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ABSTRACT In this paper, we address the chance-constrained safe Reinforcement Learning (RL) problem
using the function approximators based on StochasticModel Predictive Control (SMPC) andDistributionally
Robust Model Predictive Control (DRMPC). We use Conditional Value at Risk (CVaR) to measure the
probability of constraint violation and safety. In order to provide a safe policy by construction, we first
propose using parameterized nonlinear DRMPC at each time step. DRMPC optimizes a finite-horizon cost
function subject to the worst-case constraint violation in an ambiguity set. We use a statistical ball around
the empirical distribution with a radius measured by the Wasserstein metric as the ambiguity set. Unlike
the sample average approximation SMPC, DRMPC provides a probabilistic guarantee of the out-of-sample
risk and requires lower samples from the disturbance. Then the Q-learning method is used to optimize the
parameters in the DRMPC to achieve the best closed-loop performance. Wheeled Mobile Robot (WMR)
path planning with obstacle avoidance will be considered to illustrate the efficiency of the proposed method.

INDEX TERMS Safe reinforcement learning, model predictive control, distributionally robust optimization,
chance constraint, conditional value at risk, Q-learning.

I. INTRODUCTION
Enforcing safety in the presence of uncertainty and stochas-
ticity of nonlinear dynamical systems is a challenging
task [1]. Chance constraints are a common way of math-
ematical modeling of safety that requires a user-specified
upper bound for the probability of the constraint viola-
tion [2]. However, it is challenging to handle a chance
constraint from the computational point of view due to its
nonconvexity. Conditional Value at Risk (CVaR) [3] is a
convex risk measure that has received considerable attention
in decision-making problems, such as Markov Decision
Processes (MDPs) [4], [5].

The theory of stochastic optimal control typically assumes
that the probability distribution of the disturbance is fully
known. However, this assumption may not hold in many
real-world applications, and one needs to estimate the
probability distribution. However, stochastic optimization is
challenging to solve, especially for non-convex problems [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinquan Xu .

In data-driven stochastic optimization, Sample Average
Approximation (SAA) is a fundamental way to estimate the
probability distribution of the random variables [7]. SAA
typically needs quite an extensive data set to fulfill risk
constraints accurately. Distributionally Robust Optimization
(DRO) is an alternative that overcomes this problem. DRO
tackles stochastic optimization by considering the worst-
case distribution in an ambiguity set. There are several ways
to construct ambiguity sets, e.g., moment ambiguity [8],
Prohorov-based ball [9], Kullback–Leibler divergence-based
ball [10] and Wasserstein-based ball [11]. The Wasserstein-
based ball is a statistical ball in the space of probability distri-
butions around the empirical distribution such that the radius
of this ball is measured using Wasserstein distance. Then the
radius of the ball represents the conservatism of the DRO
problem.Unlike the SAAmethod,WassersteinDROprovides
a probabilistic guarantee based on finite samples in a tractable
formulation [12].

Model Predictive Control (MPC) is an optimization-based
control approach operating with a receding horizon [13].
MPC employs a (possibly inaccurate) model of the real
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system dynamics to produce an input-state sequence over
a given finite horizon. The resulting trajectory optimizes a
given cost function while explicitly enforcing the system
constraints. The optimization problem is solved at each time
instance based on the current system state, and the first input
of the optimal solution is applied to the system. Due to the
finite-horizon scheme and (possibly) model mismatch, MPC
usually delivers a reasonable but suboptimal approximation
of the optimal policy. This paper uses the DRO in the chance-
constrained nonlinear MPC. This approach has been known
as Distributionally Robust MPC (DRMPC) [14].

Reinforcement Learning (RL) is a technique for solving
problems involving MDPs. RL typically requires a function
approximator to approximate the optimal policy, value
function, or action-value function. For instance, Q-learning
has been used in [15] for unmanned vehicle applications.
In [16], the comparison of MPC and RL has been studied
in the distributed setting. Recently, MPC has been used
as a structured function approximator for RL algorithms.
In this method, a parameterized MPC scheme is used in
order to generate policy and/or value functions of the real
system. Then RL algorithms can be used to adjust the MPC
parameters to achieve the best closed-loop performance.
The combination of MPC and RL has been proposed and
justified in [17], where it is shown that an MPC scheme can
theoretically generate the optimal policy and value functions
for a given system even if the MPC model is inaccurate.
Recent research have further developed and demonstrated
this approach [18], [19].

A. RELATED WORKS
In [14], the authors have proposed to use DRMPC to utilize
its benefits for motion control. A DRMPC has been applied
to the multi-area dynamic optimal power flow in [20] to
better hedge the uncertainties of distributed generation and
loads. For the Gaussian processes, a learning-based DRMPC
has been proposed in [21]. A learning-Based DRMPC has
been developed for chance-constrained Markovian switching
systems with unknown switching probabilities in [22]. The
authors have shown that this framework provides mean-
square stability of the system without requiring explicit
knowledge of the transition probabilities. In [23], a DRO
has been proposed for chance-constrained data-enabled
predictive control with stochastic linear time-invariant sys-
tems. In [24], a DRMPC algorithm has been presented for
spacecraft circular orbital rendezvous and docking problems.
A soft-constrained DRMPC has been proposed for linear
systems in [25].

