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ABSTRACT Future wireless networks (5G and beyond), also known as Next Generation or NextG, are the
vision of forthcoming cellular systems, connecting billions of devices and people together. In the last decades,
cellular networks have dramatically grown with advanced telecommunication technologies for high-speed
data transmission, high cell capacity, and low latency. The main goal of those technologies is to support a
wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous
and flying vehicles, smart cities, smart grids, advanced manufacturing, and many more. The key motivation
of NextG networks is to meet the high demand for those applications by improving and optimizing network
functions. Artificial Intelligence (AI) has a high potential to achieve these requirements by being integrated
into applications throughout all network layers. However, the security concerns on network functions of
NextG using Al-based models, i.e., model poisoning, have not been investigated deeply. It is crucial to
protect the next-generation cellular networks against cybersecurity threats, especially adversarial attacks.
Therefore, it needs to design efficient mitigation techniques and secure solutions for NextG networks using
Al-based methods. This paper proposes a comprehensive vulnerability analysis of deep learning (DL)-based
channel estimation models trained with the dataset obtained from MATLAB’s 5G toolbox for adversarial
attacks and defensive distillation-based mitigation methods. The adversarial attacks produce faulty results by
manipulating trained DL-based models for channel estimation in NextG networks while mitigation methods
can make models more robust against adversarial attacks. This paper also presents the performance of the
proposed defensive distillation mitigation method for each adversarial attack. The results indicate that the
proposed mitigation method can defend the DL-based channel estimation models against adversarial attacks
in NextG networks.

INDEX TERMS Trustworthy Al, security, next-generation networks, adversarial machine learning, model
poisoning, channel estimation.

I. INTRODUCTION

A. PREAMBLE

In the last decade, the next-generation networks deployed
on cellular networks(i.e., 5G and beyond) are undergoing
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a major revolution along with advanced telecommunica-
tion technologies for high-speed data transmission, high cell
capacity, and low latency. Each network has its own focus,
i.e., 5G: deliver higher multi-Gbps peak data speeds, ultra-
low latency, 6G: embed artificial intelligence. NextG net-
works require a high-cost investment and research to meet
infrastructure, computing, security, and privacy requirements.
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These technologies will enable the next data communications
and networking era by connecting everyone to a world in
which everything is connected. The main goal of those tech-
nologies is to support a wide range of new applications, such
as Augmented reality (AR), Virtual reality (VR), metaverse,
telehealth, education, autonomous and flying vehicles, smart
cities, and smart grids, and advanced manufacturing. They
will create new opportunities for industry to improve visi-
bility, enhance operational efficiency, and accelerate automa-
tion [1]. It is expected that next-generation networks must
simultaneously provide high data speed, ultra-low latency,
and high reliability to support services for those applica-
tions [2]. Artificial Intelligence (AI) plays a crucial role in
achieving these requirements by being integrated into appli-
cations throughout all levels of the network. Al is one of the
key drivers for next-generation wireless networks to improve
network applications’ efficiency, latency, and reliability [3].
Al is also applied to channel estimation applications, which
is one of the fundamental prerequisites in wireless networks.
The traditional channel estimation methods are extremely
complex and low accurate due to the multi-dimensional
data structure and the nonlinear characteristics of the chan-
nel. Therefore, DL-based channel estimation models have
been used in next-generation networks to address the tradi-
tional channel estimation. However, DL-based channel esti-
mation models can be vulnerable to adversarial machine
learning (ML) attacks. A secure scheme is crucial for
DL-based channel estimation models used in next-generation
networks and security and vulnerability issues. DL-based
models in the next-generation wireless communication
systems should be evaluated before deploying them to
the production environments in terms of vulnerability, risk
assessment, and security threat.

B. RELATED WORKS

The main goal of NextG networks is to provide very high data
rates (Tbps) and extremely low latency (less than millisec-
onds) with a high cell capacity (10 million devices for every
square kilometer) [4], [5]. The key of the next-generation
networks is to use new technologies, such as millimeter wave
(mmWave), massive multiple-input multiple-output (massive
MIMO), and AI. mmWave is essential for those networks,
which provides a high capacity, throughput, and very-low
latency in frequency bands above 24 GHz. Massive MIMO
is an advanced version of MIMO, which includes a group
of antennas at both the transmitter and receiver sides. This
method provides better throughput and spectrum efficiency
in wireless communication. Al-based algorithms have been
used to improve network performance and efficiency. This
study focuses on DL-based channel estimation models in
next-generation wireless networks and their vulnerabilities.
In the literature, these topics have already been studied with
and without vulnerability concerns [6], [7], [8], [9], [10], [11].
The authors in [6] reviewed Al-empowered wireless net-
works and the role of AI in deploying and optimiz-
ing next-generation architectures in terms of operations.
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It indicated that Al-based models have already been used to
train the transmitter, receiver, and channel as an auto-encoder.
This allows the transmitter and receiver to be optimized mutu-
ally. The study also indicated that next-generation networks
would differ from current ones, such as network infrastruc-
tures, wireless access technologies, computing, application
types, etc. The authors in [12] reviewed DL-based solutions in
next-generation networks, focusing on physical layer appli-
cations of cellular networks from massive MIMO, recon-
figurable intelligent surface (RIS), and multi-carrier (MC)
waveform. It also emphasized the Al-based solutions’ con-
tribution to improving network performance. The authors
in [13] and [14] proposed a robust channel estimation frame-
work using the fast and flexible denoising convolutional
neural network (FFDNet) and deep convolutional neural net-
works (CNNs) for mmWave MIMO. Both proposed methods
can deal with a wide range of signal-to-noise ratio (SNR)
levels with a flexible noise level map and offer better perfor-
mance for channel estimators in terms of accuracy. DL-based
algorithms significantly improve the overall system perfor-
mance for next-generation wireless networks. Fortunately,
several research groups in the wireless research community
study the main potential security issue related to Al-based
algorithms, i.e., model poisoning [15], [16]. The authors
in [17] and [18] provided a comprehensive review of NextG
wireless networks in terms of opportunities and security and
privacy challenges, as well as proposed solutions for NextG
networks. Several studies also present robust frameworks
focusing on detecting adversarial attacks accurately. The
authors in [19] proposed a framework to detect adversarial
attacks for industrial artificial intelligence systems (IAISs),
called DeSVig, i.e., decentralized swift vigilance framework.
According to the results, the proposed framework can detect
adversarial attacks, such as DeepFool and FGSM, with high
accuracy and low delay. The authors also stated that the
DeSVig framework provides better performance than current
state-of-art defense approaches in terms of robustness, effi-
ciency, and scalability based on experimental results.

