un = [un, un−1, . . . , un−L+1)]

T is the input signal
vector and νn is the unknown observation noise. The input
signal and observation noise are assumed to be zero-mean SαS
random processes. The goal of system identification setup is
to estimate the unknown system wopt, given un and dn.

wopt

wn

+

Observation noise
vn

Unknown System

Adaptive Filter

+

Input signal
un

desired response
dn

error
en

yn

Fig. 1: System identification.

A. Symmetrical α-Stable (SαS) Signals

An important class of non-Gaussian phenomena [25] is
associated with occasional bursts or sharp spikes present in
their realizations. In particular, the symmetric α-stable (SαS)
distribution can model input signal and noise for such phe-
nomena. These distributions have heavier tails compared to the

Gaussian distribution. In the density function of SαS random
processes, the characteristic exponent α ∈ (0, 2] regulates
the tail-heaviness [16]. For α = 2, the density function is
Gaussian, and as the value of α decreases, the density function
exhibits heavier tails. Except for the Gaussian case, SαS
random processes only pose finite statistical moments of orders
strictly less than α. Therefore, adaptive filtering algorithms
whose derivation relies on a second-order moment of the error
measure experience significant performance degradation when
both signal and noise are modeled as SαS random processes.
As for solutions to filtering, it is implicitly assumed that
α ∈ (1, 2], so conditional expectations may be established.
Thus, this manuscript only considers real-valued SαS random
processes with α ∈ (1, 2], without loss of generality. More
details can be found in [12], [25], [26].

B. Fractional-order Correntropy Adaptive Filter (FoCAF)

Conventional adaptive filters that minimize the second-order
moment of an error measure exhibit considerable performance
degradation in SαS environments due to the absence of higher-
order moments in SαS distribution. To solve this problem, a
class of adaptive filters based upon the concepts of fractional-
order calculus has been proposed [17], [27]. FoAFs [9] mini-
mize the fractional-order error-measure using fractional-order
calculus. The objective function of FoAF in the case of system
identification is given by:

J = E
[
en e

〈α′−1〉
n

]
, (1)

where en = dn− yn, is the estimated error with yn = uT
nwn,

wn ∈ RL is the estimate of wopt at time instance n and
the parameter α′ ∈ (1, α). Here e

〈α′−1〉
n is the fractional-

order error, given by |en|(α
′−1) sign(en), where sign(·) and

| · | denote sign and absolute values of their arguments,
respectively. The weight update equation of fractional-order
adaptive filter (FoAF) is:

wn+1 = wn + µ en u
〈α′−1〉
n , (2)

where µ is the step size. In the above equation, u〈α
′−1〉

n is the
fractional-order input, which is the elementwise implementa-
tion of the function |[un]i|(α

′−1) sign([un]i). The fractional-
order scaling of the input signal in the update equation, makes
it tolerant to jittery SαS input signals.

Although FoAF performs better in α-stable environments,
its steady-state estimate may still contain residual jitters. The
presence of jitter is due to the impulsive nature of noise, which
affects the error in the FoAF update equation. Fractional-order
correntropy adaptive filter (FoCAF) solves this issue by fusing
the concepts of fractional-order calculus and correntropy-type
localized similarity measure. The FoCAF iteratively estimates
the unknown system by maximizing the following fractional-
order correntropy criterion [16]:

J = E
[

exp
(
− en e

〈α′−1〉
n

2β2

)]
, (3)

where β > 0, regulates the bandwidth of the kernel [16]. The
FoCAF weight update equation is given by

wn+1 = wn + µ exp
(
− σen e〈α

′−1〉
n

)
en u

〈α′−1〉
n , (4)
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where σ =
(

1
2 β2

)
.

