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ABSTRACT The use of intraoperative tool-tissue interaction data for arthroscopic digital twins has the
potential to enhance haptic feedback in surgical simulations. This study demonstrates the implementation
of an interpolation-based method, and a Kalman filter-based method for using intraoperative interaction
data to provide nonlinear haptic feedback in a partial meniscectomy punch simulation. The interpolation-
based method was implemented by interpolation in tool-tissue interaction data collected from a cadaveric
meniscus. The Kalman filter-based method takes a state-space formulation of the arthroscopic punch force
in the one-dimensional space domain, and performs sensor fusion of the interpolation-based force signal,
and a reference finite element force, to form a new haptic signal. These methods were demonstrated
using a novel inexpensive haptic system for simulating an arthroscopic partial meniscectomy punch. The
software, computer-aided design models, and collected data are provided open-source on GitHub. The
face validity of the methods was evaluated in user studies, including six experienced orthopedic surgeons,
and five non-professionals. The findings showed that experienced surgeons could distinguish between a
nonlinear interpolation-based force signal, and a linear-elastic ideally-plastic finite element-based reference
signal in a partial meniscectomy punch simulation. Surgeons preferred the interpolation method as a haptic
rendering strategy in this study. The Kalman filter method was not as effective as interpolation in recreating
nonlinear haptic feedback for the tested parameters, but demonstrated coupling of haptic force signals from
intraoperative data and an idealized finite element method in a partial meniscectomy punch simulation.

INDEX TERMS Digital twin, biomechanics, haptic rendering, medical simulation, computational modeling.

I. INTRODUCTION
Surgical simulation of arthroscopic procedures enables safe
surgical training without causing harm to the patient [1].
A lower volume of some types of arthroscopic surgeries,
as well as a high demand for specialized competence, has led
to a gap in providing the training needed to go from student

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Wei .

to specialist. Arthroscopic partial meniscectomy (APM) is an
example of an arthroscopic surgical knee procedure which is
now less frequently performed. A recent report by Jacquet
et al. [2] stated that among 461 orthopedic surgeons, 75%
reported to perform more meniscus repairs and 85% less
APM than 5 years ago. This, combined with advancements
in simulation technology, has led to a paradigm shift from
apprenticeship to simulation-based methods in training of
resident doctors [3], [4]. Several arthroscopic knee simulators
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have been developed for this purpose, as pointed out in recent
reviews [5], [6]. These typically include standardized training
procedures on generic anatomy. However, patient-specific
simulation has been identified as an important future direc-
tion for surgical simulation systems, and Ryu et al. [7] found
that patient-specific simulators have the ability to develop
higher-level competencies, for example for experienced sur-
geons, outside a clinical setting. In a review from 2019,
Overtoom et al. [8] assessed the value of haptic and force
feedback in surgical simulators. The findings showed that
haptic feedback leads to a shorter learning curve, and that
surgeons consider haptic feedback as more important than
visual feedback in surgical simulators.

In our previous work, we have defined a digital twin con-
cept for arthroscopic knee surgery as ‘‘virtual information
that fully describes a patient-specific biomechanical system,
such as a joint’’ [9]. Here, the digital twin expands on conven-
tional surgery simulators by including patient-specific digital
information with real-time calibration of simulations using
intraoperative data. Intraoperative data can include intraoper-
ative imaging modalities, such as X-ray, ultrasound or arthro-
scopic images, as well as live tool-tissue interaction data,
as shown in Fig. 1. Three use cases were proposed: (i) surgical
skills training for resident doctors, (ii) patient specific pre-
operative planning, and (iii) a post-operative database of rare
surgical cases for advanced training and planning. As such,
the digital twin fidelity should increase throughout the three
scenarios as complexity increases and surgeons are more
experienced. The use of live tool-tissue interaction data has
the potential to increase face validity in all three scenarios
by improving haptic feedback. We adopt the definition by
Vaughan [6] that ‘‘face validity measures how a simulator
appears similar to the actual procedure’’. In the third use case,
we argue that the use of intraoperative tool-tissue interaction
data is essential to exploit the full potential of the digital twin.
To this end, we define the following research question: How
can intraoperative tool-tissue interaction data contribute to
better estimation of haptic feedback in arthroscopic surgical
simulation?

The concept of recording and modelling mechanical inter-
actions in haptic feedback has previously been referred
to as the ‘‘haptic camera’’ [10], ‘‘reality-based modeling’’
[11], and ‘‘haptography’’ [12]. For surgical simulation,
Greenish et al. [13] demonstrated the collection of cutting
data in anatomical tissues for surgical scissors, rendering the
cutting [14], and evaluating the performance. In this study,
cutting data were collected by equipping the surgical scissors
with strain gauges. Similarly, Callaghan et al. [15] described
a setup for collecting cutting data from biological tissue using
strain gauges and a potentiometer. More advanced setups
have also been described, such as equipping a custom arthro-
scopic grasper with fiber Bragg sensors [16], and a surgical
tool with a proximally located force-torque sensor [17].

Okamura [11] described three methods for active haptic
rendering of recorded interaction data in the setting of sur-
gical scissors. These were (i) directly using interpolation in

a lookup-table of recorded data, (ii) developing a piecewise
linear transfer function with fitted parameters, or (iii) devel-
oping an analytical mathematical model of the relevant tool
and tissue, such as tool friction and tissue stiffness. The third
method was later further developed by Mavash et al. [18].
A drawback of these methods is that they do not account
for visualization, such as in mesh-based biomechanical soft
tissue deformation and cutting methods.

