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Franziska Knuth a,*, Aurora R. Groendahl b, René M. Winter a, Turid Torheim c,d, Anne Negård e,f, 
Stein Harald Holmedal e, Kine Mari Bakke f,g, Sebastian Meltzer g, Cecilia M. Futsæther b, 
Kathrine R. Redalen a 

a Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway 
b Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1432 Ås, Norway 
c Department of Informatics, University of Oslo, Gaustadalléen 23 B, 0373 Oslo, Norway 
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A B S T R A C T   

Background and purpose: Tumor delineation is required both for radiotherapy planning and quantitative imaging biomarker purposes. It is a manual, time- and labor- 
intensive process prone to inter- and intraobserver variations. Semi or fully automatic segmentation could provide better efficiency and consistency. This study aimed 
to investigate the influence of including and combining functional with anatomical magnetic resonance imaging (MRI) sequences on the quality of automatic 
segmentations. 
Materials and methods: T2-weighted (T2w), diffusion weighted, multi-echo T2*-weighted, and contrast enhanced dynamic multi-echo (DME) MR images of eighty-one 
patients with rectal cancer were used in the analysis. Four classical machine learning algorithms; adaptive boosting (ADA), linear and quadratic discriminant analysis 
and support vector machines, were trained for automatic segmentation of tumor and normal tissue using different combinations of the MR images as input, followed 
by semi-automatic morphological post-processing. Manual delineations from two experts served as ground truth. The Sørensen-Dice similarity coefficient (DICE) and 
mean symmetric surface distance (MSD) were used as performance metric in leave-one-out cross validation. 
Results: Using T2w images alone, ADA outperformed the other algorithms, yielding a median per patient DICE of 0.67 and MSD of 3.6 mm. The performance 
improved when functional images were added and was highest for models based on either T2w and DME images (DICE: 0.72, MSD: 2.7 mm) or all four MRI sequences 
(DICE: 0.72, MSD: 2.5 mm). 
Conclusion: Machine learning models using functional MRI, in particular DME, have the potential to improve automatic segmentation of rectal cancer relative to 
models using T2w MRI alone.   

1. Introduction 

Tumor volume definition is an integral part of radiotherapy plan-
ning. Increasingly, it is also required for quantitative image biomarker 
purposes [1] and plan-of-the-day adaptive radiotherapy [2]. The current 
gold standard for tumor volume definition is manual delineation, which 
is a time- and labor-intensive process. It has also been entitled the 
weakest link in radiotherapy planning [3], in part due to inter- and 
intraobserver variations. High interobserver variations have been 

reported for several cancer types including rectal cancer [4–6], which 
was the 8th most common cancer type in 2020 and contributed 3.8% of 
all new reported cases globally [7]. 

Radiotherapy planning for rectal cancer is most often based on 
computer tomography (CT), but there is a trend to increase the use of 
magnetic resonance imaging (MRI) [8]. The gold standard for local 
tumor staging already includes MRI. Anatomical T2-weighted (T2w) 
images offer superior soft tissue contrast compared to CT. In addition, 
functional MRI sequences can provide insights into biological properties 
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of the imaged tissue. A commonly used functional MRI method, that also 
is recommended to include in the staging protocol [9], is diffusion 
weighted (DW) MRI, where the image contrast depends on the micro-
scopic mobility of water and gives insight into tissue structure and 
perfusion [10,11]. Two functional MRI sequences that are more 
exploratory in rectal cancer are T1-weighted dynamic contract 
enhanced (DCE) MRI and T2*-weighted (T2*w) MRI. DCE MRI requires 
injection of a contrast agent and repeated imaging over several minutes, 
and depicts tissue vascularity and permeability of the vessels [12]. The 
method has shown to be promising for rectal cancer [13], although it is 
not part of the current international guidelines. Multi echo T2*w im-
aging is a method that visualizes endogenous paramagnetic deoxy-
hemoglobin, which in breast cancer has been shown to correlate to 
tumor hypoxia [14]. In rectal cancer, the method has recently shown 
potential to provide a useful quantitative biomarker [15]. 