A robust MPC scheme has been used as a function
approximator for safe RL in [26]. Control Barrier Functions
(CBF) have been used in the safe RL context in [27].
A safe RL-CBF framework has been developed to guarantee
safety and improve exploration in [28]. Probabilistic safety
in learning-based control methods has been provided in [29]
based on probabilistic model predictive safety certification.
In [30], the safe RL problem is formulated as a constrained
MDP. Then a Lyapunov approach has been proposed to
solve it.

B. CONTRIBUTIONS
There are a limited number of data from uncertainties
and disturbances available in many real stochastic systems.
Therefore, traditional methods such as SAA cannot accu-
rately estimate the distribution of these random variables.
An accurate distribution may be more important for safety-
critical systems to design a safe controller for the system.
In this paper, we propose to use a parameterized nonlinear
DRMPC based on the Wasserstein metric as a function
approximator for RL in order to generate a family of
policies that are safe by construction. DRMPC is subject
to the chance constraint, approximated by the CVaR risk
measure. We reformulate Wasserstein DRMPC as a tractable
optimization. Then we use the Q-learning technique to
optimize the parameters of the DRMPC scheme to achieve
the best closed-loop performance among the safe policies.

C. ORGANIZATION
The paper is structured as follows. Section II details
safe RL and chance constraints. Section III provides safe
policies based on the SMPC scheme, evaluated using the
SAA method. Moreover, we formulate CVaR as a convex
approximator of chance constraints. Section IV formulates
a tractable DRMPC scheme and provides out-of-sample
guarantees. SectionV details Q-learning as an efficient way to
optimize the parameters of the DRMPC scheme. Section VI
provides a numerical simulation and section VII delivers a
conclusion.
Notation:We denote the set of real numbers, non-negative

real numbers, extended real numbers, non-negative integers,
and natural numbers by R, R≥0, R̄ := R ∪ {−∞,∞}, Z and
N, respectively, while Ii:j refers to the set {i, i + 1, . . . , j}.
Vectors inRn are denoted by the bold letters, e.g., a. 〈x, y〉 :=
x>y denotes the usual inner product for given vectors x, y.
A function f : Rn

→ R̄ is proper if f (x) < +∞ for
at least one x and f (x) > −∞ for every x in Rn. The
conjugate function of a function f : Rn

→ R is denoted by
[f ]?(y) := supx∈Rn〈x, y〉 − f (x). Support function of setW is
defined as 4W(x) := supy∈W〈x, y〉. For scalar a, we define
(a)+ := max{a, 0}.

II. SAFE REINFORCEMENT LEARNING
In this section, we formulate safe Reinforcement Learning
(RL) using chance constraints. Let us consider the follow-
ing (possibly) nonlinear discrete-time stochastic dynamical
system:

sk+1 = f (sk , ak ,wk ) (1)

where k ∈ Z is the time index, sk ∈ X ⊆ Rn is the system
state, ak ∈ U ⊆ Rm is the control input, wk ∈ W ⊂ Rd is
a random variable representing the stochastic disturbance of
the system and f : Rn+m+d

→ Rn is a Borel-measurable
function. Note that the notation in (1) is standard in the
literature of control, while the RL literature typically uses the
conditional probability notation P[sk+1|sk , ak ] for the state
transition. We then make the following assumption onW.
Assumption 1: The disturbance set W is convex and

closed.
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We will use this assumption in the rest of the paper to
reformulate DRO as finite convex programming.

A deterministic policy π : X → U maps the state space
to the input space and determines how to choose input ak at
each state sk . We aim to find the optimal safe policy π?, given
by the solution of:

π? ∈ argmin
π

Es0∼µ0

[
V π (s0)

]
(2)

where µ0 is the probability distribution of the initial state
s0 and V π : X → R is the value function associated with
the policy π , defined as follows:

V π (s0) : = Ew

[
∞∑
k=0

γ kL(sk ,π (sk ))

]
, (3a)

s.t. sk+1 = f (sk ,π (sk ),wk ), ∀k ∈ Z (3b)

P[sk+i ∈ S|sk ] ≥ α, ∀i ∈ I1:I , ∀k ∈ Z (3c)

where L : X × U → R is the stage cost, γ ∈ (0, 1] is
the discount factor, S ⊆ X is a safe set and α ∈ (0, 1) is
a user-chosen confidence level. The chance-constraint (3c)
guarantees probabilistic safety of state trajectories sk+i for
a finite-horizon with length I ∈ N given state sk at each
time instance k . In fact, we generalize the common chance
constraint in the literature not only to be satisfied for one
step ahead but also to be satisfied for a finite horizon ahead
at every time instance. This paper provides such policies
using both an SMPC scheme and a DRMPC scheme with
horizon I .
The safe set S can be defined as follows:

S = {s ∈ X|hj(s) ≤ 0, ∀j ∈ I1:J } (4)

where hj : X → R specifies a state constraint and J is the
number of constraints. For the sake of simplicity and in order
to avoid the complexity of joint constraints, we consider the
following individual constraint:

P[max
j
hj(sk+i) ≤ 0|sk ] ≥ α, ∀i ∈ I1:I (5)

Then one can verify that using (4), (5) implies (3c).
Assumption 2: Each function −hj is proper, convex and

lower semi-continuous functions.
In the next section, we will use an SMPC scheme in order

to provide a family of safe policies.