C. PURPOSE AND CONTRIBUTIONS

The channel estimation is one of the most challenging topics
in 5G and beyond networks due to the difficulties of find-
ing the correlation between many resources, system parame-
ters, and dynamic communication channel characteristics by
using existing techniques. Therefore, sophisticated Al-based
algorithms can help to model the highly nonlinear correla-
tions and estimate the channel characteristics [20]. In our
recent papers [21] and [22], adversarial attacks and mitigation
methods have been investigated along with the proposed
framework for mmWave beamforming prediction models in
next-generation networks. This study provides a comprehen-
sive vulnerability analysis of deep learning (DL)-based chan-
nel estimation models trained with the dataset obtained from
MATLAB’s 5G toolbox for adversarial attacks and defen-
sive distillation-based mitigation methods. It also imple-
ments widely used adversarial attacks from the Fast Gradient
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Sign Method (FGSM), Basic Iterative Method (BIM), Pro-
jected Gradient Descent (PGD), Momentum Iterative Method
(MIM), to Carlini & Wagner (C&W) as well as a defensive
distillation-based mitigation method for DL-based models.
The results showed that DL-based models used in these net-
works are vulnerable to adversarial attacks, while the models
can be more secure against adversarial attacks through the
proposed mitigation method. The source code is available
from GitHub.!

The scope of this study is limited to one of the 5G physi-
cal layer applications, i.e., DL-based channel estimation, its
vulnerability analysis under selected adversarial attacks, and
the proposed defensive distillation mitigation method. There
are also other attack types, like the CW attack, which com-
putes intensively and requires more iterations than traditional
methods. In this study, we use a less compute-intensive and
more efficient way to create adversarial examples.

Il. PRELIMINARIES

This section presents a brief overview of the channel estima-
tion and the adversarial ML attacks, such as FGSM, BIM,
PGD, MIM, and C&W, along with defensive distillation-
based mitigation. Dataset description and scenarios are also
given with the selected performance metrics to evaluate the
models’ performance under normal and attack conditions.

A. CHANNEL ESTIMATION FOR COMMUNICATION
SYSTEM

In a wireless communication system, the channel charac-
teristic presents the communication link properties between
transmitter and receiver. It is also known as channel state
information (CSI). The signal is transmitted through a com-
munication channel. i.e., medium, the transmitted signal is
received as a distortion and noise added. It is needed to decode
the received signal and remove the unwanted signal, i.e.,
distortion and noise added by the channel, from the received
signal. To identify the channel characteristics is the first
process to achieve that, which is called channel estimation
process. The received signal is attenuated by a factor sy and
delayed by a specific time 7. i depends on the propagation
medium, frequency, Tx/Rx gains, while 79 depends on the
speed of an electromagnetic wave in the medium.

Itis assumed that x(¢) presents the transmitted signal, while
¥(¢) presents the received signal. When x(¢) is transmitted
through a communication channel, i.e., air, the signal is dis-
torted, and noise is added to the transmitted signal. As aresult,
the received signal y(t) is not the same as the transmitted
signal x(7). Received signal y(¢) is shown as:

Y(t) = ho *x(1 — 70) ey

However, the received signal comprises several reflected
and scattered paths, i.e., multiple paths, with different
attenuation and delay. The composed received signal is

1 https://github.com/ocatak/6g-channel-estimation-dataset
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shown as:

1
YO = hxxt—1) )

=0

where [ is the specific path/tap at a time.

The mobility causes Doppler frequency shift, i.e., the
change in the wavelength or frequency of the waves as to
the observer being in motion with respect to the wave source.
Doppler effect plays an important role in telecommunications
and computations of signal path loss and fading due to multi-
path propagation. In addition, the channel characteristics, i.e.,
hg an 19, can also change over time due to the mobility of the
one of communication sides, and shown as h; and rl’. The
channel can be characterized by a number of paths/taps,
the dependence of channel coefficients, and delay in time.
The final received signal with the Doppler effect can be
shown at a specific time as:

