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Abstract: For additive manufacturing (AM) to be success-
fully implemented in manufacturing systems, the geo-
metric accuracy of components must be controlled in
terms of form, fit, and function. Because the accuracy
of AM products is greatly affected by the part build orien-
tation, this factor dictates the achievable tolerances and
thereby the ability to incorporate AM technologies in a
large-scale production. This article describes a novel
optimization method for minimizing form errors based
on the geometric features of the part. The described
method enables the combination of separate expressions
for each feature to create a continuous solution space.
Consequently, the optimal part build orientation can be
precisely determined based on a mathematical descrip-
tion of the effect of build direction on each surface type.
The proposed method is demonstrated in two case stu-
dies by step-by-step descriptions including discussions
on viability and possible extensions. The results indicate
good performance and enable flexible prioritization and
trade-offs between tolerance characteristics.

Keywords: additive manufacturing, part build orienta-
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Abbreviations

AM additive manufacturing
EA evolutionary algorithm
FFF fused filament fabrication
GA genetic algorithm

PCS part coordinate system
STL STereoLithography file format
VE volumetric error
WCS world coordinate system

1 Introduction

Additive manufacturing (AM) holds the potential to revo-
lutionize the manufacturing industry through topology-
optimized lightweight structures and mass-customized
designs. However, the full potential of the technology
remains largely unexploited due to cost restrictions and
quality issues. While AM is utilized in medical, aero-
space, and automotive industries for small production
volumes, this is only possible because every component
is carefully engineered and validated through an iterative
process before production is initiated. For mass customi-
zation to truly reach its potential in agile manufacturing,
automated process planning for AMmust be developed to
ensure quality and consistency in the production.

While AM offers design freedom to create innovative
free form surfaces previously unattainable by conventional
manufacturing methods, traditional shape features will still
be present in novel designs, such as the interfaces between
components of an assembly. The interconnection between
AM and conventional manufacturing technologies in man-
ufacturing systems warrants the control of geometric accu-
racy in terms of traditional tolerancing features.

To enable consistent production of unique compo-
nents while meeting quality requirements, it is necessary
to develop valid models and methods for predicting, miti-
gating, and adapting to variation in the build process.
One of the major determining factors for geometric accu-
racy in AM is the part build orientation, i.e., the direction
in which the material is added to the substrate to realize
the geometry [1]. This article describes a method for the
precise determination of optimal part build orientation to
minimize the deviations from nominal to the actual geo-
metry by considering the geometric features of the part.
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The accuracy of an additively manufactured surface
partly depends on its curvature (or lack thereof). Therefore,
the proposedmethod enables separatemathematicalmodels
to be applied to each surface type. These models are then
populated with data from the CADmodel and combined into
a single expression of quality as a function of part build
orientation. The result is a continuous objective function
for the entire solution space, which enables the identifica-
tion of optimal part build orientations or feasible regions for
secondary objectives.

The remainder of this article is structured as follows:
First, the theoretic foundations and previous work are
outlined in Section 2 before the method is described in
Section 3. In Section 4, two case studies are presented to
demonstrate the method step by step before a brief dis-
cussion on the viability and possible extensions is pre-
sented in Section 5. Finally, Section 6 summarizes this
article and provides directions for the future work.

2 Theoretic background

In general, AM techniques successively add layers of
material to create an object [1]. This layered manner of
fabrication is a decisive factor in how accuracy errors
occur in the AM process. Dantan et al. [2] identified a
range of defect modes in fused filament fabrication,
many of which can be extended to other AM technologies.
Defect modes relating to the direction of material deposi-
tion, as well as errors in the machine/tool movement,
influence the accuracy of the produced surface regardless
of technology and material. Apart from the various sur-
face defects and inaccuracies present in most AM pro-
cesses, the products also exhibit anisotropic mechanical
properties where the behavior depends on the build
direction [3]. Consequently, the part build orientation is
a decisive factor in the final part quality in terms of both
accuracy and mechanical properties.

The staircase effect is perhaps the most illustrative
example of how part build orientation is vital in AM.
The layered manufacturing approach inevitably leaves a
characteristic pattern on inclined surfaces. This pattern
emerges when the contours of two subsequent layers
cannot align perfectly. The result is a stepped surface
as displayed in Figure 1, commonly referred to as the
staircase effect.

The staircase effect can be modeled in two dimen-
sions as the cusp height hcusp, i.e., the shortest distance
from the inner corner of a step, to the hypotenuse of the
right triangle of Figure 1 [4]. The cusp height may be

calculated from the layer thickness hlayer and surface
angle θ, which is the angle between the build direction

[ ]=ẑ 0 0 1 and the surface normal vector →n as described
by Alexander et al. [5]:
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Another measure of the staircase effect is the volu-
metric error (VE) introduced by Masood et al. [6], which
corresponds to the volumetric difference between the
CAD model and the realized geometry. This solution
soon becomes quite complex when extended from two
to three dimensions. Figure 1 illustrates the deviations
due to the staircase effect where the area below the
dashed line is lost. The VE is the result of integrating
this area along the perimeter of the layer. Complex sur-
faces drastically complicate the computation of VE, and
simplifications are often necessary.

The obvious solution for mitigating the staircase
effect is to make sure all surfaces are oriented either par-
allel or perpendicular to the build direction. However,
when a part consists of several features in different direc-
tions (which is the case for most functional components),
there will be no part build orientation in which all sur-
faces are either parallel or perpendicular to the build
direction. Furthermore, curved surfaces do not benefit
from perpendicular orientations as this will maximize
the staircase effect. Therefore, a trade-off must be made
to converge on a globally optimal solution, where the
staircase effect is minimized. The orientation problem
for accuracy is however composed of many more failure
modes other than the staircase effect, all of which matters
in modeling the final geometry.

While the part build orientation should be consid-
ered in the design stage, this is not always possible.
Consequently, the information available when deciding
the part build orientation may differ from full CAD model
with tolerances, to the tessellated STereoLithography file
format (STL) commonly used in the final stages of process

Figure 1: Illustration of the staircase effect and the cusp height
introduced by layered manufacturing.
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planning for AM. Naturally, methods for dealing with the
orientation problem with these varying knowledge levels
have been proposed in the literature – some relying on
computational methods and others on a human expert. In
addition, some may focus on finding a minimal solution
fast, while others may prefer to spend more time to find
the optimal orientation. The many possible combinations
of methods, objectives, and limitations have resulted in a
plethora of approaches ranging from the general to the
highly specific. However, the crux of the orientation pro-
blem remains to achieve the best possible result with the
information at hand, within a reasonable time.

