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Abstract: The thermal imaging of surfaces with microscale spatial resolution over micro-sized areas 

remains a challenging and time-consuming task. Surface thermal imaging is a very important char-

acterization tool in mechanical engineering, microelectronics, chemical process engineering, optics, 

microfluidics, and biochemistry processing, among others. Within the realm of electronic circuits, 

this technique has significant potential for investigating hot spots, power densities, and monitoring 

heat distributions in complementary metal–oxide–semiconductor (CMOS) platforms. We present a 

new technique for remote non-invasive, contactless thermal field mapping using synchrotron radi-

ation-based Fourier-transform infrared microspectroscopy. We demonstrate a spatial resolution 

better than 10 um over areas on the order of 12 000 um2 measured in a polymeric thin film on top 

of CaF2 substrates. Thermal images were obtained from infrared spectra of poly(methyl methacry-

late) thin films heated with a wire. The temperature dependence of the collected infrared spectra 

was analyzed via linear regression and machine learning algorithms, namely random forest and k-

nearest neighbor algorithms. This approach speeds up signal analysis and allows for the generation 

of hyperspectral temperature maps. The results here highlight the potential of infrared absorbance 

to serve as a remote method for the quantitative determination of heat distribution, thermal prop-

erties, and the existence of hot spots, with implications in CMOS technologies and other electronic 

devices. 

Keywords: thermal imaging; synchrotron radiation; machine learning; temperature dependence; 

FTIR polymer; FTIR thermometry 

 

1. Introduction 

The temperature and thermal conductivity of a material are among the most common 

and important physical measurement parameters. Rapid developments in nanotechnol-

ogy and biological applications have escalated the ever-growing necessity for contactless 

and non-invasive measurements of these parameters [1–3]. Optical measurement tech-

niques such as fluorescence thermometry [4], optical fiber thermometry [5], Raman ther-

mometry [6], and infrared thermometry based on Planck black-body emission [7] are 

some of the existing techniques that are used to extract the temperature in a remote and 

non-invasive manner. However, these methods require either very long acquisition times 
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(e.g., Raman thermometry), knowledge of the emissivity which depends on temperature, 

wavelength and size, or the use of luminescent materials[8]. 

The extrapolation of temperature from infrared radiation can be achieved by differ-

ent temperature-dependent features. The most common technique is infrared thermogra-

phy, in which detecting devices sense the energy radiated from objects in the infrared 

band region [9]. As the energy emitted by a body is proportional to the fourth power of 

the temperature rise, the energy values can be converted into the objects surface temper-

ature using Planck’s law of black-body radiation and calibration constants [9]. Infrared 

thermography is a contactless technique, which can provide two dimensional thermal im-

ages in real time [10]. Thermal cameras, based on these principles, can offer spatially re-

solved thermal images of a sample or scene. The possible applications for such technolo-

gies are very broad, finding utility in areas such as the study of irregularities in building 

envelopes [11], the testing of aerospace components [12], solar cells [13], microelectronic 

devices [14], or biomedicine [15]. However, determination of the temperature depends on 

knowledge of the emissivity of the measured surface. The emissivity is a value ranging 

from zero to one and is dependent on the specific material, surface, and wavelength, and 

describes the effectiveness of a surface for radiating energy relative to that of a black body 

[10,15]. In addition to the emissivity, another obstacle to the accurate determination of 

temperature via infrared thermometry is the complex thermal relationship between a 

specimen of interest and its surroundings (e.g., convective cooling, ambient humidity, and 

environmental temperature), which can have a strong effect on measurements [10]. 

A common approach to obtain thermal maps or local temperatures of a sample is 

based on Raman spectroscopy. Optothermal Raman or Raman thermometry is one of the 

most popular and widely used techniques for characterizing the temperature of two-di-

mensional materials [16], thin films [17,18], substrates [6,19,20], and suspended semicon-

ductors [20–25]. Using Raman thermometry, the local temperature can be measured in 

four different ways: (i) through the ratio of the Stokes and anti-Stokes signal amplitudes 

and calculation of the temperature based on a Boltzmann distribution of the ground and 

first excited state populations [26]; (ii) via the analysis of the band position; (iii) linewidth; 

and (iv) intensity of a Raman mode followed by a determination of the temperature de-