l
W6y =) hpxx(t — 1) 3)
=0

The channel estimation plays an important part in wireless
communications for increasing the capacity and the over-
all system performance. There is a high demand for new
wireless networks, higher data rates, better quality of ser-
vice, and higher network capacity. Therefore, new promis-
ing technologies are needed to meet these requirements.
A migration from Single Input Single Output (SISO) to Mul-
tiple Input Multiple Output (MIMO) antenna technology has
started with NextG networks. The channel estimation is the
core of next-generation communication systems, i.e., 5G and
beyond, performed in different ways for SISO and MIMO
approaches at the receiver side. The channel estimation
algorithm can be classified into three main categories, i.e.,
blind channel estimation, semi-blind channel estimation, and
training-based estimation [23]. The training-based estimation
among them is widely used in communication systems. The
general approach of the channel estimation is to insert known
reference symbols, i.e., pilots, into the transmitted signal and
then interpolate the channel response based on these known
pilot symbols. The process works in the following steps:
(1) develop a mathematical model to correlate the transmitted
and received signals using channel characteristics, (2) embed
a predefined signal, i.e., pilot signal, into the transmitted
signal, (3) transmit the signal through the channel, (4) receive
transmitted signal as a distorted and/or noise added through
the channel, (5) decode the pilot signal from the received
signal, (6) compare the transmitted and the received signals,
and (7) find the correlation between the transmitted and the
received signals.

There have been many efforts regarding channel estima-
tion algorithms using different approaches in the literature.
However, it is still a challenging problem due to the com-
putational complexity degree of algorithms and an enormous
amount of mathematical operations, and channel estimation
accuracy at low. The equalization method is typically used
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to reduce the complexity and render the frequency response
at the receiver side [24]. With the introducing the machine
learning methods to 5G and beyond communication systems,
the performance of the channel estimation algorithm has
been improved in terms of the degree of low computational
complexity and channel estimation accuracy compared to
conventional channel estimation algorithms [25]. In addition,
the nature of deep learning-based algorithms can also save a
significant computational power for complex analysis needed
in channel estimation algorithms [26]. However, it can still
be questionable of the feasibility of using machine learning
methods in channel estimation. The study [27] presented
several deep learning-based channel estimation algorithms,
i.e., fully-connected deep neural network (FDNN), Con-
volutional Neural Network (CNN), and bidirectional long
short-term memory (bi-LSTM), with different scenarios of
fading multi-path channel models for 5G networks. Accord-
ing to the results, three presented deep learning-based algo-
rithms reduced the channel estimation error and bit error
ratio and were robust to the changes in the Doppler fre-
quency. However, bi-LSTM among them provided the most
significant reduction in channel estimation error. The authors
in [28] also proposed a CNN combined with a projected
gradient descent algorithm to demonstrate the feasibility of
using machine learning methods in channel estimation.

A channel model is a representation of the channel that a
transmitted signal follows to the receiver. In the simulation
environment, the channel model is typically classified into
two categories, i.e, clustered delay line (CDL) model and
tapped delay line (TDL) channel model. A CDL is used
to model the channel when the received signal consists of
multiple delayed clusters. Each cluster contains multipath
components with the same delay but slight variations for
angles of departure and arrival, i.e., MIMO. On the other
hand, a TDL model is defined as simplified evaluations of
CDL, i.e., non-MIMO evaluations or SISO. These channel
models are defined well in the technical report released
by 3GPP, i.e., the 3rd Generation Partnership Project [29].
According to this report, CDL/TDL models are defined in the
frequency range from 0.5 GHz to 100 GHz with a maximum
bandwidth of 2 GHz. For CDL/TDL models, five different
channel profile models are constructed, i.e., A, B, and C for
non-line-of-sight (NLOS) propagation, while D and E for
line-of-sight (LOS) propagation. Power, delay and angular
information are used to define CDL models, while power,
delay, and Doppler spectrum information are used for TDL
models in the technical report released by 3GPP.

B. CONVOLUTIONAL NEURAL NETWORKS

The convolutional neural network (CNN) is a neural network
that has shown to be very successful for image recogni-
tion [30], [31], [32]. Compared to the fully-connected neural
network, CNN can extract all the information with a lower
number of parameters. The main idea of CNN is that we
can locate the structure of an image by the convolution
operation. Suppose the image x is a two-dimensional matrix.
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The convolution operation between the image x and a filter W
is defined by

W H
y=Wxx= Z Z Wi jXisj—s, 4)

i=1 j=1

where W and H are the width and height of the image x,
respectively, and s is the number of strides, which is the
distance between two adjacent positions.

The CNN is composed of several types of layers. The
convolution layer is the most critical layer of the CNN,
consisting of several filters. Each filter extracts a particu-
lar type of feature from an input image. The pooling layer
is a down-sampling layer, which reduces the size of the
convolution output. Each pooling operation replaces several
adjacent values with the maximal value or the mean value.
The fully-connected layer is a standard neural network layer
that combines all the features extracted by the convolution
layer. The softmax layer is a classification layer to classify
the input data.

The input image is a two-dimensional matrix. The filter
in the convolution layer extracts a particular type of feature
from the input image. For example, the leftmost filter extracts
horizontal lines, and the middle filter extracts diagonal lines.
The output of the convolution layer is then sent to the pooling
layer, which reduces the size of the data. The output of the
pooling layer is then sent to the fully-connected layer, which
combines all the features extracted by the convolution layer.
The output of the fully-connected layer is then sent to the
softmax layer, which classifies the data.

