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� The IFT of H2-brine was modeled using different machine learning techniques.

� The suggested ML-based paradigms showed excellent predictions of the IFT values.

� The MLP-LMA based model outperformed the other intelligent and prior paradigms.

� The conservation of physical tendency of IFT of H2-brine was demonstrated based on the trend analysis.
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a b s t r a c t

During the last years, there has been a surge of interest in cleaner ways for producing

energy in order to successfully handle the climate issues caused by the consumption of

fossil fuels. The production of hydrogen (H2) is among the techniques which have grown up

as attractive strategies towards energy transition. In this context, underground hydrogen

storage (UHS) in saline aquifers has turned into one of the greatest challenges in the

context of conserving energy for later use. The interfacial tension (IFT) of the H2-brine

system is a paramount parameter which affects greatly the successful design and imple-

mentation of UHS. In this study, robust machine learning (ML) techniques, viz., genetic

programming (GP), gradient boosting regressor (GBR), and multilayer perceptron (MLP)

optimized with Levenberg-Marquardt (LMA) and Adaptive Moment Estimation (Adam) al-

gorithms were implemented for establishing accurate paradigms to predict the IFT of the

H2-brine system. The obtained results exhibited that the proposed models and correlation

provide excellent estimations of the IFT. In addition, it was deduced that MLP-LMA out-

performs the other models and the existing correlation in the literature. MLP-LMA yielded

R2 and AAPRE values of 0.9997 and 0.1907%, respectively. Lastly, the trend analysis

demonstrated the physical coherence and tendency of the predictions of MLP-LMA.
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Introduction

Recently, there has been a dramatic increase in the attention

put into the development of new clean energy resources for

mitigating the different climate issues, such as the increase in

average temperatures of the globe [1,2]. Indeed, these

worrying climate issues are mainly caused by the consump-

tion and the burning of fossil fuels which lead to large

amounts of emitted greenhouse gases (GHG) [3]. Due to this

fact, there has been growing interest in the reduction of the

amounts of GHG by considering new resources with less

impact on the environment and climate such as hydrogen [4].

The production of hydrogen from renewable resources such

as solar thermochemistry, biomass gasification, and electro-

lytic is among the pathways which are increasingly getting

interest in various fields of science and engineering [5]. This

surge of interest is due to the importance of this source of

energy from various perspectives and versatile utilizations

such as in agriculture, food processing, petrochemistry, and

also in the production of electricity [6]. This importance of

hydrogen has triggered a huge number of innovative inquiries

and procedures to store it in the medium and long term for

later use in a managed manner [7]. Recently, underground

hydrogen storage (UHS) has gained prominence as an effective

way for preserving hydrogen at various time scales, firstly for

medium- and long-term storage [8], in different geological

formations, such as saline aquifers, basaltic formations, coal

seams, depleted oil/gas reservoirs, and salt caverns [9e14]. In

this context, many studies have proved the feasibility of this

attractive solution in different worldwide sites [6,15,16]. Be-

sides, real pilot tests with promising results were carried out

in Texas, US and Teeside, UK [17]. Furthermore, there are

other worldwide successful hydrogen storage sites, such as

Kiel in Germany as a salt cavern site, and Lobodice in the

Czech Republic, Beynes in France, and Ketzin Germany as

aquifer sites [18,19].

As in the case of carbon capture and storage (CCS) in saline

aquifers [20e22], key parameters related to UHS should be

investigated and determined accurately in order to ensure the

successful implementation of this process [5,23]. The inter-

facial tension of the H2-brine system is one of the vital pa-

rameters known by the relevant impact on UHS [5,24]. Despite

the essential role of IFT in the UHS, only a few studies shed

light on the experimental determination of this paramount

parameter [5,24]. Chow et al. [24] performed experimental

measurements of the IFT of the water-H2 and water-H2-CO2

systems using the pendant-drop method. The tests were

carried out under comprehensive intervals of pressure

(0.5e45 MPa) and temperature (298.15e448.15 K). Recently,

Hosseini et al. [5] enriched the knowledge about the IFT of the

water/brine-H2 systems by providing new measurements of

this parameter under other pressures (2.76e34.47 MPa), tem-

peratures (298.15e423.15 K), andmolalities (0e4.95mol kg�1 of

[0.864 NaClþ 0.136 KCl] (aq)). Besides, the authors provided an

empirical correlation for estimating the IFT of the water/

brine-H2 systems based on the available experimental tests.