2.1 Related work

Part build orientation is a key factor in AM as it is easily
manipulated and has a clear influence on final properties.
The effect of part build orientation has been the subject of
many research efforts but remains an open issue [7].
Methods for determining the optimal part build orienta-
tion can be largely divided into two groups: (i) those
evaluating a set of candidate solutions with respect to
an objective function and (ii) thosemathematically describing
the solution space to explore this continuous space for the
optimal solution. A selection of the most relevant related
methods is showcased in Table 1. The interested reader
may refer to refs [7,8] for recent reviews on the orientation
problem.

The first group is the most common and starts by
identifying candidate orientations. This process is either
based on a set of rules (e.g., flat surfaces of the convex

hull) or by discretization of the solution space, i.e., cer-
tain intervals of rotation about one or more predefined
axes. In the next step, either an exhaustive search is
performed where all candidates are considered or a guided
search is conducted, e.g., by a genetic algorithm (GA).
These discrete methods have certain advantages, but
they inherently fail to consider the entire (continuous)
solution space and therefore risk missing good orienta-
tions. In addition, any attempt to refine the search space
by including more candidate orientations inevitably
increases the computation time.

The second group, on the other hand, grants access
to the entire solution space, where the complexity of this
solution space generally correlates with the complexity of
the geometry. This category is not as well explored, per-
haps due to the simplicity of discrete solution spaces or
the ability of discrete approaches to handle discontin-
uous functions. Nevertheless, a continuous solution space
may facilitate more nuanced objective functions and com-
plex solution spaces. Continuous solution spaces can be
explored by evolutionary algorithms (EAs), or gradient-
based methods where knowledge of the topology of the
solution space is exploited in an iterative search for the
global optimum.

The approach described herein constitutes a hybrid
of the two methods outlined earlier: The solution space is
described with a differentiable function, which is used to
identify critical points. The critical points will then con-
stitute the candidate orientations in the final evaluation,
which identifies the global optimum. The novelty of this
approach lies in the combination of simplicity from gen-
eralizing surface types, and the flexibility brought

Table 1: Characteristics of related work in chronological order

Reference Candidate orientations Search method

Cheng et al. [9] Flat surfaces ES
Alexander et al. [5] Flat surfaces + user defined ES
Masood et al. [10] Discretized solution space ES
Byun and Lee [11] Faces of convex hull ES
Padhye and Deb [12] All EAs
Zhang and Li [13] Discretized unit sphere ES and EA
Li and Zhang [14] Discretized unit sphere EA
Das et al. [15] All GBM
Zhang et al. [16] Discretized unit sphere ES
Das et al. [17] All GBM
Budinoff and McMains [18] Discretized unit sphere ES
Chowdhury et al. [19] All GBM
Zhang et al. [20] Facet clusters ES
Qin et al. [21] Facet clusters ES

ES = exhaustive search, EA = evolutionary algorithm, GBM = gradient-based method.
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forward by the general framework that can be populated
with any objective function.

Cheng et al. [9] considered all flat surfaces as candidates
for determining the optimal part build orientation and eval-
uated every candidate orientation with respect to the accu-
racy, build time, and stability. A similar approach was
proposed for the minimization of cost by Alexander et al.
[5] who included the cost of postprocessing and build
time in the cost calculations. Zhang et al. [16] generated
a set of candidate orientations from every shape feature
and evaluated them for several attributes including sur-
face roughness and support volume. Similar methods
have also been proposed with facet clustering, where
groups of facets are considered collectively based on how
they are affected by part build orientation [20–21]. All these
methods benefit from the generalization of how different
surfaces are affected by the build direction. While various
methods are employed in these studies in the search for an
optimal solution, none of them consider a continuous solu-
tion space generated from the geometry.

Zhang and Li [13] proposed a discretization of the
solution space (i.e., a unit sphere), and let each facet of
the STL file promote the two orientations parallel to the
facet normal, as well as the great circle corresponding to
the perpendicular of the normal vector. The authors
describe methods to make the selection using an exhaus-
tive search for minimizing VE, as well as a GA for com-
bined optimization of VE and part height [13,14]. The
authors argue for the use of GA over exhaustive search
when the number of discretized points becomes large due
to time concerns. Discretization allows for controlling
the resolution of the solution space and therefore also
the computational cost. However, the approach remains
oblivious to any effects other than those of the predefined
points in the solution space.

Das et al. [15,17] proposed a method for minimizing
form errors and support structures by formulating a
minimization problem to be solved in MATLAB with gra-
dient-based optimization. Themethod is based on the one-
dimensional tolerance maps of Paul and Anand [23,24] for
cylindricity and Arni and Gupta [25] for flatness – both
theoretically derived from the staircase effect. A similar
approach was proposed by Chowdhury et al. [19] who
continued to compensate the geometry for any expected
deviations still present after optimization. However, both
of these proposed methods involve a risk of convergence
to local optima due to the gradient-based approach. The
convergence to local optima is avoided in the study by
Budinoff and McMains [18] who performs an exhaustive
search of one-degree increments to identify feasible regions
from which the final orientation may be selected.

The existing body of literature describes various
approaches to the orientation problem with various bene-
fits and drawbacks. Exploiting higher level information
about local topology facilitates the generation of candidate
orientations. This information can also be used to con-
struct continuous solution spaces for achievable toler-
ances and other objectives. The method presented herein
benefits from the generalization of part geometry to reduce
the number of parameters in optimization, while also acces-
sing the entire solution space for mathematical analysis.

2.2 Mathematical foundations

There is no shortage of mathematical formulations of
the orientation problem in the academic literature. The
plethora of formulations arises from the subtle differences
in AM technologies, which have varying parameters with
different effects. The number of formulations is further
amplified by the deviating scope and objectives of pre-
vious works. For instance, the VE is a common measure
of accuracy in AM. However, the calculation of VE is based
on fundamental assumptions regarding the surface profile,
typically assuming right-angled steps. However, the real
surface will be filleted as various effects will round off the
corners and hence throw off the theoretical models [26,27].