III. STOCHASTIC MPC-BASED POLICY
In the RL context, we consider a family of the parameterized
policy given by πθ with parameter vector θ ∈ Rp and
seek the best parameters θ? that provide the best closed-loop
performance. More specifically, (2) is reformulated as:

θ? ∈ argmin
θ

Es0∼µ0

[
V πθ (s0)

]
(6)

Instead of solving (3) directly, we use a function approxi-
mator based on the MPC scheme to extract policy πθ that
satisfies (3c) by construction for all parameters θ .
More specifically, consider the following parameterized

SMPC at time instant k:

min
a,s

E

[
Tθ (sI+k|k )+

I−1∑
i=0

lθ (si+k|k , ai+k|k )
∣∣∣ sk|k] ,

(7a)

s.t. si+k+1|k = f (si+k|k , ai+k|k ,wi), ∀i ∈ I0:I−1
(7b)

P[max
j
hj(sk+i|k ) ≤ 0] ≥ α, ∀i ∈ I1:I (7c)

ai+k|k ∈ U, sk|k = sk , (7d)

where Tθ : X → R and lθ : X × U → R is the
parameterized terminal cost and stage cost, respectively. This
parameterization allows one to provide a family of policies
that are safe for all θ ∈ Rp. Then by tuning the parameters
θ and reshaping the cost function and MPC-scheme, one
can achieve the best closed-loop performance. Decision
variables a = {ak|k , . . . , aI+k−1|k} and s = {sk|k , . . . , sI+k|k}
are the input and state sequence, respectively. Then the
parameterized policy πθ at time instance k is extracted as
follows:

πSMPC
θ (sk ) = a?k|k (θ , sk ) (8)

where a?k|k is the solution of SMPC (7) corresponding to the
first input ak|k .
The use of parameterized MPC scheme as a function

approximator in order to capture the optimal policy and
value function was proposed and justified in [17]. Moreover,
the authors showed that RL methods such as Q-learning
and policy gradient can be used in order to adjust the
MPC scheme parameters and achieve the best closed-loop
performance.
We ought to stress here that MPC scheme (7) provides

a family of safe policy for all parameters θ based on the
best state-input sequence that minimizes a finite-horizon
parameterized cost function of an MPC scheme. Obviously,
a richer parameterization in the stage cost and terminal cost
provides a more extensive set of policies. Then tuning the
parameters θ leads us to get the optimal policy among the
provided policy families. We will detail Q-learning as a
practical way of adjusting the parameters in Section V.
In order to tackle the chance constraint (7c), a natural

measure of risk is value-at-risk VaR. For a random variable r
and confidence level α, VaRα is defined as follows:

VaRα(r) := min{η ∈ R |P(r ≤ η) ≥ α} (9)

In fact, VaR represents the worst-case loss with probability α.
Then one can show that:

VaRα(r) ≤ 0⇔ P(r ≤ 0) ≥ α (10)

Unfortunately, VaR is, in general, non-convex, and optimiz-
ing models involving VaR are numerically intractable for
high-dimensional, non-normal distributions.

An alternative measure of risk is conditional value-at-risk
CVaR, defined as follows:

CVaRα(r) := min
η∈R

E
[
η +

(r − η)+
1− α

]
(11)

Indeed, CVaR is a coherent risk measure that satisfies
conditions such as convexity andmonotonicity [3]. Riskman-
agement with CVaR functions can be done quite efficiently.
CVaR can be formulatedwith convex and linear programming
methods, while VaR is comparably complicated to optimize.
Detailed benefits and concepts of CVaR can be found
in, e.g., [31].
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It can be shown that for α → 1, CVaR can approximate
VaR more accurately. i.e.:

lim
α→1

CVaRα(r)− VaRα(r) = 0 . (12)

Note that in engineering applications, we often are interested
in a very low probability of failure (α → 1). Then
using CVaR, with the numerical and mathematical benefits,
imposes a very low conservative on the problem. Using
CVaR, MPC (7) can be approximated as follows:

min
a,s

E

[
Tθ (sI+k|k )+

I−1∑
i=0

lθ (si+k|k , ai+k|k )
∣∣∣ sk|k] ,

(13a)

s.t. si+k+1|k = f (si+k|k , ai+k|k ,wi), ∀i ∈ I0:I−1
(13b)

