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A B S T R A C T   

Machine learning (ML) has been a technique employed to build data-driven models that can map the relationship 
between the input and output data provided. ML-based data-driven models offer an alternative path to solving 
optimization problems, which are conventionally resolved by applying simulation models. Higher computational 
cost is induced if the simulation model is computationally intensive. Such a situation aptly applies to petroleum 
engineering, especially when different geological realizations of numerical reservoir simulation (NRS) models are 
considered for production optimization. Therefore, data-driven models are suggested as a substitute for NRS. In 
this work, we demonstrated how multilayer perceptron could be implemented to build data-driven models based 
on 10 realizations of the Egg Model. These models were then coupled with two nature-inspired algorithms, viz. 
particle swarm optimization and grey wolf optimizer to solve waterflooding optimization. These data-driven 
models were adaptively re-trained by applying a training database that was updated via the addition of extra 
samples retrieved from optimization with the proxy models. The details of the methodology will be divulged in 
the paper. According to the results obtained, we could deduce that the methodology generated reliable data- 
driven models to solve the optimization problem, as justified by the excellent performance of the ML-based 
proxy model (with a coefficient of determination, R2 exceeding 0.98 in training, testing, and blind validation) 
and accurate optimization result (less than 1% error between the Expected Net Present Values optimized using 
NRS and proxy models). This study aids in an enhanced understanding of implementing adaptive training in 
tandem with optimization in ML-based proxy modeling.   

1. Introduction 

At the dawn of 21st century, energy has become an essential part of 
daily life due to its significant contribution and utilization in different 
sectors of human activities. The importance of energy had been further 
illustrated when the global energy demand in 2021 generally was ex
pected to increase by 4.6%, which would exceed that of the pre-COVID- 
19 level, as reported by International Energy Agency (2021). Hence, 
meticulous planning of energy extraction and usage is required to ensure 
that the increasing global population can be commensurate with the 
availability of energy. In this aspect, petroleum is considered one of the 
primary sources of energy. Different technological methods, viz. 
enhanced oil recovery (EOR), artificial lift, hydraulic fracturing, etc., 
have been developed and employed to guarantee a sufficient supply of 
energy. Nevertheless, to produce petroleum sustainably and economi
cally, oil and gas companies often incorporate a thorough blueprint of 
field development (FD) and reservoir management (RM). This is where 

engineering optimization plays a pivotal role. 
In the domains of FD and RM, engineering optimization of decision 

variables has been ubiquitous and user-friendly because of the rapid 
development of today’s technology. In petroleum engineering, these 
decision variables include, but are not limited to, EOR initiation time, 
the number of wells, well control, well placement, well trajectory, etc. In 
tandem with the growth of computing power, the transport of fluid flow 
in porous media can be modeled with ease by using numerical reservoir 
simulation (NRS). Thereafter, petroleum engineers can utilize NRS to 
perform optimization more conveniently. Moreover, the results yielded 
by running different cases on NRS provide additional insight for the 
engineers to formulate their plans for FD and RM. Despite this, NRS 
encounters computational issues when the reservoir modeled is 
geologically sophisticated. This implies that running one scenario of 
NRS is computationally expensive and this might cause inconvenience to 
obtain a fast solution for RM when plans are updated at a high fre
quency. Moreover, this computational challenge will be further 
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exacerbated if several geological realizations are needed for robust 
production optimization, which means production optimization under 
geological uncertainty as discussed in Hong et al. (2017). Therefore, to 
reduce the computational cost, proxy modeling is suggested as one of the 
alternative solutions. 

Proxy modeling, which is also surrogate modeling or meta-modeling 
(Zubarev, 2009), is the development of one or more models that can be 
applied as a substitute for a base model (NRS). Also, proxy modeling is 
mostly data-driven, and its building block mainly stems from data. 
Therefore, data must be acquired before proceeding to the establishment 
of proxy models. This explains why proxy modeling can alternatively be 
termed data-driven modeling. Besides that, there are generally two 
classes implemented to establish data-driven models, namely 
statistics-based and machine learning-based (ML-based) methods. The 
use of the statistical method in proxy modeling has been extensively 
discussed in different petroleum-related pieces of literature and the 
relevant examples comprise response surface methodology (also known 
as polynomial regression) (Babaei and Pan, 2016; Olabode et al., 2018) 
and kriging (Fursov et al., 2020; Hamdi et al., 2021). Apart from 
data-driven methods, the reduced physics approach is another option for 
proxy modeling. Regarding the reduced physics approach, the capaci
tance resistance model, proposed by Bruce (1943), is one of the epit
omes. It has been extensively investigated and employed in petroleum 
engineering as discussed in several works of literature (Hong et al., 
2017; Yousefi et al., 2021). Albeit these approaches have demonstrated 
fruitful results, some literature (Mohaghegh, 2017; Zubarev, 2009) also 
briefed their limitations in proxy modeling. Mohaghegh (2017) 
expounded that the reduced physics method requires simplification of 
the physics and assumptions in terms of modeling an actual system. 
Zubarev (2009) investigated the performance of 4 different proxy 
modeling techniques, such as response surface method, thin-plate 
splines, kriging, and artificial neural network. He deduced that in 
terms of proxy modeling, kriging would require higher computational 
effort whereas the response surface method would decrease the preci
sion of prediction. 

