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a b s t r a c t

ANN-based mooring line top tension prediction systems are trained on ship motion and mooring line top
tension time histories frommultiple wave states with a certain simulation length. In the previous studies,
selection of the wave states and the simulation length differs between the studies and they are not
standardized. Also, a plain neural network is mostly used. In this paper, tension prediction performances
with respect to a distribution shape of the wave states, a number of the wave states, and the simulation
length are first studied. Then, the prediction performances with respect to Batch Normalization (BN) and
Learning Rate Decay (LRD) are studied, in which BN and LRD are very common components in modern
neural network models. Lastly, a guideline for selecting the wave states and the simulation length is
proposed, and BN and LRD are proven to be advisable to use to improve the prediction performance.
© 2021 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Typically, dynamic simulation for a moored floating structure
and fatigue analysis on mooring lines takes a long computational
time because it requires a huge amount of numerical calculation to
represent system's dynamic behavior under various sea states. To
speed up the dynamic simulation and fatigue analysis, several
studies have been conducted. Sim~oes et al. (2002) proposed a
neural network architecture to predict the top tension on mooring
lines and a hawser in a system where a turret-FPSO is connected
with a shuttle tanker by the hawser to perform a faster simulation
by replacing a huge amount of numerical calculation to represent
an actual system's dynamic behavior. Guarize et al. (2007) pro-
posed a hybrid Artificial Neural Network (ANN)-Finite Element
Method (FEM) approach where the ANN is trained with short
motion and top tension time histories generated by a FEM-based
time-domain simulation and the trained ANN calculates the rest
of the top tension history with an input of a prescribed motion time
history for a faster simulation by partially replacing the FEM with a
neural network model. Christiansen et al. (2013) proposed an ANN-
based mooring line fatigue analysis approach for the fast fatigue
f Naval Architects of Korea.

rea. Production and hosting by El
analysis by predicting tension time histories on unseen environ-
mental conditions and a procedure for the fatigue analysis based on
the proposed approach. Sidarta et al. (2017) proposed an ANN-
based mooring line top tension prediction system that receives
previous motion time histories only as an input unlike Christiansen
et al. (2013) where the ANN receives previousmotion time histories
as well as previous predicted top tension histories as the input.
Yetkin et al. (2017) and Yetkin and Kim (2019) proposed the
mooring top tension prediction systems based on a NARX
(Nonlinear AutoRegressive eXogenous) neural network for a faster
simulation by predicting tension time histories on unseen envi-
ronmental conditions. The NARX is often used for time series pre-
diction (Diaconescu, 2008; Xie et al., 2009). Despite all the previous
developments, there are some common limitations in the previous
studies: ‘non-standardized selection for the wave states and the
simulation length’ a plain neural network architecture’; To train a
neural network model for the tension prediction, a training dataset
is required, in which the training dataset usually consist of ship
motion and top tension time histories. The training dataset is
commonly obtained by running dynamic simulations on multiple
wave states with a certain simulation length. However, selection of
the wave states and the simulation length differs between the
previous studies and they are not standardized. Also, a plain neural
network architecture is mostly used in the previous studies. In this
paper, the tension prediction performances of a neural network
sevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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Fig. 2. Illustration of the representative vectors that consist of some statistical prop-
erties of the motion and tension time histories from the corresponding wave states.
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model with respect to a distribution shape of the wave states, a
number of the wave states, and the simulation length are first
studied by running the neural network training. Then, the predic-
tion performances of the trained neural network models are
explained by proposed approximate measures that are based on a
statistical variance and a statistical theorem, central limit theorem
(Wheelan, 2013). The proposed approximate measures can be uti-
lized to approximate the prediction performance even before
training the neural network models. Also, effects of Batch
Normalization (BN) proposed by Ioffe and Szegedy (2015) and
Learning Rate Decay (LRD) are studied to improve the prediction
performance further. The BN normalizes outputs from a hidden
layer, which prevents a gradient vanishing problem and allows
faster learning. The LRD decreases the learning rate over training
iterations, which allows the training process to converge and avoid
oscillation in the gradient descent process. The BN and the LRD are
very common components in modern neural network models and
known to improve neural network's performances fairly well (Ioffe
and Szegedy, 2015; You et al., 2019). Lastly, a guideline for selecting
the wave states and the simulation length is proposed along with
the approximate measures for the prediction performances with
respect to a number of the wave states and the simulation length,
respectively. Also, it is proven that the use of the BN and LRD in the
ANN-based mooring line top tension prediction system improves
the tension prediction performance.

2. Motivation

The mooring line top tension prediction performances of the
neural network model are studied with respect to the following
four perspectives: 1) a distribution shape of the wave states, 2) a
number of the wave states, 3) the simulation length, 4) the use of
the BN and the LRD.