Their developed correlation yielded satisfactory predictions of

IFT. It is worth mentioning that despite the precision of the

experimental procedures employed for determining the IFT,
these approaches are recognized to be expensive and time-

consuming [20,22].

Recently, the use of new modeling techniques based on

machine learning (ML) techniques has been at the center of

attention in the context of establishing cheap, user-friendly,

and accurate predictive paradigms [25e27]. This family of

techniques exhibited excellent prediction performance when

they were deployed in different studies related to CO2 [28e30]

and during the modeling of the IFT of brine-some specific

pure/mixture gases, mainly CO2/CH4/N2 [20,22,26,31e34]. To

the best of our knowledge, no previous study has examined

ML methods for establishing accurate paradigms that can

estimate the IFT of the H2-brine systems.

In this study, rigorous machine learning approaches,

including gradient boosting regressor (GBR) and multilayer

perceptron (MLP) optimized with two robust algorithms,

namely Levenberg-Marquardt (LMA) and Adaptive Moment

Estimation (Adam) were implemented for establishing ML-

based paradigms to predict the interfacial tension of the H2-

brine system. Besides, another type of ML technique, viz.,

genetic programming (GP) was considered in this study in

order to develop an explicit correlation for IFT of H2-brine

system. The proposed ML-based models were trained and

tested using comprehensive experimental measurements of

the IFT of the H2-brine system. This experimental database

was gathered from the experimental studies performed by

Hosseini et al. [5] and Chowet al. [24,35]. The gained intelligent

models and explicit correlation were assessed and compared

using a variety of statistical and graphical error analysis. Be-

sides, our best ML-based paradigm and our proposed explicit

correlation were compared with the empirical correlation

suggested by Hosseini et al. [5].
Modeling techniques

Gradient boosting regressor (GBR)

Boosting method is a variant of ensemble approach that was

proposed by Schapire [36]. This method fundamentally aims

at combining underperforming predictors, which are also

termed as “learner”, to establish another predictor with better

performance [37,38]. In a simpler term, these weak predictors

would undergo sequential training phase in which each pre-

dictor emphasizes on rectifying the previous predictors. In

this aspect, gradient boosting regression is one of the exam-

ples of boosting method. Additionally, GBR can be considered

as an enhanced version of decision tree (DT)methodwhen the

mechanism of boosting is implemented to DT. Hence, some

hyperparameters of GBR are relevant with those of decision

tree methods, which comprise (but not limited to) the number

of estimators, loss function, subsample, maximum number of

features, maximum depth, minimum number of samples

split, and minimum number of leaf nodes.

GBR also acts as a type of functional gradient descent and

hence, an additional hyperparameter of learning rate is

required. This denotes that a predefined loss function is

minimized by adding a new predictor at each iteration of

gradient descent to attain better training outcome [39]. Basi-

cally, residual errors (the difference between actual output

https://doi.org/10.1016/j.ijhydene.2022.09.120
https://doi.org/10.1016/j.ijhydene.2022.09.120


Fig. 1 e Illustration of the architecture of an MLP model.
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and predicted output) produced by the previous predictor

would apply to the new predictor [38]. For a more vivid

explanation, the algorithm of GBR is summarized as follows:

1. Considering data samples fðxn;ynÞ; n¼ 1; 2;…; N g and a

loss function Lðyn; fðxÞÞ in which f(x) is the prediction

function, perform initialization with constant value to

have foðxÞ. g denotes the predicted output value when the

loss function is minimized:

foðxÞ¼argming

XN
n¼1

L
�
yn;g

�
(1)

2. Conduct the iteration for k¼ 1: K, in which K represents the

number of iterations (also known as number of learners):

a. Determine the negative gradient (also termed as

pseudo-residuals), zn where n ¼ 1, 2, …N:

znk ¼ �
�
vL

�
yn; fðxnÞ

�
vfðxnÞ

�
f¼fk�1

(2)

b. Regress a base learner (predictor) GkðxÞ onto the target

fzn; n¼ 1;2;…; Ng to conduct the training.

c. Compute the step size for gradient descent:

r¼argming

XN
n¼1

L
�
yn; fk�1ðxnÞþgGkðxnÞ

�
(3)

d. Update the model:

fkðxÞ¼ fk�1ðxÞ þ r,GkðxÞ (4)

3. After finishing K iterations, the final output is fK(x).
Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is a variant of artificial neural

network (ANN) applied in different tasks including supervised

classification and the development of predictive paradigms

[40]. This technique is inspired from the human neurological

system which is considered in the learning process [41].