Currently, the gold standard for patient-specific soft tissue
and cutting simulations is to calibrate the material prop-
erties for simulations based on the finite element method
(FEM) from interaction or experimental data. Although some
patient-specific imaging methods, such as shear wave elas-
tography [19] and magnetic resonance elastography [20],
have the potential to provide material stiffness data for
soft tissues, they have not been sufficiently developed.
Lauzeral et al. [21] used model order reduction and sta-
tistical shape analysis from computer tomography (CT)
images to create a patient specific model of a human
liver, and modeled breathing motion. Using experimental
data, Bojairami et al. [22] recently extracted tissue properties
for probe insertion in real-time using cohesive elements,
and Seyfi et al. [23] identified the mechanical properties
of the human meniscus using an inverse FEM. Similarly,
Wu et al. [24] investigated how live data obtained during a
robotic endoscopic procedure could be used to correct impre-
cise FEM results using machine learning. However, the chal-
lenge of relying on finite element (FE) models for modeling
haptic interactions experienced in surgery is that it is difficult
to accurately model the contact forces involved with topol-
ogy changes, such as in arthroscopic partial meniscectomy.
Peterlik et al. [25] presented the constraint-based multi-rate
compliant mechanisms framework based on Lagrange multi-
pliers, which provided more flexibility for modelling contact
interactions in haptic simulations, but did not consider topol-
ogy change. Bui et al. [26] later presented the corotational cut
finite element method, which models topology change and
associated cutting forces, however, the use of intraoperative
data for patient-specific calibration of these parameters has
not yet been demonstrated. Schulmann et al. [27] recently
studied the effect of discretization on parameter identification
for patient-specific applications, and found that ‘‘estimated
parameters should not be considered as the true parameter
value of the organ or tissue, but instead are model-dependent
values’’. For a true patient-specific simulation, mechanical
properties influenced not only by organ or tissue, but also
by variations in age, sex and pathology should be included,
and fast and accurate model generation is therefore important.
As an alternative approach, we argue that using intraoperative
data directly in combination with a generic FE-model can be
used to provide patient specific haptic feedback in surgical
simulations.

This paper explores two methods for enabling patient-
specific nonlinear haptic feedback from intraoperative tool-
tissue interaction data in arthroscopic partial meniscectomy
simulations. The first method is based on interpolation of
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FIGURE 1. A new illustration of the arthroscopic digital twin concept described in [9]. The left side shows clinical input data throughout
pre-, intra- and post-operative stages. The right side shows how the clinical input data relates to the output surgical user scenarios. The
focus of this paper is exploring methods for using intraoperative tool-tissue interaction data for haptic feedback in a post-operative virtual
surgery database.

intraoperative data, as previously demonstrated by Oka-
mura [11]. The second method is a novel application of
the well-known Kalman filter (KF), and works by perform-
ing sensor fusion of intraoperative and FEM haptic signal
data to form a new haptic signal. The mathematical state-
space representation of the KF-based haptic arthroscopic
punch force signal is formulated in the one-dimensional
space domain, with force and stiffness selected as states.
To the best of our knowledge, the Kalman filter has not
been explored for this application. The advantage of these
methods lies in enabling patient-specific nonlinear haptic
feedback while maintaining an idealized FEM as a base-
line for surgical simulations, thus limiting the complex-
ity involved in modelling cutting forces using FEM. The
methods are explored by implementing a one degree-of-
freedom (DOF) open-source haptic system simulating a par-
tial meniscectomy punch, based on tool-tissue interaction
data. Implementation of a simple FE-model based on 1D
spring elements is included with the purpose of generating
an idealized linear-elastic ideally-plastic haptic force signal,
and we emphasize that sophisticated implementation of FEM
for modelling a partial meniscectomy punch is outside the
scope of this paper. Themain contributions of our work can be
summarized as
• demonstrating an interpolation-based and a Kalman
filter-based haptic control strategy for using intraoper-
ative data to model a nonlinear partial meniscectomy
punch;

• implementing an inexpensive partial meniscectomy hap-
tic simulation based on tool-tissue interaction data, and
make all software and hardware openly available on
GitHub; and

• performing user studies to assess how experienced
orthopedic surgeons consider interpolation- and Kalman
filter-based methods to resemble a true partial meniscec-
tomy punch, and compare these with an idealized linear-
elastic ideally-plastic haptic signal.

The remainder of this paper is organized as follows. First,
we describe how intraoperative data were collected from a
cadaveric specimen using an arthroscopic punch equipped
with a force- and position sensor. Second, we demonstrate
how the haptic control strategies were implemented on an
open-source haptic system with dimensions similar to those
of the arthroscopic punch. Finally, we present a user study
conducted to assess the face validity of the interpolation- and
Kalman filter methods.

II. INTRAOPERATIVE DATA COLLECTION
A. DATA COLLECTION EQUIPMENT
In arthroscopic partial meniscectomy of a traumatic bucket
handle tear, the torn part of the meniscus is removed by using
an arthroscopic punch. In this study, the tool-tissue interac-
tion forces experienced by the surgeon were investigated by
performing an experiment on a cadaveric meniscus. For this
experiment, an Acufex 1.5 mm upbiter punch (no. 7207735)
was used. A prototype for recording punch interaction forces
during partial meniscectomy was designed and implemented,
and the setup is shown in Fig. 2. We emphasize that this
setup is intended as a low-cost, and open source alternative
for capturing the main qualitative haptic features of a partial
meniscectomy punch in a controlled lab environment.