CVaRα(max
j
hj(sk+i|k )) ≤ 0, ∀i ∈ I1:I (13c)

ai+k|k ∈ U, sk|k = sk , (13d)

At each time k we first consider Ns, independent and
identically distributed (i.i.d.) samples of the disturbance wi
and we denote these samples by wmi , i ∈ I1:I m ∈ I1:Ns . Then
Ns scenarios are described as follows:

smk+i|k = f (smk+i−1|k , a
m
k+i−1|k ,w

m
i ) (14)

where smk+i|k and amk+i|k are the predicted state and input for
mth scenario at time k + i given time k . We then define
auxiliary variables xmi for i ∈ I1:I , m ∈ I1:Ns in order to
approximate CVaR, in (13c), in the following tractable Linear
Programming (LP), ∀i ∈ I1:I :

CVaRα (max
j
hj(sk+i|k )) ≈ (15a)

min
ηi,xi

ηi +
1

(1− α)Ns

Ns∑
m=1

xmi (15b)

s.t. max
j
hj(smk+i|k )− ηi ≤ x

m
i , ∀m ∈ I1:Ns

(15c)

0 ≤ xmi , ∀m ∈ I1:Ns (15d)

where xi = {xmi }
Ns
m=1 and ηi ∈ R. In [32], it has been shown

that for Ns →∞ the approximation in (15) will converge to
its exact value with probability one.

Substitution of (15) into (13) and using SAA, SMPC (13)
reads as:

min
s,a,η,x

1
Ns

Ns∑
m=1

(
Tθ (smk+I |k )+

I−1∑
i=0

lθ (smk+i|k , a
m
k+i|k )

)
(16a)

s.t. smk+i|k = f (smk+i−1|k , a
m
k+i−1|k ,w

m
i ),

∀m ∈ I1:Ns , ∀i ∈ I1:I (16b)

ηi +
1

(1− α)Ns

Ns∑
m=1

xmi ≤ 0, ∀i ∈ I1:I (16c)

max
j
hj(smk+i|k )− ηi ≤ x

m
i ,

∀m ∈ I1:Ns , ∀i ∈ I1:I (16d)

ami+k|k ∈ U, 0 ≤ xmi , s
m
k|k = sk ,

∀m ∈ I1:Ns , ∀i ∈ I1:I (16e)

where η = {ηi}Ii=1, x = {xi}
I
i=1.

From a theoretical point of view, SMPC (16) requires
Ns → ∞ in order to provide an accurate approximation of
the original MPC (13). In the next section, we will introduce
DRMPC scheme to overcome this problem.

IV. DISTRIBUTIONALLY ROBUST MPC-BASED POLICY
In order to tackle the limited distributional information issue
with finite-many sampling, we use Distributionally Robust
Optimization (DRO) in the chance constraint of the MPC
scheme. In this section, we suppress the subscript i, denoting
the horizon index, to simplify the notations.

The core idea of the theoretical developments in this
section was proposed in [12] for general optimization
problems. For the sake of clarity, in the context of learning-
based MPC, we detail these developments in this section.

We use the Wasserstein metric to define an ambiguity
set as a ball around the empirical distribution P̂ . Then the
optimization will be solved with respect to the worst-case
distribution in the ambiguity set. Empirical distribution P̂ ,
evaluated from Ns i.i.d. samples {wm}Nsm=1, is defined as
follows:

P̂ =
1
Ns

Ns∑
m=1

δwm (17)

where δw is the Dirac measure concentrated at w. Then
we define the Wasserstein ball D around the empirical
distribution P̂ as the ambiguity set as follows:

D := {P ∈ P(W) | dW(P, P̂) ≤ ε} (18)

where P(W) denotes the set of Borel probability measures
on the support W, ε ≥ 0 is the radius of the ball and dW :
P(W)×P(W)→ R≥0 is the Wasserstein metric, defined as
follows:

dW(P1,P2) := min
κ∈P(W2)

{∫
W2
‖w1 − w2‖dκ(w1,w2)

×

∣∣∣5lκ = Pl, l = 1, 2
}

(19)

for all distributions P1,P2 ∈ P(W) where 5lκ denotes the
lth marginal of the transportation plan κ for l = 1, 2 [33].
Indeed, the Wasserstein distance of P1 and P2 can be
interpreted as the minimum transportation cost for moving
the probability mass from P1 to P2. Then distributionally
robust optimization minimizes the worst-case cost over all
the distributions in the ambiguity set. Distributionally robust
constraint (13c) can be written as follows:

sup
P∈D

CVaRP
α (max

j
hj(s)) ≤ 0 (20)

For the sake of simplicity, we define a new variable
c := maxj hj(s). We then recall the definition of CVaR:

CVaRP
α (c) = min

η
EP

[
η +

1
1− α

(c− η)+

]
(21)
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We then use the minimax inequality for (20):

sup
P∈D

CVaRP
α (c) ≤ min

η
sup
P∈D

EP
[
η +

1
1− α

(c− η)+

]
= min

η
η +

1
1− α

sup
P∈D

EP [(c− η)+]