pendence of the associated spectral characteristic [6]. A change in temperature induces 

changes at the molecular scale, leading to a modification of bond lengths and intermolec-

ular forces. This effect modifies the phonon frequency and its dynamics and gives rise to 

a shift in the Raman mode frequency (peak position), phonon lifetime (linewidth), and 

phonon population (amplitude). Consequently, it is possible to extract the local tempera-

ture of a sample via the measurement of a Raman band previously calibrated using a ref-

erence measurement. Reparaz et al. proposed the measurement of the thermal conductiv-

ity via two-laser Raman thermometry. Here, a heating laser creates a temperature gradient 

in a thin film or membrane and a probing laser locally measures the temperature through 

Raman imaging [22]. However, Raman thermometry requires the presence of a Raman 

active mode and can be very time-consuming. Moreover, the use of a laser as a heater may 

induce the injection of photo-excited charge carriers that can alter the measured properties 

[27] or induce the overpopulation of nonthermal phonons [28]. 

While infrared (IR) spectroscopy relies on the same effect of temperature on the pho-

non modes, IR signals are often stronger than Raman signals and can be calibrated for 

quantitative measurements using multivariate chemometric methods. Temperature-de-

pendent IR spectra have mainly been employed in the determination of the transition tem-

perature and conformational energy of macromolecules [29–32]. This method probes sub-

tle changes in the intensities of individual infrared absorbance bands or band ratios with 

respect to temperature [32,33]. A potential model system for incorporating variable-tem-

perature Fourier-transform infrared (FTIR) spectroscopy is poly(methyl methacrylate) 

(PMMA), as the temperature dependence of its infrared absorbance band intensities have 

been studied in detail in recent years [30,34,35]. For example, the conformational energies 

for the PMMA backbone and side chains were derived by analyzing changes in the 
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infrared absorbance of PMMA as a function of temperature [29,30]. In another work, the 

glass transition temperature was derived by analyzing changes in the reflectivity of 

PMMA thin films [31]. Painter et al. studied the thermal transitions of PMMA using the 

change in width and shape of absorbance bands with increasing temperature [35]. Some 

PMMA absorbance bands have also been found to be temperature-dependent [29,36]. 

Due to the stronger signal of IR relative to Raman and the brightness of the synchro-

tron IR-light source, we propose the exploitation of the temperature dependence of infra-

red absorbance peaks for thermal imaging in thin films. To our knowledge, the modifica-

tion of an infrared absorbance band has not been previously used as a metric for the de-

termination of temperature. Thus, we incorporate a simple and fast approach to measure 

temperature via a linear regression (LR) approach. In addition, we also propose the use of 

machine learning (ML) algorithms to fully exploit FTIR spectra and apply them to extract 

temperature information from single peaks or even from a continuous spectral range 

[37,38]. The development of software, faster computers, and ML enable the application of 

more general approaches for predicting temperature via measured infrared spectra. In 

this study, random forests and k-nearest neighbor (k-NN) algorithms were applied to pre-

dict the temperature gradient of a test sample using a continuous spectral range. The tem-

peratures predicted by ML were then compared to the LR approach. This work highlights 

the feasibility of infrared vibrational thermography based on ML approaches and FTIR 

spectroscopy as a new method for predicting temperatures in polymeric thin films. This 

approach can be extended to any film with temperature-dependent IR-active modes. 

Moreover, considering that silicon is transparent to IR excitation, this method could be 

used to characterize hot spots or power densities in situ. 

2. Materials and Methods 

2.1. Sample Preparation 

Samples were fabricated on calcium fluoride (CaF2) substrates, a common infrared 

window transparent to IR light. An initial cleaning step was performed by ultrasonication 

in acetone and isopropanol for 5 min, followed by a deionized water rinse and N2 drying. 

Poly(methyl methacrylate) (PMMA) powder was dissolved in anisole (MicroChem Corp 

(MA, USA)) using magnetic stirring for more than 12 h in a closed container to avoid sol-

vent evaporation. The powder (with an average molecular weight of 15,000 Da and made 

by gel permeation chromatography) was purchased from Sigma Aldrich (now Merck 

KGaA, Darmstadt, Germany). The resulting PMMA solution was spin-coated onto CaF2 

chips (spin coater from Laurell Technologies) at 4000 rpm and cured at 50 °C for 4 h in a 

vacuum oven (Binder, Germany). The thickness of the PMMA layer was set to 1 µm. The 

PMMA layer thicknesses were measured by dual rotating compensator variable angle 

spectroscopic ellipsometry (VASE) (RC2, J.A. Woollam Co.) over the wavelength range 

210–1690 nm with data collected from 55° to 70°. 