2.1. With respect to the distribution shape of the wave states

It is a well-known fact that data diversity in a training dataset
leads to robust performance of a neural network model. Then, in
order to have the robust tension prediction performance of the
neural network model across various wave states within a wave
scatter diagram, it is crucial to create the training dataset from
various wave states across the wave scatter diagram. Then, it is
natural to think of selecting the wave states uniformly across a
wave scatter diagram as in Fig. 1(a) where Hs and Tz denote a
Fig. 1. Two distribution shapes of the wave
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significant wave height and a zero-crossing period, respectively.
However, if each wave state is represented by a representative
vector which consists of some statistical properties of the ship
motion and tension time histories from the corresponding wave
state, then it is obvious that the difference between the represen-
tative vectors within the low-Hs wave states of 1m and 3m would
be much lower than the high-Hs wave states of 11m and 13m. This
concept is illustrated in Fig. 2. Therefore, it might bemore beneficial
to select the high-Hs wave states more densely than the low-Hs
wave states to ensure the data diversity in the training dataset as in
Fig.1(b). The first idea of the uniformwave state selection is utilized
in the previous study such as (Sidarta et al., 2017), and the second
idea of the high-Hs-focused wave state selection is utilized in
(Christiansen et al., 2013). In this paper, the study of the tension
prediction performance with respect to the distribution shape of
the wave states is inspired to find out which distribution shape of
the wave states results in the better prediction performance.
2.2. With respect to a number of the wave states

A large amount of training data is crucial for performance of a
neural networkmodel in general. Therefore, a higher number of the
states across a wave scatter diagram.
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wave states is very likely to result in the better prediction perfor-
mance assuming that the simulation length for each wave state
remains the same. Examples of a low number of the wave states
and a high number of the wave states are shown in Fig. 3 where the
black lines denote boundary lines of valid cells in a wave scatter
diagram. However, the number of the wave states cannot be
increased indefinitely due to the computational cost for the dy-
namic simulations. Since the prediction performance would
converge as a number of thewave states increases, it is important to
select a number of the wave states that is just large enough to
maximize the prediction performance.

2.3. With respect to the simulation length

Aside from the distribution shape of the wave states and a
number of the wave states, the simulation length needs to be
determined. The simulation length denotes the dynamic simula-
tion's length on each wave state to obtain the motion and tension
time histories. The longer the simulation length is, the larger
training dataset the neural network model is trained on, which
leads to the better tension prediction performance. In a nutshell,
the simulation length should be long enough to capture a global
statistical distribution of the motion and tension time histories. For
instance, 3h dynamic simulations are commonly used for mooring
design analysis since it is considered to be statistically reliable
enough to capture the maximum top tension (Kang et al., 2021).
However, the simulation length cannot just be as long as possible
since the dynamic simulations are computationally expensive. The
tension prediction performance would converge as the simulation
length increases, therefore, it is important to find the simulation
length that is just long enough to maximize the tension prediction
performance.

2.4. With respect to batch normalization and learning rate decay

The BN and LRD are very common components in modern
neural network models and are known to improve neural net-
work's performance fairly well. The BN is treated as a layer and used
between a hidden layer and an activation layer. It normalizes out-
puts from a hidden layer, which prevents a gradient vanishing
problem and allows the faster learning. The BN is illustrated in
Fig. 4(b). It can be observed that many outputs without the BN fall
into a zero-gradient zone, which causes the gradient vanishing
problem while the BN prevents the outputs fall into the zero-
gradient zone.

With the LRD, an initial learning rate gradually decreases over
training iterations, which allows to converge and avoid oscillation
Fig. 3. Examples of low and high
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in the gradient descent process. Also, You et al. (2019) found that
the LRD helps neural networks learn complex patterns better. One
of the most common LRD is an exponential LRD. Its equation is
shown in Eq. (1) where h denotes the learning rate, i denotes a step
(training iteration), and Drate and Dstep are parameters where
Drate2ð0;1Þ and Dstep >1. If h0 (initial learning rate), Drate, and Dstep

are set to 0.001, 0.96, and 1,000, respectively, then the decayed
learning rate looks as Fig. 5.

hiþ1 ¼ hiD
i=Dstep

rate (1)

In the previous studies, neither the BN nor the LRD is utilized to
the best of our knowledge. Given the fact that these two provide
neural network models with robust performance improvement in
various domains, it is likely that the BN and LRD would provide
improvement in the tension prediction performance. Additionally,
it should be noted that the BN and LRD can easily be implemented
in open-source deep learning libraries such as Tensorflow and
PyTorch.

3. Target ship and mooring configuration

A target ship used in the dynamic simulations is a Floating
Production Unit (FPU) and its principal dimension is shown in
Table 1. The LBP, GM, XCG, YCG, VCG, kxx, kyy, and kzz denote length
between perpendiculars, metacentric height, surge-directional
center of gravity, sway-directional center of gravity, heave-
directional center of gravity, and radius of gyrations along the
surge-directional axis, the sway-directional axis, and the heave-
directional axis, respectively.