To date, different semi- and fully automatic segmentation methods 
based on various image modalities have been developed for rectal can-
cer [5,16–19]. Soomro et al. compared different level set methods using 
T2w MRI to segment the entire colorectal region [16]. Heeswijk et al. 
presented a region growing based method using DW MRI as input [17]. 
Ciernik et al. used a similar method with positron emission tomography 
(PET) images [18]. Bisgaard et al. used thresholding based on DW MRI 
where T2w MRI identified the initial region of interest [19]. Another 
approach utilizing supervoxel segmentation was explored by Irving 
et al., based on DCE MRI [5]. All these studies relied on a single image 
type and modality as input. To our knowledge, there is a lack of studies 
systematically investigating the combined use of different, multi- 
sequence images for tumor segmentation. Recognizing that T2w MRI 
and the various functional MRI methods (DWI, contrast-based MRI, 
T2*w-MRI) provide different and unique image contrasts, our hypoth-
esis was that inclusion of one or several of the functional MRI sequences 
would improve segmentation performance compared to using T2w MRI 
alone as input to the segmentation algorithm. 

The aim of this study was to examine the influence of including and 
combining anatomical and multi-sequence functional MRI sequences on 
the quality of semi- or fully automatic segmentations of rectal cancer. 

2. Materials and methods 

2.1. Patients 

The patient data in this study was from a prospective observational 
trial (OxyTarget, clinicaltrials.gov no. NCT01816607) enrolling patients 
with suspected rectal cancer between October 2013 and December 
2017. Eligible participants had histologically confirmed rectal adeno-
carcinoma, were older than 18 years, and had no prior rectal cancer 
treatment. Participants were enrolled consecutively. OxyTarget 
included a total of 192 patients. In the current study, data from 81 pa-
tients was analyzed. These patients had successful image acquisition 

with adequate image quality for analysis, without artifacts nor other 
distortions. Other reasons for exclusion were incomplete data sets. 
Further details regarding exclusion criteria have been described previ-
ously [20]. The analyzed patient cohort consisted of 53 men and 28 
women with a median age of 64 years. Based on MRI, the tumors were 
staged as T2/T3/T4 with 12/41/28 cases respectively. Further patient 
statistics were summarized in Table 1. For all patients, written informed 
consent was obtained and the study was performed in accordance with 
the Helsinki Declaration. Approval was obtained from the Institutional 
Review Board and the Regional Committee for Medical and Health 
Research Ethics. 

2.2. Magnetic resonance imaging and manual delineation 

MRI was performed on a Philips Achieva 1.5 T system (Philips 
Healthcare, Best, The Netherlands) to acquire routine and study specific 
images. In addition to T2w images, an extended DW sequence with 
seven b-values of b = 0, 25, 50, 100, 500, 1000 and 1300 s/mm2 was 
obtained. A static T2*w MRI sequence with five echo times (TE) = 4.6, 
13.8, 23.0, 32.2 and 41.4 ms and a dynamic multi echo (DME) contrast 
MRI sequence with three echoes with TE = 4.6, 13.9 and 23.2 ms were 
collected. The latter was acquired using a split dynamic acquisition 
previously described in [21] and a bolus injection of 0.2 ml/kg body 
weight of Dotarem® (279.3 mg/ml, Guerbert Roissy, France), directly 
followed by a 20 ml saline solution. Further details regarding the image 
acquisition are listed in Table 2. To reduce bowel movement, glucagon 
(1 mg/ml, 1 ml intramuscularly) and Buscopan® (10 mg/ml, 1 ml 
intravenously) were administered before scanning. The Buscopan® in-
jection was repeated before the acquisition of the dynamic images. The 
DME contained the information required for extraction of both T1 
weighted and T2* weighted contrast enhancement curves. Two radiol-
ogists with 14 and 7 years of experience with abdominal MRI delineated 
the tumor region of interest on the T2w images with DW images as 
guidance. 