C. Performance Study of FoCAF
In this section, the performance of the FoCAF algorithm

is demonstrated in an α-stable environment. For this, the
FoCAF is simulated to identify a randomly chosen 16-tap
linear system. Input signal and observation noise are zero-
mean SαS signals with variance 0.2 and 0.1, respectively. The
characteristic exponent α of input signal and observation noise
are set to 1.6 and 1.5, respectively. In addition to FoCAF,
the state-of-the-art approaches such as LMS, MCC and FoAF
algorithms are also simulated for identifying the same system.
The normalized mean absolute deviation (NMAD) given by
E
[‖wopt−wn‖1
‖wopt‖1

]
, is considered as a performance metric. The

performance of all these algorithms is compared by plotting
NMAD in dB versus iteration index n, by averaging over
100 independent experiments. For both FoAF and FoCAF
algorithms, the parameter α′ is chosen to be 1.3. The kernel
width β of both FoCAF and MCC algorithms is fixed at 0.9.
The step size µ of each algorithm is selected so that the
initial convergence of all algorithms is the same to have a
fair comparison of their steady-state estimation performance.
The learning curves obtained from simulations are plotted in
Fig. 2.
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Fig. 2: Learning curves (normalized mean absolute deviation
(NMAD) vs iterations (n)) of the state-of-the-art algorithms in
α-stable environment.

From Fig. 2, we see that the FoCAF algorithm achieves a
better convergence rate and improved steady-state NMAD than
MCC and FoAF algorithms. The conventional LMS diverges
after certain iterations. Furthermore, FoAF and MCC algo-
rithms exhibit residual jitters in their steady-state estimates.
It is important to note that FoCAF is robust against selection
of parameters α′ and β. The robust performance of FoCAF
in α-stable environments motivated us to develop its VLSI
implementation to serve in real-time applications such as
underwater acoustic channel estimation and equalization.

III. VLSI ARCHITECTURE FOR FOCAF ALGORITHM

In this section, we present the details of the proposed
VLSI architecture for FoCAF. Due to the exponentiation

operation and numerous multiplications in the update equation
(4), FoCAF in its native form is inefficient for hardware
implementation. Hence, we reformulate FoCAF to ensure it is
hardware friendly without loosing accuracy. With the fixed-bit
implementation, we examine the performance of the reformu-
lated FoCAF. In order to achieve higher clock frequency and
throughput, the reformulated algorithm is retimed based on a
detailed critical-path analysis. Finally, we design a pipelined
VLSI architecture for the reformulated FoCAF.

For the purpose of reformulation, the update equation of
FoCAF algorithm in (4) can be written as:

wn+1 = wn + rn xn, (5)

where
rn = µ exp

(
− σen e〈α

′−1〉
n

)
en, (6)

and
xn = [xn, xn−1, . . . , xn−L+1]

T

is the fractional-order input vector. Fractional-order input xn
is obtained from un as

xn = u〈α
′−1〉

n . (7)

We then reformulate rn and xn to make them suitable for
VLSI implementation. We first propose hardware-friendly
method for approximating exponentiation function using log-
arithmic number system (LNS), which simplifies this function
to a great extent.

A. Hardware Implementation of LNS

Consider a binary number Q with an int integer and fr
fractional bits, i.e., qint−1 qint−2 . . . q0 q−1 q−2 q−fr and qt
be the leading one bit of Q. Then the value of Q can be
written as Q = 2t(1 + j), where j is a fraction, with 0 ≤ j ≤
1. The equation for log2(Q) conversion based on Mitchell’s
scheme [28], [29] is shown below:

t1 = LOD(Q),

j = Q[t1− 1 : 0],

t = t1− fr,
log2(Q) = {t, j}, (8)

where leading one detector (LOD) detects the leading one
position t1 in Q. The equations for alog2(Q) based on
Mitchell’s scheme is as shown below:

j1 = {1, Q[fr − 1 : 0]},
t = 2Q[int+fr−1:fr],

2Q = t ∗ j1. (9)

The architecture for LNS conversions based on (8) and (9) is
shown in Fig. 5. From Fig. 5, we see that the log converter
consists of a simple LOD circuit followed by a barrel shifter,
while the antilog converter involves the concatenation of 1 and
j, followed by a barrel shifter.
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Fig. 3: Architectures for logarithmic number system conver-
sions (LNS) [28].

B. Hardware Implementation of the Exponentiation Function

This section presents a hardware-friendly method for ap-
proximating exponentiation operations of type ax in (4), where
x is variable, and a is constant. Exponential and logarithmic
operations are commonly used in signal processing algorithms.
Several architectures based upon the Taylor and Maclaurin
series have been proposed to implement these operations [30],
[31]. However, if the value of a is large, these schemes lead
to many of multipliers and adders. FoCAF, on the other hand,
allows an exponentiation base to be bound between 0 and
1. This facilitates the implementation of exponentiation in
hardware with the Maclaurin series, as described below. From
the Maclaurin series, we have

ax = 1 +

∞∑
m=1

(
sign(x)

)m
(sign

(
ln a)

)m |x|m | ln a|m
m!