Nevertheless, the effect of part build orientation on
surface accuracy is indisputable in the current AM sys-
tems, although of less concern when the layers are thinner
[28]. Therefore, the modeling of quality as a function of
part build orientation is warranted, and mathematical
descriptions of orientations are necessary.

According to Euler’s rotation theorem, any orienta-
tion of a rigid body in �3 can be described as a sequence
of three basic rotations ( )α β γ, , , where no two subse-
quent rotations are performed about the same axis. The
basic rotations are performed about the x-, y-, and z-axis
individually, and a rotation of θ degrees about the respec-
tive axes can be calculated using the ×3 3 rotation
matrices Rx, Ry, and Rz where

( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
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= −R θ θ θ
θ θ
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The rotation matrices of equations (2)–(4) will rotate
any column vector about the respective axis by the angle θ.
The direction of the rotation is determined by the right-
hand rule, i.e., counterclockwise as seen from the positive
end toward the origin. According to Euler, any orientation
can be achieved by three successive rotations. However,
because matrix multiplication is non-commutative, the
sequence of rotations influences the final orientation of
the body. Consequently, when three rotations are per-
formed in succession following Euler’s rules, there are still
12 possible combinations divided into two distinct groups:
(1) Proper Euler angles where the first and last rotations

are performed about the same axis; and
(2) Tait-Bryan angles where all three rotations are per-

formed about unique axes.

In the current work, the notation for rotation sequence
is simply the axes in the order of which the rotations
are performed with a subscript further emphasizing the
sequence. For instance, the most common rotation fol-
lowing a proper Euler angle sequence is Z X Z1 2 3, which
means first rotation about the z-axis, second rotation
about the (new) x-axis, and finally another rotation about
the (now current) z-axis. Table 2 tabulates all 12 rotation
sequences following this notation.

The range of rotations is limited to the unit circle as
rotations of more than π2 radians make little sense.
Hence, the range of α and γ can be restricted to [ )π0, 2 .
Conversely, the range of β need not exceed π radians
because larger rotations will only repeat previous spaces;
hence, the range of β can be reduced to [ )π0, . In conse-
quence, the orientation problem in AM is bound to the
finite space, where ( ) [ )∈α γ π, 0, 2 and [ )∈β π0, .

3 Proposed method

The proposed optimization method is based on shape fea-
tures to facilitate implementation in traditional tolerancing

schemes. In this context, a shape feature is defined as
either a geometric primitive, i.e., plane, cylinder, cone,
sphere, or torus (Figure 2), or a free-form surface. These
feature types are affected by the build direction in different
ways and are also subject to different tolerance character-
istics such as flatness, cylindricity, etc. Therefore, these
features should be used in the construction of the objective
function.

The current method requires information about the
feature types and the relative orientation of the features.
This information is readily available in many 3D-file
formats such as STEP; however, when the geometry is
converted into the popular intermediate STL format, the
information about local topology is lost. For such tessel-
lated file formats, the geometry may be deduced by feature
recognition algorithms as described elsewhere [29–31].

Due to the ability to parameterize geometric primi-
tives (e.g., height and diameter of a cylinder), these shape
features may be generalized and are considered in the
remainder of this article. The freeform surfaces on the
other hand are more complex and therefore necessitate
closer analysis and will be discussed only briefly. This
prioritization is based on the assumption that surfaces
that require tolerance are functional surfaces that predom-
inantly are primitive in shape. The problem of freeform
surfaces is left for future work.

Vectorial characterization of shape features enables
the description of the relative location and orientation of
shape features. Consider that each feature F is described

by a location vector→p and anorientation vector→v with respect

to a part coordinate system (PCS), where �
→ →

∈p v, 3. This is
demonstrated in Figure 3, where the PCS is located at the
bottom left of the design and the black arrow represents
the location vector for the highlighted horizontal through
hole. The location vector points to the center of the hole
where a feature coordinate system signifies the orientation
of the feature, i.e., with the z-axis of the cylinder parallel
to the y-axis of the PCS.

When all features are described vectorially, the entire
part P may be described as a set of all these features

{ }= …P F F F, , , n1 2 . The geometry of Figure 3 is recreated
from the study by Cheng et al. [9] and will be used as a
sample part for a simple geometry in this article.

3.1 Mathematical description of part build
orientation

Consider a part { }= …P F F F, , , n1 2 . These features may be
of different sizes and feature types, i.e., planes, cylinders,

Table 2: Possible rotation sequences

Proper Euler angles Tait-Bryan angles

X Y X1 2 3 X Y Z1 2 3

X Z X1 2 3 X Z Y1 2 3

Y X Y1 2 3 Y X Z1 2 3

Y Z Y1 2 3 Y Z X1 2 3

Z X Z1 2 3 Z X Y1 2 3

Z Y Z1 2 3 Z Y X1 2 3
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spheres, cones, and tori. The quality of each feature
type can be modeled as a function of some parameters

( )= …Q f x x x, , ,F n1 2 . If a consistent measure of quality is
applied (e.g., surface roughness Ra), the mean quality of
the entire part Qpart may be calculated as follows:

=

∑

=Q
Q A

A
,i

n
i i

part
1

part
(5)

where n is the number of features, Qi and Ai are the
quality and area of the ith feature, respectively, and
Apart is the total surface area of the part.

Figure 2: Shape features with position and orientation vectors. Spheres are not assigned an orientation due to three full degrees of freedom
in rotation. (a) Plane with position and orientation vector. (b) Cylinder with position and orientation vector. (c) Cone with position and
orientation vector. (d) Sphere with only position vector. (e) Torus with position and orientation vector.
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While the area may be a suitable weight factor in
many cases, it is also possible to introduce a separate
weight factor that enables the prioritization of features.
This weight factor can be applied on any level, e.g., cer-
tain feature types may be ignored, or individual features
may attain a higher priority. Furthermore, the funda-
mental assumption is made that the quality of an addi-
tively manufactured surface can be described as a function
of its orientation with respect to the build direction.

The orientation of a feature F with respect to the
build direction ẑ may be described as two Euler angles
( )α β, necessary for the rotational transformation of ẑ to
→v where→v is the feature vector of F . In the current work,
( )α β, represents rotations about the x- and y-axis respec-
tively, both with reference to the original reference frame
(i.e., Tait-Brian angles X Y Z1 2 3).