The design ofMLP is based on amultitude of perceptrons or

neurons connected to each other (an example is shown in

Fig. 1). These neurons are distributed into three types of layers

as follows [42]:

- Input layer: it represents data with actual input values.

- Hidden layer: it is the most important layer for data

transformation by using an activation function. Examples

of activation function comprise (but are not limited to)

Tansig (Tangent sigmoid, alternatively known as hyper-

bolic tangent), ReLU (Rectified Linear Unit), Linear, and

Sigmoid.Mathematically, given x is the input datawith f (x)

being the output, tansig is f (x) ¼ tanh (x), ReLU is f

(x) ¼ max (0, x), linear is f (x) ¼ x, and sigmoid is f (x) ¼
(1 þ e-x)�1. The aim is to capture and recognize the rela-

tionship describing the studied data. The number of
hidden layers can be one ormore according to the degree of

complexity of the phenomenon.

- Output layer: it is the last layer from which the results are

delivered. In this layer, there is a possibility to apply

different kinds of activation functions such as Pure line or

other types.

It is worth mentioning that each neural connection be-

tween different layers is associated with a set of weights.

Additionally, the neurons of the output and hidden layers can

contain a bias term.

During the learning phase of MLP model, it is essential to

improve its performance by minimizing the calculated errors

between the targets and model predictions. The learning

phase is perceived as a process of finding the best weights and

biases. Many algorithms have been proposed to optimize the

weights and bias of MLP. In this study, we have applied

Adaptive Movement Estimation (Adam) and Levenberg-

Marquardt (LMA) during the training phase of MLP. The de-

tails of these two algorithms are reported in the prior pub-

lished works [43,44].

Genetic programming (GP)

Genetic programming (GP) is another machine learning

technique. It is formulated based upon the evolutionary

theories inspired by the mechanism of natural selection

[45]. This approach can be considered as a special version

of genetic algorithm (GA) as it employs the same genetic

operators except in the codification type of the chromo-

somes considered which is different [45]. The chromosomes

of the population in GP are represented in a tree repre-

sentation, and this means that each chromosome corre-

sponds to a possible correlation related to the problems to

be modeled [46]. Fig. 2 shows an example of a tree repre-

sentation in GP.

The process of investigating the best correlation using the

GP beginswith creating an initial population and assessing the

fitness of each individual in the population. Then, the popu-

lation is subject to genetic operations including [47]:

https://doi.org/10.1016/j.ijhydene.2022.09.120
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Fig. 2 e Illustration of the tree representation in GP.

Table 2 e Performance evaluation of the implemented
paradigms.

AAPRE RMSE R2

MLP-LMA Training 0.1557 0.1593 0.9998

Testing 0.3344 0.2625 0.9995

Total 0.1907 0.1842 0.9997

MLP-Adam Training 0.3353 0.3116 0.9990

Testing 1.0622 0.9509 0.9935

Total 0.4848 0.5129 0.9979

GBR Training 0.0940 0.0722 1.0000

Testing 0.6559 0.4917 0.9979

Total 0.2095 0.2320 0.9996

GP Training 0.7862 0.5295 0.9964

Testing 0.6353 0.2137 0.9975

Total 0.7560 0.4663 0.9966
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- Elitism which is used to keep the best correlations alive for

a new generation.

- Crossover that allows an exchange of parts between two

correlations to generate two new ones.

- Mutation that consists of modifying certain parts of cor-

relations to generate others.

Note that the correlations, which are subject to crossover

and mutation operators, are chosen through selection tech-

niques, viz. roulette wheel, tournament, ranking or others.