2.2. Metal Wire Preparation and Temperature Calibration 

To create a temperature gradient in the PMMA film, a titanium/gold wire was evap-

orated onto the polymer film and used as a heating element by applying different currents 

to the wire. The Ti (5 nm) and Au (95 nm) films were deposited using electron-beam evap-

oration (AJA International, Inc., USA) at a deposition rate of 5 Å/s using a mechanical 

mask. A schematic illustration is shown in Figure 1a. The deposited metallic strip is com-

posed of four rectangular pads connected by pins to the narrow heating wire. The width 

of the heating line was set to 20 μm and the length to l = 1 mm, the latter being determined 

by the distance between the inner pads used to measure the voltage. The outer pads were 

used to inject the current. Since the temperature of the wire is linearly proportional to its 

electrical resistivity, the temperature can be set by applying the corresponding cur-

rent/voltage. For the calibration, the electrical resistivity of the wire was measured at dif-

ferent system temperatures ranging between 302 and 350 K on a heating stage to obtain 
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the linear correlation between temperature and wire resistivity (Figure S1). A current 

source with an integrated voltmeter was connected and the corresponding resistivity was 

set to use the wire as a heating element. 

 

Figure 1. (a) Schematic representation of the heating device deposited on top of the polymer film. 

(b) Optical transmission image of the sample, showing the metallic wire in black with the three 

infrared measurement areas highlighted in orange. 

2.3. Synchrotron Radiation-Based Fourier-Transform Infrared (SR-FTIR) Microspectroscopy 

Synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectros-

copy measurements were performed at the infrared microspectroscopy beamline MIRAS 

of the Spanish synchrotron light source ALBA [39]. The endstation was equipped with a 

Vertex 70 spectrometer coupled to a Hyperion 3000 visible/infrared microscope (Bruker, 

Germany). Measurements were carried out in transmission mode using a 15× objective 

and matching condenser (numerical aperture = 0.4). For each of resulting spectra, 256 

scans were co-added for the temperature calibration and 64 scans for the line scans and 

matrix, with a wavenumber resolution of 4 cm−1. The software package Opus (Version 7.5, 

Bruker, Germany) was used for data acquisition. Data was analyzed, fitted, and plotted 

using a Python code based on numpy, scipy, and seaborn libraries. Linear baselines were 

calculated and subtracted in the regions of interest between 2800–3100 cm−1 and 950–1800 

cm−1, respectively. The calibration of PMMA between infrared absorbance and tempera-

ture was obtained by using a Linkam FTIR600 temperature control stage mounted in the 

infrared microscope with two CaF2 windows of 500 µm thickness and used in a transmis-

sion configuration. The measurements were carried out under atmospheric pressure. 

2.4. Machine Learning 

Machine learning (ML) was performed with the open source software package Or-

ange, Bioinformatics Laboratory of the University of Ljubljana, version 3.30.2, and the 

spectroscopy add-on, version 0.6.2 [40–42]. Within Orange, all spectra were baseline cor-

rected (rubber band) and unit vector normalized in the region of interest after the second 

derivative was calculated over the total range. In addition, a Gaussian smoothing of the 

data was applied. 

3. Results and Discussion 

The first step in using polymer IR modes as a thermometer is to calibrate the IR re-

sponse with respect to temperature. Some variations of the polymer film such as density, 

molecular weight, or polydispersity index are relevant to the IR response of the film. How-

ever, as this method requires an initial calibration of the IR signal against temperature, the 

impact of changing these properties on the temperature response are already included in 

the initial calibration. The calibration step is mandatory to be able to exploit an FTIR signal 

to be used as a thermometer. The infrared absorbance of the sample was locally measured 

at different regions, as shown in Figure 1b. A single point for calibrating the temperature 

response of the PMMA IR spectra was repeatedly measured at different environmental 

temperatures. Here, the sample was placed in a cryostat stage and no current was applied 
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to the metal wire. Subsequently, the sample was heated using the metal wire and the cry-

ostat stage was kept at room temperature. In this configuration, the infrared response of 

the PMMA layer was measured along a line scan across the heated metal wire and across 

a larger area for hyperspectral imaging. 