C. ADVERSARIAL ATTACKS

ML-based models are trained to automatically learn the
underlying patterns and correlations in data by using algo-
rithms. Once an ML-based model is trained, it can be used
to predict the patterns in new data. The accuracy of the
trained model is essential to achieving a high performance,
which can also be called as a generalization. However, the
trained model can be manipulated by adding noise to the data,
i.e., targeted and non-targeted adversarial ML attacks. The
adversarial ML attacks are generated by adding a perturba-
tion to a legitimate data point, i.e., an adversarial example
generated craftily input with a slight difference, to fool the
ML-based models. In such attacks, the attacker does not
change training instances and tries to make some small input
instances perturbations to make this new input instance safe
in the model’s inference period. The existing defenses and
adversarial attacks for images can be applied to attack and
defend on other fields [33], [34], [35]. The cleverly-designed
adversarial examples can fool the deep neural networks with
high success rates on the test images. The adversarial exam-
ples can also be transferred from one model to another model.
There are various kinds of adversarial ML attacks, such as
evasion attacks, data poisoning attacks, and model inversion
attacks [36]. An evasion attack aims to cause the ML-based
models to classify improperly the adversarial examples as
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legitimate data points, i.e., targeted and non-targeted eva-
sion attacks. Targeted attacks aim to force the models to
classify the adversarial example as a specific target class.
Non-targeted attacks aim to push the models to classify the
adversarial example as any class other than the ground truth.
Data poisoning aims to generate malicious data points to
train the ML-based models to find the desired output. It can
be applied to the training data, which causes the ML-based
models to produce the desired outcome. Model inversion aims
to generate new data points close to the original data points
to find the sensitive information of the specific data points.
In this study, we focus on this kind of adversarial attack.
Taking channel estimation CNN model as an example, here,
we use h(x, w) : R™" —» R™ " to denote the channel
estimation CNN model, where w is the parameters of the
channel estimation CNN model, and x is the input data.
A targeted adversarial attack aims to generate an adversarial
example x' from a legitimate example x to fool the chan-
nel estimation CNN model to produce the desired output.
The attacker uses the lowest possible budget to corrupt the
inputs, aiming to increase the distance (i.e., MSE) between
the model’s prediction and the real channel. Therefore o is
calculated as

o* = argmax L(w,X + 0,y) 5)

‘U‘pff

where y € R™*" is the label (i.e., channel information), and
p is the norm value and it can be 0, 1, 2, co.

Figure 1 shows a typical adversarial ML-based adversarial
sample generation procedure.

These adversarial attack types are given as follows.

1) FGSM
Fast Gradient Sign Method (FGSM): FGSM is one of the
most popular and simplest approaches to constructing adver-
sarial examples. It is called one-step gradient-based attacks.
It is used to compute the gradient of the loss function with
respect to the input, X, and then the attacker creates the
adversarial example by adding the sign of the gradient to the
input data. It was first introduced by Goodfellow er al. [37].
The gradient sign is computed using the backpropagation
algorithm. The steps are summarized as follows:

o Compute the gradient of loss function, Vxl(X, y)

o Add the gradient to the input data, X5y = X + € X

sign(Vxl)

where € is the budget. FGSM attack has been used in [38] to
attack channel estimation models.

2) BIM

Basic Iterative Method (BIM): BIM is one of the most popular
attacks, which is called an iterative gradient-based attack.
This attack is derived from the FGSM attack [39]. It is used
to compute the gradient of the loss function with respect
to the input, x, and then the attacker creates the adversarial
example by adding the sign of the gradient to the input data.
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The gradient sign is computed using the backpropagation
algorithm. The steps are summarized as follows:

« Initialize the adversarial example as X4, = X

o Iterate i times, where i =0,1,2,3,..., N

o Compute the gradient of loss function, Vx€(X44y, y)

o Add the gradient to the input data, X4, = Xgqv + € X

sign(Vgl)

where € is the budget, and N is the number of iterations. The
BIM attack has been used in [38] to attack channel estimation
models.

3) PGD
PGD is one of the most popular and powerful attacks, which is
called gradient-based attacks [40], [41]. It is used to compute
the gradient of the loss function with respect to the input, X,
and then the attacker creates the adversarial example by
adding the sign of the gradient to the input data. The gradient
sign is computed using the backpropagation algorithm. The
steps are summarized as follows:
« Initialize the adversarial example as X4, = X
o Iterate i times, where i =0,1,2,3,...,N
o Compute the gradient of loss function, Vxf(X4ay, ¥)
e Add random noise to the gradient, Vel (Xady, y =
VXZ(Xadvv Y) + U(G)
o Add the gradient to the input data, X,y = Xgqy + @ X
sign(@xé)
where € is the budget, N is the number of iterations, and « is
the step size. PGD can generate stronger attacks than FGSM
and BIM.

4) MIM

Momentum Iterative Method (MIM): MIM is a variant of
the BIM adversarial attack, introducing momentum term and
integrating it into iterative attacks [42]. It is used to compute
the gradient of the loss function with respect to the input, x,
and then the attacker creates the adversarial example by
adding the sign of the gradient to the input data. The gradient
sign is computed using the backpropagation algorithm. The
steps are summarized as follows:

« Initialize the adversarial example X5, = X and the
momentum, p = 0
o Iterate i times, where i =0,1,2,3,...,N

o Compute the gradient of loss function, Vx€(X4ay, ¥)
« Update the momentum, u = p + g X Vxl(Xady, Y)
e Add random noise to the gradient, @xﬁ(xadv, y) =
Vxl(Xqay, ¥) + U(€)
o Add the gradient to the input data, X,qy = Xuqp + & X
sign(@xﬂ)
where € is the budget, N is the number of iterations, 7 is the
momentum rate, and « is the step size.