Before using the operators, the individuals must satisfy the

crossover and mutation probabilities. This means that before

applying the crossover and mutation operators, we attribute

random values to the concerned individuals and if these

values are less than the crossover and mutation probabilities,

the operators are applied to get new offspring. If this condition

is not satisfied, we keep the same individuals to the following

generation.

This set of operators is repeated iteratively until the stop-

ping condition is satisfied.
Results and discussion

Prior to explaining the results from the development of the

considered models, it is essential to understand the database

applied to establish these models. The database was collected

from several literatures, namely theworks of Hosseini et al. [5]

and Chow et al. [24,35] and it consisted of 107 datapoints in

total. The summary of its statistics is illustrated in Table 1.

These datapoints were then normalized between �1 and 1 by

using the formula below:
Table 1 e Summary of database.

Molality, m
(mol.kg�1)

Pressure,
P (MPa)

Temperature,
T (K)

IFT
(mN.m�1)

Minimum 0.00 0.50 298.03 42.90

Maximum 4.95 45.20 448.35 80.77

Average 1.37 17.87 353.94 63.21
xnorm; i ¼ 2�
�

xi � xmin

xmax � xmin

�
� 1 (5)

Based on the expression above, xnorm, i indicates the

normalized value of datapoint i, xi refers to the value of

datapoint i, xmin and xmax correspondingly mean the min-

imum and maximum values of all the datapoints. This

method of normalization was preferred due to insights and

positive results derived from our previous studies [28,48].

Thereafter, the normalized database was divided into two

different sets, namely training and testing, according to the

ratio of 8:2. Training dataset was mainly utilized to perform

the data-driven modeling whereas testing set was used to

ensure the generalization ability of the models.

After the preparation of the database, the training set

was fed into the models including MLP with LMA (MLP-

LMA), MLP with Adam (MLP-Adam), Gradient Boosting Re-

gressor (GBR), and Genetic Programming (GP). It is worth

mentioning that in the case of GP, the original raw data-

base was employed in lieu of applying the normalized

database.

To find out the proper architecture of the models, trial

and error approach was implemented. Regarding the to-

pology of MLP-Adam, it was made up of one input layer,

three hidden layers, and one output layer. The first and last

hidden layers had 15 hidden nodes whereas the second

hidden layer had 20 hidden nodes. ReLU was selected as

the activation function for all the three hidden layers while

tansig was the activation function for the output layer. For

MLP-LMA, the best-found topology consisted of a network

with one hidden layer involving 12 neurons, while the

suitable activation functions were tansig and pure line for

the hidden and output layers of MLP-LMA model,

respectively.

About the hyperparameters of GBR used, the number of

estimators (boosting phases) was 50, the learning rate was 0.1

(used to reduce the contribution of each regressor), the

maximum depth was 5 (used to limit the number of nodes in

decision tree), and theminimumnumber of samples split was

2 (minimum number of samples to split an internal node in

decision tree). The loss function used is the squared error. The

other hyperparameterswere set as default as recommended in

Ref. [49].
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Fig. 3 e Cross plots of the implemented models for predicting IFT of the H2-brine system.
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The GP correlation was determined to be as follows:

IFT¼133:796737� 0:001195� �
P�A1 þ 4� T2 �A2

�
T

(6)

with

A1 ¼ 41�mþT� ð5�m� 94� cosðTÞÞ

A2 ¼ 42�m� cosðT� cosðcosðm�2�TÞÞÞ
To evaluate the prediction performance of the resulting

models, we provided the statistical analysis by considering

three different criteria, viz. Average Absolute Percentage

Relative Error (AAPRE), Root Mean Square Error (RMSE), and

Coefficient of Determination (R2). The formula of each crite-

rion is displayed below:
AAPRE¼ 1
N

XN
i¼1

�����
g
exp
i � g

pred
i

g
pred
i

������ 100 (7)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

h
g
exp
i � g

pred
i

i2vuut (8)

R2 ¼1�
PN

i¼1

h
g
exp
i � g

pred
i

i2
PN

i¼1

h
g
pred
i � g

i2 (9)

gi implies the value of IFT in which the superscripts of exp

and pred correspondingly refer to “experimental” and “pre-

diction”. Also, g indicates the average value of IFT and N is the
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Fig. 4 e Error distribution of the implemented models for predicting IFT of the H2-brine system.