The angle θ between two arbitrary vectors→u and→v is
found by:

⎛

⎝
⎜

∣ ∣ ∣ ∣

⎞

⎠
⎟

=

→

⋅

→

→

⋅

→

θ u v
u v

arccos . (6)

By utilizing unit vectors, ∣ ∣ ∣ ∣
→

⋅

→

u v evaluates to 1 and
reduces the expression to

( )=

→

⋅

→θ u varccos . (7)

By inserting [ ]=ẑ 0 0 1 for →u , the aforementioned
expression can be further reduced because

⎡

⎣
⎢

⎤

⎦
⎥[ ] ⋅ =

x
y
z

z0 0 1 . (8)

In this context, z will be the z-component of the fea-
ture vector →v , denoted →vz . However, we want to express
the angle θ as a function of the part’s orientation in 3D
space to enable optimization of orientation. For this pur-
pose, the orientation vector can be expressed in terms of
Tait-Bryan angles (Z Y X1 2 3). These rotations are commonly
referred to as yaw, pitch, and roll in engineering applica-
tions and describes the orientation of a rigid body with
respect to the world coordinate system (WCS). The feature
vector can then be derived from the rotation matrices in
equations (2)–(4), and the sequential rotations about the
x-, y-, and z-axis can then be performed in a single opera-
tion by multiplying the matrices as follows:

⎡
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sin cos sin sin sin cos cos sin cos sin cos cos

sin sin cos cos cos
z y x (9)

This means that the orientation vector →v of a feature
may be expressed as follows:
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z α γ β γ α
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cos cos sin sin cos sin cos
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which means

→

= − + +v x β y α β z α βsin sin cos cos cos .z (11)

When →vz from equation (11) is inserted in equation
(7), the final expression simply becomes

( )= − + +θ x β y α β z α βarccos sin sin cos cos cos . (12)
To enable the mathematical description of the entire

geometry in a single expression, the orientation of each
feature is described relative to a common coordinate
frame, i.e., the WCS. The geometry may be regarded as
a rigid body, which means that the relation between the
surfaces remains constant and any transformation acts
on all surfaces equally. In consequence, the orientation
of all surfaces may be collectively calculated from the
same values of α, β, and γ using equation (10), where
x, y, and z are the components of the feature’s initial
orientation vector. Accordingly, equation (12) is valid
for all surfaces with α and β as the only variables.

3.2 Finding the optimal part build
orientation

Based on the aforementioned theory, it is possible to
determine the optimal part build orientation mathemati-
cally by evaluating the critical points of the objective
function. The critical points of a function ( )f x y, are
found, where

∂

∂

=

∂

∂

=

f
x

f
y

0 or undefined . (13)

Typically, there will be several solutions to equation
(13), and each solution needs to be evaluated separately.

.
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These solutions will represent points, edges, and perhaps
even entire areas in the 2D solution space. Provided the
formalization in the previous section, the part build
orientation can be described as a set of two rotations α
and β. If a function is based on these two rotations, α and
β will replace x and y in equation (13) in the search for
critical points. The solution space will be the surface of
a unit sphere, where [ )∈α π0, 2 and [ )∈β π0, . A point
on this surface will correspond to a single unique orien-
tation, while a line will correspond to a range of orienta-
tions. Note that the entire unit sphere is accessible already
with only half a rotation of β, and still, a full rotation of β
is used in the visualizations of this article to make their
analysis more intuitive.

The fundamental assumption remains that the quality
of a surface can be modeled as a function of its orientation
with respect to the build orientation and that this function
is differentiable. A conditional function (such as the one in
equation (1)) introduces certain challenges to this method.
However, such discontinuities would represent edges and
areas in the 2D solution space that could be added to the
list of candidate orientations.

Each feature of the geometry will add a term to the
objective function, and each term will typically add one
or more candidate orientations to the list. The exact
number of additional candidates depends on the mathe-
matical model as higher order functions will yield more
candidates. It is therefore beneficial to limit or minimize
the number of terms to avoid excessive computations. A
simple way to minimize the number of terms is to join
similar terms, e.g., two features of the same type and
orientation can be combined into a single term of the
objective function. Other measures include a manual

selection of significant features and automatic filtering
of features based on type, size, etc.

As surfaces are affected differently by build direction,
separate models for each feature type are necessary to
enable proper evaluation. This is easily implemented by
inserting the appropriate expression for FQuality into equa-
tion (5) for each feature.

4 Case study

Two case studies are presented to demonstrate the pro-
posed method:
(1) A simple geometry to enable a step-by-step demon-

stration of the approach and all calculations.
(2) A slightly more complex geometry to illustrate the

applicability to more complex parts.

Simple mathematical models of quality are constructed
for the illustrative purpose of this study. The implementa-
tion of empirical models is left for future work as this would
obscure the central elements of this article. Before the case
studies are presented, the construction of these mathema-
tical models is detailed to provide the necessary founda-
tions for the subsequent illustrations.

4.1 Constructing the mathematical models

The following models are based on the orientation rules
described by Frank and Fadel [32], stating that cylinders
should be oriented with the axis parallel to the build
direction, while planes can be oriented either parallel
or perpendicular to the build direction. Up-facing and
down-facing surfaces are treated equally in the examples
to keep the objective functions simple. This can be natu-
rally incorporated in the objective function to account for
any additional effects, e.g., overcure, support structures,
and so on.

The central assumption in the current work is that the
accuracy of a feature can be modeled as a function of its
angle to the build direction (θ), which in turn is a func-
tion of the part’s orientation as described in equation (12).
Also, we are modeling deviations from nominal geo-
metry, which can be considered a cost; hence, a low
cost indicates a high fitness of a given orientation. How-
ever, the angle will not be sufficient to evaluate the fit-
ness of a certain orientation. Consider, for instance, a
cylinder oriented at a ∘45 angle from the build direction

Figure 3: Sample part 1 recreated from the study by Cheng et al. [9]
with coordinate frames.
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Figure 4: Solution spaces for planes and cylinders α β π, 0, 2[ ]∈ from equations (15) and (17), respectively. (a) 3D-graph for cylinders.
(b) Contour for cylinders. (c) 3D graph for planes. (d) Contour for planes.

