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Abstract: The field of patient-centred healthcare has, during recent years, adopted machine learning
and data science techniques to support clinical decision making and improve patient outcomes.
We conduct a literature review with the aim of summarising the existing methodologies that apply
machine learning methods on patient-reported outcome measures datasets for predicting clinical
outcomes to support further research and development within the field. We identify 15 articles
published within the last decade that employ machine learning methods at various stages of ex-
ploiting datasets consisting of patient-reported outcome measures for predicting clinical outcomes,
presenting promising research and demonstrating the utility of patient-reported outcome measures
data for developmental research, personalised treatment and precision medicine with the help of
machine learning-based decision-support systems. Furthermore, we identify and discuss the gaps
and challenges, such as inconsistency in reporting the results across different articles, use of different
evaluation metrics, legal aspects of using the data, and data unavailability, among others, which can
potentially be addressed in future studies.

Keywords: machine learning; patient-reported outcome measurements; self-reported measures; patient
outcomes; outcome prediction; clinical decision making; decision-support systems; health informatics

1. Introduction

There is growing interest and support for the utility and importance of patient-
reported outcome measures (PROMs) in clinical care. PROMs are commonly defined
as reports or questionnaires completed by patients to measure their view on their func-
tional well-being and health status [1]. Thus, PROMs may capture the patient’s perspective
on both social, physical, and mental well-being. Shifting the focus from disease-specific
factors towards the patient’s perspective may provide a useful basis for shared medical de-
cision making between a clinician and a patient [2,3]. Recent evidence indicates that shared
decision making has a positive impact on the quality of decision making, satisfaction with
treatment, and patient–provider experience [4]. Likewise, well-informed patients agreeing
upon their course of treatment with their caregiver have better outcome and satisfaction [5].

PROMs may play an important role in shared decision making; however, there is
currently an unused potential in both collecting and utilising PROMs in clinical practice.
Notably, digital innovations can facilitate delivery, storage, processing, and access to
PROMs, using third-party or electronic health record (EHR)-based outcome measurement
platforms. Intelligent methods can also support shared decision making through digital
decision aids and patient engagement platforms, comprising high-quality educational
material, and patient–provider communication portals [5,6]. In this context, utilising
machine learning and artificial intelligence provide a promising avenue for enhancing the
usefulness of PROMs [7].
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Several recent studies demonstrated the predictive prowess of machine learning
models utilising EHR datasets for the scheduling of surgeries [8–10], and risk stratifica-
tion [11–13] among others. Singal et al. [14] in their work found the machine learning
models to outperform conventional models in predicting the development of hepatocellu-
lar carcinoma among cirrhotic patients. The application of machine learning methods on
PROMs datasets can allow the exploration of associations in the data that are important for
predicting different outcomes, thereby informing a shared decision-making process [15].
Currently, PROMs data are widely used in explanatory research, where researchers typ-
ically test hypotheses using a preconceived theoretical construct by applying statistical
methods (for example, low back pain is associated to lower quality of life and depres-
sion [16,17]. In contrast, PROMs in predictive research can be used to predict outcomes in
the future by applying statistical or machine learning methods without any preconceived
theoretical constructs (for example, predicting the risk of depression [18]), and is therefore
an important step towards patient-centred care with a shift in focus towards the patient’s
perspective [19].

While prediction models exist that utilise a combination of PROMs and objective
clinical data or EHR data for individual predictions [20], models that utilise solely PROMs
data to make individual predictions are rare. Despite the broad area of application of
machine learning and data science techniques in the biomedical field, the utilisation of
these techniques in clinical practice remains low, especially concerning the utilisation
of PROMs. A few machine learning applications utilising PROMs data in biomedical
research have emerged during recent years; however, the potential for utilising PROMs
data to improve clinical care appears under-explored, especially from the perspective of
supporting shared decision-making.

The main of aim of this literature review is, therefore, to provide a summary of existing
methodologies that apply machine learning methods on PROMs for predicting clinical
outcomes and building prognostic models. In Section 2, we introduce the process of article
selection and present an analysis of the selected articles in terms of their publication year,
intervention domains, length of outcome prediction, data source, feature selection strategy
and the machine learning methods used. Furthermore, we discuss the gaps and challenges
in Section 3 that can be addressed in future work to utilise machine learning methods
on PROMs datasets. The main contribution of this work is firstly, the identification of
scientific articles applying machine learning methods on PROMs data for predicting clinical
outcomes and secondly, augmenting the utility of machine learning methods for healthcare
datasets for building clinical decision support systems to better facilitate decision making
for patient-centred care and precision medicine.