(22)

on the other hand:

sup
P∈D

EP [(c− η)+] = sup
P∈P(W)

EP [(c− η)+]

s.t. dW(P, P̂) ≤ ε (23)

then using the Lagrangian function for the constrained
optimization (23):

sup
P∈D

EP [(c− η)+]

= sup
P∈P(W)

inf
λ≥0

{
EP [(c− η)+]+ λ(ε−dW(P, P̂))

}
(24)

where λ ∈ R is the Lagrange multiplier. Using Theorem
1 in [34]:

sup
P∈P(W)

inf
λ≥0

{
EP [(c− η)+]+ λ(ε−dW(P, P̂))

}
= inf

λ≥0

{
λε + sup

P∈P(W)

{
EP [(c− η)+]− λdW(P, P̂)

}}
= inf

λ≥0

{
λε +

1
Ns

Ns∑
m=1

sup
w∈W

{
(c− η)+ − λ‖w− wm‖

}}
(25)

In fact, the first equality in (25) follows from the strong
duality that has been shown in [34], and the second equality
holds because P(W) contains all the Dirac distributions
supported onW.

Introducing a new auxiliary variable ym, we can rewrite
(25) as follows:

inf
λ,y

λε +
1
Ns

Ns∑
m=1

ym (26a)

s.t. sup
w∈W
{(c− η)+ − λ‖w− wm‖} ≤ ym, ∀m ∈ I1:Ns

(26b)

0 ≤ λ (26c)

where y = {ym}Nsm=1. From the definition of dual norm,
we decompose the expression inside (·)+ in constraint (26b)
as follows [12]:

sup
w∈W

{
min
‖ξm1 ‖?≤λ

−
〈
ξm1 ,w− w

m〉}
≤ ym (27a)

sup
w∈W

{
min
‖ξm2 ‖?≤λ

−
〈
ξm2 ,w− w

m〉
+ c

}
− η ≤ ym (27b)

where ‖ · ‖? := sup‖ξ‖≤1 〈·, ξ〉 is the dual norm. Since
{ξ | ‖ξ‖? ≤ λ} is a convex set, we use theminimax inequality,

and (27) reads:

min
‖ξm1 ‖?≤λ

sup
w∈W
{−
〈
ξm1 ,w− w

m〉
} ≤ ym (28a)

min
‖ξm2 ‖?≤λ

sup
w∈W
{−
〈
ξm2 ,w− w

m〉
+ c} − η ≤ ym (28b)

Then optimization (26) can be written as follows:

inf
λ,y,ξ1,ξ2

λε +
1
Ns

Ns∑
m=1

ym

s.t. sup
w∈W
{−
〈
ξm1 ,w− w

m〉
} ≤ ym, ∀m ∈ I1:Ns (29a)

sup
w∈W
{−
〈
ξm2 ,w− w

m〉
+ c} − η ≤ ym, ∀m ∈ I1:Ns

(29b)

‖ξm1 ‖? ≤ λ, ‖ξ
m
2 ‖? ≤ λ, ∀m ∈ I1:Ns (29c)

where ξ l = {ξ
m
l }

Ns
m=1 for l = 1, 2. Changing ξml to −ξml ,

we have:

inf
λ,y,ξ1,ξ2,v

λε +
1
Ns

Ns∑
m=1

ym (30a)

s.t. −
〈
ξm1 ,w

m〉
+4W(ξm1 ) ≤ y

m, ∀m ∈ I1:Ns
(30b)

[−c]?(ξm2 − v
m)+4W(vm)−

〈
ξm2 ,w

m〉
− η ≤ ym, ∀m ∈ I1:Ns (30c)

‖ξm1 ‖? ≤ λ, ‖ξ
m
2 ‖? ≤ λ, ∀m ∈ I1:Ns

(30d)

where [−c]? is the conjugate of −c that is calculated at
ξm2 − vm. Note that under assumptions 1 and 2, (30) is
a finite convex program [12]. Restoring the index i, the
DRMPC scheme based on the Wasserstein metric reads as
follows (31), shown at the bottom of the next page, where
ξ = {ξ i,1, ξ i,2}

I
i=0. Then the parameterized safe policy

πDRMPC
θ based on DRMPC scheme at time instance k is

extracted as follows:

πDRMPC
θ (sk ) = a?k|k (θ , sk ) (32)

where a?k|k is solution of DRMPC (31) corresponding to the
first input ak|k . Note that all the optimal solutions of amk|ks are
identical since the random samples are generated based on
the first given state smk|k = sk and the uncertainty cannot be
anticipated [35]. Then we select one of the optimal solutions
of amk|ks as ak|k .