. (10)

When the value of a ∈ (0, 1], ax can be approximated with first
nt terms of the series in (10) and ln a is always negative. The
computation of (10), however, requires many multiplications
and power operations that synthesize very poorly for VLSI
real-time implementations. Thus, we rewrite (10) using LNS.
Considering the first nt terms of the series and including
LNS, (10) can be rewritten as

ax = 1 +

n∑
m=1

(
sign(x)

)m
(−1)m2

(
m log2 |x|+log2

(
| ln a|m
m!

))
.

(11)
Note that log2

( | ln a|m
m!

)
is a constant for a given m. Depending

on the value of m where m = 1, 2, 3, . . . , nt, these constants
can be stored in registers without calculating them every
time. In this case, m log2(x) can be realized using addition
when the first nt terms of the series are chosen. The value
of nt is selected based on required accuracy. Therefore,
the reformulation proposed in (11) allows us to implement
the exponentiation function ax with a ∈ (0, 1] without any
multiplications and power operations. Furthermore with few
reformulations, functions of type eax and xa can also be
implemented based on these Maclaurin approximations as
discussed in Section III-C.

1) Performance Study of the Proposed Approximations:
The performance of the proposed exponentiation calculation

scheme in (11) is compared with the actual exponentiation val-
ues using numerical simulations. The exponentiation function
ax is simulated for different values of x and a. The function
is then implemented using (11) for different numbers of terms
in the series nt. The results are then compared with actual
values for the same inputs and shown in Fig. 4.
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Fig. 4: Approximate implementation of ax for different values
of terms in the series (nt) vs accurate ax values. (a). x =
−0.3, a = 0.3, (b). x = −0.2, a = 0.5, (c). x = 0.2, a = 0.7,
and (d). x = 0.8, a = 0.9.

From Fig. 4, one can see that in real-time implementations,
exponentiation functions with base values in range (0, 1] can
be approximated by using the proposed reformulations in (11).
The value of nt is determined by the amount of precision
needed for the application.

2) Hardware Implementation Cost of the Proposed Approx-
imations: To quantify the hardware efficiency of the proposed
simplifications, we implemented ax using direct series approx-
imation and also through the LNS approximation. We coded
the designs in Verilog and synthesized them using the Cadence
Genus synthesis tool with 45 nm CMOS standard cell library.
The plot comparing the area-delay products of the proposed
LNS approximation and the direct approximations for different
numbers of terms in the series nt is shown in Fig. 5. It can
be seen from Fig. 5 that the proposed approximations incur
significantly lower area-delay product compared to the direct
series approximation. The intuitive explanation for this as
follows. In the case of direct series approximation, an increase
in nt leads to more number of multipliers, whereas, in the case
of LNS approximation, it leads to more ALOG units whose
hardware complexity is much less compared to multipliers.

C. FoCAF Algorithm Reformulation

This section presents hardware-friendly implementation of
Fractional-order input and FoCAF error function based on
hardware implementation exponentiation function.



5

1 2 3 4 5

10

30

50

70

90

Fig. 5: Approximate implementation of ax using logarithmic
number system (LNS) and direct approximation methods for
different number of terms in the series (nt).

1) Fractional-order Input: Based on definition for the
fractional-order input in Section II-B, (7) can be rewritten as

xn = sign(un)(|un|(α
′
−1))

= sign(un)
(

2(α
′
−2) log2 |un| |un|

)
= sign(un)

(
plog2 |u(n)| |un|

)
, (12)

where p = 2(α
′
−2) is a constant. The term plog2 |un| can

be approximated using a Maclaurin series as shown in Sec-
tion III-B1. Here, p ε (0, 1) since α

′
ε(1, α), therefore the value

of ln p is always negative. Thereby plog2 |un| is approximated
with first 3 terms of the Maclaurin series as

plog2 |un| = 1 +

3∑
m=1

(
(−1)m

(
log2 |un|

)m( | ln p|m
m!

))
.

(13)
Substituting (13) in (12) and denoting | ln p|

m

m! as qm, we have

xn = sign(un)

(
|un|+

3∑
m=1

(
(−1)m

(
log2 |un|

)m
qm |un|

))
.