The physical properties recorded were position and force
over time. A COM-09806 potentiometer was used for posi-
tion sensing. For force sensing, an FSR07CE force-sensitive
resistor (FSR) was selected owing to its low-profile design
and low cost. The reported hysteresis for the model was
5 % for 100 actuations of 1 kg [28]. The maximum load
capacity was 5 kg. An Arduino MKRZERO microcontroller
was selected as the basis for software implementation.

To integrate the FSR, a thumb-sized clip-on assembly was
designed such that the FSR could be placed between a base
attached to the punch and a button. Thus, the contact area with
the force sensitive resistor can be maintained constant. The
base and button were 3D-printed using a Formlabs Form 3
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FIGURE 2. Prototype for recording pinching forces in minimally invasive
arthroscopic surgery.

3D printer. To integrate the potentiometer, two frames were
designed to be attached to the handle and trigger of the
punch. The frames were designed such that the potentiome-
ter formed the connection, but did not transfer any forces
other than those for rotating the potentiometer. The frames
were also 3D-printed using a Formlabs Form 3 3D printer.
Computer-aided design (CAD) files, bills of materials, wiring
diagrams and software can be downloaded from GitHub [29].
The prototype is shown in Fig. 2. The potentiometer and
FSR readings were sampled using the Arduino MKRZERO
microcontroller board and imported to MATLAB where non-
relevant data were removed and the potentiometer data were
filtered using a low-pass filter with a cutoff frequency of 5Hz.

The FSR was calibrated using a load cell. FSR-readings
were recorded from 0 N to 9.0 N in 1.0 N increments, and
the calibration was repeated three times. Regression was
performed in Excel to establish a relationship between the
FSR-reading and the corresponding force. The following
relation was established:

f ∗ = [3 · 10−7r3FSR − 2 · 10−4 · r2FSR + 0.7815 · rFSR]

·9.81m/s2 · 10−3kg (1)

where rFSR is the FSR-reading, and f ∗ is the estimated
FSR-force in Newtons. The root-mean-squared (RMS) error
was calculated to assess accuracy, andwas found to be 0.56N.

B. DATA COLLECTION EXPERIMENT
A human cadaveric knee, acquired from Science Care
USA [30] was dissected and prepared for partial meniscec-
tomy. Eight series of ten cuts each, where four were per-
formed slowly and four were performed fast, were conducted
on the meniscus using the setup described previously. The
knee before and after meniscectomy is shown in Fig. 3. Two
series of reference cuts in a sheet of paper, where half were
slow and half were fast, were also conducted using the same
setup. The sampling frequency was 333 Hz. The data set is
available on IEEE DataPort [31].

FIGURE 3. Human cadaveric meniscus used for data interaction data
collection.

FIGURE 4. Recorded partial meniscectomy punches (top), and blank cuts
(bottom). The vertical axis shows the FSR-reading in newtons, and the
horizontal axis shows the corresponding handle position in degrees.

Fig. 4 shows the FSR-force plotted against the puncher
angle for a series of blank reference punches in a sheet of
A4-paper, and a series of partial meniscectomy punches.
For the reference punches, there was a smaller variation in
the interception angle than that in the partial meniscectomy
punches.

The power spectral density (PSD) of the unfiltered posi-
tion signal for partial meniscectomy was obtained. The PSD
showed that most of the frequency components were at the
low-end of the spectrum, and typically below 5 Hz. Similar to
what was found in [13], this indicates that fidelity must only
be attained at low frequencies. It is likely that in this low-
frequency region, the material and tool-tissue nonlinearities
dominate, and thus the emphasis should be made on recreat-
ing these.

By studying the anatomy of the force-position plot,
as shown in Fig. 4, the following four points were defined:
(i) Interception point: the position where the punch intercepts
with the tissue, and the load starts increasing; (ii) yield point:
the force and position where the punch cuts through the
surface of the tissue, and the force curve decreases rapidly;
(iii) bottom-out point: the position where the punch reaches
the end of travel, and the force again starts to increase; and
(iv) opening point: the position and force where the punch
loses contact with the tissue, and the maximum force is
reached.
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FIGURE 5. System overview for the partial meniscectomy punch
simulation. For rendering force signals using only the interpolation
method, the Kalman filter block was bypassed, and the interpolation
force signal, f IP was sent directly to the motor controller.

III. HAPTIC ARTHROSCOPIC PUNCH
A. SYSTEM SETUP
The motivation for developing a novel open-source haptic
arthroscopic punch system is to provide an open-source plat-
form for haptic rendering of arthroscopic procedures involv-
ing punches. Most generic commercial haptic devices only
provide kinesthetic feedback in three or six DOFs. Some
high-end systems, such as the Force Dimension Omega 7,
also include pinch haptic feedback in a seventh DOF. How-
ever, these devices do not resemble the physical shape of
the surgical instruments they attempt to represent. Although
many commercial arthroscopic simulation systems have these
features, most are protected by proprietary rights, and are thus
less suitable for open research. To this end, we present our
haptic arthroscopic punch system.

The haptic arthroscopic punch system is based on the
impedance control strategy, where the force is computed as a
function of the position. An overview of the system is shown
in Fig. 5. The main components of the system are the hap-
tic device, control software, and visualization software. The
force computation strategies are presented in Section III-B.