3.1. PMMA Infrared Absorption (Calibration Data) 

For the calibration of the infrared absorbance response of PMMA at different tem-

peratures, spectra of the PMMA film were systematically taken at several set temperatures 

(Tset) using a cryostat stage (Linkam FTIR600). Measurements were taken between 283 and 

373 K in 3 K steps during the heating and subsequent cooling cycle. A total of 5 min passed 

following each change in temperature prior to spectrum acquisition to allow for thermal 

equilibration. Infrared absorbance spectra of PMMA are shown in the C-H stretch region 

between 3100–2800 cm−1 (Figure 2a) and the fingerprint region between 1800 and 950 cm−1 

(Figure 2b). All absorption peaks were identified and associated to the molecular vibra-

tional modes according to the literature and were compared with density-functional the-

ory (DFT) simulations (Figure S2) [43-48]. The room temperature band assignments are 

summarized in Table 1. 

 

Figure 2. Infrared absorption spectra of PMMA measured with variable temperature from 283 and 

373 K in 3 K steps. (a) All spectra have been baseline corrected in the region of the C-H vibrational 

peaks between 3100 and 2800 cm−1 and (b) the fingerprint region between 1800 and 950 cm−1. 

Table 1. Peak assignment of the measured PMMA absorption peaks compared to literature values 

at room temperature. 

Vibrational Mode 

Fitted 

Peaks 

[cm−1] 

Lit. Values 

[cm−1] 
Ref. 

Slope (dIPP/dTset) 

[cm-1/K] 

C-H stretch region:     

C–H stretching vibrations of the –CH3 2995 2997 [49] 0.007 

C–H stretching vibrations of the –CH2 2951 2952 [49] 0.001 

methoxy carbon 

(O–CH3) 
2841 2841.6 [50] −0.013 

     

Fingerprint region:     

C=O stretch (Ketone) 1731 1727, 1732 [49–51] 0.001 

CH2 bending 1481 1485 [52] −0.014 

C–H bending (Alkane) 1448 1450, 1444 [49,51] 0.000 
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asymmetrical bending vibration (CH3) 1434 1435.3 [50] −0.008 

methyl group (C-CH3) 1386 1388 [49] 0.009 

C-C-O bending 1269 1265 [52,53] −0.032 

C-C-O bending 1241 1238 [52,53] −0.029 

CH3 wagging 1191 1197 [52] −0.022 

C-O-C 1149 1149 [49–51] −0.028 

stretching vibration of C–O–C group 1066 1063.6 [49,50] −0.007 

C-C stretching 985 990 [52] −0.017 

As Tset was increased, the absorbance of the sample decreased systematically for all 

wavenumbers. The decrease in amplitude with increasing temperature was caused by a 

combination of different temperature-dependent phenomena such as intermolecular in-

teractions, changes in conformational populations, Fermi resonance, and the dynamics of 

molecular groups [30]. A systematic change in the Gaussian amplitude, linewidth (full 

width half maximum, FWHM), and band position is observed in Figures S3–S5 (from the 

fitting), in the two-dimensional correlation map (Figure S6), and in simulation (Figure S7) 

in the Supplementary Materials [54,55]. 

A temperature-dependent shift in peak positions was also observed. The PMMA ab-

sorbance peaks listed in Table 1 were individually fitted with Gaussian line shapes (Figure 

S8). To more accurately determine the peak position, the fits were performed only around 

the peak maxima, typically ± 10 cm−1. The resulting fitting parameters were the maximum 

peak position (peak), amplitude, and FWHM. The temperature dependence of all three 

fitting parameters were plotted against temperature (Figure S3–S5). The impact of the 

change of all these parameters in the band around 1149 cm−1 is shown in Figure S6 using 

two-dimensional correlation spectroscopy (2DCOS). The synchronous plot (Figure S6a) 

shows the typical asymmetrical four-leafed clover pattern which indicates that the red-

shift of the peak is strongly coupled with peak broadening and decreasing intensity as 

temperature increases. The effect of each parameter and its coupling with the measured 

signal is also shown in the simulated 2DCOS in Figure S7. A steeper slope corresponds to 

a more pronounced temperature dependence for the given absorbance band. The IR bands 

exhibiting the strongest temperature variations are those at 1269, 1241, 1191, and 1149 

cm−1, with temperature dependencies of the peak center positions of 0.032, −0.029, −0.022, 

and −0.028 cm−1/K, respectively (Figure 3). These peaks arising from the monomer back-

bone units can then be used for the prediction of temperature on a test sample. 

