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Abstract. Smart cities are becoming the key technology as more and
more people are attracted to living in urban environments. Increased
number of inhabitants and current issues such as pandemic restrictions,
terrorist threats, global warming and limited resources require maximum
effectivity in all areas of city operations. To support these dynamic de-
mands, software-based approaches for network management are being
used. They provide programmability, which allows implementation of al-
most any functionality, but is dependent on quality of the developed
application. To ensure the best possible quality, developers need an envi-
ronment on which they can develop and test the application effectively.
Such an environment should be as close to a real network as possible,
but as easy to use as an emulated network.

This paper describes a method for creating a flexible and inexpensive
practical environment for developing and testing applications for software-
defined smart city networks. The paper analyzes four relevant open
source controllers, compares their features and suitability for smart city
applications; and provides a guideline for creating inexpensive SDN capa-
ble switches from general purpose single board Raspberry Pi computers.
The presented environment can be deployed easily, but its hardware na-
ture allows real performance measurements and utilization of IoT-based
nodes and sensors. This is verified in an use case smart city topology.

Keywords: SDN controllers · Smart city · Software-defined networks ·
Software switch · Raspberry Pi.

1 Introduction

Smart city is a concept for enhancing current mega cities by innovative technolo-
gies from information and communication fields with the goal of improving every
aspect of the city’s operations. This includes economy, transportation, safety,
waste and resources managements, and many others. The smart city market is
steadily growing with investments increasing about 20% every year and expected
to reach almost 200 billion U.S. dollars in 2023 [26]. Recent pandemic events and
their negative impact on the economy might lead to an assumption that these
expanses will be reduced, but the opposite is more likely true. Smart cities will
be more important than ever, as their functionalities might significantly help
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with enforcing quarantine restrictions, support contact tracing, and check so-
cial distancing. The increased effectiveness of all city’s operations plays an even
greater role in these demanding situations.

Growth of smart cities puts requirements on corresponding underlying tech-
nologies, especially on communication networks. These networks must cope with
stringent requirements on performance, reliability, scalability and security, which
can change significantly based on dynamically fluctuating city needs. From this
perspective, the static concept of traditional networking is ineffective and out-
dated. Only innovative software-based approaches such as software-defined net-
works (SDN) can cope with these dynamic conditions effectively.

SDN is a network concept of physical separation of forwarding and control
layers on a networking device. While the forwarding layer is left on the device,
the control layer is placed on a centralized element called the SDN controller. The
controller provides management of the entire network and can be extended with
custom made applications - for example to fit specifically smart city scenarios.

Functionality of SDN is based on the quality of its control application. De-
velopment of these applications is a demanding task, especially in complex and
large scale networks such as smart cities. These networks are spread across vast
areas and must remain fully functional, which eliminates the possibility of pre-
deployment testing. SDN applications must therefore be developed and tested
on dedicated, often only emulated networks. While this approach is quick and
simple, it does not provide practical insight into the network operations. On the
other hand, use of real networking devices only for development is expensive,
time consuming and inflexible. The approach described in this paper combines
the advantages of both approaches.

2 Related Work

SDN is widely accepted as a suitable technology for demanding smart city net-
works and a lot of research work has been done in this area [5–8, 11, 16, 18, 25,
28]. Authors in [8] summarized the main advantages of SDN in smart cities:
intelligence, scalability and integration; and limitations of traditional networks:
users identification based on IP addresses, problematic security and ineffective
mobility management. Further research proved that SDN is capable of handling
real-time applications, including in problematic areas such as wireless sensor
networks [7, 11].

Activities towards real world deployment and practical verification are emerg-
ing. A large scale integration of SDN, cloud and IoT devices was tested on 8
million inhabitants Guadalajara smart city [5]. An emulated multi-tenant net-
work corresponding to a virtual smart city of Poznan, integrated metro scale
IoT network, cloud orchestrator and the SDN controller in [18].

