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It is often difficult to teach mathematics for understanding. Many students seem to prefer to
learn computational skills by rote, and seem to remember very little of the course contents the
following semester. The reasons for this are surely manifold. This paper reviews the concept
of understanding, looking particularly towards the meaning it has in hermeneutic philosophy.
The known distinction between hermeneutical and epistemological understanding is resituated
in mathematics, and we argue that it is the hermeneutic understanding which is most relevant
when mathematics is taught as a support subject for engineering and other professions.

1. Introduction
There seems to be wide agreement that one ought to teach for understanding, rather than for rote learning.
Teaching a mathematics degree, the students are expected to understand why each technique works and
why any given statement is true. In service teaching, it is not obvious that the students need understanding
in this sense, and many students show little motivation for understanding. Given how difficult it appears
to be to understand mathematics, one may be content if the students acquire a modest selection of
computational skills. However, the German mathematics didactician Wolfram Meyerhöfer1 claims that
also students who struggle with mathematics can learn to understand, and moreover they can only learn
computational skills if they understand.

Understanding seems to be sought, one way or another, by most people. As one of my students put it,2

‘can’t you just give us a formula, so that we can start to understand?’ While this seemingly contradictory
question puzzled me at the time, there may still be some sense behind it. The student, presumably, was
only looking for meaning relevant to his studies in business administration. Understanding why the
formula is true may be irrelevant to his life and prospective career. Whether he wanted to understand
how to pass the exam, or how to carry out his prospective profession, he was just aiming for what Skemp
(1976) calls instrumental understanding.

This paper reviews what is or could be meant by understanding when we disregard instrumental or
procedural understanding, considering primarily service teaching of mathematics in higher education.
We shall see that the ambiguity of the word ‘understanding’ is not at all captured by the single

1 See ‘Ich will, dass jedes Kind rechnen lernt’, interview in Der Spiegel, 27.10.2013
2 Translated from Norwegian, see Schaathun & Moe (2021) for the original text and context.
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2 H. G. SCHAATHUN

instrumental/relational dichotomy of Skemp’s (ibid.). In the initial review, in Section 2–4, we investigate,
in turn, three different positions on and approaches to teaching and learning of mathematics, and
compare them to prevailing theory from cognitive psychology, education, and philosophy. Readers with a
background in teacher education may find this material more well-known than many readers who teach in
higher education. In Section 5, we turn to a fourth position, which is less frequently seen in the context of
mathematics, namely the perspective of hermeneutic philosophy as known from Gadamer (2004) and his
followers. Finally, in Section 6–7, we discuss the implication to learning and teaching of mathematics in
higher education and for engineering in particular. The methodology is philosophical and hermeneutical.

2. Epistemological Understanding
Understanding is a difficult concept to define. The Stanford Encyclopedia of Philosophy (Grimm, 2021)
calls it a protean concept. The literature on education often refers to a dichotomy between rote learning
and learning through understanding (e.g. Holm, 2012, p. 44).

Mathematics is a study of necessary truths. New propositions are deduced with certainty from known
premises. As Leibnitz put it, the proposition is true because the negation would be impossible.3 It is
possible to take mathematical propositions and procedures on trust, and simply learn them by rote. If trust
is not sufficient, it may be necessary to see why the negation would be impossible. This is a reasonable
interpretation of understanding a result in mathematics; to know not just the result, but also how to be
certain that it is a necessary truth. In this sense, understanding supports critical thinking, while rote
learning does not. A critical thinker is a free individual, not dependent on the word of authority.

This kind of understanding is the concern of epistemology, that is, the study of how we can know
that we know. Such epistemological understanding in mathematics would entail the processing of each
deductive step, so that new knowledge is gained from the premises. As Gallagher (1992, p. 40) writes,

In epistemology the word understanding usually signifies a mental process which takes place in the
mind (the soul or consciousness). It is an intellectual process whereby a knower gains knowledge
about something.

Some teachers may say that to understand a result, the student has to be able to reconstruct a sound
argument. Others may be content if the student is able critically to validate the argument, and thereby
independently ascertain the result. We shall leave that debate for another time, and instead turn to why
understanding makes for better learning than rote learning.