 

Figure 3. Temperature dependence of different bands located at: (a) 1269, (b) 1241, (c) 1191, and (d) 

1149 cm−1. The sample has been heated (red) and cooled (blue) over the temperature region between 
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283 and 373 K. Data points are shown with numerical error from the fit. A linear model has been 

fitted (grey lines) with the resulting slopes listed in Table 1. 

The temperature dependencies of the most temperature sensitive peaks (1269, 1241, 

1191, and 1149 cm−1) are shown in Figure 3. All four peaks possess a linear relationship 

between Tset and the infrared peak position (IPP) over the measured temperature range. 

The resulting temperature dependencies (the slope of the linear fit dIPP/dTset) for all peaks 

are shown in Figures S8 and S9; they have been summarized in Table 1, and are used for 

the LR approach for the temperature determination. The pronounced redshift of the peaks 

at 1269, 1241, 1191, and 1149 cm−1 have been previously reported and are in good agree-

ment with our results (Figure 3) [29,36]. 

3.2. Line Scans (Test Sample) 

Following IR calibration, a proof-of-concept experiment was performed by heating 

the same film but by using a gold heater wire. The wire was heated by a DC current 

through the Joule effect and then thermal mapping was realized by measuring the infra-

red absorbance spectra at different positions along the polymer. The first measurements 

were taken along line scans at positions from −200 to 200 µm relative to the center of the 

gold wire (0.5 mm away from the voltage pad) at 5 µm steps with a sampled area of 10 x 

10 µm2 for each spectrum. All the mapping lines were taken inside of the cryostat with an 

environmental temperature set to 318 K. For each line scan, the wire temperature (Twire) of 

the wire was left at room temperature (298 K, baseline) or heated to 334 K, 353 K, or 376 

K. We then calculated the temperature distribution of the PMMA at each measurement 

position using linear regression and machine learning. 

3.2.1. Temperature Prediction by Linear Regression Model 

Figure 4 shows the four selected peaks with the highest temperature responses (1269, 

1241, 1191, and 1149 cm−1) which were selected and used to calculate the temperature at 

each measurement position by using the linear temperature dependence of the absorbance 

peak positions measured in the calibration step (Figure 3). Here, the peak positions alone 

were used as predictors of the temperature, carried out separately for each peak. 

 

Figure 4. Calculated sample temperatures (Tcalc) at +/− 200 µm from the heating wire (x = 0), using 

the peaks at 1269, 1241, 1191, and 1149 cm−1, including error bars. For each measurement, the wire 

temperature (Twire) was left at room temperature (298 K, light blue) or heated to 334 K (blue), 353 K 

(purple), or 376 K (red). Prior to each measurement, the wire temperature was given at least 10 min 

to equilibrate. The room temperature inside of the cryostat is indicated with horizontal red lines. 
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First, the calculated temperatures (Tcalc) for the measurements at room temperature 

(298 K) were compared to the set wire temperature (Twire). The mean temperatures for each 

of these room temperature measurement points were calculated. The resulting mean val-

ues (given with standard derivation) are 309 ± 3, 302 ± 8, 291 ± 4, and 294 ± 3 K for the 

peaks at 1269, 1241, 1191, and 1149 cm−1, respectively. 