A mooring configuration of the target ship is shown in Fig. 6
where the OBA (Outer Bundle Angle) and IBA (Inner Bundle
Angle) are set to 50

�
and 4

�
, respectively. The small numbers at the

ends of the mooring lines indicate the mooring line index numbers
which start from an upper left side and count counterclockwise.
Properties of the mooring lines are shown in Table 2. An attack
angle of environmental direction is 20

�
to the target ship. This

paper is a study using only waves, and additional environmental
loads such as wind and current will be considered in the future.

4. Design of the neural network model and metric for its
tension prediction

4.1. Design of the neural network model

Fig. 7(a) presents the plain Neural Network (NN) architecture
that is used in most of the previous studies. In this paper, the NN
numbers of the wave states.



Fig. 4. Illustration of the batch normalization.

Fig. 5. Example of the decayed learning rate.
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architecture with the BN as shown in Fig. 7(b) is used for all neural
network training unless specified differently. Configurations of the
input X and the output Y used in this paper are illustrated in Fig. 8
and presented in Eqs. (2) and (3) in detail.
Table 1
Principal dimension of the target ship.

LBP Breath Draft Volume GM X

244m 50m 18.6m 169,614 m3 1.99m 11

Fig. 6. Mooring configurat
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Xðt; L;DtÞ¼

8>>>>>><>>>>>>:

xðt�LÞ;xðt�ðL�DtÞÞ;xðt�ðL�2DtÞÞ;/;xðtÞ;
yðt�LÞ;yðt�ðL�DtÞÞ;yðt�ðL�2DtÞÞ;/;yðtÞ;
zðt�LÞ;zðt�ðL�DtÞÞ;zðt�ðL�2DtÞÞ;/;zðtÞ;
Rxðt�LÞ;Rxðt�ðL�DtÞÞ;Rxðt�ðL�2DtÞÞ;/;RxðtÞ;
Ryðt�LÞ;Ryðt�ðL�DtÞÞ;Ryðt�ðL�2DtÞÞ;/;RyðtÞ;
Rzðt�LÞ;Rzðt�ðL�DtÞÞ;Rzðt�ðL�2DtÞÞ;/;RzðtÞ;

9>>>>>>=>>>>>>;
(2)

YðtÞ¼ fT1ðtÞ; T2ðtÞ;/; TMðtÞg (3)

where x, y, z, Rx, Ry, and Rz denote the surge, sway, heave, roll, pitch,
and yaw ship motions, respectively. Dt and L denote a timestep
interval and memory length of X, respectively. T denotes the ten-
sion with its subscript M denoting a number of mooring lines. In
this paper, L and Dt are set to 10s and 0.2s based on the previous
studies (Guarize et al., 2007; Sim~oes et al., 2002; Yetkin et al., 2017).
The training dataset consists of the input-output pairs and it is
obtained from the dynamic simulations on the selected wave states
within a wave scatter diagram. For the dynamic simulation soft-
ware, OrcaFlex developed by Orcina is used in this paper. For the
wave scatter diagram, a wave scatter diagram from DNV-GL (2018)
is used. The used wave scatter diagram is shown in Fig. 9.
CG YCG VCG kxx kyy kzz

7.7m 0m 19.5m 17.4m 59.3m 60m

ion of the target ship.



Table 2
Properties of the mooring lines.

Type Length [m] Diameter [mm] Weight in air [kg/m] Weight in water [kg/m] MBL [kN]

Segment 1 R4 studless chain 62 130 336 292 15,559
Segment 2 Spiral strand wire 900 120 57 50 9120
Segment 3 R4 studless chain 1800 130 336 292 15,559

Fig. 7. Architecture of the neural network model (Yellow: a hidden layer, Red: an activation layer, Purple: a batch normalization layer).

Fig. 8. Arrangement of the input-output pairs to be used to train the NN model.
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OrcaFlex performs global static and dynamic analysis of a wide
range of offshore systems, typically including boundary conditions
such as vessels, buoys, etc., as well as finite element (FE) modeling
of line structures. The procedure of the simulation consists of two
steps: 1) static analysis, 2) dynamic analysis. In the static analysis,
OrcaFlex is to find positions and orientations for each element in
the model such that all forces and moments are in equilibrium. The
equilibrium is used as an initial point for the dynamic analysis. The
time-domain dynamic analysis is fully nonlinear, and mass,
damping, stiffness, loading, etc. are evaluated at each time step,
considering the instantaneous, time-varying geometry. In the time
domain dynamic analysis, the following equation of motion is
solved:

Mðp; aÞþCðp; vÞþKðpÞ¼ Fðp; v; tÞ (4)

where Mðp; aÞ is the system inertial load, Cðp; vÞ is the system
damping load, KðpÞ is the system stiffness load, Fðp; v; tÞ is the
external load, p; v; a; and t are the position, velocity, acceleration
Fig. 9. Wave scatter diagram used in this paper.
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vectors, and simulation time, respectively. As for the line modeling,
OrcaFlex uses a Finite Element (FE) model for a line as shown in
Fig. 10. The line is divided into a series of line segments which are
thenmodeled by a straightmasslessmodel with a node at each end.
The model segments only model the axial and torsional properties
of the line. The other properties (mass, weight, buoyancy, etc.) are
all lumped to the nodes, as indicated by the arrows in the figure.