2.3. Image pre-processing 

DME images were acquired for 60+ time points. A subset of these 
images was selected to normalize between patients by adjusting for 
variation in timing of contrast agent injection and still depict the entire 
available temporal development. To determine this subset, images most 
closely matching a temporal resolution Δt of 4 s for the first eight images 
were selected, starting with the arrival of contrast agent, followed by six 
images with Δt of 80 s. Thus, in total 14 images at t = 0, 4, …, 24, 28, 
108, 188, …, 508 s were selected. 

Table 1 
Overview of patient characteristics.  

Age / years Median 64  

Range 41–88 
Sex Male 53 (65%)  

Female 28 (35%) 
Tumor site Rectum 76 (94%)  

Rectosigmoid 5 (6%) 
Tumor stage T2 12  

T3 41  
T4 28 

Nodal stage N0 35  
N1 28  
N2 17  
N3 1 

Tumor volume / cm3 Median 28.7  
Range 2.1–168.2  

Table 2 
Overview of MR imaging parameters used in the different sequences.  

Image sequence T2w T2*w DW DME 

Sequence FSE FFE 2D 
EPI 

3D EPI 

Repetition time / s 2.82–3.04 9.49 3 0.38 
Echo time / ms 80 4.6, 13.8, 23.0, 

32.2, 41.4 
75 4.6, 13.9, 

23.2 
Averages 6 3 6 1 
Acquisition matrix 256/254 180/120 80/ 

60 
92/90 

In plane resolution / 
mm 

0.35 0.70 1.25 0.70 

Slice thickness / mm 2.50 3.00 4.00 10 
Slice separation / 

mm 
2.75 4.00 4.30 5 

Scan time† / min 7 6 8 7 

T2w: T2-weighted; T2*w: T2*-weighted; DW: Diffusion weighted; DME: Dy-
namic multi echo; FOV: field of view; FSE: fast spin echo; EPI: echo planar im-
aging; FFE: Steady state gradient echo; †: Median values, dependent on number 
of imaged slices. 
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Images from the different MRI sequences (T2w, T2*w, DW and DME) 
were rigidly registered and resampled towards a common grid of 1 × 1 
× 1 mm3 voxels. The registration was focused by using a mask on a 
cuboid box with a 20 mm margin around the union of both manual 
delineations and was further restricted to the field of view present in all 
images. This process aimed to imitate a user drawing an initial bounding 
box around the tumor. In addition, the images were cropped to this 
region of interest to focus on the relevant anatomy and aid in balancing 
the dataset in terms of tumor and non-tumor voxels. Image pre- 
processing was done in Python 3.7 [22], using SimpleITK 1.2 [23] and 
SimpleElastix 1.1 [24]. 

2.4. Machine learning 

The segmentation task was treated as a two class voxelwise classifi-
cation problem to separate tumor and normal tissue voxels. The per-
formance of four algorithms was evaluated, namely linear discriminant 
analysis (LDA) [25], quadratic discriminant analysis (QDA) [26], sup-
port vector machines (SVM) [27] and adaptive boosting (ADA) [28]. For 
the T2w images, the intensity of the voxel of interest as well as its eight 
in-plane neighbors were used as features, sorted by their intensities. For 
the DW and T2*w images, features consisted of the seven diffusion b- 
value images or the five echo time images, respectively. The DME 
feature set comprised the image intensities at the 14 selected timepoints 
with three echoes each. To correct for inter-patient variations, the voxel 
intensities were normalized by calculating the z-scores within each 
image type and patient. The union of both manual contours was used as 
ground truth. The features were arranged in a data matrix as described 
in [29] and [30] and illustrated in Supplementary Fig. S1. The dataset 
contained only 8% tumor voxels. Random undersampling was used to 
achieve a class balance on the per patient level. Thus, for each patient, a 
number of non-tumor voxels were randomly chosen to match the 
number of tumor voxels. The analysis was performed in MATLAB® 
2019a (The Mathworks, Inc., Natick, Massachusetts, USA). 