Most of the research work in the area of SDN controllers comparison is fo-
cused either on security [2, 27] or performance [21, 22, 29, 30]. The most relevant
comparison of Rosemary, Ryu, OpenDaylight and ONOS summarized basic fea-
tures of these controllers, but the main focus of the work was on security compar-
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ison using the STRIDE (Spoof, Tamper, Repudiate, Information Disclose, DoS
and Elevate) model [2]. Software reliability of 10 different versions of the ONOS
controller was analyzed in [27]. Performance comparison work targeted mostly
outdated or experimental controllers [21, 22, 30]. The most advanced open source
controllers - OpenDaylight and ONOS - were compared only in [29], where au-
thors performed tests in 5 different scenarios. In most of these scenarios, the
ONOS controller achieved slightly higher performance.

The idea of creating an SDN-enabled switch from a single board computer
by installation of a software switch is not new and was first researched in [13].
Authors installed Open vSwitch (2.0.90), which supported OpenFlow 1.0, into
the first model of Raspberry Pi and tested its performance. Despite this software
and hardware, the measured performance was comparable with 1 Gbps net-
FPGA (Field Programmable Gate Arrays), which costs approximately 30 times
as much as the Raspberry Pi. The following paper [12] analyzed a stack of four
Raspberry Pi devices controlled by the ONOS controller. This work was followed
by several other papers [1, 3, 4, 15] implementing more recent versions of Open
vSwitch and using newly emerging Raspberry Pi models. None of the mentioned
work considered use of the created environment for practical development of
SDN applications for scenarios such as smart cities. The closest work in this
area is providing QoS in IoT networks on 4-port switches made from Raspberry
Pi 3 devices [17].

3 Open Source SDN Controllers

The key component of a software-defined network is a controller, which manages
all connected devices, provides networking functions, collects traffic statistics
and has interfaces for remote control and advanced applications integration.
SDN controllers can be classified into open source and commercial. This section
describes features of the four most relevant open source controllers for smart city
scenarios.

3.1 Ryu

Ryu [24] is one of the simpler SDN controllers and has only basic functions. It
is written in Python and uses module structure for various networking function-
alities. These modules are placed in separated Python files and their use has
to be specified during each controller launch via the ryu-manager command.
The controller has extensive documentation, which contains examples of code
implementation and format of OpenFlow messages in JSON. The community
also provides a freely accessible Ryu book [23], which explains several modules
and describes process of developing custom applications.

The controller is ideal for anyone starting with general SDN development. It
has a relatively shallow learning curve and the strict module separation allows
safe and quick development of custom functionality. It is also suitable for quick
establishment of network connectivity and for testing specific functions.
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In the area of smart cities, the controller is missing advanced features and it
is therefore not recommended for these deployments. Applications developed for
this controller would have to be migrated into more suitable controllers before
the real deployment.

3.2 Floodlight

Floodlight controller [9] provides a compromise between the simplest and most
advanced controllers. It has clear documentation, straightforward installation,
basic configuration, but also provides GUI and supports even advanced features
including high availability. The controller is written in Java and uses similar
modular architecture as more advanced controllers.

The controller provides a set of extensible Representational State Transfer
(REST) APIs and the notification event system. The APIs can be used by exter-
nal applications to get and set the state of the controller, and to allow modules
to subscribe to events triggered by the controller using the Java Event Listener.

Floodlight supports basic features necessary for every smart city deployment
- namely GUI and high availability. It does not have more advanced features such
as security, support of legacy devices, or ability to dynamically adjust modules
while running, but this fact is compensated by its relative simplicity and low
hardware requirements. Unfortunately, the controller lacks in frequency of up-
dates, which would address security and other issues.

The controller is ideal for new developers learning to work with SDN, but
using a near-realistic environment. Developed applications can also be used in
real scenarios. However, for development of more advanced commercial applica-
tions, which would be used in real smart city scenarios, use of more advanced
controllers is recommended.

3.3 OpenDaylight

OpenDaylight [20] is the most widespread open source SDN controller and it is
defined as ”a modular open platform for customizing and automating networks
of any size and scale”. OpenDaylight is written in Java and it is being used as a
base for many commercial controllers, which extend its functionality.