A. OUT-OF-SAMPLE GUARANTEE
Unlike the SAA method, Wasserstein DRMPC provides a
probabilistic guarantee on the out-of-sample performance
with finitely many samples. More specifically, let us consider
the following inequality:

CVaRP
α (max

j
hj(s?k+i|k )) ≤ 0 (33)

where s?k+i|k is the optimal solution of (31) and P is an
unknown arbitrary distribution. Then it is worth fulfilling
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inequality (33) with high probability, i.e.:

P
{
CVaRP

α (max
j
hj(s?k+i|k )) ≤ 0

}
≥ 1− β (34)

where β is a user-specified confidence level. It has been
shown in [12], if the Wasserstein radius εi is chosen as
follows:

εi =


(
log(c1β−1)

c2Ns

) 1
max{d,2}

if Ns ≥
log(c1β−1))

c2(
log(c1β−1)

c2Ns

) 1
a

if Ns <
log(c1β−1))

c2

(35)

then (34) holds, where c1, c2 are positive constants. In fact,
we have assumed that the measure concentration inequality
holds [36], i.e., B = EP [exp ‖w‖a] ≤ ∞ for a > 1
(Light-tailed distribution), then c1, c2 depend on a,B and the
disturbance dimension.

We must emphasize here that in practice, analysis and
(probabilistic) finite sampling guarantees are essential in
the context of RL and stochastic optimization because,
in practice, there is typically limited access to real system
data. This analysis can include various criteria in the context
of RL, such as convergence rate [37], regret analysis [38], and
performance [39].

The next Proposition summarizes the theoretical develop-
ment of this section.
Proposition 1: Under assumptions 1 and 2, DRMPC has

a tractable reformulation as (31) and the extracted policy
πDRMPC
θ , based on finite Ns i.i.d. samples, satisfies (34)
∀k ∈ Z,∀i ∈ I1:I ,∀θ ∈ Rp, for a user-specified β and α
and any distributions P , if εi is selected from (35).

B. FEASIBILITY PRE-FILTRATION
As discussed, satisfying a state-depend hard constraint with
α = 1 is generally impossible. The same problem exists when
the required α is higher than the problem nature requirement.
This problem arises in solving (31) when no solution is found.

This problem is known as the infeasibility of optimization.
A common way to solve the feasibility issue is to soften
the constraints using slack variables. The slack variables are
positive decision variables that allow inequalities to violate.
However, the violation is penalized in the cost function.

A common way to use slack variables is by adding them
to the original cost function. However, in this case, finding
proper positive coefficients is still challenging. Another way
to use slack variables is to build an optimization as a pre-
filtration to find the feasible slack variables and then apply
them to the original optimization problem. More specifically,
we consider the following optimization problem:

min
s, a, η,λ, y, ξ , v, σ

I∑
i=0

σ 2
i (36a)

s.t. (31b)

ηi+
1

1−α

[
λiεi +

1
Ns

Ns∑
m=1

ymi

]
≤ σi,

0 ≤ σi, ∀i ∈ I1:I (36b)

(31d)− (31g) (36c)

with the optimal solutions σ ?i . We then replace constraint
(31c) with the following constraint ∀i ∈ I1:I :

ηi +
1

1− α

[
λiεi +

1
Ns

Ns∑
m=1

ymi

]
≤ σ ?i (37)

Then the DRMPC scheme always has a feasible solution.
Note that inverting the procedure of obtaining DRMPC (31),
we can see DRMPC (31) with the feasible constraint (37),
equivalent to the following robust constraint:

sup
P∈D

CVaRP
α (max

j
hj(s)) ≤ σ ?i (38)

while (20) may yield an infeasible solution. Note that
DRMPC scheme provides a family of safe policies πDRMPC

θ

min
s, a, η,
λ, y, ξ , v

1
Ns

Ns∑
m=1

(
Tθ (smk+I |k )+

I−1∑
i=0

lθ (smk+i|k , a
m
k+i|k )

)

(31a)

s.t. smk+i|k = f (smk+i−1|k , a
m
k+i−1|k ,w

m
i ),

∀m ∈ I1:Ns , ∀i ∈ I1:I (31b)

ηi +
1

1− α

[
λiεi +

1
Ns

Ns∑
m=1

ymi

]
≤ 0, ∀i ∈ I1:I

(31c)

−
〈
ξmi,1,w

m
i
〉
+4W(ξ i,1) ≤ y

m
i , ∀m ∈ I1:Ns , ∀i ∈ I1:I (31d)[

−max
j
hj

]?
(ξmi,2 − v

m
i )+4W(vmi ) (31e)

−
〈
ξmi,2,w

m
i
〉
− ηi ≤ ymi , ∀m ∈ I1:Ns , ∀i ∈ I1:I

‖ξmi,1‖? ≤ λi, ‖ξ
m
i,2‖? ≤ λi, ∀m ∈ I1:Ns , ∀i ∈ I1:I (31f)

ami+k|k ∈ U, smk|k = sk , ∀m ∈ I1:Ns , ∀i ∈ I1:I (31g)
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for all tuning parameters θ . Therefore, in the next stage,
it is necessary to update the parameters to achieve the best
performance. The next section details the Q-learning method
as a practical way of updating the parameters θ to achieve the
best closed-loop performance.