A haptic device for rendering kinesthetic feedback for
meniscus punching was designed as shown in Fig. 6. The
hardware consisted of a BGM2804 brushless direct current
(BLDC) gimbal motor, an AMT 102 rotary encoder with
2048 increments, a polulu 4 mm shaft clamp, a 4 mm pre-
cision shaft, a 4 mm ball bearing, and two custom designed
handles with similar geometry to the Acufex upbiter punch.
A high-resistance brushless gimbal motor was selected owing
to its low weight, smooth motion, and low internal friction.

FIGURE 6. CAD model of haptic punch with direction indicated (left) and
exploded view (right).

The model has seven pole pairs. The electronics consisted of
a 12V external power supply, anArduinoDuemicrocontroller
(84 MHz), and a Simple FOC shield version 2.0.3 [32].
The Simple FOC shield was configured with BLDC driver
pinouts 9 (Pwm A), 5 (Pwm B), 6 (Pwm C) and 8 (enable),
and encoder pinouts 3 (A), 2 (B) and 4 (I), by soldering.

The control software was implemented on the Arduino
Due microcontroller. The position signal θ from the haptic
device was registered using an incremental encoder, and the
handle position signal θm was sent to the virtual environ-
ment, where collisions were detected and forces were com-
puted as described later. A force signal f is then sent to the
motor controller and converted to a control voltage uc which
results in a motor torque τ . For matrix algebra operations,
the Basic Linear Algebra library (BLA) was employed [33].
To control the BLDC motor, a field-oriented control (FOC)
algorithm, provided by the SimpleFOC-library [32], was
employed. The FOC algorithm was run with torque motion
control and FOC modulation type space vector pulse-width
modulation (PWM).

Visualization software was implemented on a com-
puter using the Processing software environment [34]. The
deformed mesh ymesh and tool position ytool are sent from
the control software through a serial port. A generic anatomic
knee model obtained frommagnetic resonance imaging scans
and segmented using the method described in [35], was
imported. A CAD-model of the Acufex arthroscopic punch
was developed and imported. The mechanisms were modeled
using rigid-body transformations. The visualization view is
shown in Fig. 7.

The setup, including CAD-models, bill of materials, con-
trol software, visualization software, intraoperative data and
anatomical models are openly available on GitHub [29].

B. FORCE COMPUTATION STRATEGIES
1) INTERPOLATION METHOD
The interpolation method takes a sampled reference cut
from intraoperative data, and renders this using interpolation,
as described by Okamura [11]. Specifically, the interpola-
tion force at time step k , f IPk , is computed as a function of
the position, by interpolation of the recorded intraoperative
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FIGURE 7. Real-time 3D-visualization of partial meniscectomy punch
simulation.

FIGURE 8. Finite element model for modelling meniscus deformation.

force, f ∗ and position, θ∗, as described in (2).

f IPk (θ ) = f ∗k + (f ∗k+1 − f
∗
k )

θk − θ
∗
k

θ∗k+1 − θ
∗
k

(2)

where f IPk is the force signal transmitted to the haptic device
at the k’th time step, θk is the trigger position of the haptic
device, f ∗k is the recorded intraoperative force with corre-
sponding intraoperative tool position θ∗k at a given time step.

2) FINITE ELEMENT METHOD
To represent the finite element force signal, a simple linear-
elastic ideally-plastic finite element model based on 1D
spring elements was implemented. An illustration is shown
in Fig. 8. The purpose of the finite element signal was not
to model the meniscus punch as accurately as possible, but
to generate a generic linear-elastic ideally-plastic reference
force signal of the meniscus deformation that had similar
stiffness to the intraoperative data. Other more sophisticated
FEM-strategies provide a much more accurate modeling of
this problem. The linear stiffness was calibrated using intra-
operative data.

The mesh, described by the node position vector xnodes and
element midpoint vector xmid was defined by a start point a,
an end point b, a finite number of elements N , and an element
length, le, as shown in (3) and (4).

le =
b− a
N

(3)

xmid
=

[
a a+

1
2
le a+

3
2
le . . . b

]
(4)

Assuming that all the elements have the same stiffness ke

and length le, we obtain the following global stiffness matrix

K =


k1 −k3 0 . . . 0
−k3 k2 −k3 0
0 −k3 k2 0
...

. . . −k3
0 0 0 −k3 k1

 , (5)

where

k1 =
3ke

2le
, k2 =

ke

le
, k3 =

ke

2le
. (6)

For the current simulation these parameters were set to
a = 0.5, b = 2.0, and ke = 1. Boundary conditions
were then applied such that displacements at the first and
last nodes were zero. Collision detection is performed using
the tool position Ptool(x, y), and the tool penetration ytool is
calculated. Next, an interpolation vector c is defined from
x tool and element index i to the left of the tool position is
registered. Then, the nonzero elements of c are calculated as
follows:

ci =
xmid
i+1 − x

tool

xmid
i+1 − x

mid
i

(7)

and

ci+1 =
x tool − xmid

i

xmid
i+1 − x

mid
i

(8)

Assuming that ymesh at position x tool is equal to tool pene-
tration ytool, we obtain the following relation:

ytool = cTymesh. (9)

The tool-tissue interaction force f FEM is calculated from
the tool penetration ytool by solving (10) using lower-upper
(LU) decomposition.