(14)
By introducing LNS in (14), we obtain

xn = sign(un)

(
|un|+

3∑
m=1

((
sign(log2 |un|)

)m
(−1)m2

(
m log2 | log2 |un||+km+log2 |un|

)))
, (15)

where km = log2 |qm| is a constant for a given m. Depending
on the value of m where m = 1, 2, 3, . . . , nt, these constants
can be stored in registers without calculating them every time.
It is worth noting that (15) is free of multiplications and only
contains additions, LNS and shifting operations. Therefore,
the reformulation of (7) to (15) enables hardware-friendly
calculation of xn.

2) FoCAF Error Function: FoCAF error function is

f(en) = exp
(
− σ en e〈α

′−1〉
n

)
en

= b

(
|en|2 |en|〈α

′−2〉
)
en, (16)

where b = exp(−σ) is a positive constant. By introducing
LNS in (16), we have

f(en) = sign(en) 2

(
|en|2|en|(α

′−2) log2 b+log2 |en|
)

= sign(en) 2g(en), (17)

where g(en) =
(
|en|2|en|(α

′−2) log2 b + log2 |en|
)
. Further,

by employing LNS, the term |en|(α
′−2) from g(en) can be

rewritten as 2(α
′−2) log2 |en|. By following the same reformu-

lation procedures as in (12), (13) and (14), we get

g(en) = z|en|2
(

1+

( 3∑
m=1

(−1)m
(

log2 |en|
)m
qm

))
+log2 |en|,

(18)
where z = log2(b). Here z is always negative. The terms
in (18) can then be rearranged as

g(en) = −

(
|z||en|2+

( 3∑
m=1

(−1)m|sm|
(

log2 |en|
)m|en|2)

− log2 |en|

)
, (19)

where s = z qm. By incorporating LNS in (19),

g(en) = −

(
2

(
c0+2 log2|en|

)
+

( 3∑
m=1

(
sign(log2 |en|)

)m
2

(
m log2 | log2 |en||)+cm+2 log2 |en|

))
− log2 |en|

)
, (20)

where c0 = log2 |z| is a constant and cm = log2 |sm| is a
constant for a given m. Depending on the value of m where
m = 1, 2, 3, ..., nt, these constants can be stored in registers
without calculating them every time. Similar to (15), the
reformulated error function in (20) is free of multiplications
and only contains additions, LNS, and shifting operations.
From (20), (17) and (6), we get

rn = µ sign(en) 2g(en). (21)

3) Performance of the Reformulated FoCAF: The perfor-
mance of FoCAF with the proposed reformulations in (15)
and (20) is demonstrated using numerical simulations. The
reformulated FoCAF with different nt values are simulated
for the same system identification problem in Section II-C. In
order to compare the performance, simulations are also per-
formed with the original FoCAF, considering the same input
parameter and step size values. The learning curves obtained
from simulations are plotted in Fig. 6. From Fig. 6 we see that
the reformulated FoCAF with nt = 3 has similar convergence
and steady-state performance as that of the original FoCAF
algorithm. The steady-state value and convergence rate show
tiny degradation as the value of nt decreases. Thus, the value
of nt has to be selected based on the performance-hardware
complexity trade-off.
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Fig. 6: Learning curves of the original and reformulated
FoCAF with different number of terms in series (nt).

D. Bit-Width Consideration of the Proposed FoCAF Fixed-
point Implementation

The performance of the original floating-point FoCAF algo-
rithm and reformulated FoCAF algorithm with 16-bit, 12-bit,
8-bit fixed-point representations are compared in Fig. 7 by
considering the same system identification problem in Sec-
tion II-C. From Fig. 7, it is evident that reformulated FoCAF
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Fig. 7: Learning curves of the reformulated FoCAF algorithm
in 16-bit, 12-bit and 8-bit fixed-bit representation.

with 16-bit fixed-point representation has approximately the
same steady-state performance as that of the original FoCAF
algorithm. Reformulated FoCAF is tolerant to logarithmic
approximations owing to its stochastic and iterative nature.
From the figure, we can also observe degradation in the steady-
state performance as bit-width reduces. Thus, architecture with
a bit-width of 16 is preferable for VLSI implementation of the
reformulated FoCAF.