Use of OpenDaylight controller requires significantly more resources than
previous controllers - in terms of hardware, knowledge, installation and initial
configuration. Developing custom applications is even more demanding as the
controller has a complex architecture. Moreover, the official documentation is
not nearly as user friendly and complete as in previous controllers, and described
features are often relevant only for older versions of the controller.

OpenDaylight is an ideal controller for real smart city scenarios. It can reli-
ably monitor and control large scale networks with a high number of connected
nodes. The controller is focused on security and reliability and allows configura-
tion changes or installation of a new functionality without a need for restarting
the controller. The controller is also in active development and new major ver-
sions are regularly released every 6 months with minor updates available as
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needed. The fact that it is widely used as a base for commercial controllers
proves its suitability for real world use.

3.4 Open Networking Operating System

Open Networking Operating System (ONOS) [19] is a similar controller to Open-
Daylight, but its main focus is on resiliency, scalability and deployment in pro-
duction environments.

ONOS provides a slightly more detailed documentation than OpenDaylight,
but it is still not so well structured and complete as in the case of Ryu or
Floodlight. Use of the controller requires similar resources as in the case of
OpenDaylight.

ONOS is the second analyzed controller, which is ideal for real smart city
deployments. It is similar to OpenDaylight, but offers several unique features.
It is slightly more oriented towards resiliency and it is the only controller which
supports individual removal of functionalities even during the controller opera-
tions. Its functionalities can be also installed and activated without a need of
restarting the controller. New versions are being released in approximately 3
month intervals with incremental updates available if needed.

3.5 Summary of Controllers Features

Table 1 summarizes supported features of each of the analyzed controllers. It
includes only features which are officially supplied with the controller. Other
features provided by independent developers and communities can be addition-
ally installed.

4 Custom SDN-enabled Switches

The second key component of SDN are forwarding devices, which are connected
to the controller. They are being called switches, although they support all
ISO/OSI layers and not only layer 2 forwarding. They can have the following
forms:

1. Traditional switch with optional OpenFlow support (limited features)
2. Software switch (slow performance)
3. Specifically developed OpenFlow device (full features)

Hardware networking devices supporting the OpenFlow protocol are rela-
tively expensive and their use only for development purposes might not be eco-
nomically sustainable. Use of software devices is much more efficient method, but
it does not allow practical verification and native connection of specific hard-
ware IoT sensors and nodes. A solution using advantages of both approaches is
to create an SDN-enabled device from a cheap generic single board computer
with an integrated software switch.
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Table 1. Features of Compared SDN Controllers

Functionality / Controller RYU FLT ODL ONOS

Basic functionality (L2, L3, STP, VLANs, ACL, FW)

GUI (S = secure) - S S

Dynamic routing (M = MPLS) - - M

Virtualization, OpenStack -

Fault tolerance -

Quality of Service (QoS) -

L2 link aggregation - -

Intent networking - -

Service Function Chaining - -

YANG Management - -

Virtual Private Network (VPN) - - -

Dynamic Host Configuration Protocol (DHCP) - -

Load-balancing - -

ISP support - - -

CAPWAC - - -

Performance monitoring - -

Machine-to-machine communication - - -

Legacy device support - -

Device drivers - -

Controllers cooperation - - -

4.1 Required Components

To create a custom SDN-enabled device from a single board computer, two
components are required:

1. Software switch - the most widespread being Open vSwitch (OVS). It is an
open source multilayer software switch written in C language. It is flexible,
universal and supports various management protocols including OpenFlow.
OVS can be deployed either as a software switch (for example in virtualized
data center environments) or in a hardware device.

2. Hardware computer - can have form of a single board computer based on the
ARM (Advanced RISC Machine) architecture. The most widespread type of
this computer is Raspberry Pi. It has several models, which differs in size,
performance and connectivity options as summarized in Table 2.