Fig. 5 e Box plot of the distribution of the absolute relative error associated with the model predictions.
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Fig. 6 e Trend analysis of the MLP-LMA model and GP-based correlation.
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total number of datapoints. Table 2 summarizes the assess-

ment of performance exhibited by each employed paradigm.

Fig. 3 illustrates the cross plots of the developed predictive

models of IFT. This figure demonstrates that all the models

generally have yielded the predicted IFTs which are in prox-

imitywith the actual IFTs. On a closer scrutiny, as portrayed in

Table 2, albeit GBR has shown the best training performance

in terms of AAPRE, RMSE, and R2, it is outperformed by MLP-

LMA in testing performance. Furthermore, MLP-LMA out-

performs the other models in the prediction of all the (total

number of) datapoints.

Pertaining to the worst performing model in terms of pre-

diction, GP is comparable to MLP-Adam. Considering all the

three criteria, although MLP-Adam outperforms GP in

training, it has exhibited a worse testing performance. When

all the datapoints are considered, MLP-Adam shows a better

prediction performance than GP in terms of AAPRE and R2. To

further evaluate the accuracy of all the four established

models, additional analysis has been conducted. Fig. 4 dis-

plays the distribution of prediction errors produced by each

model in both phases of training and testing. Good distribu-

tion of errors is reflected by having as many datapoint as

possible lying on the horizontal line with relative error of 0%.

Based on this figure, most of the prediction errors of MLP-LMA

and GBR (considering both training and testing data) lie on the

horizontal line. It can be inferred that MLP-LMA and GBR have

outperformed MLP-Adam and GP in terms of distribution of

prediction errors. As compared with GBR, fewer training data

errors yielded by MLP-LMA lie on the horizontal line. Predic-

tion errors of testing data of GBR deviate more from the hor-

izontal line compared with MLP-LMA. Both MLP-LMA and GBR
illustrate similarly good distribution of prediction errors. For

MLP-Adam, as shown in Fig. 4, there are a few outliers of the

predicted testing datapoints. However, GP demonstrates

much more scattered prediction errors than MLP-Adam.

Hence, MLP-Adam portrays better prediction performance

than GP in this context.

Fig. 5 shows the box plot of the absolute relative error

distribution corresponding to each model. This box plot il-

lustrates that the absolute relative error associated with MLP-

LMA was distributed within a range of 0% and 0.5% (without

considering the outliers). For GBR, the range is between 0%

and about 0.49%. Five outliers are noted in the case of MLP-

LMA, whereas seven outliers for GBR. Hence, Figs. 4 and 5

have further validated that MLP-LMA and GBR outperform

MLP-Adam and GP. It is challenging to say that MLP-LMA

performs better than GBR from Figs. 4 and 5. Nevertheless,

based on Table 2, it is deduced that MLP-LMA has a better

prediction ability than GBR in this case. For the box plots of

MLP-Adam and GP, the distribution of absolute relative error

achieved by GP is more widespread than that of MLP-Adam. It

is inferred that MLP-Adam slightly outperforms GP. There-

after, to investigate the efficiency of the established models

for prediction of IFT values, the trend analysis of theMLP-LMA

(best performing) and GP-based correlation (worst perform-

ing) is displayed in Fig. 6. It is presented that at four different

molality values, the trend of IFT values could be generally

captured by both MLP-LMA and GP as temperature and pres-

sure vary. This once again highlights the reliability of these

models. Nevertheless, if Fig. 6 is examined in depth, the trend

yielded by MLP-LMA in general matched slightly more closely

the experimental values as compared with GP. As exhibited by

https://doi.org/10.1016/j.ijhydene.2022.09.120
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Fig. 8 e Relevancy factor.

Fig. 7 e Comparison of the performance of MLP-LMA model and GP-based correlation with the correlation proposed by

Hosseini et al.
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the two predictivemodels and the experimental data, it can be

observed that given the same molality and pressure, the IFT

would decrease when the temperature increases. Besides

that, at constant pressure and temperature, a lower molality

would induce a lower IFT.When the temperature andmolality

remain constant, the IFT would decrease as the pressure in-

creases. Nevertheless, the decrease is not very drastic as

shown. The predictions of MLP-LMA and GP mimic perfectly
these changes in the trend of IFT with respect to pressure,

temperature, and molality. In general, it is shown that these

two models are able to capture the physics (behavior of IFT)

through the data provided.