Learning means that new information is transferred from working memory (aka. short-term memory),
where it is processed, into long-term memory to be retained (more or less) permanently. Several theories
exist on how this transfer is secured, both within learning theories (see e.g. Tetzchner, 2012) and in
cognitive psychology (see e.g. Anderson, 2015). Common for most (if not all) of the dominant theories
is that memory depends on the knowledge fitting into a meaningful context.

Memory is better for material if we are able to meaningfully interpret that material. (Anderson, 2015,
p. 103)

Rote learning leads to fragmented knowledge (Holm, 2012, p. 44), where each result is memorised
independently and context is ignored. Empirical research shows that time spent on such passive rehearsal
does not improve memory. The depth of processing theory holds that what matters is that the material
is processed in a ‘deep and meaningful’ way (Anderson, 2015, p. 128). Mayer (2004) argues that this is

3 For a more complete introduction to the philosophy of mathematics, one can read e.g. Körner (1960).
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ON UNDERSTANDING IN MATHEMATICS 3

what ‘active learning’ has to mean. Behavioural activity, mindlessly carrying out procedures, does not
foster learning. Learning comes from cognitive activity, where the student meaningfully processes the
information. To the extent that deductive proofs are meaningful to the student, such in-depth processing
which supports memory can be achieved by working through the proof to validate it and convince oneself
that the result is true.

Another aspect of meaningful interpretation of new material is consolidation with prior knowledge.
This is central to constructivist learning theories. Knowledge in long-term memory are organised in so-
called cognitive schemata, that is mental models of the world. New material is learnt through assimilation
in, or, in the case of inconsistency, accommodation of, existing cognitive schemata.4 When the student
goes through the process of deduction, each new result is immediately linked to prior knowledge which
serves as premises. Thus they can construct a connected system of knowledge. To the extent that the
premises of the mathematical argument are mentally encoded as cognitive schemata, one should expect
the conclusion, that is the new knowledge, to be assimilated in these schemata.

Researchers of mathematics construct new knowledge through deductive logic. Admittedly, they do
not necessarily discover the results deductively, but the deductive proof is key to elevating a result from
conjecture to knowledge. One can imagine a learner constructing their knowledge in the same way, by
following the same deductive process, by cognitively processing each step of the proof in relation to
their own prior schemata. This approach has theoretical merit, but we have to ask if the students have the
background and the motivation truly to engage in the proof. Proofs too can be learnt by rote, and that is
not the same thing.

3. Induction versus Deduction
In the 1820s in Boston, Warren Colburn published a very successful textbook in arithmetics, based on
the ideas of the Swiss educational reformer Pestalozzi. In the preface, Colburn (1822) tells the story
of the boy without a genius. He has given up arithmetics because he could not do it, but yet he has no
problem calculating how many marbles he can buy for ha’penny or for tuppence, using his experience
that a penny buys a dozen. There may be many interpretations of the story, and it serves as illustration
for many pedagogical concepts found in more recent literature.

Playing marbles, and collecting marbles, is obviously important for this boy. Numbers and arithmetic
operations gain purpose and meaning when they are understood in terms of concrete objects which the
boy needs or wants. Through years of pre-school experience, he has built complex cognitive schemata
of marbles, pennies, and trade. Within these schemata, arithmetic operations have meaning, and through
lived experience and practice, they have been firmly embedded in his mind, not as propositional rules,
but as tacit know-how.5 This enables him to answer with great confidence the questions which relate to
his daily life.