2. Methods
2.1. Review Design and Search Strategy

This literature review identifies scientific articles that focus on the application of ma-
chine learning methods in the process of predicting short or long-term clinical outcome(s)
using PROMs data.

A structured literature search was performed in September 2020, using the following
search string in the PubMed and Scopus database: (((self reported measures) OR patient
reported measures)) AND ((artificial intelligence) OR machine learning) AND ((outcome
prediction) OR outcome assessment). The results were filtered to include journal and
conference articles written in English and published within the last decade (2010–2020).

2.2. Article Selection

The following inclusion criteria were used to identify articles relevant for the cur-
rent review:

• Data: The dataset consists of structured questionnaires administered to patients or
participants either in-person or via web application before, during and/or after a
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treatment. Articles that involved objectively measured data or data gathered from
online patient forums were excluded from this study.

• Machine Learning: Application of machine learning methods with the intent of data
analysis or clustering of patients or assessment of features with prognostic value for
one or more target outcomes or building prognostic models for short- or long-term
prediction of one or more outcome.

• Full text availability (including institutional access).
• Written in English.

Articles not meeting the inclusion criteria following the abstract and full screening
were excluded from this study.

2.3. Search Outcome

Figure 1 presents a flowchart of the article selection process. Based on the structured
literature search, a total of 319 records were identified: PubMed (n = 314) and Scopus
(n = 5). Further, we screened the references of the articles that met the inclusion criteria
along with relevant review articles and books to identify additional articles (n = 4). Finally,
after duplicates were removed, we screened 322 articles. After screening of title/abstract
and assessing the eligibility, a total of 15 articles were included in the qualitative synthesis.

Figure 1. Flowchart of the article selection process.

2.4. Sources of Evidence

All the included articles were published in peer-reviewed journals. A total of 8 out of
the 15 articles were published in the years 2019 and 2020 (excluding October–December
2020); see Figure 2. Fourteen articles were published the second half of the decade, 2016–
2020, while only one article was published in the first half of the decade, in 2012.
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Figure 2. Publication year of included articles.

2.5. Intervention Domains and Length of Prediction

Articles stratified by the intervention domain (Figure 3), can be broadly categorised
as post-surgical improvements or limitations, depression, pain management, hospital
readmission, and oral health.

Figure 3. The included articles categorised by their intervention domains. The length of the predic-
tions are indicated, categorised into short- and long-term. The time period of the data collection is
indicated to the right. Red asterisks indicate studies that utilised external validation datasets to test
the generalisability of the machine learning models.

The first category includes six articles, focusing on outcomes relating to post-surgical
limitations or improvements, such as quality of life after cancer surgery [21] and (walking)
limitations or improvements (minimal clinically important difference (MCID)) after total
joint arthroplasty [22–26]. The second category includes four articles, focusing on identi-
fying patients with depression based on self-reports [18,27] and prognosis of outcome of
anti-depression treatment [28,29]. The third category includes three articles focusing on
predicting pain volatility amongst users of a pain-management mobile application [30,31]
and self-referral decision support for patients with low back pain in primary care [32]. The
fourth category includes one article that focused on the risk of hospital readmission [33],
while the fifth and last category includes one article that focused on oral health outcome
among children aged 2–17 years [34].
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Eleven articles presented machine learning models for predicting short-term outcomes
(12 months or less), see Figure 3, while four articles presented machine learning models
for predicting long-term outcomes (over 12 months). Two articles focused on immediate
outcomes, such as referral decision [32] and oral health scores [34]. Four articles, marked
with a red asterisk in Figure 3, utilised external validation datasets to test the generalisability
of the machine learning models. None of the articles with long-term outcomes utilised
external validation datasets. The prediction timelines also appear to be domain dependant.
The outcomes from interventions such as depression treatment or surgeries seem to be
predicted over the long term, likely due to the nature of the treatment and associated
outcomes in the two intervention domains.

2.6. Sources of Data and Availability

Table 1 presents a summary of the included articles. Few articles utilised open-source
or available-on-request datasets from national registries, such as National Institute of
Mental Health (NIMH) or National Health Service (NHS). The sizes of the datasets vary,
from 37 patients [18] to 64,634 patients [22]. Seven articles utilised training datasets with
fewer than 1000 patients.

2.7. Feature Selection

The methods of feature selection were either statistical, algorithm-based or manual,
based on expertise or availability of data (Table 1). In the table, ‘Algorithm implicit’ implies
that the features were selected by the algorithm(s) used for the prediction task and no other
explicit feature selection was carried out, while ‘Manual’ implies that the features were
selected manually based on experience or expert knowledge or data availability.