This paper mainly sheds light on the application of ML-based 
methods. ML is defined as a computer algorithm that can enhance the 
performance of a model through experience, reflected by data (Mitchell, 
1997). Examples of ML are, but are not circumscribed to, artificial 
neural network, gradient boosting machine, support vector machine, 
k-nearest neighbor, and random forest. ML has been evidenced to be 
useful in different domains of knowledge, including speech recognition 
(Nassif et al., 2019; Seehapoch and Wongthanavasu, 2013) and image 
analysis (Komura and Ishikawa, 2018; Poostchi et al., 2018). Further
more, the implementation of ML has been widely generalized in 
different aspects of petroleum engineering, specifically reservoir and 
production engineering. In this context, ML has displayed successful 
applications in numerous pertinent areas, such as the design of well 
trajectory (Kristoffersen et al., 2021, 2022), CO2 sequestration (Nait 
Amar et al., 2020a; Nait Amar and Jahanbani Ghahfarokhi, 2020; Vo 
Thanh et al., 2022), history matching (He et al., 2016; Jo et al., 2022), 
and flow assurance issue (Benamara et al., 2019; Nait Amar et al., 
2021a). ML-based proxy models have also been efficiently coupled with 
mathematical optimization algorithms in performing production opti
mization. In this aspect, some articles (Guo and Reynolds, 2018; Sen 
et al., 2021) have illustrated the application of ML techniques in robust 
production optimization. Besides that, the employment of 
derivative-free mathematical algorithms, which are generally 
nature-inspired, has been studied in some works (Nait Amar et al., 
2020b, 2021b; Ng et al., 2021a). These nature-inspired algorithms have 
broadly been used due to their ability to converge to the global optimum 
in solution space (Ezugwu et al., 2020; Yang, 2014). 

For further details, developing or training the ML-based proxy 
models is considered “learning”. Precisely speaking, these models are 
attempting to learn by discovering the pattern of the data supplied. If the 
database provided is not updated throughout the process of 

development, such training is generally termed “offline learning”. Proxy 
models constructed from “offline learning” can occasionally yield a less 
optimal solution to an optimization problem due to lower prediction 
accuracy. Such an issue has been highlighted by Salehian et al. (2022) in 
which proxy models built from “online learning” are recommended as a 
possible improvement. According to Geng and Smith-Miles (2015), on
line learning shares the same definition as adaptive learning or incre
mental learning. This terminology expounds that this method involves a 
continuous update of the database. The fundamental idea lies in 
selecting the “useful” candidate to be added to the database used to train 
the data-driven model. Generally, generating this candidate involves 
sampling the data that fulfills predefined infill criteria (Forrester et al., 
2008; Liu et al., 2012, 2018; Xu et al., 2012). The metrics of these 
criteria include, but are not limited to, Expected Improvement, Lower 
Confidence Bound, and Probability of Improvement. Adaptive proxy 
modeling has been a common practice exercised during the imple
mentation of a statistical-based approach as briefed and demonstrated in 
some published works (Forrester et al., 2008; Li et al., 2015; Liu et al., 
2018; Redouane et al., 2019). Nonetheless, as Golzari et al. (2015) 
pointed out, for managing higher dimensional problems, ML-based 
methods generally illustrate higher aptitude in handling non-linearity 
in terms of time-series prediction. Therefore, in this work, we choose 
to utilize ML-based proxy models. 

The workflow presented in this paper can be considered as a variant 
of surrogate-based global optimization (SBGO), perceived as the 
simultaneous application of adaptive sampling and optimization with 
the aid of a global optimizer (Ye and Pan, 2019). In simpler terms, it 
performs as a hybridization of training and optimization. As outlined in 
Ye and Pan (2019), SBGO revolves around the employment of statistical 
approaches to develop the proxies and derivative-free algorithms as 
optimizers. However, we discuss and illustrate the use of ML-based 
proxy models here instead. Concerning this, the ML technique demon
strated in this work consists of multilayer perceptrons (MLP). Moreover, 
the developed proxy models aim to conduct robust production optimi
zation under waterflooding. Therefore, these models are coupled with 
nature-inspired algorithms to conduct the optimization. Two examples 
of nature-inspired algorithms were selected, viz. particle swarm opti
mization (PSO) and grey wolf optimizer (GWO). As discussed in this 
paper (Yang, 2014), nature-inspired algorithms generally achieve a 
balance between exploration and exploitation over the search space. 
Exploration means the diversification of solutions in the search space 
whereas exploitation refers to a more focused search on a local region. A 
good combination of both, which is generally achieved by 
nature-inspired algorithms (considering the algorithms are optimally 
tuned), usually avoids the convergence to local optima. Slightly different 
from the general practice in SBGO, the candidate (adaptively chosen to 
be added to the database) is retrieved from the results of the iterative 
optimization with the proxy model. Concerning this, based on our 
studies done in this work, using these optimal results, which are ob
tained from the proxy model with the help of nature-inspired algo
rithms, to re-train the proxy model has the potential to increase its 
fidelity. The pertinent details will be revealed under the section of Re
sults and Discussion. 