In addition to experience, the boy may be motivated by the calculations of pennies and marbles.
Admittedly, motivation or intent is not as important to learning as one may think, but because motivated
students are inclined to process the material more deeply, it still has an important and positive, though
indirect, effect on learning (Anderson, 2015, p. 144). NFS Grundtvig put this in terms of love. No one

4 Details and elaboration can probably be found in any textbook on developmental psychology or learning theories.
The author has relied on Tetzchner (2012, p. 212ff), in Norwegian.
5 The distinction between knowing how and knowing that was famously discussed by Ryle (1945). Polanyi (1966)
introduced the concept of tacit knowing.
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4 H. G. SCHAATHUN

has ever lived to comprehend anything which they did not first hold dear, he said.6 Interestingly, Colburn
does not try to motivate the student at all. That is, he does not explain why the subject matter is worth
learning. Instead, like Søren Kierkegaard, he meets the students where they are, with problems which
they are likely to find motivating and soluble. According to Sotto (2007, p. 21), it is impossible to create
motivation. The best a teacher can hope for is to avoid impeding the motivation the student already has.
The default assumption should be that the student is motivated, why else would they attend the course?
Motivation is easily lost when the contents of the course does not appear to serve the student’s purpose of
attendance. Only by addressing that pre-existing motivation will teaching remain purposeful, motivating,
and meaningful.

Colburn called his method the inductive mode of instruction. In the conventional, deductive mode
of instruction, the teacher explains the rules of mathematics, and the students are expected to deduce
the answers to particular problems from the rules. Colburn, in contrast, gave them lots and lots of
concrete problems which could be solved more or less empirically. The general rules can then be
inferred inductively from the experience. This inductive method was affirmed empirically in a series
of psychological experiments by Gertrude Hendrix in the 1940s and 50s. She showed that students who
learn from examples, without verbalising any rules or procedures, are better equipped to transfer learning
to new problems (Hendrix, 1947). Even formulating the propositional rule before it is mastered has a
negative effect on the transfer ability. The students ought to learn to carry out the calculations and gain
experience with these calculations, before verbalising their knowledge.

In all of these accounts, from Colburn’s 200 years ago to Sotto’s in our own century, new understanding
depends on prior understanding, but on a kind of understanding which is very different from the
axiomatic and propositional knowledge that is assumed in a deductive approach to mathematics. Both
inductive and deductive learning are compatible with constructivist and depth of processing theories.
Both may lead to what we may call relational understanding; should ‘relational’ refer to internal relations
between mathematical concepts or external relations between mathematics and lived experience? More
importantly, either method will fail if the student lacks the appropriate background, but this does not
make the student unfit to learn from the other.

4. Different Understandings of Mathematics
Both deductive and inductive approaches to learning depend on prior understanding and meaning. New
material is interpreted in relation to what is already in the mind. When the new and existing knowledge are
compatible enough to facilitate such interpretation, we can call it meaningful. This meaning is subjective,
in the sense that each learner needs to find what is meaningful for them. Any meaning explained by
the teacher is worthless, if it cannot be accommodated or assimilated into the cognitive schemata held
by the learner. Depending on the student, meaning can derive from either spontaneous or scientific
concepts. Hence, learners with different experience and different motivation may not always be able
to learn mathematics in the same way. To understand the differences, let us consider what it means to be
a mathematician.

There are at least three distinct roles where distinct forms of mathematical competency are required.
Firstly, there is the pure mathematician, who explores mathematics in its abstract form, to reveal new
insights. This is a creative role, which requires deep understanding of mathematical concepts and their

6 Quoted by Korsgaard (2007) in Danish: ‘Den har aldrig levet, som klog på det er blevet, han først ej hadde kjær.’
Apologies for not being able to preserve the poetry in translation.

D
ow

nloaded from
 https://academ

ic.oup.com
/team

at/advance-article/doi/10.1093/team
at/hrac016/6712214 by N

orges Teknisk-N
aturvitenskapelige U

niversitet user on 05 O
ctober 2022



ON UNDERSTANDING IN MATHEMATICS 5

relations. In contrast, no understanding of the physical world or its relations to mathematics is required.
Secondly, there is the computer. Two generations ago, many engineers took their first job as a computer,
a highly esteemed profession requiring great skill and meticulous accuracy. To become a computer, one
would need to know a range of computational algorithms and be able to execute them correctly. The
computer is not concerned with the meaning of the problems and their solutions; interpretation belongs
to a different role.