The hyperparameters for the neural network model used in this
paper are shown in Table 3. Throughout the paper, this hyper-
parameter setting is used unless specified differently.

The neural network model was implemented using the deep
learning open-source library, Tensorflow, and its training was
conducted on a single GPU (Geforce GTX 1070).

4.2. Metric for the tension prediction

After training the neural network model, the trained model
needs to be evaluated on a test dataset. The test dataset is obtained
Fig. 10. Line modelling in OrcaFlex.



Table 3
Hyperparameters for the neural network model.

Number of hidden layers Hidden layer size Use of the BN layer Optimizer, Initial learning rate Batch size Epochs Learning Rate
Decay

Drate Dstep

3 128 Yes Adam, 0.001 214 15,000 0.96 1000

Fig. 11. Test wave states used to obtain the test dataset (20 wave states).
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from the dynamic simulations on various test wave states across
the wave scatter diagramwith a different random seed from that of
the training dataset. The test wave states used to obtain the test
dataset are shown in Fig. 11.

Then, given that the output YðtÞ consists of the top tensions on
the 16 mooring lines at t and there are 20 wave states for the test,
the metrics for the tension prediction can be established as Eq. (5)

and Eq. (6), whereM denotes a number of mooring lines, bY denotes
predicted tension, S denotes a number of thewave states, and t here
denotes a timestep. Twometrics are defined to compute the metric
on two different cases: 1)metric on a singlewave state, 2) metric on
multiple wave states.Ms suits the former purpose andMS suits the
latter purpose. The higher metrics indicate the better prediction
performance.

Ms ¼ � 1
M

XM
m

PT
t jYmðtÞ � bYmðtÞj

T
(5)
Fig. 12. Verification of consistent metri
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MS ¼ � 1
S

1
M

XS
s

XM
m

PT
t

��Ys;m � bY s;m
��

T
(6)

Depending on a random seed for the dynamic simulation, the
resulting motion and tension time histories differ. Hence, a choice
of the random seed may affect the performance of a trained neural
network model since the neural network model is trained on those
motion and tension time histories, then eventually, themetrics may
differ depending on the random seed. Yet, if the training dataset of
themotion and tension time histories is statistically consistent with
respect to the random seed, the trained neural network model
would result in the consistent performance, which results in the
consistent metrics. To verify that the results presented in this paper
are consistent with respect to the random seed, the following figure
is presented:

Fig. 12 shows the metrics of Eq. (6) with respect to a number of
the wave states over the simulation length. The experiment was
conducted focused on a number of the wave states of 4. It is
apparent that the metrics remain statistically consistent with
respect to the random seed for the dynamic simulation. A detailed
result analysis regarding the prediction performance with respect
to a number of the wave states is presented in Chapter 5.2.

5. Analysis

The mooring line top tension prediction performances of the
neural network model are studied with respect to the following
four perspectives: 1) a distribution shape of the wave states, 2) a
number of the wave states, 3) the simulation length, 4) the use of
the BN and the LRD.

5.1. With respect to distribution shape of the wave states

As stated in Chapter 2.1, there exist two distribution shapes of
the wave states: a) uniform distribution of the wave states by the
uniformwave state selection, b) high-Hs-focused distribution of the
wave states by the high-Hs-focused wave state selection. In the
previous studies, although one of the two distribution shapes is
used, the wave state selections are conducted manually. In this
cs with respect to a random seed.



Table 4
Standardized procedures for the wave state selection methods.

(a) Uniform wave state selection (quasi-static) (b) High-Hs-focused wave state selection (quasi-static)

Define a number of the wave states S

1. Randomly generate a large number of wave states (e.g. 50,000)
within a wave scatter diagram.

2. Run a K-means algorithm and obtain S clusters.
3. Obtain S cluster centers which is the selected wave states.

Define a number of the wave states S

1. Randomly generate a large number (e.g. 50,000) of wave states within a wave scatter diagram.
2. Run the K-means algorithm and obtain multiple (e.g. 50) clusters.
3. Obtain the 50 cluster centers which is termed pseudo-selected wave states.
4. Run quasi-static simulations on the pseudo-selected wave states, and obtain motion and tension

time histories for each pseudo-selected wave state.
5. Create a representative vector for each pseudo-selected wave state.
6. Run the K-means algorithm on the representative vectors, and obtain S clusters.
7. Find a center point within each cluster on the wave scatter diagram domain, which results in the

selected wave states.

Fig. 13. Illustrations of the standardized procedures for the wave state selection methods.
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paper, standardized procedures for both selection methods are
proposed to replace the manual selection. The procedures of the
standardized wave selection methods are presented in Table 4 and
illustrated in Fig. 13.