E. Delayed FoCAF Algorithm

For real-time implementations, even after the simplifications
described in Section III-C, the time complexity of the refor-
mulated FoCAF algorithm remains high, since rn must be

computed at every iteration, and the weights must be updated
before proceeding to the next iteration. The feedback loop
that updates the filter weights in each iteration restricts direct
pipelining. In order to resolve this issue, FoCAF is modified
to a form known as delayed FoCAF (DFoCAF) by extending
the concept of delayed adaptation [32]. Delayed adaptation
assumes that the error gradient rn xn is not effected much by
the delay M (adaptation delay). As long as M < L, this is
a fair assumption [32]. The update equation of the DFoCAF
algorithm is given by:

wn+1 = wn + rn−M xn−M , (22)

where
rn−M = µ sign(en−M ) 2g(en−M ). (23)

By introducing the M delay registers in the feedback loop,
we can apply re-timing [33] to reduce the critical-path there
by increasing the sampling rate. We now compare the results
of DFoCAF and FoCAF to check the extent to which the
adaptation delay M affects proportionate adaptation. Learning
curves of DFoCAF for the system identification problem in
Section II-C are plotted with different values of M and
compared with the FoCAF as shown in Fig. 8. We see that the
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Fig. 8: Learning curves of the FoCAF and delayed FoCAF
algorithms with different values of adaptation delay M .

DFoCAF algorithm has negligible degradation in convergence
rate compared to the FoCAF algorithm for small values of M .
However, as the adaptation delay increases, we observe slight
degradation in the convergence rate and steady-state NMAD.

F. DFoCAF Architecture

The VLSI architecture of the proposed DFoCAF algorithm
is shown in Fig. 9. The bit widths of all the intermediate
signals in Qint.fr format (where int is the number of integer
bits and fr is the number of fractional bits) are also shown
in the architecture. These bit widths are determined by fol-
lowing the MATLAB floating-point to fixed-point conversion
methodology to avoid overflows. The architecture essentially
implements (22), which updates the filter coefficients in every
iteration. As seen from Fig. 9, the architecture features a
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Fig. 9: DFoCAF architecture.

fractional-order input module, L tap modules, log2(L) stage
adder tree, and an error update module. The functionality of
each module is explained briefly below.

1) Fractional-order Input Module: The fractional-order in-
put module computes the fractional-order input xn from the
original input un, based on (15). The architecture for the
fractional-order input module is shown in Fig 10. Consid-
ering that logarithm is only defined for positive numbers,
the absolute value of input un is first computed in the ABS
block. LOG and ALOG blocks implement base-2 logarithm
and anti-logarithm, respectively. The LOG and ALOG blocks
are realized using Mitchell’s scheme, which is a very simple
scheme requiring only a leading one detector (LOD) and
barrel shifter. The multiplication with −1 in the architecture is
nothing but 2’s complement operation. k1, k2 and k3 are con-
stants calculated from (15) and are stored in storage registers.
Adders and subtractors are used to accumulate the first three
terms of the Maclaurin series. However as seen from (15),
the sign of the first and third terms of the series are assigned
w.r.t sign(log2 |un|). Similarly, (15) also involves computation
of sign(un). In-order to realize these sign assignments in
hardware, a combination of SIGN module, 2′s complement
module and multiplexer module is used. While realizing the
sign assignment operation of type sign(an)b, the SIGN module
determines the sign of a, whereas the multiplexer module
assigns the sign to b, by either selecting b directly or −b

depending on sign of a. Delays are introduced in the module
based on critical-path analysis in Section III-G. We can see that
all the sub-modules in the architecture such as LOG, ALOG,
MUX and 2’s complement evaluation require considerably
less hardware complexity than multipliers and exponential
operators. From (21), we can see that the FoCAF update equa-
tion involves computation of vector xn containing elements
xn, xn−1, . . . , xn−L+1. In order to realize xn, the architecture
involves a fractional-order tapped delay-line (shown in Fig. 9)
with the fractional-order input as the delay-line input. The
number of delay registers in the delay-line is L−1. Therefore,
as the filter order increases, the length of the tapped delay-line
increases linearly.