4.2 Installation

There are two methods of installation of Open vSwitch on the Raspberry devices
default operating system - Raspbian:

1. Installation from Raspbian repository - it is the easiest method of installation
as it requires only a single command: sudo apt-get install openvswitch-switch.
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Table 2. Comparison of Raspberry Pi Models

Model Release Date Price (USD) CPU (GHz) RAM (MB) Ports USB

B 02/2012 25 1x0.7 512 1FE 2
A+ 11/2014 20 1x0.7 256 - 1
B+ 07/2014 25 1x0.7 512 1FE 4
Zero 11/2015 5 1x0.7 512 - 0
2B 02/2015 35 4x0.9 1024 1FE 4
3B 02/2016 35 4x1.2 1024 1FE 4

3B+ 03/2018 35 4x1.4 1024 1GbE 4
3A+ 11/2018 25 4x1.4 512 - 1
4B 01/2019 35/45/55 4x1.5 1024/2048/4096 1GbE 4
4B 05/2020 75 4x1.5 8192 1GbE 4

The main disadvantage of this method is that the repository might not in-
clude the most recent version of OVS (at the time of writing this paper, only
version 2.3, which supports only OpenFlow 1.3 and older, was available).

2. Installation with Debian packages - the most up to date source code can be
downloaded from Github [10]. This version already supports OpenFlow 1.4.
The following commands show the installation. The last component will also
perform initial configuration of the switch and sets it to automatic startup
upon the system’s boot.

# 1. Download the source code

git clone https://github.com/openvswitch/ovs.git

# 2. Compilation (requires build-essential and fakeroot tools)

# X = the number of threads, which the compilation can use

DEB BUILD OPTIONS=’parallel=X’ fakeroot debian/rules binary

# 3. Installation of Dynamic Kernel Module Support (DKMS)

sudo apt-get install dkms

# 4. Compiled kernel package installation

sudo dpkg -i openvswitch-datapath-dkms 2.5.2-1 all.deb

# 5. Installation of a package for generation of unique IDs

sudo apt-get install uuid-runtime

# 6. Order-dependent installation of user-space packages

sudo dpkg -i openvswitch-common 2.5.2-1 armhf.deb

sudo dpkg -i openvswitch-switch 2.5.2-1 armhf.deb

4.3 SDN Configuration

Installed and configured OVS can be integrated with SDN. This requires estab-
lishing communication between the controller and the device. Two modes of this
communication are available:

1. Unsecured communication - the basic form of connection uses standard TCP
and can be setup with the following commands.
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# 1. Create a virtual switch with a name S-NAME

sudo ovs-vsctl add-br S-NAME

# 2. Configure IP and TCP port (default 6653) of the controller

sudo ovs-vsctl set-controller S-NAME tcp:IP:PORT

# 3. Create a virtual interface in the /etc/dhcpd.conf

interface S-NAME

static ip_address = IP/PREFIX

# 4. Apply the configuration (or reboot the device)

sudo /etc/init.d/dhcpcd reload

# 5. Assign the physical interface to the virtual switch

sudo ovs-vsctl add-port S-NAME INT-NAME

2. Secured communication - this form uses TLS for encryption and it requires
use of private keys and certificates. The required files can be generated by
the OpenFlow public key infrastructure management utility, which can be
managed by the ovs-pki command. Files generated on the device then have
to be transferred to the controller. The procedure of how to load these files
will vary based on the controller.