After this introduction, the paper is formulated as shown: Section 2 
briefs the basic theoretical concepts of MLP, PSO, and GWO regarding 
some of our previous works (Ng et al., 2021a, 2021b, 2022a, 2022b). 
Thereafter, section 3 provides a comprehensive explanation of the 
methodology applied to develop the proxy models in this work. Section 
4 expounds on the results yielded and the relevant discussion. Then, the 
main findings are conclusively summarized. 

2. Previous related works 

The methodology presented in this work was established based on 
the insights gained from our previous works (Ng et al., 2021a, 2021b, 
2022a, 2022b). Since this paper is considered an extension of these 
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previous works, the 3D Egg Reservoir Model that has been used in Ng 
et al. (2021a) was selected as the reservoir model for proxy modeling 
here. However, the proxy models built here consider 10 different 
geological realizations. With geological uncertainty (only about 
permeability), well control optimization is conducted under water
flooding. The methodology was developed using Python (Van Rossum 
and Drake, 2009). For the modeling of MLPs, they were developed with 
the help of the Scikit-learn package (Pedregosa et al., 2011). PSO was 
formulated by applying the toolkit built by James V. Miranda (2018) 
whereas GWO was constructed with the toolkit by Lickevic and Bar
toshevic (2021). 

2.1. Multilayer perceptron (MLP) 

It is unassailable that artificial neural network (ANN) is one of the 
most prominent ML techniques used in a wide variety of domains 
(Lopez-Garcia et al., 2020; Runge and Zmeureanu, 2019). The method 
has demonstrated its excellent performance in learning how the input 
data is related to output data for any physically sophisticated process. 
Biological neural networks in the brain are mainly the inspiration for its 
formulation (Rosenblatt, 1958). MLP is one of the most widely employed 
variants of ANN in building data-driven models (Buduma and Locascio, 
2017). In essence, MLP consists of many artificial neurons or calculating 
nodes. MLP also comprises three types of layers, viz. the input layer, the 
hidden layer, and the output layer. Each layer has its neurons in which 
these neurons are interconnected with the use of weights and biases. For 
more information about the mathematical implementation of MLP, refer 
to our previous works (Ng et al., 2021a, 2021b, 2022b). The training 
process for MLP typically involves finding the optimal values of weight 
and bias sets to minimize the predefined loss function, such as mean 
squared error (MSE) and mean absolute percentage error. MSE was 
selected as the loss function whereas Adam (Adaptive Moment Estima
tion) was applied for training. For the details of Adam, peruse the 
literature (Kingma and Ba, 2015). 

2.2. Nature-Inspired Algorithms 

Kennedy and Eberhart (1995) proposed PSO that attempts to simu
late the behavior of flying stock of birds. A swarm of particles mathe
matically represents some possible solutions to an optimization 
problem. The status of each particle is calculated by using its position 
and velocity. About the mechanism of PSO, random initialization of the 
position and velocity of each particle is first done. Thereafter, to 
calculate the fitness of every particle, a cost function is required. Upon 
computing the fitness, the local and global best positions of a particle are 
determined to update the velocity at the current step. After assessing the 
velocity at the next iteration, the position of a particle for the next 
iteration is updated. As several iterations complete, each particle up
dates its position by minimizing the fitness value until the convergence 
of the optimal position occurs. 

Mirjalili et al. (2014) developed GWO based on the inspiration of the 
leadership hierarchy and hunting behavior of grey wolves. Fundamen
tally, the population of grey wolves is divided into four different groups, 
e.g., alpha (α), beta (β), delta (δ), and omega (ω). Among all, ω wolves 
are the most inferior and preceded by δ, β, and α. Mathematically, a wolf 
population represents a set of random solutions. Thereafter, the fitness 
value of each solution set is evaluated by using a predefined objective 
function (Xu et al., 2020). According to the fitness value, the population 
of wolves is divided into the four previously mentioned groups. As 
optimization commences, the three best wolves: α, β, and δ, would 
gradually lead the other ω wolves towards the prey, which is treated as 
the global solution in the search space. This is done by iteratively 
updating the positions of the wolves. These algorithms are preferred in 
this work due to their good performance in our previous studies (Ng 
et al., 2021a, 2022a), where they demonstrated improved optimization 
results compared to the base case when they were coupled with the 
proxy models. For more details about the algorithms of both PSO and 
GWO, please peruse these articles (Kennedy and Eberhart, 1995; Mir
jalili et al., 2014; Ng et al., 2021a; Xu et al., 2020). 

