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ABSTRACT

A novel approximation for the parametric probability densities of spherical particle profile diameters is
suggested. The spheres are approximated from solids obtained by rotating regular polygons around their
axes of symmetry. This approximation facilitates using the maximum likelihood method in samples that have
too few profiles for applying classical stereological approaches.
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INTRODUCTION

While stereological approaches for large samples
(containing thousands of profiles) are well-developed
(Cruz-Orive, 2017), treating small samples (ranging
from 20 to several hundred profiles) remains
challenging. However, such small samples are
common in the geosciences. This study was
specifically motivated by examining the fabric of
the Antarctic ice core, where the diameter of the
borehole and the thickness of the homogeneous ice
layers were comparable to the crystal size and where
additional samples were unavailable (Lipenkov et al.,
2016). Complications caused by lack of material in
the geosciences often occur along with the following
simplifications. The distribution of the 3D sizes
belongs to either one or a few parametric families; it is
acceptable to approximate particles as spheres; and the
presence of a small bias is much less important than
minimising the variance of the parameter estimation
(e.g. Gulbin, 2008; Durand et al., 2006; Lopez-
Sanchez and Llana-Fúnez, 2016).

Even for parameter estimation, non-parametric
stereological methods are typically applied (e.g.
Gulbin, 2008). However, minimum distance estimation
(MDE) was recently suggested as a powerful technique
for modelling a distribution function of particle
profiles, which is useful for parameter estimation
in medium and large samples of spherical particle
profiles (Depriester and Kubler, 2019). Also, the
method of moments (MoM) has been described for
spherical particle profiles (Goldsmith, 1967), although
used very seldom. Still, the maximum likelihood

(ML) method provides point estimators that are
asymptotically unbiased and of the lowest variance
under mild assumptions. It is also a flexible and
powerful instrument for estimating intervals and
testing hypotheses (Lehmann and Romano, 2006). ML
has become increasingly popular (Schweder and Hjort,
2016) as computational methods have developed.
However, the stereological use of ML is rare (Hobolth
and Jensen, 2002; Keiding and Jensen, 1972), and, in
practice, it is typically applied to grouped data and
empirical densities (e.g. Gulbin, 2008).

This paper suggests an alternative approach for
parametric distribution modelling that is useful for
the ML method. We approximate the profile length
distribution as a mixture of uniform distributions, but
the coefficients depend on the angular approximation
shape of the particles, and not on preliminary chosen
size classes.

MATERIALS AND METHODS

We approximate the probability density g(y) of
spherical particle profile sizes y, given the probability
density of sample sizes as follows. We consider
spherical particles (Fig. 1) with centres that are
uniformly distributed in a very large piece of
volume and the diameters D having some probability
distribution with cumulative distribution function F
and probability density f .

We call the section plane P (Fig. 1, a). We choose
an arbitrary line l on P and draw a plane Q, which
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Fig. 1. Approximating spherical particles by solids of revolution: (a) the spherical particles, the notation and the
4m-sided polygon on the plane Q; (b) the approximating solid obtained by rotating the 4m-sided polygon; (c) the
denotations for the sizes, used for deriving Eq. 7 and Eq. 11.

is orthogonal to P and contains l. We project all
the particles orthogonally onto Q. Their projections
are of the same diameter as the particles; a particle
is intersected by P if and only if its projection is
intersected by l. We choose a positive integer m and
assign to any particle a regular 4m-sided polygon
inscribed into the particle’s projection and oriented in
such a way that its longest diagonal is perpendicular to
l (and, hence, perpendicular to P).

We will first introduce a biased intermediate
approximation g∗ for the density of the diameters
y of the profiles of the particles. This density will
be the density g∗(ys) of the profiles ys of the
solids. Thereafter, we will obtain the main resulting
approximation g(y) via scaling transformation. To
derive g∗(ys), we approximate any spherical particle
by a solid of revolution obtained by rotating the 4m-
sided polygon around one of its diagonals that is
perpendicular to P (and moving back the solid so that
its centre coincides with the centre of the particle in
Fig. 1, b).

All the profiles of the solids are circles. The ys
have the same distribution as the lengths of the profiles
of the 4m-sided regular polygons intersected by l.
The diameters D of the intersected particles follow
the size-weighted distribution (Baddeley and Jensen,
2004, p. 34) with density

φ(t) =
t f (t)
E(D)

, (1)

where E(D) is the expected value of the particle
diameter. Each of the 4m-sided polygons is a union
of 2m trapezia with bases parallel to l. We denote
by pi the probability that given that a particle is
intersected, the corresponding profile of the polygon
belongs to either the i-th trapezium or the trapezium
which is congruent to the i-th trapezium (denoted as

i′-th trapezium in Fig. 1, c). The pi is proportional to
the height of the i-th trapezium. Denoting the particle
centre by O and the distances from O to the trapezium
bases by OA and OB,

pi =
2AB

D
, (2)

and from the geometry of the regular polygon we
calculate

pi = sin
iπ
2m

− sin
(i−1)π

2m
, f or i = 1, ...,m. (3)