Ten articles used supervised learning algorithms to extract relevant features from
the dataset, while in four articles, features were selected manually, without any statisti-
cal or algorithmic assistance. One article [21] applied statistical methods to extract and
select relevant features. Among the four articles that employed manual feature selec-
tion, two articles [24,34] manually divided all the features into sets and added the sets
incrementally into the training dataset to train the model(s). In comparison, in the other
two articles [23,26], features were selected manually based on clinical expertise [23] and
previous experimental evaluation [26]. Ten articles employed the algorithmic approach for
extraction and selection of relevant features from the datasets: Andrews et al. [18] used
LASSO; Schiltz et al. [33] and Rahman et al. [31] used Random Forest; Polce et al. [25] used
recursive feature elimination with Random Forest; Chekroud et al. [28,29] used Elastic
nets; and Huber et al. [22], Rahman et al. [30], d’Hollosy et al. [32] and Kessler et al. [27]
employed no separate feature selection but relied on the implicit feature selection ability of
the algorithms used. Random Forest and linear models, such as Elastic nets and LASSO,
appear to be the preferred algorithm choice for feature selection.
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Table 1. Overview of feature selection, model evaluation, data availability and external validation in the included articles. Abbreviations: MCID—minimal clinically important difference,
NR—not reported, ANOVA—analysis of variance, CV—cross validation, RoC—receiver operating characteristic, LASSO—least absolute shrinkage and selection operator, NHS—National
Health Service, NIMH—National Institute of Mental Health, HRS—Health and Retirement Study.

Article Outcome Dataset
Size

Total No.
of Features

Features
Selected

Feature Selection
Method

Hyperparameter
Tuning

Model
Evaluation

Data
Availability

External
Validation

Shi et al. [21] Quality of life post
surgery

403 NR NR ANOVA, Fisher ex-
act analysis, Uni-
variate analysis

NR Holdout
(80,20)

NR no

Huber et al. [22] MCID post surgery 64,634 81 NR Algorithm implicit NR 5-fold CV NHS 1 no

Fontana et al. [24] MCID post surgery 13,809 NR Manual 5-fold CV Holdout
(80,20)

NR no

Polce et al. [25] Satisfaction post
surgery

413 16 10 Recursive Feature
Elimination, Ran-
dom Forest

10-fold CV Holdout
(80,20)

NR no

Pua et al. [23] Walking limitation post
surgery

4026 NR 25 Manual 5-fold CV Holdout
(70,30)

NR no

Harris et al. [26] MCID post surgery 587 NR NR Manual NR 10-fold CV,
bootstrapping

NR no

Kessler et al. [27] Depressive Disorder
chronicity, persistence,
severity

1056 NR 9–13 Ensemble and Pe-
nalised Regression

NR 10-fold CV NR no

Chekroud et al. [28] Antidepressant treat-
ment

1949 164 25 ElasticNet RoC maximisa-
tion

10*Repeated
10-fold CV

NIMH 2 yes

Chekroud et al. [29] Antidepressant treat-
ment

7221 164 25 ElasticNet NR 5-fold CV NIMH 2 yes

Andrews et al. [18] Depression in older
adults

37 6 2 LASSO Stratified CV 5-fold CV NR no

d’Hollosy et al. [32] Low Back pain self-
referral

1288 15 NR Algorithm implicit NR Holdout
(70,30)

On Request yes

Rahman et al. [30] Pain volatility 782 130 NR Algorithm implicit NR 5-fold CV NR no
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Table 1. Cont.

Article Outcome Dataset
Size

Total No.
of Features

Features
Selected

Feature Selection
Method

Hyperparameter
Tuning

Model
Evaluation

Data
Availability

External
Validation

Rahman et al. [31] Pain volatility 879 132 9 Gini impurity, Infor-
mation gain, Class
imbalance

NR 5-fold CV NR no

Schiltz et al. [33] Hospital Readmission 6617 NR NR Random Forest NR Holdout
(80,20)

HRS 3 no

Wang et al. [34] Oral Health 908 27 NA Manual Greedy approxi-
mation [35]

Holdout
(70,30)

NR yes

1 https://digital.nhs.uk/data (first accessed on 14 October 2020); 2 https://www.nimhgenetics.org/download-tool/DP (accessed on 9 October 2020); 3 https://hrsonline.isr.umich.edu. (accessed on 16
October 2020).