2.5. Post-processing 

The initial, automatic generated segmentation predicted by the 
trained model was post-processed semi-automatically before further 
evaluation. First, a median filter smoothed the borders of the predicted 
segmentation. Second, a watershed segmentation was applied to the 
Euclidean distance transformed mask, to separate and distinguish con-
nected regions. Third, the identified connected regions were classified as 
either belonging to the tumor or otherwise discarded. In a clinical 
application, such a separation could be achieved by a mouse click by the 
user. For the presented analysis, this selection process was simulated by 
randomly sampling one voxel (a seed) per slice within the ground truth 
delineation. The final segmentation consisted only of the regions con-
taining these seeds, while all other regions were discarded. The post- 
processing was implemented in Python 3.7 [22] using the SimpleITK 
1.2 [23] package. 

2.6. Performance evaluation 

Leave-one-out cross validation on the patient level was used to 
simulate that a trained model is used to predict the tumor volume of a 
new patient. The Sørensen-Dice similarity coefficient (DICE) [31] was 
used to evaluate the agreement between the ground truth G and the 
predicted segmentation P, and was defined as: 

DICE =
2|P ∩ G|

|P| + |G|

Mean symmetric surface distance (MSD) [32] was included as an 
additional distance-based measure, defined as: 

MSD =
1

NG + NP

(
∑NG

i=1

⃒
⃒dG→P

i

⃒
⃒+

∑NP

i=1

⃒
⃒dP→G

i

⃒
⃒

)

The total number of voxels in the respective surface was denoted as N 
and dA→B

i was the minimal Euclidean distance in 3D from point i on 
surface A to a point on surface B. Results were summarized as median 
(MED) and interquartile range (IQR). 

2.7. Experimental procedure 

In a first step, the performance of the different algorithms (LDA, 
QDA, SVM and ADA) was assessed using T2w image-based features as 
the only input. To gauge differences in performances among the four 
algorithms, the Friedman test for repeated measurements [33] was used. 
If the test indicated a significant difference, a post-hoc, two-sided Wil-
coxon signed rank test with Bonferroni correction for multiple testing 
was used to identify significantly different pairings. The algorithm 

Fig. 1. (A) Sørensen-Dice similarity coefficient (DICE) and (B) mean symmetric 
surface distance (MSD) visualized as combined box and violin plots. T2w 
image-based features were used to train models using four different algorithms 
(LDA: Linear discriminant analysis, QDA: Quadratic discriminant analysis, 
SVM: Support vector machines, ADA: Adaptive boosting). Median (MED) and 
interquartile range (IQR) are listed. As the Friedman test indicated a significant 
difference (p < 0.01 for DICE and p < 0.001 for MSD), a post hoc, two-sided 
Wilcoxon signed rank test was applied to all pair-wise combinations. Only 
significant results are indicated in the figure. (*: p < 0.05, **: p < 0.01, ***: p 
< 0.001). 
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giving the highest performance measured by DICE was selected for the 
further analysis. 

In a second step, the potential benefit of using functional MRI-based 
features was investigated. The performance of mono-sequence models 
based on T2*w, DW or DME image features alone, and multi-sequence 
models based on any combination of T2w, T2*w, DW and DME was 
evaluated and compared with the best T2w-only model. The difference 
in performance was assessed using a two-sided Wilcoxon signed rank 
test with Bonferroni correction. 

The statistical analysis was performed with a significance level of 
0.05 using the python packages SciPy 1.7 [34] and scikit-posthocs 0.6 
[35], and results were visualized using matplotlib 3.4 [36]. 