When a particle diameter D is fixed to equal
some number t and the number of the intersected
trapeze is given, the distances h from particle centres
to the intersections between diameters of the profiles
and the axis of rotation are distributed uniformly
between lengths of OA and OB, because of the initial
assumption on the uniform distribution of the centres
in the volume and the fixed D = t. Hence the diameters
of the profiles are also distributed uniformly between
txi−1 and txi where the dimensionless constants xi−1
and xi are bases of the i-th trapezium which is inscribed
in the sphere with the unit diameter (Fig. 1, c). The
xi are computed from the geometry of the regular
polygon and equal:

xi = cos
iπ
2m

, f or i = 0, ...,m. (4)

The diameters of the profiles of the solid have density

g∗(ys|D = t, i) =

{
1

t·(xi−1−xi)
,ys ∈ (txi, txi−1)

0, otherwise.
(5)

When a particle diameter D is fixed to equal t but a
trapezium may be arbitrary, the density of the profiles
is

g∗(ys|D = t) =
m

∑
i=1

pig∗(ys|D = t, i), (6)

2



Image Anal Stereol 2022;41:1-6

where pi is the probability to belong to the i-th
trapeze, computed by the Eq. 3. When D is not
fixed, we observe that the condition ys ∈ (Dxi,Dxi−1)
is equivalent to D ∈ ( ys

xi−1
, ys

xi
), and therefore the

probability density of the profiles becomes

g∗(ys) =
∫

∞

ys

g∗(ys|D = t)
t f (t)
E(D)

dt =

1
E(D)

m

∑
i=1

pi

(
F
( ys

xi

)
−F

( ys
xi−1

))
xi−1 − xi

.

(7)

The coefficients pi and xi are computed from Eqs. 3
and 4.

This intermediate approximation g∗ is applicable
but inexact if the number of summands m is small,
because the approximating profiles of the polygon
are shorter than in reality and hence its graph is
deformed as compared to the graph of the true
probability density. In order to reduce the bias of the
mean diameter estimates, the approximation may be
improved by applying a scaled transformation, so that
the mean of the approximation g(x) is scaled to equal
the mean of the actual density. For any fixed D = t,
E(ys) in the intermediate approximation equals

E(ys) =
∫ t

ys=0
ysg∗(ys|D = t)dys =

m

∑
i=1

xi−1 + xi

2
t pi =

m

∑
i=1

Area(trapezei)+Area(trapezei′)

t
=

Area(regular polygon)
t

=
mt
2

sin
π

2m
,

(8)

but

E(y) =
Area(pro f ile)

t
=

πt
4

(9)

actually (as the sum for infinitely many narrow
trapezia). So we choose the scaling coefficient

a =
π

2m sin π

2m
. (10)

The final form of approximation becomes

g(y) =
1

aE(D)

m

∑
i=1

pi
(
F( y

axi
)−F( y

axi−1
)
)

xi−1 − xi
, (11)

where pi, xi, and a are defined by Eqs. 3, 4, 10
respectively, and E(D) is computed from the known
distribution of three-dimensional particles and depends
on the parameters.

In the following, the ML estimates were computed
via numerical maximisation of the likelihood.
Following Casella and Berger (2002, p. 290), Shao
(2003, p. 273), or a more elementary description
(Larsen and Marx, 2012, p. 284), the likelihood
for each individual profile measurement xi is a
probability density computed in this measurement,
as a function of the unknown parameters. When
profile sizes are independent, the likelihood of the
sample is a product of the likelihoods for individual
measurements, also treated as a function of the
parameters. The ML estimates are the values of the
parameters that maximise the likelihood of the sample,
given the measurements. The densities involved were
approximated by Eq. 11.

The samples of profile diameters were simulated
as sections of loose spheres. The diameters of the
spheres intersecting the section were sampled from the
diameter-weighted distribution with given parameters
and have been element-wise multiplied with the
diameters for random profiles of unit spheres.

RESULTS

We observed that a single probability density
computation (Eq. 11) works two to three times
faster than the equally exact density computation,
integrating Wicksell’s equation via the trapezoidal rule
and unequal partition length. Additionally, using this
approximation, ML functioned six to 30 times faster
than MDE when applied to the same samples. The
effect of the number of summands m is illustrated in
Fig. 2 on three distributions that are especially typical
in petrology, where our approach may be applied. The
number of summands is not observed to affect the
standard deviation of the estimates. In most cases, the
bias component added by using too few summands was
indistinguishable as well. However, when using eight
summands or less in the approximation, and for some
shape parameters, this bias component reached 1/5 of
the standard deviation. When using 15 summands, the
bias component was practically negligible.