Table 3: Numeric description of part features for sample part 1

Position Orientation Area

# Type Px Py Pz Ex Ey Ez mm2 %

1 Plane 4.55 0.00 1.80 0.00 −1.00 0.00 20 9.3
2 Plane 5.00 2.50 0.00 0.00 0.00 −1.00 50 22.8
3 Plane 3.41 2.50 5.00 0.00 0.00 1.00 16 7.3
4 Plane 4.55 5.00 1.80 0.00 1.00 0.00 20 9.3
5 Plane 0.91 2.50 2.50 −0.90 0.00 0.45 13 6.0
6 Plane 7.50 2.50 2.50 0.81 0.00 0.59 18 8.0
7 Cylinder 4.00 0.00 2.50 0.00 1.00 0.00 31 14.0
8 Cylinder 0.18 2.50 2.50 1.00 0.00 0.00 51 23.1
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( =

∘θ 45 ). The same cylinder oriented at =

∘θ 135 would
yield the same result, but the angle θ is quite different.
Clearly, the objective function should be more sophisti-
cated to incorporate this behavior.

Because the angle θ always will be in the interval
[ ∘ ∘0 , 180 ], the sine of the angle will provide three desir-
able properties of an objective function: (i) the result
is always a number between 0 and 1, (ii) the function
is minimized at vertical orientations and maximized at
horizontal orientations, and (iii) the function is periodic
and symmetric. This study employs this function as an
expression for the quality of cylinders:

( ) =Q θ θsin ,cylinder (14)

where θ is the angle between the feature normal vector
and the build direction. This can be formulated as a func-
tion of ( )α β, by inserting equation (12) for θ. With this
substitution for θ, equation (14) may be written as
follows:

( )

( )= − − + +

Q α β

x β y α β z α β

,

1 sin sin cos cos cos .
cylinder

2
(15)

Planes, on the other hand, require some additional
configurations as we must consider both vertical and
horizontal orientations as positive. To incorporate this
new behavior, equation (14) is multiplied by θcos2 . This
term ensures that planes are positively evaluated at both

Figure 5: Solution space for case 1 based on equation (19). (a) 3D-graph for case 1. (b) Contour for case 1.

Figure 6: Graphs displaying the partial derivatives of equation (19). (a) Contour for α
∂

∂ . (b) Contour for β
∂

∂ .
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vertical and horizontal orientations. In addition, the
function is more sensitive to minor changes when a
plane is horizontal than when the plane is vertical.
This fit well together with the VE being large when the
plane is close to horizontal, while not being as promi-
nent in close-to-vertical orientations.

Finally, the function is normalized to facilitate com-
parison with other feature types, and so on. The normal-
ization is achieved by introducing a divisor equal to
the maximum of the function. The maximum is easily
obtained by derivation and reveals a normalization factor
of 2.598 when rounded to three decimal points. This
yields the following expression for the quality of planes:

( ) =Q θ θ θ2.598 sin cos ,plane
2 (16)

where θ is the angle between the feature normal vector
and the build direction. As with equation (14), the expres-
sion for planes may also be rewritten as a function of
( )α β, by inserting equation (12) for θ. The result may be
formulated as follows:

( )

( )

( ( ) ( ) ( ) ( ) ( ))

= − − + +

× − + +

Q α β

x β y α β z α β
x β y α β z α β

,

2.598 1 sin sin cos cos cos
sin sin cos cos cos .

plane

2

2

(17)

The solution spaces of equations (15) and (17) are
illustrated in Figure 4, where a 3D graph and a contour
plot are presented for each of the equations.

4.2 Case 1: A simple geometry

The first case study is the simple geometry reconstructed
from the study by Cheng et al. [9] and presented in Figure 3.
This geometry provides a gentle introduction to the method
by enabling a step-wise analysis of the geometry and the
accuracy model. The first step of the method is to obtain a
numeric description of the geometry in the appropriate
format. Table 3 provides the positions and orientations of
the features defined relative to the PCS as illustrated in
Figure 3.

The data from Table 3 are inserted into equations (15)
and (17) one row at a time as follows:
(1) The feature type determines which equation to use

(equation (15) for cylinders or equation (17) for
planes)

(2) The variables x, y, and z are substituted with Ex, Ey,
and Ez from Table 3

(3) The expression is multiplied with the relative surface
area of the feature (final column of Table 3)

Following the progression mentioned earlier, we start
with the first row from Table 3 and perform the following
steps: (1) The feature is identified as a planar type, and we,
therefore, use equation (17). (2) The values of Ex, Ey, and Ez

Figure 7: Contour lines for the partial derivatives of equation (19).

Table 4: Evaluation of critical points for case 1

α0 45≤ <
∘ ∘ α45 180≤ <

∘ ∘ α180 225≤ <
∘ ∘ α225 360≤ <

∘ ∘

Orientation Cost Orientation Cost Orientation Cost Orientation Cost

(0, 0) 0.46 (87, 40) 0.53 (180, 0) 0.46 (267, 140) 0.53
(0, 28) 0.71 (87, 220) 0.53 (180, 28) 0.69 (267, 320) 0.53
(0, 90) 0.26 (90, 0) 0.23 (180, 90) 0.26 (270, 0) 0.23
(0, 152) 0.69 (90, 90) 0.26 (180, 152) 0.71 (270, 90) 0.26
(0, 180) 0.46 (90, 180) 0.23 (180, 180) 0.46 (270, 180) 0.23
(0, 208) 0.71 (90, 270) 0.26 (180, 208) 0.69 (270, 270) 0.26
(0, 270) 0.26 (93, 140) 0.53 (180, 270) 0.26 (273, 40) 0.53
(0, 332) 0.69 (93, 320) 0.53 (180, 332) 0.71 (273, 220 0.53
(38, 176) 0.85 (142, 4) 0.85 (218, 4) 0.85 (322, 176) 0.85
(38, 356) 0.85 (142, 184) 0.85 (218, 184) 0.85 (322, 356) 0.85

Lower value indicates higher accuracy. Lowest value in bold.
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are inserted for x, y and z, respectively. For the first fea-
ture, this means that 0 is inserted for x and z , while 1 is
inserted for y. (3) Finally, the weight factor is introduced
by multiplying by the relative surface area as found in the
final column of Table 3, namely, 0.093 (9.3%). These steps
are displayed in the calculations of equation (18).