As expected, Tcalc calculated for higher wire temperatures (Twire) increased with in-

creasing Twire. A temperature gradient can be observed with the maximum temperatures 

close to the wire positions which decays exponentially away from these positions. The 

decay of the thermal field is given by [56]: 

∆𝑇 = 𝑄√
1

ℎ𝑘𝑑
exp [−√

ℎ

𝑘𝑑
𝑥], (1) 

where Q is power density of the wire, h is the “convection coefficient” (which is the ther-

mal boundary conductance (TBC) between the polymer and the substrate in this case), d 

is the film thickness, and k is the thermal conductivity of the polymer. From the best fit of 

(1) (Figure S10), the thermal conductivity and interphase thermal resistance were esti-

mated to be k = 0.28 ± 0.11 WK−1m−1 and TBC h = 85.30 ± 0.15 × 106 WK−1m−2, showing good 

agreement with the expected values for the thermal conductivity 0.15 < k < 0.25 (WK−1m−1) 

[57], and the same order for the TBC 60 < h < 150 × 106 WK−1m−2 for the case of PMMA-

metal [58]. An extended description of the fitting procedure is provided in the Supple-

mentary Materials. 

3.2.2. Temperature Prediction by Machine Learning Approach 

In addition to the simple linear regression approach, the measured calibration data 

enabled the data to be analyzed with ML approaches. Despite the simplicity of linear re-

gression, an important advantage of ML is that multiple complex spectral regions can be 

simultaneously considered to determine the temperature, rather than only the position of 

a single peak, as carried out previously in the linear regression approach. Another ad-

vantage is that no further knowledge about the temperature sensitivity of individual 

peaks is necessary and, therefore, the calibration data does not have to be analyzed be-

forehand. Moreover, the full spectra can contain subtle temperature-dependent variations 

that are invisible to the naked eye but detectable by ML. This approach begins with an 

unsupervised principal component analysis (PCA), applied to identify the temperature-

sensitive spectral regions of interest in the fingerprint region from 1550 to 1000 cm−1 (e.g., 

Figure 2b) for processed second derivative spectra. The resulting scores plot (Figure S11a) 

shows a clear separation between the line scan data taken at different temperatures (cir-

cles) along principal component 2 (PC-2). In addition, the calibration data (stars) also sep-

arate temperature dependence along PC-2 with measurements at higher temperatures re-

sulting in a positive PC-2 and those at lower temperatures resulting in a negative PC-2. 

Consistent with this result, the same trend along PC-2 has been observed for the line scan 

data. 

The wavenumber regions with higher intensities of PC-2 (Figure S11b) were used for 

the following supervised analysis. We identified two spectral regions of interest from 

1510–1410 cm−1 and 1300–1120 cm−1, and we discarded the other wavenumber regions. The 

pre-processed second derivative spectra were baseline corrected and unit vector normal-

ized before further analysis. The random forest and k-nearest neighbor (k-NN) algorithms 

were applied and compared as supervised models, using the calibration spectra as train-

ing data to predict the temperature of the test sample spectra taken close to the heated 

wire. A total of 1000 trees and 20 neighbors were chosen for the random forest and k-NN 

algorithms with a Euclidian metric, respectively. The cross validation of the models using 

20 folds resulted in high coefficients of determination (R2) of 0.999 and 0.952 and low 

mean absolute errors (MAE) of 0.691 and 3.477 for the random forest and k-NN algo-

rithms, respectively. The temperatures predicted by the machine learning approaches are 

plotted in Figure 5 for the two models separately for each applied wire temperature. The 
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temperatures calculated via linear regression for the peak at 1269 cm−1 from Figure 4 are 

also overlaid onto these plots for direct comparison. 

 

Figure 5. Temperatures (Tcalc) predicted with linear regression (LR) for the peak at 1269 cm−1 indi-

cated by “●”-markers and temperatures predicted by the machine learning (ML) approaches indi-

cated by lines, using the random forest (left) and k-NN (right) algorithms. The data were measured 

with the gold wire temperature (Twire) at room temperature (298 K) and heated to 334, 353, and 376 

K. Room temperature is indicated with horizontal red lines. 

3.3. Hyperspectral Imaging 

After measuring the line scan in the center of the heater line, we moved to a corner 

of a voltage pad to take a snapshot of the temperature profile. Measurements at this loca-

tion were taken due to the possibility of generating non-homogeneous maps due to the 

influence of the voltage pad. Here, a matrix of 36 × 15 spectra (540) was measured with a 

step size of 5 µm and a sampled area of 10 × 10 um2 per spectrum (Figure 6c). The black 

region in the image is due to a mask over the heating wire, which blocked the transmitted 

IR light. 