In Table 4, the K-means algorithm introduced by Macqueen
(1967) is one of the most popular data clustering algorithms in
machine learning. Examples of the data clustering by the K-means
are shown in Fig. 14 where scattered data is clustered into three
groups and a cluster center in each cluster is presented as a cross
mark. It should be noted that input features are usually normalized
Representative vector¼

8>>>>>>>>>>>><>>>>>>>>>>>>:

mðX0Þ;mðY 0Þ;mðZ0Þ;m�R0X�;m�R0Y�;m�R0Z�;
sðX0Þ;sðY 0Þ; sðZ0Þ; s�R0X�; s�R0Y�;s�R0Z�;
FFTCGxðX0Þ; FFTCGxðY 0Þ; FFTCGxðZ0Þ; FFTCGx

�
m
�
T 01
�
;m

�
T 02
�
;/;m

�
T 0M

�
;

s
�
T 01
�
; s
�
T 02
�
;/; s

�
T 0M

�
;

FFTCGx
�
T 01
�
; FFTCGx

�
T 02
�
;/; FFTCGx

�
T 0M

�

7

before running the K-means algorithm to standardize distributions
of each feature space. The representative vector used in Table 4 is
under the same idea as the representative vector introduced in
Chapter 2.1, and it is expressed as Eq. (7) to capture statistical
properties of themotion and tension time histories. X0;Y 0; Z0;R0X ;R

0
Y ;

and R0Z denote normalized six Degrees-of-Freedom (DOF) ship
motion time histories, and T 0 denotes a normalized mooring line
top tension time history. m and s denote mean and standard devi-
ation, respectively. FFTCGx refers to a x-axial center of gravity of a
Fast Fourier Transform (FFT) graph.
R0X
�
; FFTCGx

�
R0Y

�
; FFTCGx

�
R0Z

�
;

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(7)



Fig. 14. Examples of data clustering by the K-means.

Fig. 15. Wave states selected by the two wave state selection methods.

Fig. 16. Tension prediction performance with respect to the distribution shape of the
wave states.

Fig. 17. Tension prediction performance with respect to a number of the wave states.
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The proposed standardized procedures are used to select the
wave states to run the dynamic simulations on, and the training
dataset can be obtained from motion and tension time history re-
sults of the dynamic simulations. The wave states selected by the
8

two wave state selection methods are presented in Fig. 15 where
‘Uniform’ refers to the uniform wave state selection and ‘High-Hs-
focused’ refers to the high-Hs-focused wave state selection.

To study the prediction performance with respect to the distri-
bution shape of the wave states, the neural network model is
trained on the training dataset created from different numbers of
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the wave states generated by each wave selection method. Here,
the simulation length is set to 3600s. The trained neural network is
tested on the test dataset created from the test wave states as Fig.11
with the metric of Eq. (6),MS. The result is presented in Fig. 16. The
result shows that the two wave selection methods result in almost
the same tension prediction performances. Since the procedure of
the uniform wave state selection is much simpler, it should be
preferred over the other.
5.2. With respect to a number of the wave states

To study the prediction performance with respect to a number
of the wave states, the neural network model is trained on the
training dataset created from different numbers of the wave states
by the uniform wave selection method. To verify the generic trend
of the prediction performances with respect to a number of the
wave states over different simulation lengths, three different
simulation lengths are considered: 1800s, 3600s, 7200s. The
trained neural network is tested on the test dataset created from
the test wave states as Fig. 11 with the metric of Eq. (6), MS. The
result is presented in Fig.17. The result shows the general trend that
the prediction performance increases significantly in the beginning
and gradually converges as a number of the wave states increases.
5.2.1. Approximate measure for the prediction performance w.r.t a
number of the wave states

The tension prediction performance of the neural network
model crucially depends on the amount of the training dataset and
the data diversity within the training dataset. In other words, the
prediction performance is positively affected by the following three
components: 1) a number of the wave states, 2) dispersion of the
wave states across the wave scatter diagram, 3) the simulation
length. If the uniform wave state selection method is used, since a
number of the wave states is proportional to the dispersion of the
wave states, the three components can be reduced to two compo-
nents: 1) a number of the wave states, 2) the simulation length.
Then, from the inverse perspective, the tension prediction perfor-
mance should be able to be explained by these two components.
This is the hypothesis, H , established in this paper to approximate
the tension prediction performance as Eq. (8) where a denotes a
scalar, S denotes a number of the wave states, L denotes the
simulation length, and the prediction performance is represented
by MS. Then, f ðS; LÞ represents a relative location of the prediction
performance scaled by a. In this paper, f ðS; LÞ is termed the
approximate measure.