( )

( )

( ( ) ( ) ( ) ( ) ( ))

( )

( ( ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= − − + +

× − + +

= − − + +

× − + +

= × −

= −

Q α β

A x β y α β z α β
x β y α β z α β

A β α β α β
β α β α β

α β α β

α β α β

0 1 0
0 1 0

0.093

,

2.598 1 sin sin cos cos cos
sin sin cos cos cos

2.598 1 sin sin cos cos cos
sin sin cos cos cos

2.598 1 sin cos sin cos

0.24 1 sin cos sin cos .

F

2

2

2

2

2 2 2 2

2 2 2 2

1

(18)

When all the data from Table 3 are inserted into equa-
tions (15) and (17), all the equations may be collected in a
single expression for the entire geometry as follows:

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ) ( ) ( ))

( ( ) ( ) ( ))

( ( ) ( ) ( ))

( ( ) ( ) ( ))

= − + −

+ −

+ −

+ − − +

× − +

+ − +

× +

P α β

β α β

α β α β

α β α β

β α β
β α β

β α β
β α β

,

0.23 1 sin 0.14 1 sin cos

0.48 1 sin cos sin cos

0.78 1 cos cos cos cos

0.10 1 0.5 sin cos cos
sin cos cos

0.14 1 0.88 sin 0.36 cos cos
sin 0.36 cos cos .

Quality

2 2 2

2 2 2 2

2 2 2 2

2

2

2

2

(19)

This yields the solution space illustrated in Figure 5.
The solution space reflects the symmetry and regularity
of the geometry as the orientations where feature vectors
align with the build direction are clear.

In the next step, the partial derivatives are calculated
and evaluated according to equation (13). Figure 6 shows
the graphs of the partial derivatives where the dashed
lines of Figure 6(a) and (b) correspond to the contour
lines where the derivative evaluates to zero or are
undefined.

The critical points are found where both derivatives
either evaluate to zero or are undefined. This can be
displayed graphically by plotting the dashed lines of
Figure 6(a) and (b) in a single figure as shown in Figure 7.
Finally, individual evaluation of these points and edges
must be conducted to identify the global optimum as
tabulated in Table 4.

The evaluation of [ )∈α β π, 0, 2 reveals four solutions
with equal cost. However, these four solutions are pair-
wise identical, i.e., ( ∘ ∘270 , 180 ) is the same as ( ∘ ∘90 , 0 ),
and ( ∘ ∘90 , 180 ) is the same as ( ∘ ∘270 , 0 ). Moreover,
these two unique orientations are polar opposites, corre-
sponding to the object lying on its left or right side as
exemplified in Figure 8(a). This evaluation of the optimal
orientation is also consistent with previous assessments
of the same geometry [9,11,16].

Figure 8: Optimal orientations identified for case 1. (a) Identified optimum (90 , 0∘ ∘ ). (b) Second-best orientation (0 , 90∘ ∘ ).

Figure 9: The joint designed for case 2.
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Another orientation achieving a low cost is the upright
position which is achieved for any value ofα when β is ∘90
or ∘270 . This constitutes two edges in the solution space
with identical solutions. These orientations correspond to
the front or the back facing upwards, which aligns the

largest cylinder with the build direction as displayed in
Figure 8(b). Note that the up-facing and down-facing sur-
faces are not differentiated by the objective function.
Incorporating this behavior would yield different results
where repetition of the solution space is avoided.

Table 5: Numeric description of features for sample part 2

Position Orientation Area

# Type Px Py Pz Ex Ey Ez mm2 %

1 Plane 32.14 0.00 −64.83 0.89 0.00 −0.45 6,176 6.26
2 Plane −32.14 0.00 −64.83 −0.89 0.00 −0.45 6,176 6.26
3 Plane 0.00 0.00 25.00 0.00 0.00 1.00 3,697 3.75
4 Plane 0.00 84.64 −25.00 0.00 1.00 0.00 2,900 2.94
5 Plane 0.00 −84.64 −25.00 0.00 −1.00 0.00 2,900 2.94
6 Plane 15.56 0.00 −17.22 −0.89 0.00 0.45 2,324 2.35
7 Plane −15.56 0.00 −17.22 0.89 0.00 0.45 2,324 2.35
8 Plane 0.00 34.64 2.41 0.00 −1.00 0.00 1,800 1.82
9 Plane 0.00 −34.64 2.41 0.00 1.00 0.00 1,800 1.82
10 Plane 34.64 62.85 −24.18 1.00 0.00 0.00 1,735 1.76
11 Plane 34.64 −62.85 −24.18 1.00 0.00 0.00 1,735 1.76
12 Plane −34.64 62.85 −24.18 −1.00 0.00 0.00 1,735 1.76
13 Plane −34.64 −62.85 −24.18 −1.00 0.00 0.00 1,735 1.76
14 Plane 18.32 64.93 4.43 0.50 0.00 0.87 1,560 1.58
15 Plane 18.32 −64.93 4.43 0.50 0.00 0.87 1,560 1.58
16 Plane −18.32 64.93 4.43 −0.50 0.00 0.87 1,560 1.58
17 Plane −18.32 −64.93 4.43 −0.50 0.00 0.87 1,560 1.58
18 Plane 17.43 66.74 −54.94 0.50 0.00 −0.87 1,430 1.45
19 Plane 17.43 −66.74 −54.94 0.50 0.00 −0.87 1,430 1.45
20 Plane −17.43 66.74 −54.94 −0.50 0.00 −0.87 1,430 1.45
21 Plane −17.43 −66.74 −54.94 −0.50 0.00 −0.87 1,430 1.45
22 Plane 29.52 18.15 7.38 −0.87 −0.50 0.00 1,400 1.42
23 Plane 29.52 −18.15 7.38 −0.87 0.50 0.00 1,400 1.42
24 Plane −29.52 18.15 7.38 0.87 −0.50 0.00 1,400 1.42
25 Plane −29.52 −18.15 7.38 0.87 0.50 0.00 1,400 1.42
26 Plane 14.47 24.49 −28.94 0.89 0.00 −0.45 314 0.32
27 Plane 14.47 −24.49 −28.94 0.89 0.00 −0.45 314 0.32
28 Plane −14.47 24.49 −28.94 −0.89 0.00 −0.45 314 0.32
29 Plane −14.47 −24.49 −28.94 −0.89 0.00 −0.45 314 0.32
30 Cylinder 0.00 0.00 −7.68 0.00 0.00 1.00 7,590 7.69
31 Cylinder 0.00 0.00 −25.00 −0.89 0.00 −0.45 6,804 6.89
32 Cylinder 0.00 0.00 −25.00 0.89 0.00 −0.45 6,804 6.89
33 Cylinder 0.00 50.00 −25.00 0.00 1.00 0.00 4,518 4.58
34 Cylinder 0.00 −50.00 −25.00 0.00 −1.00 0.00 4,518 4.58
35 Cylinder 14.47 24.49 −28.94 0.89 0.00 −0.45 2,513 2.55
36 Cylinder 14.47 −24.49 −28.94 0.89 0.00 −0.45 2,513 2.55
37 Cylinder −14.47 24.49 −28.94 −0.89 0.00 −0.45 2,513 2.55
38 Cylinder −14.47 −24.49 −28.94 −0.89 0.00 −0.45 2,513 2.55
39 Cylinder 0.00 0.00 −25.00 0.00 0.00 1.00 449 0.45
40 Cylinder 0.00 0.00 −25.00 0.00 0.00 1.00 449 0.45
41 Cylinder 0.00 0.00 −25.00 −0.89 0.00 −0.45 411 0.42
42 Cylinder 0.00 0.00 −25.00 −0.89 0.00 −0.45 411 0.42
43 Cylinder 0.00 0.00 −25.00 0.89 0.00 −0.45 411 0.42
44 Cylinder 0.00 0.00 −25.00 0.89 0.00 −0.45 411 0.42
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4.3 Case 2: Example with more complex
geometry