2) Tap Module: The tap module in Fig. 9 is responsible for
calculating the partial products of the filter output and also
for realizing the weight update recursion. Each tap module
realizes (24) and (25) in hardware.

wn+1,i = wn,i + rn xn−i. (24)

Here wn,i represents ith filter weight corresponding to filter
tap i (0 ≤ i ≤ L− 1) at time index n.

pi = un−i wn,i. (25)

Here un−i is the input to the ith tap module and pi is the
output from ith tap module. Output of the filter, yn is obtained
by adding all individual tap module outputs using an adder
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TABLE I: Synthesis results of FoCAF with filter order 16 using Cadence CMOS library for various adaptation delays M .

Algorithm Adaptation Delays
(M)

Max. Clock Freq.
(MHz)

Area
(µm2)

Leakage Power
(µW)

Dynamic Power
(mW)

Area-Delay product
(µm2)/MHz)

0 221 201959 30.04 13.14 913.84
1 322 144641 19.51 10.48 449.20
3 439 101197 11.53 4.86 230.52
4 606 107842 12.71 5.03 176.97
5 1036 145911 19.19 5.76 140.84

DFoCAF

6 1048 151885 20.41 5.95 145.05
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Fig. 10: Fractional-order input module architecture.

tree, i.e., (yn = ΣL−1i=0 pi). In order to reduce the propagation
delay through the adder tree and to keep Tmult as the critical-
path, a carry save adder tree [21] is utilized in the design.

3) Error Update Module: The error update module com-
putes the error update factor rn from the error en, based
on (21). The architecture for the error update module is shown
in Fig. 11. Here, c0, c1, c2 and c3 are constants that are
calculated and stored in storage registers. The architecture
is very similar to fractional-order input module except for
the multiplication with step size µ. We consider the step-size
to be negative power of 2, i.e., of the form ( 1

2k
) to avoid

multiplication. The error update factor is fed to all the taps to
realize the weight update equation.

To evaluate the hardware complexity of the proposed ar-
chitecture, we compared it with the DLMS architecture [32]
where DLMS is a high-throughput re-timed implementation
of the LMS algorithm. It can be observed from Fig. 9 that,
compared to the DLMS architecture in [32], the hardware
overhead of the DFoCAF architecture is fractional-order input
module, error update module, and fractional-order tapped
delay-line. Based on synthesis results in Section IV, we will
show that this area overhead of DFoCAF is very small. We see
in the literature that several strategies [19], [32] can be utilized
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to implement variants of LMS, all claiming different benefits.
It is important to note that the proposed DFoCAF algorithm
can be implemented by integrating a fractional-order input
module, an error update module, and a fractional-order tapped
delay line appropriately into any of those LMS architecture.

G. Critical-Path Analysis

As discussed in Section III-E, DFoCAF architecture is re-
timed to improve the throughput. However, re-timing has two
adverse effects. Firstly, the number of registers increases which
leads to more area and power dissipation. Secondly, as the
adaptation delay increases, the convergence rate degrades, as
shown in Fig. 8. Thus, the architecture has to be carefully re-
timed based on detailed critical-path analysis. This analysis is
done by increasing the adaption delays (number of pipeline
stages) in the architecture from 0 to 6 and synthesizing the
corresponding designs to find the maximum clock frequency.
Table I shows the synthesis results of DFoCAF architecture
with filter length 16 and different values of adaptation delay
M . The designs are coded in Verilog and synthesized using
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Cadence Genus synthesis tool with 45nm CMOS standard
cell library. Based on the synthesis results, Fig. 12 depicts
histograms for different values of M . These histograms show
“number of paths vs. slack in ns”. In static timing analysis
(STA), slack is defined as the difference between data required
time and data arrival time (DAT) at the destination register
input. Next, we discuss the placement of the pipeline registers
for different values of M , and the resulting critical-path.

Zero adaptation delay: When the FoCAF adaptive filter
is implemented without pipelining, the critical-path of cor-
responding design is (Ttap + Tadd tree + Tsub + Terr upd)
where Ttap,Tadd tree,Tsub and Terr upd are the propagation
delays of tap module, adder tree, subtraction module and
error updation module respectively. From Table I, we can
observe that the maximum attainable frequency of the FoCAF
architecture with no adaption delay is very low because of the
long critical-path. Also, from histogram 12, we can observe
that there are many paths with large positive slack values.
Thus, the FoCAF architecture has to be pipelined to increase
the maximum attainable frequency.