Kymesh
= cf FEM. (10)

Finally, the mesh displacement vector ymesh is calculated.

ymesh
= K−1cf FEM (11)

3) KALMAN FILTER METHOD
The Kalman filter method is based on sensor fusion of inter-
polation and FEM force signals to estimate a new haptic
force signal at time step k , fk , as shown in Fig. 9. A math-
ematical state-space representation of the arthroscopic punch
force is formulated in the one-dimensional space domain, and
the haptic force, f , and stiffness, ζ , are selected as states,
as shown in (12) and (13).

fk = fk−1 + ζk−11θk (12)

ζk = ζk−1 (13)

where1θk is the change in handle position per time step. The
state space representation leads to the system matrix shown
in (14).

A =
[
1 1θk
0 1

]
(14)
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FIGURE 9. Discrete Kalman filter loop where FEM and interpolation force
signals are used for correction of the KF force signal.

As such, the a priori state estimate at time step k is

ˆx−k =
[
f̂ −k
ζ̂−k

]
=

[
1 1θk
0 1

] [
f̂k−1
ζ̂k−1

]
. (15)

As the force signal is sampled by alternating between
setting the measurement at time step k , zk, equal to f FEMk or
f IPk , the measurement matrix is taken as shown in (16).

H =
[
1 0

]
(16)

The discrete Kalman filter, as shown in [36], was then
implemented using the update equations shown in (17)
and (18).

ˆx−k = Ax̂k−1 (17)

P−k = APk−1AT
+Q (18)

Here, ˆxk−1 is the a posteriori estimate at time step k−1, P−k
is the a priori estimate error covariance at time step k , Pk−1
is the a posteriori estimate error covariance at time step k−1,
and Q is the system covariance matrix.
The measurement update equations are shown in (19),

(20) and (21), where Kk is the Kalman gain, x̂k is the a
posteriori state estimate, Pk is the a posteriori estimate error
covariance at time step k , I is the identity matrix, and the rest
as previously defined.

Kk = P−k H
T(HP−k H

T
+ R)−1 (19)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (20)

Pk = (I−KkH)P−k (21)

For the Kalman filter method, the process noise covariance
matrix, Q, and the measurement noise variances, RFEM and
RIP, must be set in advance. In this implementation, they are
also assumed to be constant. The process noise covariance
matrix Q was determined from the recorded intraoperative

stiffness, ζ ∗, and force data, f ∗, from a sampled punch
shown in Fig. 4. The covariances, σ , were calculated using
MATLAB, and resulted in the following covariance matrix:

Q =

[
σ 2
ζ ∗ σf ∗σζ ∗

σζ ∗σf ∗ σ 2
f ∗

]
=

[
7.0275 0.02772
0.2772 6.1024

]
(22)

Furthermore, it was assumed that the measurement variance,
RFEM, for the FEM signal was low. For the intraoperative data,
the measurement variance,RIP was determined from the force
sensor calibration data. The FEM-variance was tuned using
system simulations in MATLAB so that the KF-force was
about equally biased from the interpolation- and FEM signals.
The measurement variances were set as follows:

RFEM = 0.001 (23)

RIP = 7.742 (24)

C. HAPTIC SIGNALS DEMONSTRATION
Fig. 10 shows the haptic force signals from the presented
system calculated using the interpolation, FEM, and Kalman
filter methods. For this demonstration, the FEM produces
a linear-elastic force signal until a yield force of 7 N is
reached, which is represented by an ideal plastic force. The
interpolation method recreates one of the nonlinear force-
position curves shown in Fig. 4. After the bottom-out is
reached, the signal is reduced to zero. The yield force was
set to 7 N, and the interception point to four degrees for
the FEM-signal, which is different than from that for the
interpolation signal, to show that the Kalman filter method
can account for variations in interception. This shows how the
Kalman filter method can recreate nonlinear haptic features
from intraoperative data, implemented using interpolation,
while being synchronized to a linear FEM-signal.
Fig. 11 shows how the Kalman filter haptic force signal

can be tuned to be more biased towards the FEM- or inter-
polation force signal, by selecting different values for the
measurement variance, here demonstrated by the interpola-
tion variance, RIP. In addition, the Kalman filter was tuned
to be responsive to measurement inputs to model the process
nonlinearities, resulting in some minor noise in the estimate.
In Fig. 11, the three Kalman filter curves were smoothed out
using a two-point moving average filter. This demonstrates
how the noise can be mitigated, while still sufficiently mod-
elling the process nonlinearities.

D. COMPUTATIONAL PERFORMANCE ANALYSIS
To assess the computational efficiency of the interpolation
and Kalman filter methods, the force computation strategies
described in Section III-B were set up and tested individu-
ally. The methods were also checked for their sensitivity in
refining the FE-mesh. The highest refresh rate of 496 Hz was
achieved using only the finite element method. The speed was
decreased to 326 Hz, going from five to ten elements, and
further to 167 Hz going from ten to 15 elements. When using
the interpolation method for haptic rendering, and FEM only
for visualization, the maximum refresh rate was 433 Hz. The
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performance decreased to 294 Hz and 160 Hz when the mesh
was refined to ten and 15 elements respectively. The maxi-
mum refresh rate achieved with the Kalman filter method was
375 Hz, which was 121 Hz slower than that of FEM only.
The refresh rate dropped to 276 Hz going from five to ten
elements, and to 147 Hz by going from ten to 15 elements.

The computational performance of the Kalman filter
method was lower than the FEM and interpolation methods
when the FE-mesh consisted of a small number of elements.
However, as the FE-mesh was refined the difference in com-
putational performance was diminished, as shown in Fig. 12.
This shows that the computational cost of the FE-calculation
was much higher than that of the interpolation- and Kalman
filter calculations.