The second case is an original design created for the sole
purpose of demonstrating the applicability of the pro-
posed method on a slightly more complex geometry.
The part displayed in Figure 9 is a joint with connectors
in various directions. Forty-four features may be identi-
fied where 15 are cylindrical, and the remaining 29 are
planes. A numeric description of the geometry is pre-
sented in Table 5.

Using the functions for planes and cylinders from
equations (15) and (17) populated with the data of Table 5,
the solution space of Figure 10 is obtained. Because many

Figure 10: Solution space for case 2 based on equation (20). (a) 3D graph for case 2. (b) Contour for case 2.

Figure 11: Graphs displaying the partial derivatives of equation (20). (a) Contour for α
∂

∂ . (b) Contour for β
∂

∂ .

Figure 12: Contour lines for the partial derivatives of equation (20).
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features share orientation vectors, the overall objective function can be simplified to contain a minimal number of
terms.

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

= + − + −

+ − + −

+ − − + − +

+ − − −

+ − + +

+ − + +

+ − − −

+ − + +

+ − − + −

+ − − −

+ − + +

+ − − + −

+ − − + −

P α β β β α β α β

α β α β α β α β

β α β β α β

β α β β α β

β α β β α β

β α β β α β

α β β α β β

α β β α β β

β α β β α β

β α β β α β

β α β β α β

α β β α β β

β α β β α β

, 0.18 cos sin 0.09 1 cos cos 0.09 1 sin cos

0.25 1 sin cos sin cos 0.10 1 cos cos cos cos

0.13 1 0.8 sin 0.5 cos cos 0.12 1 0.8 sin 0.5 cos cos

0.14 1 0.8 sin 0.5 cos cos sin 0.5 cos cos

0.05 1 0.8 sin 0.5 cos cos sin 0.5 cos cos

0.14 1 0.8 sin 0.5 cos cos sin 0.5 cos cos

0.03 1 0.75 0.58 sin cos sin 0.58 sin cos sin

0.06 1 0.75 0.58 sin cos sin 0.58 sin cos sin

0.05 1 0.8 sin 0.5 cos cos sin 0.5 cos cos

0.06 1 0.75 0.58 sin cos cos 0.58 sin cos cos

0.12 1 0.75 0.58 sin cos cos 0.58 sin cos cos

0.03 1 0.75 0.58 sin cos sin 0.58 sin cos sin

0.06 1 0.75 0.58 sin cos cos 0.58 sin cos cos

Quality
2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

(20)

The solution space for the second case is also quite
regular as demonstrated in Figure 11 where the partial
derivatives of equation (20) are displayed. The regularity
of these plots reflects the redundancy in the domain

[ ]∈α β π, 0, 2 .
As demonstrated in case 1, the critical points are found

where both partial derivatives are either zero or undefined,
which corresponds to the intersections of red and black
lines in Figure 12. All critical points are tabulated in Table 6
where the minima are highlighted in bold text.

For the second case study, the optimal orientation is
achieved by ∘90 rotation about the x-axis as displayed in
Figure 13(a). The same cost is also observed for three
other combinations of rotations as displayed in Table 6.
Due to redundancy in the solution space, these four com-
binations of rotations only correspond to two unique
orientations in exactly opposite directions. With the hex-
agonal protrusions oriented parallel to the build direc-
tion, 25 out of the 29 planes are in a favorable orientation,
while only two of the 15 cylinders are vertical.

Clearly, the large number of planes favors the orien-
tation at ( ∘ ∘90 , 0 ). However, if cylinders are given a
higher priority than planes, this orientation may no
longer be as favorable. Figure 14 compares the effect of
assigning a weight factor to cylindrical features for three
orientations. A point of intersection is identified at a
weight factor of 3.4, where the orientation ( ∘ ∘0 , 63 )

becomes more favorable than the previous best at
( ∘ ∘90 , 0 ) (see Figure 13(b)). This analysis indicates that
for this part, cylinders should be at least 3.4 times as
important relative to planes before the orientation at
( ∘ ∘0 , 63 ) is selected.

Both case studies exhibit repetitive symmetric pat-
terns in the evaluation table. This symmetry arises from
two sources: (i) as stated in Section 2.2, the domain of β
can be constrained to [ )π0, as rotations exceeding this
range will only repeat previous solutions, and (ii) the
objective function of these case studies takes no regard
of the difference between up-facing and down-facing
surfaces. One may also question the alignment of many
critical points with right-angle orientations. This is, how-
ever, a result of the initial orientation of the part, which
originates from the design phase. If the initial orientation
was different, the patterns observed in the plots would
change due to the projection, but the solution space
would remain unaltered.