H : MSzaf ðS; LÞ (8)

In Chapter 5.2, the prediction performance is studied with
respect to a number of the wave states. If the simulation length is
set to a certain constant, l, then a trend of the prediction
Fig. 18. Approximate measure for the tension prediction per
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performance should be able to be approximated by f ðS; L¼ lÞ ac-
cording to the hypothesis. The equation to compute f ðS; L¼ lÞ is
shown in Eqs. 9e11where s denotes a certainwave state among the
Swave states, FFTCGx

ð:Þ computes a x-axial center of gravity of a FFT
graph, and Tmðs; lÞ denotes a tension time history of an m-th
mooring line with the simulation length of l. It should be noted that
f ðS; L¼ lÞ is in a standard deviation form.

f ðS; L¼ lÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
sx

2
s;l

S
� m2S

s
(9)

mS ¼
1
S

XS
s

xs;l (10)

xs;l ¼
1
M

XM
m

FFTCGx
ðTmðs; lÞÞ (11)

The approximatemeasure, f ðS;L ¼ lÞ, is computed and compared
with the metric of the tension prediction performance in Fig. 18,
where S2½1;20� and L2f1800s; 3600s; 7200sg. In Fig. 18, the
metric and the approximate measure are presented in the 1st and
2nd y-axes, respectively. It can be observed that the proposed
approximate measures can approximate the trend of the prediction
performances (metrics) fairly well, which verifies the hypothesis
subject to a number of the wave states.

One useful application of this approximate measure is to find an
ideal number of the wave states even before training the neural
network model so that computational cost can be reduced. If the
neural network model is trained on a low number of the wave
states, its training would be finished quickly but its prediction
performance would not reach its maximum. On the other hand, if
the model is trained on an unnecessarily high number of the wave
states, its training would take unnecessarily long for a mere
improvement in the prediction. Hence, using an ideal number of
the wave states is important. Searching it by training the neural
network model for every number of the wave states would take too
much computational time. This proposed approximate measure
helps to find it very quickly, which saves computational time and
resources.

The approximate measure, f ðS; L ¼ lÞ, has a form of a standard
deviation. Therefore, its magnitude is proportional to a dispersion
of xs;l from Eq. (11). The dispersion of xs;l with respect to the number
of the wave states is presented in Fig. 19, which explains the result
in Fig. 18.
5.3. With respect to simulation length

To study the prediction performance with respect to the simu-
lation length, the neural network model is trained on the training
formance with respect to a number of the wave states.



Fig. 19. Dispersion of xs;l with respect to the number of the wave states.

Fig. 20. Tension prediction performance with respect to the simulation length.
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dataset created from a certain number of the wave states by the
uniformwave selectionmethodwith various simulation lengths. To
verify the generic trend of the prediction performance with respect
to the simulation length over different numbers of the wave states,
three different numbers of the wave states are considered: 4, 12,
and 20. The trained neural network is tested on the test dataset
created from the test wave states as Fig. 11 with the metric of Eq.
(6), MS. The result in presented in Fig. 20. The result presents the
general trend that the prediction performance increases signifi-
cantly in the beginning and gradually converges as the simulation
length increases.
5.3.1. Approximate measure for the prediction performance w.r.t
simulation length

Based on the hypothesis, H , the prediction performance should
be explainable by the approximate measure, f ðS;LÞ. In Chapter 5.3,
the prediction performance is studied with respect to the simula-
tion length. Therefore, if a number of the wave states is set to a
certain constant, S0, then a trend of the prediction performance
should be able to be approximated by f ðS¼ S0; LÞ according to the
hypothesis. The equation to compute f ðS¼ S0; LÞ is shown in Eqs.
(12)-(16). M consists of the six-DOF ship motions, Uð0; bÞ denotes a
uniform distribution with a range of 0 to b, N denotes sample size
for x2s;L;t, and ~M denotes a subsequence of M with a time-range of ½t;
t þ L�. In these equations, L denotes the simulation length of ~M and
b is determined by the entire simulation length minus L. For the

entire simulation length, 10800s is used. Intuitively,
PN

t�Uð0; bÞ
xs;L;t in

Eqs. 13 and 14 can be explained as follows: A random subsequence
of a motion history is sampled from an entire motion history and
reduced to a single value, xs;L;t , by FFTCGx

, and this is repeated N
times. This process follows the central limit theorem in a sense that
the weighted means of the N sampled subsequences of the motion
10
history form a sampling distribution and it would follow a normal
distribution as the definition of the central limit theorem, in which
the weighted mean is computed by FFTCGx

. In other words, xs;L;t is
randomly sampled N times and it would form the normal distri-
bution. Then, sM has the same concept as a standard error of a
sampling distribution. Finally, s2M is summed over the six-DOF
motion histories and the selected wave states.

f ðS¼ S0; LÞ¼ �
XS0
s

X
M 2

�
X;Y ;Z;RX ;RY ;RZ

�
s2
M

(12)

s2M ¼
PN

t�Uð0; bÞx
2
s;L;t

N
� m2 (13)

m¼
PN

t�Uð0; bÞxs;L;t
N

(14)

xs;L;t ¼ FFTCGx

�
~M s;L;t

�
(15)

~M s;L;t ¼M t2½t;tþL� (16)

The approximate measure, f ðS ¼ S0; LÞ, is computed and
compared with the metric of the tension prediction performance in
Fig. 21, where S2f4;12;20g. In Fig. 21, the metric and the
approximate measure are presented in the 1st and 2nd y-axes,
respectively. It can be observed that the proposed approximate
measure, f ðS ¼ S0; LÞ, can approximate the trend of the prediction
performances (metrics) fairly well, which verifies the hypothesis
subject to the simulation length. Similar to f ðS; L¼ lÞ introduced in
Chapter 5.2.1, f ðS¼ S0; LÞ can be used to find the optimal simulation
length to reduce the computational cost.