Fig. 1. General workflow implemented in this work.  

Fig. 2. Details of the main framework (Backbone of AP-ROpt).  
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3. Methods and materials 

For convenient articulation, the methodology proposed here is 
termed “Adaptive Proxy-based Robust Production Optimization” (AP- 
ROpt). The general workflow of implementing the AP-ROpt is illustrated 
in Fig. 1, consisting of 4 steps. The Main Framework can be further 
categorized into 2 parts, viz. Establishment of Proxy Models and Opti
mization. The details of the Main Framework are illustrated in Fig. 2. 

3.1. Formulating the optimization problem 

A database is one of the most essential elements in data-driven 
modeling. Before acquiring the database, it is of great importance for 
modelers to clarify and define the functionality of the data-driven 
models since data-driven proxy modeling is objective-oriented. There
fore, modelers should perceive what engineering problem is to be solved 
via the use of proxy models. In this paper, the engineering problem 
defined is the optimization of well control under waterflooding which is 
similar to the one discussed in Ng et al. (2021a). Thus, only the field 
water injection rate is considered as the control parameter. The objec
tive function used in the optimization is the expected net present value 
(ENPV) as shown: 

ENPV(u)=

∑nr

r=1

(
∑ntotal

i=1

Δti×(Qi,oil(u)Poil − Qi,wat prod(u)Pwat prod − Qi,wat inj(u)Pwat inj)
(1+interest rate)ti/365

)

r
nr

(1) 

Based on the objective function, nr is the total number of realizations 
which is 10 here, u represents the control vector, Qi indicates the field 
rates of produced oil, produced and injected water at timestep i, P means 

the respective price. In addition, Δti (unit in days) is the time difference 
between timestep i and previous timestep, ti (unit in days) is the cu
mulative time until timestep i, and the reference period for discounting 
cash flow is 365 days. The oil price is 440.3 USD/m3, the cost of 
handling water produced, and water injection is 12.58 USD/m3, and the 
interest rate is 0.10 per year. 

3.2. Design of proxy models 

Having explicitly defined the optimization problem, modelers would 
have better insights into what parameters can be yielded by the proxy 
models, directly or indirectly. More importantly, the decision variables 
(optimization parameters) are treated as one of the inputs of the proxy 
models. According to Eq. (1), the parameters required from the proxies 
are field oil and water production rates whereas field water injection 
rates act as decision variables. To attain this goal, we followed the ideas 
based on our previous studies and investigation in which two different 
proxy models were built. One of them can forecast the field liquid pro
duction rates (FLPR) at a certain timestep given a timeframe whereas 
another one has the same functionality in terms of field water cut pre
diction (FWCT). For both proxies, the input parameters comprise the 
cumulative days until timestep i, self-defined geological parameters, 
field water injection rate (decision variables), and the output at the 
previous timestep, yi-1. About the self-defined geological parameters, 
they comprise the harmonic mean (and standard deviation) of grid ab
solute permeability for every reservoir layer as well as the arithmetic 
mean of permeabilities of perforated grid blocks (injectors and pro
ducers). This corresponds to 29 input parameters and 1 output param
eter. The input parameters were selected based on our knowledge of 

Fig. 3. Diagram of input and output parameters.  

Table 1 
Summary of the initial database for the development of proxy models.  

Types of Data Number of Data Points Maximum Value Minimum Value Mean Value Standard Deviation 

Static Data 

Cumulative days until timestep i 1 × 60,000 3000 30 1515 865.98 
Harmonic mean of grid absolute permeability 7 × 60,000 749.41 577.57 641.71 37.88 
Standard deviation of grid absolute permeability 7 × 60,000 1701.24 654.44 1149.07 252.72 
Arithmetic mean of permeabilities of perforated grid blocks (injectors) 8 × 60,000 3994.57 132.99 1109.78 963.85 
Arithmetic mean of permeabilities of perforated grid blocks (producers) 4 × 60,000 5000 200 1581.12 1372.47 

Dynamic Data 

Field Water Injection Rate 1 × 60,000 800 320 559.96 138.34 
Previous Output and Current Output (FLPR) 2 × 60,000 798.67 0 557.24 143.43 
Previous Output and Current Output (FWCT) 2 × 60,000 1 0 0.7067 0.3401  
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reservoir engineering and insights gained from previous studies. Refer to 
Fig. 3 for the diagram of input and output parameters and Table 1 for the 
initial database used for training. The number 60000 in Table 1 was 
determined by having 60 injection scenarios × 100 timesteps × 10 re
alizations. According to the insights gained from our previous works (Ng 
et al., 2021a, 2022a), 60 scenarios have been illustrated to be adequate 
to produce the proxy models with a good degree of accuracy. Therefore, 
the same number of scenarios is applied in this study. Readers are also 
referred to Ng et al. (2021a) for more comprehensive information about 
the formulation of the proxy models. 