IV. USER STUDIES
A. OVERVIEW
The purpose of the user study was to investigate how expe-
rienced surgeons conceived the interpolation- and Kalman
filter-based force computation strategies with respect to
face validity, compared with the idealized linear-elastic
ideally-plastic FE haptic signal. Application of the KF- and
interpolation methods are mostly relevant for patient-specific
simulations where intraoperative tool-tissue interaction data
are available, such as in a post-operative virtual surgery
database for challenging cases, as described in section I and
previously elaborated on in [9]. As such, experienced ortho-
pedic surgeons was selected as the targeted user group.

Two user groups were included in the study. The first
cohort consisted of orthopedic surgeons working with
arthroscopy. Six participants volunteered (N = 6), of whom
five were male and one was female. Their ages ranged
from 47 to 76 years old. The average experience with arthro-
scopic surgery was 18 years, and the minimum reported expe-
rience was 10 years. The second cohort consisted of adults
with no surgical experience. This cohort was included as a
control group. Five participants (N = 5), three males and two
females, volunteered. Their ages ranged from 23 to 31 years
old. No financial compensation was provided to any of the
participants.

The participants were asked to complete a physical refer-
ence benchmark punch, as well as two categories of virtual
partial meniscectomy punch simulations, including (i) haptic
feedback without visualization, and (ii) haptic feedback with
visualization. The motivation for this study design was to first
isolate the haptic rendering to collect data describing only
the kinesthetic sensation, and then include the full simulation.
The procedure is described in detail in the following section.

B. SETUP AND PROCEDURE
The experimental setup was as shown in Fig. 13. For the
FE force signal, the interception point, linear stiffness, yield
force and mesh were set as described in section III-B2.
The interpolation force signal was based on one of the cuts
shown in Fig. 4, and rendered as shown in Fig. 10. For the

KF-method, the process variance was set as shown in (22),
and the measurement variances as shown in (23) and (24).
The methods were tested with five elements corresponding
to 496 Hz, 425 Hz and 375 Hz for the FEM, interpolation
and KF methods respectively.

First, the participants were given information on the pur-
pose of the experiment and instructions for using the equip-
ment. Informed consent was obtained. They were then asked
to fill out personal and background information in a paper
questionnaire. If consent was provided, the session was video
recorded. The participants were encouraged to express their
thoughts during the testing for qualitative assessment.

Participants were then given a kinesthetic reference bench-
mark. They were required to perform at least three cuts using
an Acufex 1.5 mm upbiter punch (no. 7207735) in a piece of
bacon. They were informed that the intention was to replicate
a partial meniscectomy punch.

Next, the participants were asked to test the interpola-
tion, FEM and KF haptic rendering strategies without visu-
alization. The three methods were anonymized and labeled
‘‘Alternative 1’’, ‘‘Alternative 2’’ and ‘‘Alternative 3’’, cor-
responding to the interpolation, FEM, and Kalman filter
methods, respectively. The alternatives were presented to the
participants in this order. The participants were asked to
complete at least three virtual cuts for each alternative. After
testing the respective method, the participants were asked to
rate on a 5-point Likert scale how well they agreed with a
given set of statements corresponding to face validity of the
method tested. The statements are presented in Table 1. The
statements were chosen to be different for the three methods,
with variations in biased and unbiased statements to avoid
acquiescence bias. After all three alternatives were tested, the
participants were asked to state which method resembled the
benchmark cut the most and why.

After this, another round of assessment was performed,
but now including the real-time 3D-visualization shown in
Fig. 7. The alternatives were presented to the participants
in reverse order, namely ‘‘Alternative 3’’, ‘‘Alternative 2’’
and ‘‘Alternative 1’’. As before, participants were required
to complete at least three virtual cuts for each alternative,
and asked to answer the survey questions after testing the
respective method. Finally, the participants were again asked
which alternative they preferred and why.

C. RESULTS
1) QUANTITATIVE
The Likert-scale survey results were grouped into profes-
sional and non-professional cohorts. Likert-scale results from
survey questions with negative bias were inverted so that
a high score indicated good performance, and a low score
indicated poor performance. The performance was evaluated
with respect to how well the respective method resembled the
benchmark cut. Mean values (µ) and variances (σ 2) were cal-
culated for the data set. The results are presented in Table 2.
The interpolation method scored best with µ = 4.1 for the
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FIGURE 10. Interpolation, FEM and Kalman filter haptic force signals versus device handle position for a virtual partial meniscectomy punch. The
graphs show how the interpolation and Kalman filter methods can recreate nonlinear haptic features from intraoperative data. The highlighted
points shows how the Kalman filter method can use an idealized FEM-signal to account for variations in interception. The FEM interception point
and yield force have been set differently than for the interpolation signal to illustrate this. Graphic renderings were created using Fusion360.

FIGURE 11. Effects on the Kalman filter haptic force signal by using
different values for the interpolation measurement noise variance RIP,
as well as curve-smoothing using a two-point moving average filter.

professional group, and µ = 4.1 for the non-professional
group. The second best method was the Kalman filter method
with a score of µ = 3.2 in the professional group, followed

FIGURE 12. Difference in computational performance of the Kalman
filter, and interpolation method (including FEM for visualization only),
relative to the idealized FE-simulation. As the FE-mesh is refined, the
difference converges towards zero as the FE-calculations quickly become
computationally expensive.

by the FEMwithµ = 2.6. The ranking was the same for both
cohorts.