3. Results 

The performance of the four algorithms LDA, QDA, SVM and ADA 
with the mono-sequence model based on T2w image features is shown in 
Fig. 1. The Friedman test was significant both for DICE (p < 0.01) and 
MSD (p < 0.0001). The highest (best) DICE score was achieved by the 
ADA-based model with median [IQR] of 0.67 [0.26] (MSD: 3.6 [4.2] 
mm; second best). The QDA-based model resulted in the lowest (best) 
MSD with 3.4 [4.1] mm (DICE: 0.63 [0.23]; second best). No significant 
difference was indicated between ADA and QDA by the post hoc Wil-
coxon test, neither for DICE nor MSD. The lowest performance was 

observed for SVM (DICE: 0.54 [0.27], MSD: 4.9 [5.2] mm). This was 
significantly different to both ADA (DICE: p = 0.003, MSD: p = 0.03) and 
QDA (DICE: p = 0.005, MSD: p = 0.001). In addition, the measured MSD 
for SVM was also significantly different to LDA (p < 0.001). In the 
further analysis, only ADA was used, since it gave the best segmentation 
result (highest DICE) with T2w images alone. 

Fig. 2 shows the results for models trained on the functional MRI- 
based features alone as well as multi-sequence combinations of the 
different feature sets. Mono-sequence models using T2*w, DW or DME 
features did not significantly improve the performance as compared to 
T2w alone. The same was observed for any combination of these three 
functional feature sets, i.e., no significant improvement was observed for 
combinations T2w was not part of. In contrast, all combinations of T2w 
with one or more functional feature sets resulted in a significantly higher 
DICE relative to T2w alone. Models with the four best DICE scores 
(>0.70) all had T2w + DME included (T2w + DME, DICE 0.72, p <
0.001; T2w + DW + DME, DICE 0.70, p < 0.001; T2w + T2*w + DME, 
DICE 0.70, p = 0.002; T2w + T2*w + DW + DME, DICE 0.72, p <
0.0001). The importance of T2w + DME for good segmentation was also 
observed when using MSD as metric; a significant improvement in MSD 
was only observed if T2w + DME features were included in the model 
(T2w + DME, MSD: 2.7 mm, p = 0.003; T2w + DW + DME, MSD: 2.7 
mm, p = 0.01; T2w + T2*w + DME, MSD: 2.7 mm, p = 0.03; T2w +
T2*w + DW + DME, 2.5 mm, p = 0.002). 

Fig. 2. (A) Sørensen-Dice similarity coefficient (DICE) and (B) mean symmetric surface distance (MSD) visualized as combined box and violin plots. The performance 
is shown for mono-sequence models using features based on single image modalities (T2w: T2-weighted, T2*w: T2*-weighted, DW: diffusion weighted, DME: dy-
namic multi echo) as well as multi-sequence models using combinations of these feature sets. Median (MED) and interquartile range (IQR) are listed. Two-sided 
Wilcoxon signed rank test with Bonferroni correction was used to identify performances significantly different from the T2w feature based reference model (R). 
Only significant results are indicated in the figure. (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001). 
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For the two manual delineations, which formed the ground truth, the 
median interobserver agreement in DICE was 0.82 [0.07] with an MSD 
of 1.2 [0.4] mm. As indicated in Fig. 3, the DICE between the semi- 
automatic segmentation and ground truth seemed to be correlated to 
the interobserver DICE and the tumor volumes. Especially, segmenta-
tions with a low performance were more frequently observed for smaller 
tumors. 

Fig. 3 further demonstrates that the performance measured by DICE 
and MSD was quite stable when comparing the segmentations made by 
models based on T2w + DME, T2w + DW + DME and T2w + T*2w +
DW + DME feature sets. Thus, for most patients, there is little variation 
in the measured performance both in DICE and MSD. This stability can 
also be appreciated in Fig. 4, where the generated segmentations are 
shown for three patients. Moreover, the figure illustrates that T2w fea-
tures alone were in some cases not sufficient to adequately predict the 
tumor volume, as seen for Patient 2 in the second row. In such cases, 
adding functional images as input improved the segmentation result. 