3.3. Outlining architecture of reservoir model 

As mentioned, the reservoir model implemented in this paper is the 
Egg Model and the simulation was performed using the Eclipse 100 
software (Schlumberger, 2019). This model is a benchmark case, 
developed by Jansen et al. (2014) for research purposes. The Egg Model 
has 7 layers, and it is built as a channelized depositional system. It also 
has eight injectors and four producers in which the trajectory of each 
well is vertical. The well configuration is shown in Fig. 4. Peruse Jansen 
et al. (2014) and Ng et al. (2021a) for the details of the topology of the 
reservoir model. Regarding the details of optimization, it involves 
adjustment of field water injection rates within 320 and 400 Sm3/day 
(each injector has an equal allocation of the total rate) by having the 
maximum bottomhole pressure of each producer set at 395 bars. This 
adjustment is done every 150 days over 3000 days of the production 
period. This results in 20 control variables. However, the proxy models 
have been designed to consider a timestep of 30 days and every control 
variable remains the same for 5 timesteps (150 days). Therefore, during 
optimization, 100 variables are involved. We have considered 10 re
alizations in this work and the corresponding reservoir architecture of 
each realization is presented in Fig. 5. 

3.4. Main Framework 

3.4.1. Establishment of proxy models 
In the establishment of proxy models, the generation of a training 

database often comes first. Here, we implemented Latin Hypercube 
sampling (LHS) to create 60 sample sets of control rates in which one set 
represents one injection scenario. In this case, these 60 scenarios are the 
same for every realization. Peruse McKay et al. (1979) for the details of 
LHS. Each scenario was then sent to the reservoir simulator to produce 
the simulation outputs. Upon the completion of 600 simulations, the 
dynamic inputs were retrieved and merged with the static inputs to 
develop the database. Normalization of the database is a highly rec
ommended practice before being fed into the training phase of ML 
models. The database was normalized between 0 and 1 according to the 
formula below: 

Xnormalized =
X − Xmin

Xmax − Xmin
(2)  

where Xnormalized is the normalized value of X. Xmax and Xmin correspond 
to the maximum and minimum values of X, respectively. It is important 
to note that during the adaptive training, an additional sample has been 
included in the training database. Therefore, the values of Xmax and Xmin 
also need to be updated (considering all input and output parameters) 
and normalization is repeated. Thereafter, the normalized database was 
partitioned into training and testing with a ratio of 9:1. Regarding this 
partition of data, only the training data is employed to establish the 
models. Since the package of scikit-learn was selected, within the 
training data, a portion of it would be extracted to conduct the valida
tion phase. Concerning this, MLP would undergo a validation phase in 
which 1/9 of the 90% training data was treated as the validation set. 
Nevertheless, evaluation of the developed models was performed 
meticulously to ensure that the overfitting issues had been eluded. 

Regarding the topology of proxy models and hyperparameters used 
in the training, the values were slightly different for both FLPR and 
FWCT. For FLPR, the learning rate was 0.001, the number of hidden 
layers was 4 (each layer had 50 hidden nodes), and tolerance was 10− 6. 
For FWCT, the learning rate was 0.005, the number of hidden layers was 
4 (each layer had 15 hidden nodes), and tolerance was 10− 6. Rectified 
Linear Unit (ReLU) was implemented as an activation function for all 
layers. Considering an arbitrary function of f(x), ReLU is mathematically 
expressed as f(x) = max (x, 0). The maximum number of iterations for 
both models was defined as 1000 in which the early stopping mecha
nism was activated. These setting parameters were decided via a trial- 
and-error approach. After the training and testing phases, the data- 
driven proxies must be blind-validated before being practically 
employed. In this aspect, data of blind validation should be independent 
of the above-mentioned database. Hence, we implemented LHS to 
generate 10 other injection scenarios for each realization (a total of 100 
blind validation cases) to be fed into the reservoir simulator to yield the 
relevant outputs, which would then be compared with the outputs 
predicted by the proxy models. The comparative result is a deciding 
factor to evaluate if the proxies should either undergo re-training or 
proceed to optimization. If the performance of proxies is not up to 
certain quality, then re-training will be done. In this paper, two statis
tical metrics were chosen to assess the performance of proxies, viz. co
efficient of determination (R2) and root mean squared error (RMSE). The 
formula of metrics is as follows in Eqs. (3) and (4). 