5) C&W

The C&W attack was proposed as a targeted evasion attack
by Carlini and Wagner [43]. It is based on the idea of a zero-
sum game. In a zero-sum game, the total amount of value
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FIGURE 1. Typical adversarial ML-based adversarial sample generation.

in the game is fixed. The winner of the game gets all of
the value, and the loser gets nothing. The C&W method is
an iterative attack that constructs adversarial examples by
approximately solving the minimization problem ming(x, x”)
such that f(x") = ¢’ for the attacker-chosen target ', where
d(-) is an appropriate distance metric. The optimization prob-
lem is shown in the following equation:

minye xEyeylf (x) — y1*

where x € X is a training example, y € ) is the target output,
and f(x) is the function to be estimated. The optimization is
solved for a set of points x” that are close to the target ¢/,
such that the function f(x) — y is maximized for all y. This
produces a set of adversarial examples x’ that are likely to
fool the defender model.

The most important difference between C&W and other
adversarial ML attacks is that C&W does not require
an € value for the optimization. Thatis, C&W does not require
that the attacker’s goal be to find a set of points that are
close to the target but instead find a set of points that are
guaranteed to fool the defender. This makes C&W a more
powerful attack.

D. DEFENSIVE DISTILLATION

Knowledge distillation was previously introduced by
Hinton et al. [44] to compress the knowledge of a large,
densely connected neural network (the teacher) into a smaller,
sparsely connected neural network (the student). It was shown
that the student was able to reach a similar performance as the
teacher [44]. In the initial work, the knowledge distillation
was used to solve a classification problem, which is also
called the teacher-student framework. Papernot et al. [45]
proposed this technique for the adversarial ML defense
and demonstrated that it could make the models more
robust against adversarial examples. The main contribution
of this work was to introduce the knowledge distillation
to the adversarial ML defense. Defensive distillation is an
ML framework that can enhance the robustness of the model
for classification problems. The first step is to train the
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teacher model with a high temperature (7') parameter to
soften the softmax probability outputs of the DL. model. This
can be done as follows:

/T

er'l: 1 e“/T ©

psoﬁmax(zs T)=
where n is the number of labels and z is the output of the
last layer of the DL model, i.e., z = W,, - a,_1 + b,. Here,
W, is the weight matrix, and a,_; is the activation of the
last layer. In the second step, the softmax probability outputs
train the student model with a lower temperature parameter.
The objective function is defined as

N n
1
Lstudent(T) = 17 Z Z Yij - Ingsoﬁmax(Zijv T)

i=1 j=1
esilT
= —ZZyU e O
i=1 j=1 i=1

where N is the number of training samples, y;; is the training
label, and z;; is the logit. The objective function for the
training the teacher model is defined as

- Z ZyU IOg

11]1

eZ’!/ T
Eteacher(T) eZU/T (8)
Defensive distillation is a method that can enhance the robust-
ness of the models, which are trained by the soft targets
provided by the teacher model. By minimizing the objective
functions, the model can be trained. This method helps build
robust models against adversarial examples [45]. Figure 2
shows the overall steps for this technique. According to the
figure, the teacher model is typically an extensive deep neural
network, while the student model is usually a small and
shallow neural network. The knowledge distillation process
consists of two steps: (1) training the teacher model and
(2) distilling the knowledge from the teacher to the student.
The distillation can be performed using the teacher model’s
output probabilities, the teacher model’s activations, or the
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intermediate representations of the teacher model. The distil-
lation can also be performed using a distillation loss, typically
a combination of the cross-entropy loss and the distillation
loss. The cross-entropy loss is used to minimize the difference
between the output probabilities of the teacher and student
models. In contrast, the distillation loss is used to minimize
the difference between the intermediate representations of the
teacher and student models.

Deep learning approaches have been shown to perform
exceptionally well for a wide range of computer vision tasks
(e.g., image classification, object, and action detection, scene
segmentation, image generation, etc.). However, deep neural
networks (DNNs) require large amounts of training data,
which is not always available for new tasks or domains.
Several knowledge distillation methods have been proposed
to address this issue that can train a smaller student network to
mimic the prediction of a more extensive and accurate teacher
network.

Distillation has been applied in the field of intelligent
systems, such as knowledge-based and rule-based systems,
to reduce the system’s size and improve the system’s perfor-
mance by improving the quality of the system’s knowledge.
The teacher and student models’ differences can be consid-
ered a form of regularization, which is crucial to prevent over-
fitting. The algorithm 1 shows the pseudocode of distillation.

Algorithm 1 Pseudocode of Distillation

Input: Dataset D, teacher model 7', student model S, loss
function L, learning rate », number of epochs E
Output: Trained student model S
Initialize the weights of the student model S
fore =1to E do
Randomly shuffle the dataset D
fori=1to |D| do
Extract the i sample (x;, y;) from D
Forward propagate the sample x; through the teacher
model T to obtain the output probabilities y;
Compute the loss £ using the output probabilities y;
Backpropagate the loss £ through the student model
S
Update the weights of the student model S using the
learning rate n
end for
end for
return Trained student model S

In a typical wireless communication system, the chan-
nel estimation is done by the base station with the help of
pilot signals sent by the user equipment (UE) during uplink.
And the base station sends pilot signals toward the UE,
which acknowledges the estimated channel information for
the downlink transmission. Network operators and service
providers are responsible for running their operations prop-
erly and meeting their obligations to the customers and the
public related to privacy and data confidentiality. However,
the network operations can be vulnerable to machine learning
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adversarial attacks, especially 5G and beyond, due to using
machine learning-based applications. In Figure 2, the train-
ing of the channel estimation prediction model (i.e., student
model) is protected against adversarial ML attacks, and its
use in base stations is shown in all its stages.