To demonstrate the significant predictability of both MLP-

LMA and GP, we performed another comparative analysis

between these models and another correlation proposed by

Hosseini et al. [5]. According to the results of the statistical

analysis as displayed in Fig. 7, althoughMLP-LMA and GP only

illustrate slight enhancement of predictions in terms of R2, the

improvement is significant looking at AAPRE and RMSE

values, especially for MLP-LMA.

Lastly, relevancy factor study was also conducted as a

sensitivity analysis to determine or “quantify” the relative

importance of the input parameters on the IFT. Relevancy

factor provides insightful ideas about how impactful input

parameters are on the predicted outputs [50,51]. In general,

the value of relevancy factor of an input parameter is either

positive or negative. Positive (Negative) relevancy factor in-

dicates that as the value of input parameters increases, the

value of output increases (decreases). Moreover, the higher

themagnitude of relevancy factor, the larger the impact of the

input parameter will be on the output of models. Mathemat-

ically, relevancy factor is shown as:
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�
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�ðgi � gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
Ij;i � Ij

�2q PN
i¼1ðgi � gÞ2

(10)

Ij,i refers to the input parameter j at ith datapoint and Ij
indicates the average value of Ij. gi is the predicted output of

ith datapoint whereas g represents its average value. N is the

total number of datapoints. Considering only MLP-LMA and

GP, Fig. 8 presents the bar charts of the relevancy factor of all

the three input parameters. It is observed that temperature

has the biggest impact on IFT, and it is followed by molality

and pressure. Also, temperature and pressure both have an

inverse relationship with IFT whereas the relationship be-

tweenmolality and IFT is direct. The result of relevancy factor

coincides with the results of the trend analysis performed

previously. Finally, it is worth mentioning that these trends

and the impact of the input parameters are in accordancewith

previous published works such as Hosseini et al. [5] and Chow

et al. [24,35].

To end with, it is needed to mention that the implemented

ML-based schemes formodeling the IFT of the hydrogen-brine

system are of great importance from various perspectives and

they can be applied without having specific experimental

values as they are derived and taught from prior experimental

tests. Themain application and implication of the established

ML-based models pertain to the simulation of different

downstreamunderground hydrogen storage related processes

as the provided models in this study can be easily integrated

in the associated calculation steps. Moreover, it is common to

consider commercial software or some specific paradigms to

estimate various properties of different systems such as

hydrogen-brine; however, the fact is that these tools do not

always deliver accurate predictions. For this purpose, the

newly proposed ML-based approaches in this study are of

great interest for the other related applications and the

exhibited prediction accuracy of the models will contribute to

the upgrading of such calculations.
Conclusion

In this work, we have employed four different data-driven

techniques to establish a predictive model of IFT considering

the input variables of molality, pressure, and temperature.

The database used to develop these models was collected

from the experimental works presented in several literatures.

To assess the predictability of the models created, namely

MLP-LMA, MLP-Adam, GBR, and GP-based correlation, we

have implemented threemetrics for statistical analysis. These

metrics included AAPRE, RMSE, and R2. According to the re-

sults of the analysis, it can be inferred that all the models

illustrated excellent performance during the training and

testing phases. MLP-LMA was identified as the best model

because it yielded the highest R2 in tandem with the lowest

AAPRE and RMSE considering all datapoints. We also included

some graphical analyses to have a better insight about the

prediction ability of the models. Pertaining to this, a trend

analysis was performed in which the predictive models were

able to capture the changes in the behavior of IFT under the

varying conditions of molality, pressure, and temperature.
This further confirmed the robustness of the models devel-

oped in this study. Analysis of relevancy factor was conducted

to identify the impact of each input variable on the IFT. It can

be deduced that temperature has the most significant effect

on the IFT. The reliability and integrity of themodelswere also

justified when their performance surpassed one of the

empirical correlations of IFT.
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