V. Q-LEARNING BASED ON DRMPC SCHEME
Q-learning is a powerful, well-known, and popular method
in the field of RL, whose use is practical due to relatively
low-cost computational efforts, especially in engineering
and economic applications [40]. In fact, Q-learning is a
classical model-free RL algorithm that tries to capture the
optimal action-value function Qθ ≈ Q? via tuning the
parameters vector θ where Qθ is the parameterized action-
value function, and Q? is the optimal action-value func-
tion [41]. The optimal action-value function Q? is defined as
follows:

Q?(sk , ak ) = L(sk , ak )+ γ min
π

E[V π (sk+1)|sk , ak ] (39)

The parameterized action-value function Qθ (sk , ak ) based on
DRMPC scheme (31) can be formulated as follows:

Qθ (sk , ak ) = min
s, a, η,λ, y, ξ , v

(31a) (40a)

s.t. (31b), (37), (31d)− (31g)

(40b)

ak|k = ak , (40c)

while the approximation of the value function Vθ can
be extracted from (40) when constraint (40c) is removed.
Then one can verify that the MPC-based action-value
function and value function satisfy the fundamental Bellman
equations [17]. Q-learning solves the following Least Square
(LS) problem:

min
θ

E
[(
Qθ (sk , ak )− Q?(sk , ak )

)2]
. (41)

In order to solve (41), Temporal-Difference (TD)method uses
the following update rule for the parameters θ at state sk [42]:

δk = L(sk , ak )+ γVθ (sk+1)− Qθ (sk , ak ) (42a)

θ ← θ + ζ δk∇θQθ (sk , ak ) (42b)

where the scalar ζ > 0 is the learning step-size, δk is
labelled the TD error, and the input ak is selected according
to the corresponding parametric policy πDRMPC

θ (sk ) with the
possible addition of small random exploration such that it
preserves the safety. The gradient ∇θQθ required in (42) can
be obtained by a sensitivity analysis on the DRMPC scheme
(40) as detailed in [17] for generic MPC schemes.

In order to generate ak , we first add a small exploration
noise to the policy, i.e.:

aek (θ , sk , ρk ) = π
DRMPC
θ (sk )+ ρk (43)

where ρk ∈ E is a random variable providing the exploration.
One can easily observe that aek may not deliver a safe input.
Therefore a safety filtration based on the DRMPC scheme
is needed to provide safe exploration, more specifically
consider the following parametric DRMPC scheme with the

FIGURE 1. The illustration of the safe exploration for the Q-learning
method in a 2-input system. Safe exploration input ak ∈ safe exploration
set, while ae

k ∈ Exploration set and πDRMPC
θ

(sk ) ∈ DRMPC Safe set.

additional parameter ρk :

min
s, a, η,λ, y, ξ , v

‖ak|k − aek (θ , sk , ρk )‖ (44a)

s.t. (40b) (44b)

Then ak (θ , sk , ρk ) = a?k|k (θ , sk , ρk ) delivers a safe input after
exploration where a?k|k is the optimal solution of (44) for the
first input. Fig. 1 illustrates the safe exploration based on the
DRMPC scheme. DRMPC safe set is defined as follows:

DRMPC safe set := {ak|k | ∃ s, a, η,λ, y, ξ , v : (40b)}

In the policy gradient method, the projection technique
results in a bias in the gradient of the performance
function [43]. Roughly speaking, this is because the safe
exploration set may not be a centered ball, as shown in fig. 1.
We have proposed a robust MPC scheme in [44] to solve the
bias issue. The proposed method can be easily applied to the
DRMPC scheme for the policy gradient method, but applying
it is out of the focus of the current work.

Fig.2 illustrates the proposed safe learning method using
the DRMPC scheme.
Remark 1: The proposed method can be applied to the

general nonlinear stochastic dynamics with an unknown
distribution of stochasticity. Obviously, the computational
efforts are increased as the dimension and complexity of the
dynamics grow.
Remark 2: In this paper, we do not focus on the conver-

gence of the learning method. It is well-known that under
the mild assumptions, the Q-learning technique generates a
sequence of the parameters θ that converge to the parameters
that best estimate the exact optimal action-value function.
Then the extracted policy is an optimal policy among the
provided safe policies. The convergence conditions for the
Q-learning method can be found in, e.g., [45].
Remark 3: Closed-loop stability of the policy for the

nominal model used in the MPC scheme resulting from an
MPC scheme is straightforward under some mild assump-
tions on the stage cost and terminal cost and constraints.
However, these conditions are not painless for general
stochastic systems and stochastic and robust MPC. This
aspect is not the main scope of the current work. However,
in the functional space, the closed-loop stability properties
are recently addressed in [46] for general stochastic
systems (MDP).

The proposed approach has been summarized in
Algorithm 1.
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FIGURE 2. Schematics of the proposed safe RL using DRMPC scheme.