A more complex geometry with more features would
yield a solution space with more local extremes where the
complexity of the solution space reflects the complexity
of the geometry. Naturally, the objective functions for
each surface type also contribute toward the topology
of the solution space. Consequently, different objective
functions, e.g., those obtained through experiments, would
give different results to those reported earlier.
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5 Discussion

A mathematical description of the solution space provides
a range of possibilities for finding the optimal orientation.
What approach is best suited to solve the optimization
problem depends on the purpose of the optimization as well
as the complexity of the part. As the geometry becomes more
complex, function evaluations are increasingly expensive.

Hence, complex geometries may benefit from intelligent
methods where an effort is made to accelerate the compu-
tations. The simplicity of an exhaustive search may have
certain advantages for simple geometries but may be inef-
fective for complex geometries.

The continuous solution space facilitates gradient-
based methods as a qualified decision can be made con-
cerning the next iteration of the search sequence. However,

Figure 13: Optimal orientations identified for case 2. (a) Identified optimum (90 , 0∘ ∘ ). (b) Alternative orientation (0 , 63∘ ∘ ).

Table 6: Evaluation of critical points for case 2

α 0=
∘ α0 180< <

∘ ∘ α 180=
∘ α180 360< <

∘ ∘

Orientation Cost Orientation Cost Orientation Cost Orientation Cost

(0, 0) 0.53 (40, 0) 0.65 (180, 0) 0.53 (220, 0) 0.65
(0, 23) 0.57 (40, 180) 0.65 (180, 23) 0.57 (220, 180) 0.65
(0, 45) 0.60 (72, 50) 0.72 (180, 45) 0.60 (252, 50) 0.72
(0, 63) 0.54 (72, 130) 0.72 (180, 63) 0.54 (252, 130) 0.72
(0, 81) 0.60 (72, 230) 0.72 (180, 81) 0.60 (252, 230) 0.72
(0, 90) 0.59 (72, 310) 0.72 (180, 90) 0.59 (252, 310) 0.72
(0, 99) 0.60 (90, 0) 0.37 (180, 99) 0.60 (270, 0) 0.37
(0, 117) 0.54 (90, 50) 0.72 (180, 117) 0.54 (270, 50) 0.72
(0, 135) 0.60 (90, 90) 0.59 (180, 135) 0.60 (270, 90) 0.59
(0, 157) 0.57 (90, 130) 0.72 (180, 157) 0.57 (270, 130) 0.72
(0, 180) 0.53 (90, 180) 0.37 (180, 180) 0.53 (270, 180) 0.37
(0, 203) 0.57 (90, 230) 0.72 (180, 203) 0.57 (270, 230) 0.72
(0, 225) 0.60 (90, 270) 0.59 (180, 225) 0.60 (270, 270) 0.59
(0, 243) 0.54 (90, 310) 0.72 (180, 243) 0.54 (270, 310) 0.72
(0, 261) 0.60 (108, 50) 0.72 (180, 261) 0.60 (288, 50) 0.72
(0, 270) 0.59 (108, 130) 0.72 (180, 270) 0.59 (288, 130) 0.72
(0, 279) 0.60 (108, 230) 0.72 (180, 279) 0.60 (288, 230) 0.72
(0, 297) 0.54 (108, 310) 0.72 (180, 297) 0.54 (288, 310) 0.72
(0, 315) 0.60 (140, 0) 0.65 (180, 315) 0.60 (320, 0) 0.65
(0, 337) 0.57 (140, 180) 0.65 (180, 337) 0.57 (320, 180) 0.65

Lower value indicates higher accuracy. Lowest values highlighted in bold.
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unless all critical points are investigated, the risk of getting
stuck in local optima is ever present. A stochastic compo-
nent or a larger population of solutions may counter this
problem, as is typically the case of EAs.

When the solution space is clearly defined, it is pos-
sible to identify feasible regions in line with previous
works [25,18]. These regions are defined from requirements
and represent ranges of feasible orientations where toler-
ance requirements are met. Consequently, these regions
can make up the boundaries for subsequent optimizations,
e.g., with respect to mechanical properties. Adding steps to
the optimization process will inevitably complicate and pro-
long the process, but interactive methods may be useful
when the objectives are fuzzy or when flexibility is required.

Practical implementations of the proposed method
would entail the formulation of objective functions for
all relevant surface types. The relevant types and their
definition may differ as long as they can be formulated as
orientation vectors with accompanying objective func-
tions. Furthermore, a solution for obtaining information
on the orientation of the surfaces is required to automate
the optimization process. An alternative implementation
enables the identification of feasible regions for subse-
quent optimization. This would imply the integration of
the method in a larger system with capabilities beyond
what can be expressed by surfaces and their orientations.

The proposed optimization method has the benefit of
being stable (i.e., no stochastic components), has no lim-
itations with regards to search grid resolution, and pro-
vides the flexibility to incorporate separate expressions
for each feature. Moreover, by considering the features of
the part rather than every facet of a tessellated file, the
effect of build direction may be generalized for each sur-
face type. This drastically reduces the number of function
evaluations. The feature-based approach also enables
feature dimensions to be included in the objective func-
tion, which may affect the outcome.

The proposed method is not applicable to freeform
surfaces due to the inability to formulate proper objective
functions to handle the unknown. At present, this is not
an issue for assembly features. However, as the potential
of AM is unlocked, more complex surfaces may become
widely used in the industrial design. The development of
flexible formulations to handle this challenge is left for
future work, along with the appropriate parametrization
of such surfaces.

6 Conclusions and outlook

The approach described in this article provides the math-
ematical foundations for both deterministic and stochastic
solutions to the orientation problem. By describing the
solution space as a continuous function in a closed domain,
the optimization can be performed mathematically. More
importantly, this approach enables the determination of
feasible orientation zones for the optimization of secondary
objectives. Under the assumption that quality can be des-
cribed as a function of build direction, the proposedmethod
can be populated with any mathematical description of the
relationship between quality and part build orientation.

The development of accurate mathematical models is
crucial for optimization in process planning. AM technol-
ogies comprise many different processes that require sepa-
rate models for predicting final part properties. Future
research entails developing and validating prediction
models that can be utilized in optimization processes.
Practical implementation in a system with capabilities
beyond the described method constitutes an interesting
avenue for future research. Furthermore, the integration
of all processing stages into a digital pipeline – from
design and process planning to quality assessment and ver-
ification – will enable traceability throughout the manufac-
turing system and ultimately the entire product life cycle.
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