R2 = 1 −

∑n

i=1

(
Ypred

i − Yreal
i

)2

∑n

i=1

(
Ypred

i − Y
)2

(3)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Ypred

i − Yreal
i

)2

n

√
√
√
√
√

(4)  

where n represents the total number of data points, i denotes the index of 
data points, Yi is the corresponding output, the superscripts pred and 
real represent the proxy model and reservoir simulator model, respec

Fig. 4. Horizontal permeability distribution of Realization 1 of 3D Egg Model 
with labeled well locations. The same locations apply to all realizations. The 
warm color indicates higher horizontal permeability whereas the cold color 
implies the otherwise. 
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tively. Also, Y indicates the mean value of output. Re-training is only 
needed if the mean R2 values of blind validation1 for FLPR and FWCT are 
less than predefined values. In this case, the predefined values for FLPR 
and FWCT were decided to be 0.998 and 0.970, respectively via trial- 
and-error. 

3.4.2. Optimization with proxy models and reservoir simulation 
In the phase of optimization, PSO and GWO were applied to deter

mine the optimal well control. In the case of proxy models, as the 
optimization iterations were completed, the proxy-optimized control 
would be obtained and treated as a new injection scenario to be fed into 
the reservoir simulator. The response of the simulator was again 
compared with that of the proxy. If the criterion check was satisfied, 
then the whole workflow was considered complete. Otherwise, the 
optimal control would be treated as a new dynamic input to be added to 
the training database. The loop of workflow would then start again. It 

would only cease if the criterion were fulfilled, or the number of addi
tional simulations exceeded a predefined value. In this study, the 
average between the mean2 R2 of FWPR and FOPR was used as the 
criterion check. The predefined threshold was arbitrarily set as 0.994. 
About the parameters used in PSO, the inertia weight was 0.80 whereas 
the cognitive and social learning factors were 1.05. r1 and r2 were 
sampled from a uniform distribution of (0, 1). For GWO, the default 
parameters set by Lickevic and Bartoshevic (2021) were applied. For 
PSO (GWO), 100 iterations and 20 swarm particles (100 iterations and 
20 populations) were employed. These optimization algorithms were 
not only implemented in this workflow for proxy models but also 
coupled with the reservoir simulator. The details of the results would be 
presented and discussed in the following section. 

4. Results and Discussion 

Before outlining a holistic discussion about the findings of this work, 

Fig. 5. Horizontal permeability distribution of 10 different geological realizations of the 3D Egg Model. The warm color indicates higher horizontal permeability 
whereas the cold color implies the otherwise. (a) to (j) respectively refer to Realization 1 to 10. 

1 Mean R2 of blind validation refers to the arithmetic average of 100 R2 

values (each calculated over 100 timesteps) as 10 blind validation scenarios are 
considered for each of the 10 realizations. 

2 The term “mean R2” refers to the arithmetic mean of 10 values of R2 as 10 
realizations were used to develop the proxy models. 
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we illustrate the results of the training, testing, and blind validation 
phases as shown in Table 2 to provide a better insight into the perfor
mance of the developed proxy models. Table 2 consists of two statistical 
metrics, namely R2 and RMSE, that have been useful to reflect the ac
curacy of the proxy models built in this work. For better illustrative 
purposes, the cross plots between the actual and predicted data in each 
phase of proxy modeling are demonstrated in Fig. 6 for FLPR and in 
Fig. 7 for FWCT. In terms of training, testing, and blind validation, MLP- 
FLPR generally displays better performance than MLP-FWCT. Despite 
this, the results obtained by MLP-FWCT have sufficiently confirmed its 
reliability for further employment. 

Upon completing the modeling part, these models are readily 
employed for adaptive learning and optimization. In this aspect, the 
models would be correspondingly coupled with PSO and GWO to 
determine the optimal field injection rates within the range as previ
ously explained. For benchmarking, we also coupled these two algo
rithms with E100 software to perform the optimization with NRS 
models. The optimal control determined using the simulator and proxy 
models are correspondingly shown in Figs. 8 and 9. Though there may 
be low proximity between the optimal control yielded by these two 
approaches, we would like to emphasize that the main objective here is 
to create substitute models that can achieve an optimized objective 
function close to the “ground truth” (generated by the NRS) at much less 
computational cost. 

Thereafter, the proxy-optimized control rates were fed back into the 
reservoir simulator to yield the necessary parameters for the calculation 
of ENPV. By acquiring the results, the ENPVs for three cases of reservoir 
simulator, simulator-proxies (referring to the results in which the 
optimal control derived from only using the proxy models, is fed back to 
the simulator), and proxies are computed and recorded in Table 3. Under 
an assumption of a base case with a maximum constant field injection 
rate, the ENPV of the base case is 155.76 million USD. During the 
optimization with the reservoir simulator, GWO resulted in a better 
improvement on ENPV with 3.75% as PSO only enhanced the ENPV by 
2.76%. A similar outcome is also illustrated in the case of simulator- 
proxies. In terms of optimization, this generally shows that GWO 
slightly outperforms PSO in this study. For better purposes of illustration 
and comparison, the optimized NPVs of each realization for the cases of 
simulator and simulator-proxies (considering cases that involve the use 
of simulator) are correspondingly illustrated in Figs. 10 and 11. 