Ill. DATASET DESCRIPTION AND SCENARIO

MATLAB 5G Toolbox provides a wide range of reference
examples for next-generation network communications sys-
tems, such as 5G [46]. It also allows to customize and
generate several types of waveforms, antennas, and chan-
nel models to obtain datasets for DL-based models. In this
study, the dataset used to train the DL-based channel esti-
mation models is generated through a reference example in
MATLAB 5G Toolbox, i.e., ‘“Deep Learning Data Synthesis
for 5G Channel Estimation” . In the example, a convolutional
neural network (CNN) is used for channel estimation. Single-
input single-output (SISO) antenna method is also used by
utilizing the physical downlink shared channel (PDSCH) and
demodulation reference signal (DM-RS) to create the channel
estimation model.

The reference example in the toolbox generates 256 train-
ing datasets, i.e., transmit/receive the signal 256 times, for
the DL-based channel estimation model. Each dataset con-
sists of 8568 data points, i.e., 612 subcarriers, 14 OFDM
symbols, 1 antenna. However, each data point of the training
dataset is converted from a complex (real and imaginary)
612-14 matrix into a real-valued 612-14-2 matrix for pro-
viding inputs separately into the neural network during the
training process. This is because the resource grids consist
of complex data points with real and imaginary parts in the
channel estimation scenario, but the CNN model manages
the resource grids as 2-D images with real numbers. In this
example, the training dataset is converted into 4-D arrays,
i.e., 612-14-1-2N, where N presents the number of training
examples, i.e., 256.

Complex numbers are used in wireless communication
technologies. The complex number system modifies and
demodulates wireless signals in digital wireless communica-
tion. The most significant distinction between the real and
complex number systems is that the complex number system
contains more than one dimension. Adversarial ML attacks,
on the other hand, use real numbers to enter the decision
boundaries of the victim DL models, and the final malicious
inputs are in the real number domain. Complex numbers are
split into real and imaginary elements to solve this challenge.
Table 1 shows the example dataset.

For each set of the training dataset, a new channel char-
acteristic is generated based on various channel parameters,
such as delay profiles (TDL-A, TDL-B, TDL-C, TDL-D,
TDL-E), delay spreads (1-300 nanosecond), doppler shifts
(5-400 Hz), and Signal-to-noise ratio (SNR or S/N) changes
between 0 and 10 dB. Each transmitted waveform with the
DM-RS symbols is stored in the training dataset and the
perfect channel values in train labels. The CNN-based chan-
nel estimation based is trained with the generated dataset.
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FIGURE 2. Overview of the system architecture with knowledge distillation.

TABLE 1. Example dataset. The original dataset is shown as complex
numbers in the table at the top. The training dataset is represented in
real numbers in the table below.

[ F1 [ F2 [ F3 [ F4 |
0.15+0.00; | 0.26+0.90] | 0.32+0.90] | 0.41+0.88]
0.39-0.84) | -0.46-0.83] | -0.55-0.79j | -0.61-0.72j
-0.26-0.89) | -0.38-0.87j | -0.44-0.84j | -0.50-0.80j
-0.56+0.78) | -0.45+0.82j | -0.37+0.89j | -0.28+0.89]
-0.86-0.43) | -0.88-0.35] | -0.87-0.23j | -0.89-0.12j
[FI-1 | F1-2 || F2-1 | F2-2 || F3-1 | F32 || F4-1 | F42 |
0.15 | 090 |[ 0.26 | 0.90 || 032 | 0.90 || 0.41 | 0.88
2039 | 0.84 || -046 | 083 || -0.55 | 0.79 || -0.61 | 0.72
026 | 0.89 || -038 | 0.87 || -0.44 | 0.84 || -0.50 | 0.80
<056 | 0.78 || -045 | 0.82 || -037 | 0.89 || -0.28 | 0.89
-0.86 | 0.43 || -0.88 | 035 || -0.87 | 0.23 || -0.89 | 0.12

MATLAB 5G toolbox also allows tuning several communi-
cation channel parameters, such as the frequency, subcarrier
spacing, number of subcarriers, cyclic prefix type, antennas,
channel paths, bandwidth, code rate, modulation, etc. The
channel estimation scenario parameters with values are given
for each in Table 2.

The training dataset is split into validation and training sets
to avoid overfitting the training data. The training set is used
to train and fit the model, while the validation data is used for
monitoring the performance of the trained neural network at
certain intervals, i.e., 5 per epoch. The training is expected to
stop when the validation loss stops decreasing and improving
the model. In this study, most part of the dataset is used for
training, i.e., 80% for training, and 20% for testing.

98198

TABLE 2. The channel estimation parameters with values.

Channel Parameter Value
Delay Profile TDL-A, TDL-B, TDL-C, TDL-D, TDL-E
Delay Spread 1-300 ns
Maximum Doppler Shift 5-400 Hz
NFFT 1024
Sample Rate 30720000
Symbols Per Slot 14
Windowing 36
Slots Per Subframe 2
Slots Per Frame 20
Polarization Co-Polar
TransmissionDirection Downlink
NumTransmitAntennas 1
NumReceiveAntennas 1
FadingDistribution Rayleigh
Modulation 16QAM

IV. SIMULATION MODEL, SETTINGS AND PERFORMANCE
METRIC

A. SIMULATION MODEL

Figure 3 shows the CNN-based DL model used in this paper
for the channel estimation. The input to the model is the pilot
signals with different subcarriers and OFDM symbols. The
input is first passed through a convolutional layer, followed
by a max-pooling layer. The output of the max-pooling layer
is then passed through a fully connected layer, followed by
a softmax layer. The final output of the model is the channel
estimation.