The magnitude of f ðS¼ S0; LÞ depends on s2M which is the vari-
ance of the sampling distribution of xs;L;t . In the central limit the-
orem, if the sample size is small, a variance of a corresponding
sampling distribution is large, and vice and versa. In the same
concept, if the simulation length, L, is small, the variance s2M of the
sampling distribution of xs;L;t should be large, and vice and versa.
Examples of the sampling distributions of xs;L;t by histogram are
presented in Fig. 22 where the wave state has Hs of 16.8m and Tz of
11.8s. It can be observed that the shorter simulation length results
in the larger variance and the longer simulation length results in
the smaller variance.
5.4. Trade-off between a number of wave states and simulation
length

In the previous chapters, the prediction performances are



Fig. 21. Approximate measure for the prediction performance with respect to the simulation length.

Fig. 22. Examples of the sampling distributions by histogram.

Fig. 23. Tension prediction performance with respect to a number of the wave states and the simulation length.

Fig. 24. Tension prediction performance with respect to the BN and LRD.
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studied with respect to a number of the wave states and the
simulation length, separately. It was discovered that the higher
number of the wave states and the higher simulation length result
in the better prediction performances in general. However, in-
creases in a number of the wave states and the simulation length
come with the computational cost. In this chapter, the tension
prediction performance is studied with respect to a number of the
wave states and the simulation lengthwhile the computational cost
is kept constant by keeping the following condition: {number of the
wave states � simulation length ¼ constant c} as Eq. (17). This way,
it is possible to find out which one is better between the following
options: 1) higher number of the wave states & shorter simulation
length, 2) lower number of the wave states & longer length, 3)
somewhere between the first and second options.

S� L ¼ c (17)

The neural network model is trained on the training dataset
created from different numbers of the wave states and different
simulation lengths that follow the condition of Eq. (17). The trained
neural network is tested on the test dataset created from the test
wave states as Fig. 11 with the metric of Eq. (6), MS. The result is
presented in Fig. 23(a) and its computational cost as runtime is
shown in Fig. 23(b). Fig. 23(a) shows that the better prediction
11
performance is achieved by following ‘higher number of the wave
states & shorter simulation length’ at the same computational cost.
However, it should be noted that the performance improvement
converges over the number of the wave states of 12. Fig. 23(b)
verifies that the same c from Eq. (17) results in the same compu-
tational cost.
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5.5. With respect to batch normalization and learning rate decay

The tension prediction performance with respect to the BN and
LRD is studied. The neural network models with and without the
BN and LRD are trained on the training dataset created from the 8
wave states by the uniform wave selection method with the
simulation length of 3600s. The trained neural network is tested on
the test dataset created from the test wave states as Fig. 11 with the
metric of Eq. (6),MS. The result is shown in Fig. 24 where ‘o’ and ‘x’
denote ‘used’ and ‘not used’, respectively, therefore, four cases are
considered in total. The result shows that the use of both the BN and
the LRD provides an apparent improvement in the prediction per-
formance with the low variance in the prediction performance.

Despite the fact that the Adam optimizer carries a decaying
learning rate internally, an explicit learning rate decay provides the
performance improvement. It can be explained by observing the
parameter update equation by the Adam optimizer which is shown
in Eqs. 18e22.

mt ¼ b1mt�1 þ ð1� b1ÞVqJðqtÞ (18)

vt ¼ b2vt�1 þ ð1�b2ÞðVqJðqtÞÞ2 (19)

bmt ¼mt
��

1� bt1
�

(20)

bvt ¼ vt
��

1� bt2
�

(21)

qtþ1 ¼ qt � hffiffiffiffiffiffiffiffiffiffiffiffiffibvt þ ε

p , bmt (22)

where mt and vt are called a biased first moment estimate and a
biased secondmoment estimate, respectively, and b1 and b2 are the
exponential decay rates for mt and vt , respectively. For settings of
the parameters, mt and vt are initialized to zero, and b1 and b2 are
usually set to 0.9 and 0.999, respectively. It can be observed that the
learning rate decay occurs by an increase of bvt in Eq. (6). Since bvt
increases as the training step goes on, it may be questionable to use
a learning rate decay additionally. Our speculation is that although
the Adamprovides the effect of learning rate decay, if a parameter is
already nearby an optimal point when the Adam's bvt has not
increased enough (i.e., parameter update is still conducted by a
large extent), it would experience oscillation in its weight update
process. Additionally, it may take a long time (epochs) until bvt in-
creases large enough to make the parameter update converge.
Instead, by providing an explicit learning rate decay, the parame-
ters can be encouraged to converge faster.
6. Conclusion