Table 1 illustrates a typical example of parameter
estimation precision by ML with our approximation
and also by other methods. The table shows that,
although MDE is far more efficient than the usual
Saltykov 1 method for such sample sizes, ML gives
even more precise estimates. For smaller sample sizes,
the difference between the precision of ML and of
MDE was even larger, and the amount of totally wrong
estimates by MDE increased more than that by ML.
Since the speed of the numerical estimation decreases

1Sometimes spelled ’Saltikov’ (Depriester and Kubler, 2019)
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Sample size ML MoM MDE Saltykov, q=20
n = 200 bias 2.5 ·10−3 4.2 ·10−3 −14.5 ·10−3 228 ·10−3

st. dev. 6.1 ·10−2 6.7 ·10−2 6.4 ·10−2 66 ·10−2

n = 2000 bias 0.12 ·10−3 1.0 ·10−3 −5.3 ·10−3 310 ·10−3

st. dev. 1.9 ·10−2 2.2 ·10−2 2.0 ·10−2 71 ·10−2

Table 1. The biases and standard deviations (st. dev.) of the estimates of the median diameter of log-
normally(0,0.5)-distributed spheres. The true value is 1. Each line corresponds 1000 simulated samples, resulting
in 1000 estimates for each entry. ML estimates were computed using our approximation, MoM by using the known
moments and (Baddeley and Jensen, 2004, p. 37), MDE by (Depriester and Kubler, 2019), Saltykov method by
(Gulbin, 2008) using q = 20 size classes.

Fig. 2. The standard deviation and the bias of the mean diameter estimates in three typical distributions as
functions of 1/

√
n (where n is the sample size): (a) Weibull distribution: λ = 1, k = 1.2, 1/

√
n varies; (b) log-

normal distribution: µ = 0, σ = 0.7, 1/
√

n varies; (c) positive normal distribution: µ = 3, σ = 3, 1/
√

n varies;
and as functions of the shape parameter: (d) in log-normal distribution: µ = 0, n = 300, σ varies. Each point
on the plot corresponds 5000 simulated samples of sphere profiles, of fixed size n and fixed parameters, and
consequent 5000 parameter estimates for each value of m.

when an initial guess for the values becomes further
from an estimate (Depriester and Kubler, 2019), the
estimation using ML and our approximation was also
numerically more efficient, as was the single density
computation.

A possible technique for applying our approach, as
well as a more detailed numerical comparison of the
precision of ML (using the approximation) with that
of MDE and the MoM, are described in more detail
in preprint of Poliakova (2020). For samples with ≥70
profiles ML has always been observed to give more
precise estimates. However, the MoM is a reasonable

small-sample alternative to ML, having a bit smaller
standard deviation of scale parameter estimates for
samples with fewer than 20 – 70 profiles, though
sometimes still larger bias. The minimal number
of profiles for which ML is preferable depends on
the distribution family and the value of the shape
parameter.

DISCUSSION

Our approach has a different application area
than those of Depriester and Kubler (2019). We
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approximate the probability density which facilitates
ML, while Depriester and Kubler (2019) approximated
the distribution function which facilitates MDE.
In principle, our approach can be used for MDE
via numerical integration, but the computational
advantages would be lost.

The parametric methods of ML and MDE are both
especially applicable when the available materials are
limited. While MDE is especially usable for medium-
sized samples and is known for its robustness with
respect to mixtures of probability distributions, the ML
is usable for small and very small samples, which is
why we needed to develop the approximation. ML
was observed to be most exact for the samples from
70 profiles, and in many cases even smaller samples,
when the underlying assumptions hold. Moreover,
ML is also flexible with respect to truncation and
censoring, especially in contrast to the MoM which
is an alternative technique for parameter estimation
using very small samples. ML also allows for studying
mixtures by incorporating the parameters and weights
of the mixture components into the overall parameter
vector. It also allows for estimating the confidence
interval using the likelihood ratio method by Wilks’
theorem (e.g. Schweder and Hjort, 2016, chap. 2) or
choosing the model by Akaike information criterion
(Akaike, 1974). In general, ML is ’the most popular
technique for deriving estimators’ (Casella and Berger,
2002, p. 315).

Our approximation is based on a natural
approximation of spheres via similar shapes. Hence,
varying between a few and many summands in our
approximation may give an understanding of how
imprecise models and estimates may be when the
particles are angular or of irregular shape rather
than spherical. Nevertheless, if the particles are not
absolutely ideal spheres, it is reasonable to assume
that increasing the number of summands in our
approximation will not increase its precision, and,
at most, 10 – 15 summands will provide both a
satisfactory computation speed and a reasonably
precise estimation for approximately spherical
particles.
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