Algorithm 1 Using DRMPC Based Q-Learning to
Provide Optimal Safe Policy
Input: α, β, I , γ , parameterize lθ ,Tθ

1 Initialize : s0, θ0
2 while θ converges do
3 for k = 0, . . . , k (end of the mission) do
4 Initialize : smk|k = sk ,
5 run feasibility pre-filtration (36) to get σ ?i ,
6 run DRMPC (31) with the parameters θk and

relaxed constraint (37) to get safe policy
πDRMPC
θ (sk),

7 apply the safe exploration using (43) and (44) to
get the input ak ,

8 apply the input ak to the dynamics (1) to get
sk+1,

9 update parameters θk+1← θk using
Q-learning technique, e.g., (42) (εi s are among
the parameters),

10 Save the last parameters θ0 = θk+1

11 end

The next section provides a numerical case study for the
proposed method.

VI. NUMERICAL SIMULATION
In this section, we consider Wheeled Mobile Robot (WMR)
path planning while avoiding static obstacles. The stochastic
nonlinear dynamics can be considered as follows:

sk+1 =

te cos(φk ) 0
te sin(φk ) 0

0 te

 ak + sk + wk (45)

where sk = [xk , yk , φk ]>, ak = [vk , ψk ]> and ‖wk‖∞ ≤
0.1 are the system state, input, and disturbance, respectively.
xk and yk are the position of the robot in two dimensions
and φk ∈ [−π, π] is the orientation angle. Sampling time
te is selected 0.2sec for the simulation. The control inputs vk
andψk are the linear and angular velocities, respectively. The
control input is restricted as follows:[

0
−1

]
≤ ak ≤

[
0.5
1

]
(46)

FIGURE 3. Sample average approximation of SMPC and DRMPC with
CVaR constraints.

For simplicity, we consider obstacles of elliptic shape. Hence,
the condition for obstacles avoidance can be seen as the
following inequality:

hj(s) = 1−
(
x − ox,j
rx,j

)2

−

(
y− oy,j
ry,j

)2

(47)

where (ox,j, oy,j) and (rx,j, ry,j) are the center and radii of the
jth ellipse (j = 1, . . . , J ), respectively, and J is number of
obstacles.

First, we simulate SMPC with CVaR constraints based
on Sample average approximation and DRMPC, and we
compare them with deterministic MPC. As shown in figure 3,
there are some constraint violations in the MPC scheme.
As the probability level α increases, the distance from the
path and obstacle increases in SMPC. As mentioned, this
method usually requires a large number of data to capture
the chance constraint accurately. Moreover, as shown in
figure 3, the planned path using DRMPC is farther from the
obstacle. We then consider the following stage cost for the
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L(s, a) = ‖a‖ + |φ| + |x − 8| + |y| −
1
τ
log

(
1
2

(
|max

j
hj(s)| −max

j
hj(s)

)
+ ω

)
︸ ︷︷ ︸

r(x,y)

(48)

FIGURE 4. The function r (x, y ) for τ = 0.2 and ω = 10−4.

FIGURE 5. Average costs of five missions during Q-learning from SMPC
and DRMPC.

RL (48), as shown at the top of the page, where τ and ω
are small positive constants. Since hj only depends on x, y,
function r also depends on x, y. Note that the logarithmic
barrier function has been inspired by the constrained
optimization context [47]. Moreover, this function allows us
to compute the logarithm for every s, while it has a large
value when the constraints violate. Figure 4 illustrates r(x, y).
We include the radius of the Wasserstein ball in the DRMPC
parameters to tune it using Q-learning. Figure 5 shows the
average stage costs during each mission. As can be seen, the
average stage costs are decreasing in five missions in both
SMPC and DRMPC. However, DRMPC has lower average
costs, andQ-learning ismore effective in theDRMPC scheme
than in the SMPC scheme. The better improvement in the
DRMPC scheme is due to the more freedom and parameters
in the provided policies, such as the radius of the Wasserstein
ball around the empirical distribution, whereas in the standard
SMPC scheme, there is no such parameter. Obviously, tuning
the radius of theWasserstein ball and, consequently, adjusting
the conservatism of the safe policy positively impacts the
improvement of the closed-loop performance.

VII. CONCLUSION
In this paper, we proposed to use a tractable Distributionally
Robust MPC (DRMPC) scheme in order to provide safe
policy for Reinforcement Learning (RL) by construction.
DRMPC optimized the cost function subject to the worst-case
distribution in a given statistical ball around the empirical
distribution. The radius of this ball was measured using the
Wasserstein metric. Moreover, Conditional Value at Risk
(CVaR) was used as a convex approximator of chance
constraints in the DRMPC scheme. We used Q-learning to
update the parameters of the DRMPC scheme.We showed the
efficiency of the method in the path planning of a Wheeled
Mobile Robot (WMR). Considering model mismatch, joint
chance-constrained and Neural Network based cost functions
in the DRMPC scheme will be the directions of future works.
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