Regarding the accuracy of results, it can be noted that GWO records a 
lower percentage error between the two ENPVs produced by simulator- 
proxies and dynamic proxies, which is about 0.20% whereas that of 
MLP-PSO is 0.90%. For both algorithms, the differences between the 
ENPVs of simulator and simulator-proxies are practically small. Never
theless, GWO records ENPV of simulator-proxies that is closer to the 
“ground truth” (ENPV of reservoir simulator). Thus, proxy models 
coupled with GWO yielded slightly more accurate results than those of 
PSO in this work. Despite this, PSO still portrayed promising applica
bility due to its practically good accuracy of the result attained. This 
further enlightens us that the proxy models built here have sufficient 
capability to provide solutions for this optimization problem. For illus
trative purposes, the plots of the optimized field water and oil rates for 
each optimization case considering 10 realizations are presented in 
Figs. 12 and 13, respectively. 

Table 4 is displayed for closer scrutiny in both Figs. 8 and 9. These 
metrics are calculated by correspondingly comparing FWPR and FOPR 
generated by simulator-proxies and proxy models. According to Table 4, 

Table 2 
Results of training, testing, and blind validation of the developed proxy models.   

ROpt- MLP-FLPR ROpt-MLP-FWCT 

Training R2 0.9999 0.9995 
RMSE 0.9288 0.0073 

Testing R2 0.9999 0.9995 
RMSE 0.9485 0.0074 

Blind Validation R2 0.9999 0.9872 
RMSE 0.9459 0.0328  

Fig. 6. Cross plot between the actual FLPR and FLPR predicted by the proxy model. a) Training, b) Testing, and c) Blind Validation (only illustrating 1 blind 
validation scenario in Realization 2). 
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it can be opined that the worst performing realizations in the cases of 
FWPR and FOPR still produced results within a satisfactory level of 
accuracy. This confirmed the good applicability of the workflow pro
posed here. Considering all 10 realizations, Table 5 presents the mean R2 

and RMSE (considering 10 different geological realizations) between the 
optimized FWPR (and FOPR) generated by simulator-proxies and proxy 
models. Based on these results, MLP-GWO showed a closer approxima
tion of the results. Also, these results proved that the developed proxy 
models successfully served their purpose of application. 

The proxy modeling and optimization were done by using a PC with 
Intel® Core™ i9-9900 CPU @3.10 GHz (64.0 GB RAM) (Ng et al., 
2021a). Regarding computational time, both MLP-GWO and MLP-PSO 
have exhibited excellent computational efficiency. In this case, 
MLP-GWO spent about 13 h performing adaptive training and optimi
zation whereas MLP-PSO used about 16 h. In addition, about the number 
of additional simulations induced, MLP-PSO has adaptively employed 
66 additional simulations for the extension of the training database. For 
MLP-GWO, it adaptively created 54 other simulations. For the 

Fig. 7. Cross plot between the actual FWCT and FWCT predicted by the proxy model a) Training, b) Testing, and c) Blind Validation (only illustrating 1 blind 
validation scenario in Realization 2). 

Fig. 8. Optimized control of Field Water Injection Rate (FWIR) resulted by coupling reservoir simulator with nature-inspired algorithms.  
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optimization with the simulator E100, PSO required 159 h and GWO 
needed 238 h. Based upon this, GWO generally reflects a more signifi
cant added value of the application of proxy models in this work. 

We would like to reiterate that the primary aim of the established 
proxy models is to locate the optimal solution to the waterflooding 
optimization problem. In this case, the optimal solution provided by 
these data-driven models results in an objective function that is close to 

the one obtained by applying only the reservoir simulator. We also 
fathom that there are a few limitations regarding the workflow proposed 
here. Hyperparameter (topology of MLP) optimization is one of them. 
During adaptive training, when additional data is retrieved from addi
tional simulation and added to the training database for proxy modeling, 
there is a possibility that the predefined hyperparameters are less reli
able in achieving more accurate training results. However, integrating 
hyperparameter optimization can certainly induce higher computa
tional effort. Despite having excellent results in this work, achieving a 
good trade-off between accuracy and computational time (considering 
hyperparameter optimization) certainly needs to be researched to in
crease the applicability of this methodology. Besides that, another 
shortcoming concerns the tuning parameters of the algorithms. These 
parameters were decided via a trial-and-error approach which could be 
subject to a degree of limited sensitivity. There is also another discussion 
about the impact of random number generators on the whole 

Fig. 9. Optimized control of Field Water Injection Rate (FWIR) resulted by coupling proxy models with nature-inspired algorithms.  

Table 3 
Optimized ENPV of three cases considering PSO and GWO (in the unit of million 
USD).  