One adaptation delay: Here, we add delay registers in
between the subtractor that calculates the error en and the
error update module. The addition of this pipeline register
will reduce the critical-path to (Terr upd + Tmult). From
Table I, we can observe that the maximum attainable fre-
quency of the DFoCAF architecture with one adaption delay
improved considerably as a result of pipelining. By observing
histogram 12(b), still there are many paths with large positive
slack values, thus the FoCAF architecture can be pipelined
further.

Three adaptation delays: The architecture is further re-
timed by adding two more pipelined registers. A pipeline
register is placed at the output of the tap module, and another
one at the output of the error update module. Resulting critical-
path is reduced to Terr upd and we can observe further increase
in maximum attainable frequency from Table I. Despite the
decrease in maximum slack value in the histogram 12(c), there
remain many paths with positive slacks. This indicates that
there is still room for improvement.

More adaptation delays: In order to further re-time the
architecture, we need to do fine-grain pipelining of the
fractional-order input module and the error update module,
i.e., we add pipeline registers at appropriate places inside
these modules as shown in Figs. 10-11. Critical-path of
the architecture with four adaptation delays is reduced to
(2Tlog+2Tabs+3Tadder+Talog+Tinv+Tmux). Similarly, the
critical-paths with five and six adaptation delays are Tadd tree
and Tmult respectively. From synthesis results we observe that
Tadd tree for a three stage adder tree is almost same as Tmux.
We can also observe from the histogram that with M = 5,
there are many paths with slack close to zero and we stop the
pipelining at this point and take the critical-path to be Tmux.
Moreover, from Table I, we can also observe that the area
delay product is minimum for M = 5. Note that, as the order
of the filter increases, the number of stages of the adder tree
increases. In order to maintain the critical-path at Tmult, the
adder tree has to be pipelined after every third stage.
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TABLE II: Synthesis results of LMS and DFoCAF with different filter order using Cadence 45nm CMOS library for clock
frequency 1.048GHz.

Algorithm Filter Order
(L)

Adaptation Delays
(M)

NMAD *
(dB)

Area
(µm2)

Leakage Power
(µW)

Dynamic Power
(mW)

16 6 −14.5 151885 20.41 5.95
32 6 −18 302432 41.48 10.72Proposed DFoCAF
64 6 −23 536858 70.39 22.04
16 3 −2 134163 18.44 4.71
32 3 −3.5 268929 36.58 9.59DLMS [28]
64 3 −5 509016 68.21 19.96

* The given NMAD value for DFoCAF is equivalent to the steady-state value since the algorithm is convergent.
For LMS, the given NMAD is equivalent to the minimum obtained value since it is not converging.

TABLE III: Theoretical hardware complexity of DFoCAF architecture.

Number of units Adders Subtractor Multipliers LOG
blocks

ALOG
blocks

Delay
Registers

Storage
Registers

Multiplexers

16 50 4 32 4 8 105 8 6
32 82 4 64 4 8 187 8 6Filter order (L)
64 146 4 128 4 8 351 8 6

IV. VLSI IMPLEMENTATION RESULTS

The proposed DFoCAF architecture is implemented in Ver-
ilog HDL and simulated using the Cadence NCSim simulator.
All the operations in the DFoCAF architecture, including LOG
and ALOG, are also implemented in fixed-point MATLAB,
and the outputs are taken as the golden reference values. The
Verilog simulation results are verified against these golden
reference outputs from MATLAB for many sets of random
inputs. After verification, the designs are synthesized using the
Cadence Genus tool in 45nm CMOS technology. As discussed
in Section III-G, Table I shows the synthesis results for FoCAF
architecture for different values of adaptation delay, M . From
Table I, we can observe that the best area-delay product is
obtained at M = 5.