To evaluate the differences in face validity between the
interpolation, FEM, and Kalman filter methods, three t-tests
assuming unequal variances were performed on the survey
data using Excel. Data from the two rounds of testing (with-
out and including visualization) was combined to provide
a sufficient number of data points for the t-tests. Bonfer-
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FIGURE 13. Experimental setup used for user studies.

TABLE 1. Survey questions for user study. First digit points to method,
i.e. 1 = Interpolation, 2 = FEM, 3 = KF. The second digit points to
statement for the respective method.

roni correction was performed, setting α = 0.017. The
results are presented in Table 3. For both professional and
non-professional cohorts, the tests indicates that the users
perceived a significant difference between the interpolation
method and reference FEM-signal (p < 0.017). There were
no significant difference between the other methods.

2) QUALITATIVE
In the survey, participants were asked directly which method
they preferred and why. They were asked first after the first
round (no visualization), then once more after the second
round (including visualization). Each participant had there-
fore a total of two votes. The results are presented in Table 4.
In the professional cohort, there were a total of seven

votes in favor of the interpolation method, four votes for the
Kalman filter method, and no votes for FEM. One of the
participants, a male surgeon with 20 years of arthroscopic
experience, preferred the interpolation method, and reported
that this was because ‘‘it feels similar to a meniscus’’ and
‘‘it feels more realistic with a discontinuity than constant
resistance’’. Two other professional participants also reported
similar statements.

In the non-professional cohort, there were five votes for
the Kalman filter method, four votes for the interpolation

TABLE 2. Survey results with means (µ) and variances (σ2) for the
interpolation, finite element (FEM) and Kalman Filter (KF) methods. The
score is based on five-point Likert data, where maximum is 5 and
minimum is 1.

TABLE 3. Results from three T-tests with Bonferroni correction
(α = 0.017). Tests indicate that participants in both the professional and
non-professional groups conceived a significant difference between the
interpolation- and FEM-methods. There was no significant difference
between the other methods.

method, and one vote for FEM. A male participant preferring
the interpolation method reported that ‘‘It felt more like the
benchmark cut, with a snap at the end of the cut.’’ Another
participant also reported a similar statement. From the par-
ticipants preferring the Kalman filter method, one participant
reported that ‘‘Discontinuity in resistive force was clear and
concise, but some minor improvements might be needed.’’

V. DISCUSSION
This study has presented an open-source haptic system for
the simulation of a partial meniscectomy punch, and demon-
strated implementation of an interpolation and aKalman filter
based method for using intraoperative data to provide non-
linear haptic feedback in arthroscopic surgical simulations.
The face validity of the interpolation and Kalman filter meth-
ods was evaluated in a user validation study, and compared
with haptic feedback from an idealized linear-elastic ideally-
plastic FEM reference signal. The Kalman filter method
demonstrated coupling of intraoperative data and FEM for
haptic feedback in a partial meniscectomy punch simula-
tion, but was outperformed by the interpolation method with
respect to face validity.

Observing the results from the quantitative user study,
it was evident that the interpolation method was significantly
able to capture the nonlinear features in the partial menis-
cectomy punch, when compared with the idealized reference
FEM-signal. There was no significant difference between
the Kalman filter-based method and the idealized reference
FEM-signal, which means that for the selected parameters,
the Kalman filter-based method was not as effective in ren-
dering the nonlinear features as the interpolation method.
These findings were supported by participant statements,
as well as the results shown in Table 4. In the professional
cohort, users explained that they preferred the interpolation
method because it most accurately modeled the expected
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TABLE 4. Results show how many participants preferred each of the
respective methods when directly asked about which method resembled
the benchmark cut the most. Participants were first asked after the first
round (no visualization), and then once more after the second round
(including visualization). One participant in the professional user group
did not report the preferred method after round two, which is why there
are only five responses in the professional user group in the second
round. In the professional group, the interpolation method was preferred,
followed by the KF-method. In the non-professional group, the
KF-method obtained one more vote than the interpolation method.

‘‘pop-through effect’’ of the partial meniscectomy punch.
Looking at the corresponding signals in Fig. 10, it is clear
that this effect was most prominent for the interpolation
method, and that the Kalman filter method, with the given
set of parameters, did not sufficiently capture this nonlin-
earity. However, the Kalman filter can easily be tuned to be
more based on intraoperative data than on the FEM-signal by
selecting other values for the measurement variances, RIP and
RFEM, as shown in Fig. 11. In the user study, the measurement
variances were tuned so that the KF-force was about equally
biased from the interpolation- and FEM signals. It is possible
that tuning the Kalman filter to be more biased towards the
interpolation signal could have improved the results in the
user study. However, because the Kalman filter force signal
is dependent on the interpolation force signal, it is not really
possible for the Kalman filter method to capture the nonlinear
features any better than the interpolation signal, and neither is
this the purpose. The advantage of the Kalman filter method
is that it also accounts for variations in points of interaction by
using the FEM-force when no interpolation force is available,
to allow for a meaningful simulation where haptic feedback
is synchronized with the visual display, as shown in Fig. 10.
This is especially important for post-operative digital twin
applications, where haptic feedback from interpolation is
more challenging to synchronize with FEM owing to patient-
specific variations in anatomy and tissue deformations.

As can be observed from Fig. 10, some minor noise
resulted in the Kalman filter force signal because the filter
was tuned to be quite responsive to the interpolation and
FEM signal inputs. This is necessary to be able to model
the nonlinearities of the partial meniscectomy punch process.
However, as shown in Fig. 11, the noise can be easily reduced
by a filtering process, such as a two-point moving average
filter.