https://digital.nhs.uk/data
https://www.nimhgenetics.org/download-tool/DP
https://hrsonline.isr.umich.edu
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2.8. Trends in the Application of Machine Learning Methods

Table 2 presents an overview of the different machine learning methods used in the
included articles. Ensembles and linear methods appear to be the most commonly applied
methods to the PROMs datasets, with all the included articles employing at least either
one, likely due to their ability to extract features implicitly. While supervised learning
methods are the go-to methods for prediction tasks, three (20%) articles apply unsupervised
methods as a pre-step to the supervised methods to determine and predict cluster-specific
outcomes [29–31]. Examples of commonly used linear algorithms in the included articles
are logistic regression, logistic regression with splines, elastic nets, Poisson regression,
LASSO, and linear kernel-based Support Vector Machines, among others. The most com-
monly applied ensemble algorithms are Random Forest, Boosted Trees, Gradient Boosting
Machines (GBM), stochastic gradient boosting machines, extreme gradient boosting (XG-
Boost), and SuperLearner.

Thirteen (87%) articles used binary classification to predict whether the targeted
outcome(s) are above or below a specified threshold (for instance, whether or not a pa-
tient achieves MCID in their post-operative outcomes [24]). One article used ternary
classification to predict the self-referral outcome among people with low back pain in a
primary care setting [32]. In contrast, three (20%) articles used regression [21,29,34], one of
which used both regression and binary classification to predict continuous and categorical
outcomes [34].

2.9. Study Design and Model Evaluation

To reduce the risk of overfitting the models and to improve their generalisability, a k-
fold cross-validation scheme was used in eleven articles, either during the hyperparameter
tuning phase or the model evaluation phase (Table 1). Out of these eleven, only one
article used the k-fold cross-validation scheme in both phases [18]. Three articles [23,32,34]
employed a holdout (70,30) validation approach: 70% of the dataset was used for training
the model and 30% for validation, while four articles employed a holdout (80,20) validation
approach [21,24,25,33]. While the holdout validation approach is useful due to its speed
and simplicity, it often leads to high variability due to the differences in the training and
test datasets, which can result in significant differences in the evaluation metric estimates
(accuracy, error, sensitivity, etc., depending on the machine learning task the metric used).

External validation datasets were used in four articles to test the generalisability of the
models [28,29,32,34]. While external validation is generally recommended to validate the
models generated since prediction models perform better on the training data than on new
data, internal validation appears to be more common, likely due to either the lack or un-
availability of an appropriate external validation dataset. However, to correct the bias in the
internally-validated prediction models, bootstrapping methods are recommended [36,37].
Only one article used bootstrapping to internally validate the models where an external
validation dataset was not used [26].
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Table 2. Overview of the application of different machine learning methods in the included articles. Abbreviations: DT—Decision Tree, SVM—Support Vector Machines, NN—neural
network, NB—naive Bayes, k-NN—k-Nearest Neighbour, QDA—Quadratic Discriminant Analysis, Aggl—agglomerative clustering.

Article
Supervised Unsupervised

Machine Learning Task
Ensemble Methods Linear Methods DT SVM NN NB k-NN QDA k-Means Aggl.

Shi et al. [21] X X Regression

Huber et al. [22] X X X X X Classification

Fontana et al. [24] X X X Classification

Polce et al. [25] X X X X Classification

Pua et al. [23] X X Classification

Harris et al. [26] X X X Classification

Kessler et al. [27] X X Classification

Chekroud et al. [28] X Classification

Chekroud et al. [29] X X Regression

Andrews et al. [18] X Classification

d’Hollosy et al. [32] X X Classification

Rahman et al. [30] X X X X Classification

Rahman et al. [31] X X X X Classification

Schiltz et al. [33] X X X Classification

Wang et al. [34] X X Regression, Classification
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2.10. Model Performance

While it is difficult to provide a concrete result comparison among the included articles
due to the utilisation of various metrics, most articles did report at least above chance (fair
to moderate) predictive performance of the machine learning models. Amongst the articles
that compared the performance of conventional linear models with machine learning
models, most found the machine learning models to perform better for predicting the
outcomes [21,22,27], while one article found the conventional method to perform equally
well, compared to the machine learning methods [23]. Despite the above chance predictive
performance reported in most articles, the limitations posed by the small size of training
datasets used to develop the models and the lack of external validation datasets has been
widely acknowledged [18,21,25,34].