Next, DFoCAF architectures with filter orders of 16, 32,
and 64 are considered for synthesis to check the scalability of
the proposed architectures. The synthesis results are tabulated
in Table II. Since there are no prior architectures available
for DFoCAF, the results are compared against state-of-the-art
DLMS [28] architectures. Note that the DLMS architectures
from [28] are also coded in Verilog and synthesized using
the same 45nm libraries for fair a comparison. Here, DLMS
is chosen for comparing the synthesis results of DFoCAF
since DLMS is the least complex adaptive filtering algorithm
that can be implemented on hardware. DFoCAF and DLMS
with M = 6 and M = 3 respectively are chosen for
comparing the synthesis results, so that the critical-path of both
designs is Tmult and the clock frequency is 1.048GHz. The
dynamic power values given in Table I and II are extracted
from post synthesis power reports by annotating switching
activity interchange format (SAIF) files from gate-level timing
simulations with random inputs generated from a symmetrical
alpha-stable distribution. From Table II, we see that DFoCAF
has 1.13×, 1.12× and 1.05× increment in area and has 1.26×,
1.11× and 1.10× increase in the dynamic power for 16,
32, and 64 taps, respectively, when compared with DLMS.
Compared to the DLMS architecture, the additional logic to
obtain the fractional-order input, the non-linear error function
in DFoCAF and the delay chain for fractional-order input

contribute to the area and power overhead. However, the
increase in area and power is very little compared to the
improvement achieved in steady-state NMAD and convergence
rate by DFoCAF over DLMS algorithm, which does not even
converge in SαS signal and noise environment (see Fig. 2).
From Table II, it is worth noting that the area overhead of
DFoCAF decreases with filter order and becomes negligible
for large order filters.

Table III presents theoretical hardware complexity of the
DFoCAF architecture in terms of number of each basic module
required per iteration such as adders, multipliers, etc. Table III
shows that the increase in the number of basic modules with
the increase in filter order is not linear. This is because the
fractional-order and error update module are scalar modules,
i.e., they are independent of filter order. Hence, for higher
filter orders, their area and power overhead decrease, which
is evident from Table IV which shows the area overhead
in percentage between different modules in the design. Here
logic specific to DFoCAF includes fractional-order module,
error update module, and fractional-order tapped delay line as
explained in Section III-F. A notable feature of the proposed
DFoCAF algorithm is that it can be implemented by integrat-
ing the logic specific to DFoCAF with any variant of the LMS
architecture described in the literature. We can see from both
theoretical complexity analysis as well as synthesis results that
the area overhead of DFoCAF decreases with filter order and
becomes negligible for higher-order filters.

TABLE IV: Area breakdown of 256-tap DFoCAF sub-blocks.

kGE1 %

Logic specific to DFoCAF 16.67 3.29
Logic common to DLMS and DFoCAF 480.38 96.70

Total 506.05 100

1 One kilo Gate Equivalent (kGE): Area of a two input NAND
gate = 3.25µm2.

V. CONCLUSIONS

Fractional-order correntropy adaptive algorithms exhibit ro-
bust performance in non-Gaussian signal and noise environ-



11

ments, where the conventional LMS variants fail. In this work,
we demonstrated that the hardware implementation cost of the
FoCAF algorithm could be brought down significantly through
several reformulations without compromising the performance
of the algorithm. We also provided a comparative discussion
on the hardware complexities of the conventional DLMS and
the proposed DFoCAF through ASIC synthesis results and
showed that the performance gain of the DFoCAF over DLMS
is significant with minimal increase in hardware overhead.
In future, we wish to extend the fractional-order correntropy
approach to other state-of-the-art adaptive filters to realize
them in hardware.

REFERENCES

[1] A. H. Sayed , Adaptive Filters, Wiley, 2011.
[2] T. Kailath, A. H. Sayed and B. Hassib, Linear Estimation, Prentice-Hall,

2000.
[3] R. D. Pierce, “Application of the positive alpha-stable distribution,” in

Proc. of the Signal Proc. Workshop on Higher-Order Stat., 1997, pp. 420-
424.

[4] M. Bouvet and S. C. Schwartz, “Comparison of adaptive and robust
receivers for signal detection in ambient underwater noise,” IEEE Trans.
Acoust. Speech, Signal Process. , vol. 37, no. 5, pp. 621-626, May 1989.

[5] N. Azzaoui and L. Clavier, “Statistical channel model based on α-
stable random processes and application to the 60 GHz ultra wide band
channel,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1457–1467, May
2010.

[6] J. P. Nolan, “Modeling financial data with stable distributions,” in
Handbook of heavy-tailed distributions in finance, vol. 1, S. T. Rachev,
Ed. Amsterdam, The Netherlands: Elsevier, 2003, pp. 105–130.
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