# 1. Create certification authorities

sudo ovs-pki init

# 2. Create private key and certificate for the controller

sudo ovs-pki req+sign C-NAME controller

# 3. Create private key and certificate for the switch

sudo ovs-pki req+sign S-NAME switch

# 4. Set the required files for the TLS configuration

sudo ovs-vsctl set-ssl

/home/S-NAME-privkey.pem

/home/S-NAME-cert.pem

/home/controllerca/cacert.pem

# 5. Enable TLS

sudo ovs-vsctl set-controller S-NAME ssl:IP:PORT

5 Use Case Verification

Installation and configuration of switches and controllers were verified on a topol-
ogy simulating a small smart city as shown in Fig. 1. Three Raspberry Pi 3B
devices were used as SDN-enabled switches. The same platform cannot be used
to host SDN controllers due to the different architecture (ARM vs x86-64) and
low CPU performance. To make the use case environment as efficient as possible,
a NUC8i7BEH mini-PC [14] was used for the SDN controller. Such a device is
relatively cheap (around 800 USD depending on RAM and SSD configuration),
has sufficient performance and low energy consumption. It is therefore ideal for
this role.
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Fig. 1. Use case verification topology

5.1 Controllers Analysis

Four controllers from Sect. 3 were installed into separate virtual machines in
order to test their performance - especially various RAM configurations. The
main motivation was to determine the minimal amount for stable run of the
controller. Results are presented in Table 3 together with approximate startup
times and controllers support to launch modules.

Table 3. Controllers Performance Analysis

Controller Minimum RAM Startup time* Support of modules launch

Ryu 256 MiB <30 seconds At start (manually)
Floodlight 256 MiB <20 seconds At start (configuration file)

OpenDaylight 4096 MiB <20 seconds Dynamic start at run
ONOS 4096 MiB <20 seconds Dynamic start/stop at run

* Measured time is just approximate as it is highly dependent on the network
topology size, the controller performance and its current load.

Results show that Ryu and Floodlight have very low memory requirements
and can run on practically any device. On the other hand, OpenDaylight and
ONOS require a device with at least 4 GiB of RAM even in the smallest network
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topologies. Startup times do not vary significantly between the controllers and
should not play a role in the controller selection process.

In environments where the network should correspond to real smart cities,
only OpenDaylight and ONOS are recommended as they are the only ones al-
lowing to start new modules while the controller is running (and in the case of
ONOS also stop and remove them).

5.2 Deployment Findings

The verification revealed the need to use specific features, which are summarized
below to make any future deployment testing more effective.

1. Port numbers - the OVS device uses integer labeling. A specific port can be
found with the following command:

sudo ovs-ofctl dump-ports DEVICE-NAME INTERFACE-NAME

2. Datapath ID - is an identification number, which the controller uses to recog-
nize connected devices. By default, the device’s MAC address of the interface
leading to the controller is used. This address can be configured with the fol-
lowing command (sets the MAC address to 1):

sudo ovs-vsctl set bridge DEVICE-NAME

other-config:hwaddr=00:00:00:00:00:01

3. Time synchronization - encrypted communication and use of certificates re-
quire synchronized time between the controller and devices. In this case, it is
necessary to ensure the time synchronization, for example by the Precision
Time Protocol (PTP). A time difference can lead to the following error:

SSLError: [SSL: SSLV3 ALERT BAD CERTIFICATE]

6 Conclusions

The paper described issues of developing SDN applications for smart city sce-
narios. In two main sections, the topic of creating a practical and cost-effective
environment for these scenarios was researched. Presented information was ver-
ified and tested on an use case topology of a small scale smart city network.

The analysis of four open source controllers summarized their key features
and included recommendations for the most effective utilization of each controller
in smart city networks. Ryu controller was recommended only for learning pur-
poses and quick verification of connectivity as its deployment in smart cities
is not feasible due to lack of features. Floodlight controller was identified as a
compromise between simple Ryu and more advanced controllers. While it can
be used for development and testing of smart city applications, its usage in real
networks was also not recommended.

OpenDaylight and ONOS were identified as similarly advanced open source
controllers. They require significantly more effort to deploy and manage, but
because of supported features, they can be safely used in real world smart city
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networks. The final choice from these two controllers depends on the target appli-
cation. OpenDaylight supports more functionalities while ONOS offers slightly
higher performance and is more flexible in terms of controlling running features.

The presented approach for creating an SDN-enabled switch from a Rasp-
berry Pi device can be used to quickly create an environment suitable for prac-
tical development testing not limited only to smart city scenarios.
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