Finally, there is the mathematical modeller, be they engineers, applied mathematicians, or other-
wise engaged in comprehending the physical world by means of mathematics. To the modeller, the
understanding of mathematics and the understanding of the physical world have to be one. They have
to see mathematical patterns and relationships in the world which they sense, and it is through these
mathematical patterns that they make sense of the physical world. Calculations can be left to computers,
whether human or digital, so only cursory knowledge of computation is required. Pure mathematics is
only useful insofar as it improves the understanding of the sense-world.

Mathematical modelling fills, to the engineer, a role similar to that of sketching to the architect. Both
engineers and architects are designers in the sense that they devise sequences of actions to change a
situation into a preferred one (Simon, 1969), and models and sketches are representations of the situation
in question. It is well known that designers see more in the sketch than what was designed in their making.
Schön & Wiggins (1992) relate this to Wittgenstein’s concept of seeing-as (Wittgenstein, 1986). The
representation is seen as the real thing. This idea can conceivably carry over to mathematical models.
When engineers make models, they are not interested in models for the sake of models. Models are the
representation in which they see the real physical artefact that they create. Mathematics is not sufficiently
understood (for the purpose of their profession) until they can see through the model, and see it as the
real thing.

The time for human computers is past, and machine learning is out of scope for this paper. Therefore
the analysis focuses on the other two roles. The pure mathematician and the modeller can have quite
different conceptions of what is meaningful in mathematics. To the modeller, meaning derives from the
physical world. Mathematics is meaningful when it explains the sense-world. The pure mathematician
generalises beyond the sense-world, and meaning has, at least in many cases, to derive from within the
abstract mathematics. Cognitive schemata are also likely to be different, as the modeller may incorporate
physical concepts in the schemata of mathematics. Mathematical concepts can be understood in terms
of the real-world phenomena which they explain. This is not the case in pure mathematics, where the
concepts need no correspondence in the sensed reality and axioms may be hypothetical only.

The distinction between the concrete sense-world and the abstract world of mathematical forms is
different from Vygotsky’s and Piaget’s dichotomy of spontaneous and scientific concepts. Most of
their studies considered children in the early stages of forming scientific concepts. When the students
reach higher education, they already have a rich repertoire of scientific concepts across a range of
subjects. While it may possibly suffice in primary school, to relate the scientific concepts to everyday or
spontaneous concepts, higher education will have to relate different scientific conceptualisations to each
other. Mathematical concepts, in particular, are not only scientific as opposed to spontaneous, but also
abstract as opposed to concrete scientific concepts. Applied mathematics relates not only to spontaneous
concepts, but at least as much to scientific concepts studied in other subjects.

The different roles mentioned are not necessarily exhaustive, but they suffice to illustrate the contrast
between the various approaches to learning and understanding under discussion. There is nothing to say
that a learner could not be both pure and applied mathematician, but neither is there reason to say that
they have to. A learner may find meaning in applied mathematics, and learn that, even if no meaning is
found in pure mathematics, and vice versa. Requiring engineering students to construct mathematical
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6 H. G. SCHAATHUN

knowledge in terms of pure mathematics is neither necessary nor sufficient. What is necessary is a
knowledge construction which incorporates mathematics with the physical reality studied in engineering.
As we argued in Section 3, constructivist learning in mathematics can build just as well on real world
experience as it can on axiomatic theory. Students reading mathematics as a support subject are much
more likely to find meaning in real world problems.

5. Hermeneutic Understanding
In spite of the differences, the views and theories reviewed so far all have one thing in common. They see
understanding as the acquisition of knowledge, and the debate focuses on what is acquired and how to
acquire it. These views are also well known in pedagogical literature. Hermeneutic philosophy offers a
more radical shift, seeing understanding not as the acquisition of knowledge, but as a transformation of
the learner (knower) (Kerdeman, 1998). While there is a rich literature on hermeneutics, it rarely features
in the context of mathematics education, let alone engineering mathematics.