We use the channel estimation dataset described in
Section III to train the model. We use five different attacks
(i.e., FGSM, BIM, MIM, PGD, and C&W) to evaluate the
proposed mitigation methods. The deep learning-based chan-
nel estimation model is trained in the TensorFlow environ-
ment. The proposed mitigation methods are implemented in
the Keras environment. The MSE performance metric is used
to evaluate the accuracy of the channel estimation model.
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B. SIMULATION SETTINGS

The teacher and student models are DNNs with 3 convo-
lutional layers. They are trained using stochastic gradient
descent with a momentum of 0.9 and a learning rate of 0.001
for 100 epochs. The batch size is set to 256. Table 3 shows
the DL model parameters.

TABLE 3. CNN Model architecture parameters for the teacher and the
student models.

Name Type Filters | Kernel Padding Output
Size
S | Conv-1 | Conv2D 48 9,9 same (1, 612, 48)
S | Conv-2 | Conv2D 16 5,5 same | (1,612, 16)
& | Conv-3 | Conv2D 1 5,5) same (1,612, 1)
E Conv-1 | Conv2D 24 9,9 same (1, 612, 48)
s Conv-2 | Conv2D 8 5,95) same (1, 612, 16)
% | Conv-3 | Conv2D 1 5,5) same (1, 612, 1)

Figure 3 shows the architecture of the teacher and student
models.

The models are generative and supervised models trained
to predict channel parameters defined at the receiver. The
input and output size is 612 x 14 (e.g. Subcarriers x
OFDM symbols). Table 4 shows the CNN model’s
hyper-parameters.

TABLE 4. CNN Model architecture parameters for the teacher and the
student models.

[ Hyper parameter [ Value |

Supervised Regression
GlorotUniform
o Conv-1: Selu
o Conv-2: Softplus
o Conv-3: Selu

Framing Problem
Initialization method

Activation functions

o Undefended: 6977
o Teacher: 23533

Number of parameters o Student: 6977

Figure 4 shows the training history of all three models.

C. PERFORMANCE METRIC

The performance metric, MSE (Mean Squared Error), is used
to evaluate and compare CNN-based models. The MSE
scores are utilized for further analyses of the model.
MSE equation is given below. It measures the average squared
difference between the actual and predicted values. The
MSE equals zero when a model has no error. The model error
increases along with the MSE value.

~ 2
MSE = Y (Y=Y )
n
where : Y; :The actual th instance, f/l : The forecasted
tth instance, n: The total number of instance
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V. EVALUATION AND PERFORMANCE RESULTS

This section provides the experimental results to evaluate
the proposed defensive distillation-based mitigation method
for DL-based channel estimation models in next-generation
networks. We applied the attack success ratio (ASR) as the
performance metric. ASR is the ratio of test samples that an
attacker can mispredict to the total number of test samples.
The highest ASR indicates that the attack is more effective.
The following equation is used to calculate ASR:

1 & MSE(XAY y(iy) — MSE Xy, Y(i)

O
ASR = —
m ZO: MSE(X y)

@

(10)

Table 5 shows the initial prediction performance results of
all models with the test dataset.

TABLE 5. Initial MSE values with test (i.e., benign) dataset.

[ Model | MSE |
Undefended | 0.02766
Teacher 0.02484
Student 0.02558

The first experiment is to perform attacks on the unde-
fended model, as shown in Table 6.

TABLE 6. Experimental results for the undefended DL model. The results
show that the initial DL model is vulnerable to adversarial ML attacks.

MSE ASR
Attack | € Benign Input | Malicious Input
0.1 0.028126 0.028485 | 0.018932
0.5 0.028128 0.036766 | 0.289385
BIM 1.0 0.028106 0.073039 | 0.613742
2.0 0.028222 0.192034 | 0.832142
3.0 0.027837 0.306523 | 0.904284
0.1 0.028213 0.028477 | 0.013840
0.5 0.028223 0.034714 | 0.215770
FGSM | 1.0 0.028106 0.052979 | 0.433404
2.0 0.028121 0.121161 | 0.617207
3.0 0.028126 0.234474 | 0.689940
0.1 0.028126 0.028493 | 0.019298
0.5 0.028229 0.037301 | 0.297863
MIM 1.0 0.027990 0.069112 | 0.599503
2.0 0.028228 0.162054 | 0.825845
3.0 0.028228 0.323735 | 0.908491
0.1 0.028000 0.028363 | 0.019231
0.5 0.028205 0.036839 | 0.288993
PGD 1.0 0.028106 0.073028 | 0.613850
2.0 0.028141 0.192549 | 0.833080
3.0 0.027913 0.317048 | 0.905127
[C&W [ - | 0028314 | 0029803 | 0.066435 |

The results of the first experiment show that the initial DL
model is vulnerable to adversarial ML attacks. As expected,
the ASR value has a positive correlation with € value. The
results also show that the BIM, MIM, and PGD attacks are
more effective than the FGSM and C&W (without €) attacks
model under the same €. The success rate of the C&W attack
model is lower than that of the BIM, MIM, and PGD
attack models.
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FIGURE 4. Training history of all three models.

Experimental results for the proposed defensive distillation-
based mitigation method are shown in Table 7.

The experimental results show that the proposed method
can improve the accuracy of the channel estimation model.
The results also show that the proposed method can provide
better results for the attacks (i.e., FGSM, BIM, MIM, PGD,
and C&W).

Figure 5 shows the MSE results with 6 different € val-
ues (i.e., 0.0,0.1,0.5, 1.0, 2.0, 3.0) for the undefended and
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TABLE 7. Experimental results for the proposed defensive distillation-
based mitigation method. The results show that the proposed method
can improve the accuracy of the channel estimation model. The results
indicate that the proposed method can provide better results for the
attacks (i.e., FGSM, BIM, MIM, PGD, and C&W).