Optimization 
Algorithm 

Reservoir 
Simulator 

Simulator- 
Proxies 

Dynamic 
Proxies 

PSO 160.06 158.93 160.37 
GWO 161.60 159.80 159.48  

Fig. 10. Optimized NPV of each realization (reservoir simulator).  
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framework. Therefore, an in-depth study on tuning parameters and 
random number generators is needed to further reinforce the maturity of 
the workflow discussed here. 

Apart from these, we only considered 10 realizations in this work 
since there is an apparent computational challenge arisen when more 
realizations are included in the methodology of the workflow. Hence, 
integrating the dimensionality reduction technique (for instance, as 
proposed in this paper (Salehian et al., 2021) through the selection of 
representative realization via clustering method) into the workflow 
proposed here is another domain that can be pondered upon in the 
future. Also, the additional training data is generated “online” via 
optimization with proxy models. Albeit this additional data is gotten 
through nature-inspired algorithms, the accuracy of proxy models might 
cause premature convergence to local optima. The accuracy of proxy 

models is influenced by the complexity of the optimization problem 
being solved. Thus, this subject is upon consideration for further 
research when it comes to more sophisticated real-life applications. 
Furthermore, proxy models are often case-dependent and hence, the 
models built here can only be implemented to solve the optimization 
problem discussed here. Hence, modifications of the methodology are 
likely inevitable and require further investigation to instill higher con
fidence in application in future studies. In short, through this study, we 
aimed at developing a methodology that serves as a foundation for 
further enhancement in the future. 

5. Summary and Conclusions 

In this paper, we implemented the AP-ROpt that adaptively retrieved 

Fig. 11. Optimized NPV of each realization (simulator-proxies).  

Fig. 12. Plots of the optimized FWPR considering 10 realizations. The black dashed lines indicate the case of simulator-proxies whereas the blue lines imply the cases 
of proxy models. a) PSO and b) GWO. 
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the optimal control (resulted from optimization with the established 
proxy models) and added it to the training database to further enhance 
the performance of the proxy models. This methodology is inspired by 
some of our previous works. The whole workflow of the methodology 
was performed in a closed-loop manner. Regarding this, by using 10 
different realizations of the 3D Egg Model as the reservoir model, we 
employed MLP, an ML technique, to build two different proxy models 
which respectively forecast FLPR and FWCT. Then, they were coupled 
with PSO and GWO to optimize ENPV through the adjustment of FWIR. 

We first implemented a trial-and-error approach to determine the 
optimal topology of these proxy models. Based on the training, testing, 
and blind validation results, the performance of these models was vali
dated to be apt for further application. After the execution of the 
methodology, the results confirmed that a near-optimal solution (as 
compared with the solution from optimization with only reservoir 

simulation) could be achieved with much less computational demand. 
For PSO, the computation was improved by nearly 10 times whereas for 
GWO, it has become about 18 times faster. High reduction in compu
tational efforts is the main advantage attained in this work. Neverthe
less, we are still cognizant of the limitations of this methodology, 
including consideration of only geological uncertainty, integration of 
hyperparameter optimization, and limited applicability to other opti
mization problems, viz. CO2 sequestration and history matching. 

With this, we would like to summarize that a fundamental method
ology has been built upon which further improvement can be maneu
vered, and this highlights the benefit garnered from this work. Also, the 
proxy models established here have sufficiently achieved their goal of 
the application. About this, integrating adaptive training with optimi
zation, which yields an excellent result of proxy modeling under 
geological uncertainty, is considered the key finding here. We hereby 
opine that this workflow can be practically useful to improve any 
developed data-driven model that yields optimization results with a low 
satisfying level of accuracy. Nonetheless, refinements can still be done 
when dealing with more real-life applications. 
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Fig. 13. Plots of the optimized FOPR considering 10 realizations. The black dashed lines indicate the cases of simulator-proxies whereas the green lines imply the 
cases of proxy models. a) PSO and b) GWO. 

Table 4 
Performance metrics of the best and worst performing realizations of FWPR and 
FOPR under the case of proxy models along with PSO and GWO.   

R2 RMSE 

MLP-PSO (FWPR) Best Realization: 6 0.9983 7.44 
Worst Realization: 5 0.9651 34.63 

MLP-PSO (FOPR) Best Realization: 7 0.9995 5.42 
Worst Realization: 5 0.9756 34.64 

MLP-GWO (FWPR) Best Realization: 8 0.9989 6.30 
Worst Realization: 9 0.9898 18.67 

MLP-GWO (FOPR) Best Realization: 8 0.9992 6.12 
Worst Realization: 9 0.9930 18.66  

Table 5 
Mean R2 and RMSE of optimized FWPR (and FOPR) generated by comparing the 
results of simulator-proxies and proxy models.   

ROpt-FWPR ROpt-FOPR 

MLP-PSO Mean R2 0.9932 0.9954 
Mean RMSE 13.59 13.11 

MLP-GWO Mean R2 0.9956 0.9972 
Mean RMSE 11.21 11.31  
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