Modern hermeneutics is commonly attributed to Gadamer (2004), building on Heidegger (with whom
he had been a student). To them, understanding is existential, and an essential part of being human.
Gallagher (1992, p. 42) writes:

For Heidegger, understanding is essentially a way of being, the way of being which belongs to
human existence . . . . Being-in-the-world is not primarily a cognitive relation between subject and
object, although being-in-the-world is a way of existing which allows there to be cognition. Human
existence discloses the world, or is in-the-world by way of an understanding that functions on all
levels of behavior, conscious or unconscious. Thus, Heidegger, contends, understanding is “a basic
determination of [human] existence itself”

At first sight, this is just abstract philosophy which says very little about real students and mathematics,
so we need to dig a little deeper. What is this being-in-the-world that the students aspire to?

The purpose of engineering is to understand, manipulate, and design technical artefacts. Being an
engineer is thus a relationship with these artefacts. Mathematics is not something to be understood,
but a way to understand artefacts. However, the mathematical understanding does not replace concrete
understanding. When the engineer proposes a change to the artefact, they change at the same time the
mathematical model and the real system. The change can never be fully appreciated in the mathematical
model alone, because the intention is always a function to real users in the real world. The engineer has
to see the real artefact in the model and vice versa. In this sense, understanding is transformational. It
changes how the student sees the sense-world.

The significance of the unconscious, as mentioned in Gallagher’s quote above, can be seen when
we look at the problem solving models of Schön (1983) and Simon (1972)7. Whether we consider
abstract problems of mathematics or concrete problems from the real world, problem solving is an
iterative process of trial and error. Moves are generated (discovered) and then tested (evaluated). Move
testing ought to be rigorous, using the slow and methodological reasoning that is well understood in
mathematics. Move generation, in contrast, is often intuitive. Except for the rare, obvious cases where
the solution is obvious, it has to be quick, to give time to consider a large number of ideas. As Boaler
(2015) writes, it is necessary to make a large number of errors on the way. In a hermeneutic sense,

7 See also Schaathun (2022) for a recent comparison of Simon’s and Schön’s models.
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ON UNDERSTANDING IN MATHEMATICS 7

mathematical understanding guides and changes the student’s intuition, and it enables new ways to
generate spontaneous ideas.

Intuition, as we use the word here, involves no magic. It corresponds to a fast mode of thinking, also
known as System 1. Kahneman (2011), in his book Thinking, fast and slow, explains how our two modes
of thinking work. System 2 is rigorous and reliable, but slow. System 1 is subconscious and fallible, but
critically important because it is fast and sufficiently accurate often enough. Understanding which only
operates in System 2, is not understanding in the hermeneutic sense.

It is well-known that even high-performing students are slow to learn to solve non-routine problems
in mathematics (e.g. Selden et al., 2000). One plausible explanation for this is found in the common
misconceptions documented by Schoenfeld (1988). Students are led to believe that ‘one succeeds in
school by performing the tasks, to the letter, as described by the teacher’. This false belief encourages
procedural understanding, learning well-defined procedures for well-defined problems. Facing a problem
not falling into any of the known categories, the student is left without a strategy. Either they guess or
they give up, and they make no attempt to understand the problem.

Real world problems are rarely solved by knowing the solution. Instead the problem has to be
interpreted, and sometimes transformed into a different problem. The iterative problem solving process is
not only aiming to find the solution. Often the main task is to make sense of the problem. Understanding
is not (just) what one knows about mathematics, but (also) what one does mathematically in relation to a
new problem. Learning and problem solving are very similar activities, in that new concepts are related
to old concepts in order to understand. In hermeneutic theory understanding is is not a deliberate and
methodological effort, but rather the natural state of the human mind (Gadamer, 2004; Kerdeman, 1998).
We cannot help but engage in understanding of the world wherein we live. As Davis (1992) puts it in the
context of mathematics education,

Students are determined to understand, and they create their own ways of understanding.

It may be reasonable to assume that hermeneutic understanding entails conceptual understanding and
constructivist learning, but they are not the same. The student who writes an excellent analysis relating
mathematical concepts may demonstrate advanced conceptual or relational understanding without any
evidence of subconscious behaviour, neither the subconscious mastery of known concepts, nor the
activity of making sense of new problems. Thus, the hermeneutic understanding of ‘understanding’
brings new ideas into mathematics education.