4. Discussion 

In this exploratory analysis of multi–sequence MRI data from pa-
tients with rectal cancer, we showed that the performance of semi- 
automatic tumor volume segmentation using voxelwise classification 
was improved by adding functional MRI information compared to the 
use of anatomical T2w MRI alone. DME MRI information was found to 
be most valuable in this context. 

Inclusion of additional images besides T2w and DME did not improve 
results further. The overall performance metrics for T2w + DME feature 
based models (DICE: 0.72 [0.17], MSD 2.7 [1.7] mm) were comparable 
to models based on the combination of all four feature sets (DICE: 0.72 
[0.16], MSD: 2.5 [2.1] mm). This observation was further supported by 
the stability of the performance for individual patients shown in Figs. 3 
and 4. DME MRI is not part of the current clinical routine for rectal 
cancer, but our investigation shows it may add useful information for the 

purpose of tumor detection. 
The ADA algorithm seemed to have the flexibility needed in this 

classification problem. It outperformed more rigid algorithms such as 
LDA. However, as illustrated in Fig. 4, the automatic voxelwise classi-
fication approach needed to be combined with a semi-automatic post- 
processing step to achieve good results. The implemented post- 
processing required seeds, which in this analysis were randomly and 
automatically set within the (known) tumor volume. In practice, such 
seeds could be set by an expert by simply clicking on the image and 
performance could further be improved e.g., by setting multiple seeds 
per slice, or by eroding marginal connections and unwanted regions. As 
seed selection only requires a few clicks, the process would still reduce 
the workload and time investment compared to full manual delineation. 
Such a machine learning-assisted workflow is highly relevant for MRI- 
guided radiotherapy using the hybrid MRI-Linac, where automatic or 
semi-automatic segmentation of the target and organs at risk is expected 
to mitigate the time- and labor-intensive tasks of manual contour 
delineation, and at the same time reduce inter- and intraobserver vari-
ability in contour delineation [37]. Integration of automatic or semi- 
automatic segmentation may provide the possibility for fast inter- and 
intrafraction radiotherapy adaptation, and also automatic calculation of 
dose accumulation. Overall, this promises greater precision and 
personalization of radiotherapy. 

When comparing the segmentation performance achieved in this 
paper to previously published classical machine learning techniques, we 
observed similar performances for comparable input images. One 
example is Irving et al., where DCE MRI-based pieces of parts supervoxel 
segmentation achieved a median DICE of 0.63 relative to the manual 
delineation [5]. The closest match in our analysis was the ADA model 
trained only on the DME feature set, giving a median DICE of 0.66. 
Heeswijk et al. used an automatic region growing approach based on DW 
b1000/b1100 images [17], achieving a mean DICE of 0.68 ± 0.15. In 
our analysis, the DW-feature-based ADA model resulted in a mean DICE 
of 0.61 ± 0.16 (MED [IQR]: 0.64 [0.17]). However, in contrast to the 

Fig. 3. Visualization of the association between the two performance metrics, Sørensen-Dice similarity coefficient (DICE) and mean symmetric surface distance 
(MSD), and the interobserver DICE and the tumor volume. The median and interquartile interobserver DICE was 0.82 [0.07] with an MSD of 1.2 [0.4] mm. The 
panels show results of models trained using adaptive boosting (ADA) for different combinations of image features (T2w: T2-weighted, T2*w: T2*-weighted, DW: 
diffusion weighted, DME: dynamic multi echo, GT: ground truth). 
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other studies, we showed that segmentation results could be improved 
by combining both anatomical and functional MRI information 
improved the segmentation results, this was not evaluated in the other 
studies. 