3. Discussion

Our review identified 15 articles focusing on the utilisation of PROMs for predicting
outcomes by leveraging the analytical abilities of machine learning methods. Over the
last decade, machine learning methods have received more attention in clinical research
and are increasingly being adopted for furthering research in clinical analysis, modelling
and building decision support systems for practitioners. The included articles presented
promising research, demonstrating that as more and more healthcare data become available
for developmental research, personalised treatment and medicine become more feasible
with the help of machine learning-based decision support systems. Mobile applications
allowing faster collection of PROMs data, as shown by Rahman et al. [30,31], is a promising
way to collect more data frequently as well as to utilise the collected data for further research
and development. Thus, the application of machine learning methods on PROMs data
for predicting patient-specific outcomes appears to be a promising avenue and warrants
further research.

3.1. Gaps and Challenges

The lack of external validation and non-availability of datasets used in the majority
of the articles pose a major gap in the data availability for machine learning research.
To drive the field forward, access to and open research questions in suitable datasets is a
prerequisite. Datasets that are both comprehensive, complete, and readily available for
research purposes, such as machine learning model development, are rare. Such datasets
can facilitate the external validation by researchers in different disciplines and potentially
inter-disciplinary collaboration. In other medical domains, opening pre-processed and
experiment-ready datasets have shown that they draw attention to machine learning re-
searchers and practitioners to explore different methods and benchmark the results [38–40].
As for the sizes of the datasets, eight of the fifteen articles included in this review used
training datasets with more than 1000 patients (see Table 1), highlighting the sparsity of de-
cent sized healthcare datasets for machine learning modelling. Furthermore, data collected
with a different intent originally cannot automatically be used for machine learning due
to uncertain or missing informed consent from participants. Most datasets collected from
patients requires their consent for the utilisation of their data for various other purposes,
which may not have been foreseen at the time of data collection. This may limit the ways
in which patient data can be stored, used or distributed as well as the scope of the data.

Explainability and trustworthiness of the machine learning models are important
challenges when it comes to developing clinical decision support systems. While a lot
of attention has been given to developing accurate machine learning models, it is cru-
cial to build systems that are trustworthy and interpretable. The users of such systems,
for example medical researchers or clinicians, should be able to interpret the output of the
machine learning models. Interpretations can be facilitated either through visualisations or
explanations. This is an important aspect for clinicians, as they can focus on addressing the
medical concerns rather than struggling with comprehension of the system’s results.
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Moreover, inconsistency was observed in reporting the development of the machine
learning models in the articles. Only six articles reported the essential aspects of ma-
chine learning model development, such as feature selection and hyperparameter tuning,
whereas in nine articles, this was either unclear or not stated at all, which can limit the
reproducibility of results and further research.

Despite the progress in the development of machine learning models aimed at facili-
tating informed decision-making, there is still some more progress needed before these
tools can be used in clinical practice. Specifically, external validation on large datasets of
specific cohorts and thorough evaluation of the prediction tools are necessary before these
tools can be integrated in clinical practice.

3.2. Limitations

The limitations of this review were that it was not possible to perform a meta-analysis
of the results in the included articles due to various reasons, including, but not limited to,
the heterogeneous study design, data non-availability, and study results, as summarised in
Table 1 and discussed in Section 2.10. Out of the fifteen articles included in the analysis,
only four articles reported their data source (national registry datasets), and one article
stated that their dataset may be available upon reasonable request. However, none of the
datasets were available during this literature review process for a meta-analysis. Further,
we acknowledge that the articles retrieved in this literature review include only those
articles that were retrieved during our search and met the inclusion criteria. As stated in
the inclusion criteria, we included only those articles that focus solely on PROMs.

4. Conclusions

In summary, this literature review resulted in two main findings. First, there has been
an increase during recent years in applying machine learning methods in exploring PROMs
datasets for predicting patient-specific outcomes. Second, although the included articles
have reported promising results and improvements [21,23,28], the lack of data availability
and inconsistent reporting of machine learning model development as well as the use
of different evaluation metrics prevents effective results reproduction and comparison.
To conclude, utilising machine learning methods on PROMs datasets have the potential
for assisting in clinical decision making; therefore, further research focusing on thorough
validation is needed.
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Abbreviations
The following abbreviations are used in this manuscript:

NR Not Reported
PROMs Patient-Reported Outcome Measures
EHR Electronic Health Records
CV Cross Validation
LASSO Least Absolute Shrinkage and Selection Operator
ANOVA Analysis of Variance
RoC Receiver Operating Characteristic Curve
MCID Minimal Clinically Important Difference
NIMH National Institute of Mental Health
NHS National Health Service
HRS Health and Retirement Study
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