6. Learning Mathematics for Understanding
Having seen what hermeneutic understanding may mean in mathematics, let’s turn to the question
of how it can be promoted. Two concepts will be central to this discussion, namely freedom and
imitation.

If we accept that understanding is the result of a natural urge, rather than a methodological effort,
it follows that the student needs the freedom to pursue their urges. Freedom to learn was the famous
catch-phrase of Carl Rogers in the 1960s, and he pointed out the paradox of school discipline (Rogers &
Freiberg, 1994). In working life, one generally succeeds as unique individuals, through original ideas and
innovation. Many taught courses value instead the students who do exactly as they are told, and top grades
are given for solving the same problems as everybody else, using standardised solution techniques. While
this could be a useful skill in the role of computer, it hardly promotes the understanding and creativity
needed for professional problem solving.
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8 H. G. SCHAATHUN

Hermeneutic philosophy sees education both as a free process and as a pursuit of goals put forth by
others (Gustavsson, 1996; Kemp, 2006). Whitehead (1929) too advocates a balance between freedom
and discipline, and Vygotsky (2012, p. 114) writes,

to introduce a new concept means just to start the process of its appropriation. Deliberate introduction
of new concepts does not preclude spontaneous development, but rather charts the new paths for it.

The teacher may point the direction, but the student has to walk down the path for themself. Appropriation
is personal, and cannot be instructed.

Many mathematics textbooks and exam papers are full of problems with a well-defined ‘right answer’.
These problems encourage the students to copy template solutions, and thus reinforce the misconceptions
identified by Schoenfeld (1988). Schön (1987) and Kemp (2006) cast learning instead as creative
imitation,8 as opposed to copying with neither creativity nor originality. Truly to imitate the teacher, the
student would look, not at the teacher’s solution, but at their approach to finding the solution. Learning
problem solving, the goal is not to recall the teacher’s solution, which applied to some past problem.
Instead the learner would imagine what the teacher might have done in relation to the new problem at
hand. This is the creative part. The learner has to interpret the teacher’s example in their own situation,
in order to make sense of their own problems. Again we see the need for freedom. To solve genuine real
world problems, the student has to free themself from rigid obedience to the teacher’s example, or as
Vygotsky (2012, p. 112) puts it

developmental progress reveals itself [...] in the achievement of a certain freedom of thinking in
scientific concepts.

Understanding of mathematics has to entail this freedom of thinking in mathematical terms.
Creative imitation gives an alternative way to think about examples. Textbooks in mathematics often

use examples to illustrate a procedure which has already been explained, giving the correct solution only.
However, the subconscious behaviour needed in move generation can hardly be explained, and to solve
real problems the student has to learn to make, detect, and correct mistakes. Thus they need examples
of genuine problem solving in the context of discovery, including all the failed attempts, rather than
polished arguments from the context of justification.

7. Teaching Engineering Mathematics
In the last two sections we have argued that understanding of mathematics cannot be separated from
understanding of the real world, at least not for students of engineering or other professions that use
mathematics as a tool. This raises the question if there is still scope, in an engineering degree, to separate
mathematics modules from engineering modules. There are several reasons why such modularisation is
challenging.

The first issue is motivation. Many authors have acknowledged the students’ determination to
understand, but the determination does not always extend unconditionally to anything the teacher might
present. It is fair to assume that engineering students are determined to understand engineering, and
at some point that will inevitably involve a lot of mathematics. However, mathematics may be both
meaningless and demotivating, until it appears in the lived experience of engineering. Toy examples

8 Kemp uses the Greek word mimesis for imitation, as known from Aristotle’s Poetics, and he further relates
education to the three-fold mimesis of Ricœur (1984).
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ON UNDERSTANDING IN MATHEMATICS 9

illustrating relevance may not suffice. Motivation is a feeling and relevance must be experienced, not
merely known and explained. Genuine engineering problems are more likely to provoke the deep and
meaningful processing that leads to learning. An example which is passively read does not have the
same learning effect, no matter how relevant it might be. Thus there are two insights to take from Søren
Kierkegaard’s oft-quoted secret of helping:

If One Is Truly to Succeed in Leading a Person to a Specific Place, One Must First and Foremost Take
Care to Find Him Where He is and Begin There. This is the secret in the entire art of helping.9

The most obvious insight is that we need to find where the student is in terms of background knowledge,
upon which they can build. Additionally, the educator needs to find where the student is in terms of
motivation. Where are they headed? What kind of problems would engage them in deep and meaningful
processing?