 

Figure 6. Hyperspectral images showing the temperatures predicted by the (a) random forest and 

(b) k-NN machine learning algorithms. The regions of the metallic gold wire are masked in black. 

(c) Optical image with the metallic gold coating (black) on a PMMA thin film (blue) and the sampled 

area of the hyperspectral imaging in white. 
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Here, we set the wire temperature to 376 K, measured by the resistance of the wire. 

For each measurement point, the temperature was predicted using the random forest (Fig-

ure 6a) and the k-NN (Figure 6b) algorithms. As previously observed in the line scan pre-

dictions (Figure 5), the temperatures predicted by the random forest algorithm were 

slightly lower than those predicted by the k-NN algorithm. However, this technique al-

lows for a very quick and direct generation of a thermal map using the raw signal, avoid-

ing the individual fitting of all 540 spectra while considering the entirety of the frequency 

windows rather than a single peak. 

4. Summary 

In this work, we presented a novel contactless technique for thermal mapping based 

on FTIR spectroscopy. For this approach, the temperature dependence of an IR signal of 

a 1 µm PMMA thin film was used as a local thermometer with a spatial resolution limited 

by the spot size of the IR source (10 µm in this work). We incorporated machine learning 

methods to directly treat measured raw signals from a sample, avoiding the need for peak 

fitting and analysis of each individual spectrum. An important advantage of ML is that 

multiple complex spectral regions can be simultaneously considered to determine the 

temperature, rather than only the position of a single peak. The full spectra can contain 

subtle temperature-dependent variations that are invisible to the naked eye but detectable 

by ML. Another advantage is that no further knowledge about the temperature sensitivity 

of individual peaks is necessary and, therefore, calibration data does not need to be ana-

lyzed beforehand. This approach can be extended and adapted to any spectroscopic tech-

nique (e.g., Raman, photoluminescence, Brillouin, etc.) and any film can be used as a sur-

face thermometer, as long as it exhibits a temperature-dependent spectroscopic signal. 

The use of FTIR spectroscopy itself allows for investigation of temperature distributions 

in CMOS technology, as silicon is transparent and invisible in the IR regime. This opens 

the possibility to detect hot spots in normal device-operating conditions if they are cov-

ered with an IR-active material. This new approach is a step towards a deeper understand-

ing of in situ thermal management in electronic devices that can be performed under op-

erating conditions. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/polym15030536/s1, Figure S1: electrical resistivity of the 

gold wire measured at different temperatures in a heating stage. Figure S2: simulated IR spectra of 

PMMA molecules. Figure S3: fitted Gaussian center positions for each PMMA absorbance peak vs 

temperature. Figure S4: fitted Gaussian amplitudes for each PMMA absorbance peak vs tempera-

ture. Figure S5: fitted Gaussian full width at half maximum (FWHM) for each PMMA absorbance 

peak vs temperature. Figure S6: synchronous (a) and asynchronous (b) two-dimensional correlation 

spectra obtained from temperature-dependent FTIR spectra of the PMMA film. The red and blue 

colors represent positive and negative cross peaks, respectively. Figure S7: synchronous two-dimen-

sional correlation spectra obtained from simulated spectra centered at ~1149 cm−1. (a) Simulated 

2DCOS fixing band position and linewidth and varying the intensity. (b) Simulated 2DCOS fixing 

band intensity and linewidth and varying the peak position. (c) Simulated 2DCOS fixing band po-

sition and intensity and varying the linewidth. (d) Simulated 2DCOS varying band position, lin-

ewidth, and intensity. Figure S8: PMMA absorbance peaks at 283 K fitted individually using a 

Gaussian line shape, showing the data points and the fit as black lines. Figure S9: fitting results for 

a linear fit to the temperature dependence of the peak center positions for different absorbance 

peaks. The linear fits are shown in red in Figure S1. Figure S10: thermal decay as function of sample 

position for different temperatures of the heater wire. The solid lines represent the best fit. Figure 

S11: (a) Transferred data (scores plot) of the PCA with the calibration data (stars) and the line scan 

data points (circle). (b) Loadings plot of the PCA showing PC-1 (black) and PC-2 (red). Figure S12: 

simplified workflow of the machine learning approach in this work performed by Orange. 
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