The mooring line top tension prediction performances of the
neural network model are studied with respect to the following
four perspectives: 1) a distribution shape of the wave states, 2) a
number of the wave states, 3) the simulation length, 4) the use of
the BN and the LRD. Based on the results for each perspective, a
guideline for the wave state selection is as follows: a) Use the
uniform distribution of the wave states rather than the high-Hs-
focused distribution since they result in the same performances
and the uniform distribution is easier to implement, b) Select a high
number of the wave states (i.e. at least 8) and choose the longest
simulation length that is affordable given the available computa-
tional power, c) If the computational cost needs to be reduced, use
the proposed approximate measure to quickly find the optimal
simulation length, in which the performance is almost maximized,
12
then the computational cost can be reduced by not using the bigger
training dataset for the mere improvement. d) Use the batch
normalization and the learning rate decay since they result in the
apparent performance improvement.

Our study is the first and initial study to the best of our
knowledge that analyzes the tension prediction performances of
the neural network model with respect to a distribution shape of
the wave states, a number of the wave states, and the simulation
length in an effort to standardize them. As the relative previous
works considered one main direction only, our work considers one
main direction only to verify our hypothesis in a relatively smaller
scale. Our work can be up-scaled and extended by considering
various environmental directions in addition to various environ-
mental conditions, which is to be the future direction of this work.
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A. Detailed Prediction Performances

In the main chapters, the prediction performances are evaluated
by themetric of Eq. (6),MS, which calculates themetric onmultiple
wave states. But one might be curious about the metric on each
wave state in the wave scatter diagram which can be computed
using Eq. (5), Ms, and the predicted tension time histories
compared to the actual tension time histories from the dynamic
simulation. In this supplementary chapter, themetric by Eq. (5),Ms,
and the predicted tension time histories are presented for various
results in the main chapters.

In Chapter 5.1, the tension prediction performances with respect
to the distribution shape of the wave states are studied, and there
are two distribution shapes: 1) uniform distribution, 2) high-Hs-
focused distribution. It was shown that the two distribution shapes
result in almost the same performances. In the following figures,
the metrics of the prediction performances by Ms are presented in
Fig. A.1 and the predicted tension time histories compared to the
actual tension time histories are presented in Fig A.2, in which a
number of the wave states is set to 12 and the simulation length is
set to 10800s for creating the training dataset. For Fig A.2, the
tension time histories are presented on the test wave state with the
lowest metric (Hs: 12.7m, Tz: 16.8s), the mooring line number of
the presented tension time histories is 16 since this line is most
affected by the wave load given its direction, and the ‘actual’ and
‘predicted’ refer to the tension time histories from the dynamic
simulation and the predicted tension time histories by the neural
network model, respectively. Since both distribution shapes result
in the similar metrics and almost the same on the test wave state of
{Hs: 12.7m, Tz: 16.8s}, the predicted tension time history of the
neural network model with respect to the uniform distribution is
presented only.



Fig. A.1. Detailed tension prediction performance with respect to the distribution shape of the wave states on the test wave states

Fig. A.2. Actual and predicted tension time histories on the test wave state of {Hs: 12.7m, Tz: 16.8s}. This tension time history is based on a test random seed which is different from
a training random seed. The time history would look different if a different random seed is used, but the prediction performance would remain the same as shown in Section 4.2.
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In Chapter 5.4, the tension prediction performances are studied
with respect to a number of the wave states and the simulation
length altogether. It was concluded that ‘higher number of thewave
states & shorter simulation length’ results in the better prediction
performances than ‘lower number of the wave states & longer
simulation length’ for the same computational cost. In the
following figures, two cases are compared: a) number of the wave
Fig. A.3. Detailed tension prediction performance with respect to a numbe

13
states: 4 & simulation length: 10800s, b) number of the wave
states: 20 & simulation length: 2160s. The detailed tension pre-
diction performances are presented in Fig. A.3. It is shown that the
prediction performances are better in case of {S:20, L:2160s} than
{S:4, L:10800s} on most of the test wave states. The actual and
predicted tension time histories of both cases are presented in
Fig. A.4, in which the test wave state is {Hs: 12.7m, Tz: 16.8s}.
r of the wave states and the simulation length on the test wave states



Fig. A.4. Actual and predicted tension time histories on the test wave state of {Hs: 12.7m, Tz: 16.8s}
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In Chapter 5.5, the tension prediction performances are studied
with respect to the batch normalization and learning rate decay. It
was concluded that the use of the BN and LRD provided an apparent
improvement in the prediction performance. The detailed
Fig. A.5. Detailed tension prediction performance with

14
prediction performances with respect to the BN and LRD are pre-
sented in Fig. A.5. It is shown that the use of the BN and LRD im-
proves the overall prediction performance across various test wave
states.
respect to the BO and LRD on the test wave states
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