Deep learning techniques, like neural nets, have shown promising 
results for automatic tumor segmentation. Trebeschi et al. used a con-
volutional neural network (CNN) with T2w and DW images to segment 
locally advanced rectal cancer and achieved a mean DICE of 0.68 ± 0.07 
and 0.70 ± 0.07 compared to two manual readers, respectively [4]. The 
T2w and DW-based model presented in our current work resulted in a 
median DICE of 0.69 [0.19]. This showed that classical machine learning 
approaches should not be disregarded, even though neural net tech-
niques may achieve a more stable segmentation with less variation be-
tween patients. 

The patient cohort analyzed in this study was also the basis for 
training a 2D U-Net for automatic segmentation [38]. In [38], the use of 
T2w images alone resulted in a DICE of 0.77 [0.21] and T2w + DW 
images in a DICE of 0.76 [0.18] for patients in a holdout test set. Thus, 
adding DW images did not improve the U-Net segmentation which 
stands in contrast to the slight improvement in DICE observed in the 
present analysis for T2w relative to T2w + DW based models. This 
suggested that the classical machine learning methods may benefit more 
than deep learning-based models by the inclusion of functional MRI 
data. The DICE for the U-Net results were higher than those of the ADA 
model in our current study (0.77 versus 0.72 for best cases). However, as 
different subsets of the cohort were used in the training due to avail-
ability of image data, this direct comparison should be treated with due 
caution. As the focus of the present analysis was to systematically study 
the influence of different functional MRI sequences in many 

combinations, a classical machine learning approach was chosen. Not 
only was it more computationally manageable, but it was also better 
suited for a smaller patient cohort as it operated on the voxel level. 

The union of two manual delineations was used as ground truth in 
this study. The real extent of the tumor would need to be determined 
histologically and experts’ delineations are the best available approxi-
mation. Using the union instead of an individual contour represented a 
conservative approach that aimed at including all suspicious tissue in 
the ground truth. For manual delineations, the delineated volume de-
pends not only on the observer but also on the available MR images, as 
noted by Hearn et al. [6]. The interobserver agreement in the underlying 
dataset of our study was determined as DICE of 0.82 [0.07] with an MSD 
of 1.2 [0.4] mm. This was in good agreement with variations reported in 
previous studies [4–6]. Comparing the interobserver DICE to the DICE of 
our best performing model (0.72) suggested that the model may not be 
sufficient on its own. However, it could still have value as a contouring 
support tool and for reducing the time used in the overall workflow. 
Such a support tool could provide a suggested initial segmentation fast. 
After reviewing the suggestion, the user could then accept or alter the 
segmentation. 

In the current analysis, DICE and MSD were used as performance 
measures. Both capture different aspects of the performance but also 
have their specific drawbacks [39]. One example is the volume de-
pendency of the DICE metric, as for small structures, variation in single 
voxels can result in large changes to the measured performance. This 
effect could contribute to the low performance observed for small tu-
mors in Fig. 3. 

As this study was based on data from a single center, an extension 
with data from different centers would be beneficial. This could 

Fig. 4. Visualization of the automatic segmentations created using adaptive boosting (ADA) models trained on different combinations of input features (T2w: T2- 
weighted, T2*w: T2*-weighted, DW: diffusion weighted, DME: dynamic multi echo). The T2w image and the manual delineations made by two experts are shown in 
addition. The numbers below each delineation or prediction state the Sørensen-Dice similarity coefficient (DICE) for the shown slice as well as the patient DICE (in 
parentheses). 
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eliminate biases in the training data, which would in turn improve the 
generalization of the model. It could also be beneficial to include manual 
delineations made by experts from other centers or to use consensus 
delineations for the training. 

In conclusion, semi-automatic segmentation of rectal cancer 
improved when machine learning models were trained with a combi-
nation of T2w and functional MRI data. The best results were obtained 
when both T2w and DME features were included in the model. Since 
contrast enhanced MRI currently is not part of routine diagnostic MRI in 
rectal cancer, further studies are needed to determine if it should be 
added to future MRI protocols. 
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