The second issue is the fact that learning is not a linear course, building brick upon brick. New concepts
are not learnt once and for all, but reinterpreted over and over again, as they are encountered in new
contexts. This is known as the hermeneutic circle (cf. Gadamer, 2004). The path from first encounter to
appropriation of a concept is ‘long and complex’, writes Vygotsky (2012, p. 114), quoting Tolstoy

When he has heard or read an unknown word in an otherwise comprehensible sentence, and another
time in another sentence, he begins to have a hazy idea of the new concept; sooner or later he will...
feel the need to use that word—and once he has used it, the word and the concept are his.

Luntley (2018) puts this in terms of play. By playing with partial concepts and placeholders, more
complete conceptualisations are gradually developed. It is rather optimistic to expect students to
complete this cycle and understand new mathematical concepts within a one-semester maths module.
Consequently, it is unfair to examine them in mathematics early in the degree programme.

A third point is made by Whitehead. The separation of mathematics from the application domain is
often based on the idea that the mind is an instrument, which has to be sharpened before it is used.
Whitehead (1929, p. 18) contends, in contrast, that

The mind is never passive [...] You cannot postpone its life until you have sharpened it.

This is in line with Gadamer (2004). The mind will always engage in understanding, because this is the
natural state of its life. As teachers, we have to give the students room to live. One may have sympathy
with those mathematics lecturers who see their role in sharpening the students, referring application to
a different department. Yet, one has to realise that such an approach is needlessly hard on the student.
As is learnt from cognitive psychology, memory is much improved by meaningful interpretation of the
material, and interpretation and meaning depend on context. For many students, when mathematics
is separated from application, it is also separated from meaning, and dedicated mathematics modules
become unnecessarily hard.

8. Conclusion
Exploring different understandings of understanding, we do not aim to prescribe any particular method
for teaching. Every method may be right for the right kind of student. However, few educators have the

9 Translation quoted by Oscar Tranvåg in an interview published by the University of Bergen at https://www.uib.
no/en/news/103133/secret-behind-art-helping.
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privilege to find the ideal students for their own conception of the subject. Most of us are expected to
help the students we happen to have to get the education they need. This means that each and every one
of us needs to reflect upon what mathematics is to our own students, and not only meet them where they
are but also see where they are headed. It is the student who is at the centre of education, not the method
and not the subject.

We have focused on students of engineering. Mathematics is meaningful when it changes how
the students think about engineering not only consciously but also subconsciously or intuitively, i.e.
when it leads to the transformational understanding advocated by hermeneutic philosophy. For some
engineering students this may be the only meaning mathematics ever has. We should stress that the
meaning is not found in computation, for which we have computers, but in the relational understanding
of mathematical models and their relation to the sense world. The findings are likely transferable to other
degree programmes where mathematics has a supporting role, but this is for the lecturers within each
degree programme to decide.

Understanding remains a protean concept, and we may have to accept that understanding means
different things to different learners. If we insist on an instrumental definition, we could consider this: A
learner has understood a concept, when and only when they can recognise and apply it, intuitively and
subconsciously, as well as consciously, in novel contexts and non-routine problems within their own life
and vocation. To be more formal, ‘intuitively and subconsciously’ refers to our fast mode of thinking,
the so-called System 1 (Kahneman, 2011).

There are a couple of important consequences of this analysis. The students need the freedom to
interpret new material in their own situation. Copying of template solutions has to be replaced by creative
imitation of solution processes. Again this is an interpretative endeavour. Understanding is subconscious
as well as conscious, and subconscious thinking cannot be explained.
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