MSE ASR
Attack | ¢ Benign Input | Malicious Input
0.1 0.027861 0.028192 | 0.018048
0.5 0.027859 0.029179 | 0.066479
BIM 1.0 0.027857 0.029177 | 0.066474
2.0 0.027860 0.029179 | 0.066478
3.0 0.027865 0.029185 | 0.066460
0.1 0.027851 0.027854 | 0.000118
0.5 0.027853 0.027921 | 0.003289
FGSM | 1.0 0.027845 0.028108 | 0.012865
2.0 0.027851 0.028870 | 0.047475
3.0 0.027851 0.030105 | 0.095989
0.1 0.027864 0.028198 | 0.018295
0.5 0.027863 0.029232 | 0.068893
MIM 1.0 0.027863 0.029232 | 0.068896
2.0 0.027860 0.029229 | 0.068908
3.0 0.027860 0.029229 | 0.068914
0.1 0.027859 0.028190 | 0.018059
0.5 0.027866 0.029183 | 0.066392
PGD 1.0 0.027865 0.029183 | 0.066400
2.0 0.027857 0.029175 | 0.066423
3.0 0.027862 0.029180 | 0.066412
[ C&W [ - ] 0.027263 | 0.027408 [ 0.00793 |

defensive distillation-based defended DL model for the all
attacks. There is only one bar chart for the C&W attack
because there is no € value for the C&W attack. The results
show that the proposed method can improve the accuracy of
the channel estimation model.

Figure 6 shows the MSE change with different € values
for each attack for the undefended and defensive-distillation
based defended DL model. The defended model’s MSE val-
ues (i.e., the right figure) are almost similar to each attack
and € values. We can see that the defensive distillation-based
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FIGURE 6. MSE trend line for the undefended and defended DL models.

mitigation method works pretty well against all types of
adversarial attacks.

VI. DISCUSSION

This study provides a comprehensive analysis of the
DL-based channel estimation model in terms of vulnera-
bilities. The model’s vulnerabilities are studied for various
adversarial attacks, including FGSM, BIM, PGD, MIM, and
C&W, as well as the mitigation method, i.e., defensive distil-
lation. The results show that CNN-based channel estimation
models are vulnerable to adversarial attacks, i.e., FGSM,
BIM, MIM, PGD, and C&W. The attack success ratio is
also pretty much high, i.e., 0.9, under a higher power attack
(¢ equals 3.0) for BIM, MIM, and PGD attacks. On the
other hand, the rate is very low for C&W attacks, i.e.,
0.06, compared with the others. Fortunately, the proposed
defensive distillation-based mitigation method performs bet-
ter against higher-order adversarial attacks, and the attack
success ratio goes down to 0.06 for BIM, MIM, and PGD
attacks. The impact of the mitigation method on FGSM is
lower than others, i.e., the attack success rate is 0.09. For
C&W, the attack success rate goes from 0.06 to 0.007 after
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applying the proposed defensive distillation-based mitiga-
tion method. According to the results, adversarial attacks on
DL-based channel estimation models and the use of the pro-
posed defensive distillation-based mitigation method can be
summarized as:

Observation 1: The DL-based channel estimation models
are vulnerable to adversarial attacks, especially BIM, MIM,
and PGD.

Observation 2: BIM, MIM, and PGD attacks are the most
successful attack success rate.

Observation 3: The DL-based channel estimation models
are more robust against C&W attacks.

Observation 4: A strong negative correlation exists
between attack power € and the performance of channel
estimation models.

Observation 5: The proposed mitigation method, i.e.,
defensive distillation, offers a better performance against
adversarial attacks.

VIi. CONCLUSION AND FUTURE WORK
Mobile wireless communication networks are rapidly devel-
oping with the high demand and advanced communication
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and computing technologies. The last few years have experi-
enced remarkable growth in the wireless industry, especially
for NextG networks. This paper provides a comprehensive
vulnerability analysis of deep learning (DL) based channel
estimation models for adversarial attacks (i.e., FGSM, BIM,
PGD, MIM, and C&W) and defensive distillation-based mit-
igation methods in NextG networks. The results confirm
that the original DL-based channel estimation model is sig-
nificantly vulnerable to adversarial attacks, especially BIM,
MIM, and PGD. The attack success rate increases under a
heavy adversarial attack (e= 3.0) up to 0.9 for those attacks.
There is a high positive correlation between attack power €
and the attack success rate as expected, i.e., a high € increases
as the attack success rate. On the other hand, the proposed
defensive distillation-based mitigation method can improve
the accuracy of the channel estimation model and provide
better results against higher-order adversarial attacks, e.g.,
the attack success rate goes from 0.9 to 0.06 after applying
the proposed mitigation method. The overall results prove
that the proposed method can provide better results for the
attacks (i.e., FGSM, BIM, MIM, PGD, and C&W) in terms
of the model accuracy and the attack success rate. The scope
of this study is restricted to one of the 5G physical layer
applications, its vulnerability analysis under selected adver-
sarial machine learning attacks, and the defensive distilla-
tion mitigation method. As future work, we plan to focus
on other standard defenses, e.g., adversarial training, for
the deep learning-based channel estimation models against
adversarial attacks and parameter-free attack methods like
the C&W attack. As another future work, the authors will
focus on the Intelligent Reflecting Surface (IRS) and spec-
trum sensing using Al-based models and their cybersecurity
risks.
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