Considering the user study design, the motivation was to
first isolate the haptic rendering to collect user data describ-
ing face validity of the kinesthetic sensation only, and then
include visualization to evaluate the face validity of the full

simulation experience, and see if the methods performed
differently under this condition. There was not enough data
to show statistically that including visualization affected face
validity, and this should be investigated in future studies.
However, as can be observed from Table 4, the distribution
for the preferred method was very similar in both cohorts
going from ’no visualization’ to ’including visualization’.
The same trend was seen from the Likert-scale survey data.
This indicates that including visualization have not signifi-
cantly affected the performance of the haptic methods in this
study.

Observing the results of the performance analysis
described in Section III-D, it is important to note that both
FEM and interpolation are necessary for the Kalman filter
method. Similarly, the FEM is necessary for the interpolation
method to provide a meaningful simulation with both visual
and haptic feedback, and has therefore been included in the
comparison to only compute the deformed mesh. For a low
number of elements in the FE-mesh, the Kalman filter-based,
and interpolation methods are slower than FEM only, with
a performance of 375 Hz, 425 Hz and 496 Hz respectively.
However, the advantage of these methods become clearer as
the FE-mesh is refined and the associated matrices increase
in size. As shown in Fig. 12, the difference in computational
speed between the three methods converges towards zero
as the FE-mesh is refined. This shows that FE-calculations
are much more computationally expensive, and the KF- and
interpolation methods are not affected by the number of ele-
ments in the FE-mesh. For a moderately sized 3D tetrahedral
mesh, these computations should not make the simulation
significantly slower. For reference, Liu et al. [37] recently
modeled a human meniscus using 5799 tetrahedral elements
for the medial meniscus, and 6646 tetrahedral elements for
the lateral meniscus.

The intraoperative data collection and haptic arthroscopic
punch systems were designed using low-cost components
and open-source software, and are openly available on
GitHub [29]. These systems, supplemented by the open data
set available at IEEE DataPort [31], provide the sufficient
hardware and software for intraoperative data-based haptic
rendering of a partial meniscectomy punch.

The haptic arthroscopic punch provide an inexpensive
alternative to costly kinestaethic haptic devices with pinch
feedback. It should be noted that the desired haptic refresh
rate of 1000 Hz was not attained, because the system was
implemented on an Arduino Due micro controller (84 MHz)
with a single thread. However, the achieved simulation speed
was sufficient for the purpose of rendering a partial menis-
cectomy punch because of the low stiffness and relatively
small forces involved. Colgate and Henkel [38] showed
that for an impedance-controlled haptic system, passivity is
influenced by sampling time T , virtual stiffness K , virtual
damping B, and physical damping (or friction b, as shown
in (25).

b >
KT
2
+ |B| (25)
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This shows that the maximum achievable virtual stiffness
is proportional to the sampling rate. It is important to note
that b includes not only the physical damping provided by
the haptic device, but also by the human operator. When
analyzing the force signals shown in Fig. 4, the maximum
stiffness for the partial meniscectomy punch was found to be
K = 4.39 N/deg. Further, the maximum handle velocity from
the haptic signal was found to be θ̇ = 57 deg/s. Analyzing the
the system at the given stiffness and handle velocity, and no
virtual damping, the human operator must apply an external
damping force of F = KT

2 θ̇ = 0.33 N to ensure passivity
at 375 Hz refresh rate. This is small, and well within the
grasping capabilities of most adults. Compared to the target
refresh rate of 1000 Hz, this external force would be 0.13 N,
which is smaller, but only by 0.2N. Conversely, by decreasing
the refresh rate to 25 Hz, this external force would be 5.0 N,
which is more than 60 % of the virtual force rendered, and
would be very noticeable for a human operator. No instability
issues were reported during the user studies.

In future work, the interpolation and Kalman filter-based
force computation strategies should be explored together
with a more sophisticated implementation of FEM, such as
the corotational formulation [39], total Lagrangian explicit
dynamics (TLED) [40] or reduced-order extended Kalman
filter FEM [41], [42], [43]. Novel position tracking systems,
such as that recently demonstrated for knee arthroscopy by
Ma et al. [44], combined with a 6 DOF force-torque sen-
sor, could provide the basis for in-vivo intraoperative data
collection for other arthroscopic procedures. An interesting
comparison would be to study the simulation speed and face
validity between a real-time finite element strategy optimized
for speed, such as TLED, in combination with the use of
intraoperative data, and a finite element strategy optimized
for modelling topology change, such as the corotational cut
FEM [26].

VI. CONCLUDING REMARKS
This paper has presented an open-source haptic system for
the simulation of a partial meniscectomy punch, and explored
an interpolation-based and a Kalman filter-based method for
intraoperative interaction data-based patient-specific haptic
feedback in arthroscopic partial meniscectomy punch sim-
ulation. It was demonstrated that the Kalman filter-based
method could couple finite element and intraoperative inter-
action data signals, and that the resulting haptic signal can
be tuned to be biased towards either of the input signals.
The system was evaluated with respect to face validity
in a user study that included six orthopedic surgeons and
five non-professionals. The user study showed that expe-
rienced surgeons could distinguish between a linear-elastic
ideally-plastic finite element-based, and a nonlinear inter-
polation based haptic feedback signal in a partial menis-
cectomy punch simulation (p < 0.017), and that surgeons
preferred the interpolation method as a haptic rendering
strategy in this situation. These findings indicate that the

Kalman filter method was not as effective as interpolation
in rendering the nonlinear haptic feedback given the selected
parameters.
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