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ABSTRACT

In keeping with the commitment of a low-emissions society, energy efficiency strate-
gies for the Norwegian urban building stocks shall make a significant contribution
to reducing energy use and greenhouse gas emissions.

In the Nordic climate, a large amount of building energy is used for heating purposes.
In countries like Norway, where the energy market is dominated by hydro-power,
district heating (DH) systems are expected to serve as an alternative heating method
to alleviate the increasing pressure on the grid. Furthermore, in the face of green
energy initiatives and the increasing share of energy-efficient buildings, there is a
pressing need to transform current DH to low-temperature DH (LTDH) to maintain
the economic and environmental competitiveness of DH companies in the heating
market. The substantially lowered supply temperature of LTDH has broadened the
opportunities and challenges to integrating distributed renewable energy resources,
requiring enhancement on intelligent heating load prediction.

In the current research on the energy supply systems and building energy demand,
in most cases, measured energy data are employed as a package of information,
regardless of energy use patterns associated with building types, while most en-
ergy forecasts have not yet conducted in-depth studies on sizing or energy demand
requirements for typical building types. There lack of a bridge between demand
profiles on building stock functions and urban energy supply systems. In addition
to the normal condition, Norway and many countries have carried out confinement
regulations to hinder the infection spreading in 2020. The distancing measures and
changed work regimes have caused significant impacts on energy demand, so it is
important to improve the existing knowledge of building operations during unfore-
seeable disruptions.

To gain a deeper understanding of the energy use and improve the efficiency of
Norwegian urban buildings operation, this thesis focused on identifying represen-
tative energy trends regarding load profiles and developing appropriate prediction
models for Norwegian urban buildings under normal and special conditions. The
thesis started with a future development projection of the environmental impacts
comparing the buildings with DH and with only electricity, followed by the approach
for typical annual energy profiles. Further, a hybrid heating prediction was proposed
for sizing and operation. In the end, the energy demand changes due to the COVID-
19 pandemic were studied to examine building operation strategies during special
circumstances. Accordingly, four research questions were addressed to fulfill the re-
search goal. In the thesis, the study of building energy use was conducted based on
the hourly measured data of kindergartens, schools, nursing homes, and residential
buildings. The duration of energy data collection differed by building types and were
between two and four years. Since buildings with different floor areas, construction
years, and energy labels were involved, to define the representative energy use for
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buildings with different characteristics, the energy use was first converted into the
average specific energy use, W/m2. This applied to the most analysis of research
examples in the thesis.

Start with Research Question 1: What are the environmental impacts of heating
systems in future building development? It was answered in a study of 28 DH-
supplied kindergartens in Norway, where three cases were found depending on the
energy share from DH; i.e. DH high share, DH average share, and DH low share. By
following different CO2 factors of electricity and local DH production, the typical
kindergarten with DH high share had almost the lowest CO2 emission; contrarily,
the kindergarten with a lower share of DH or without DH, usually had a wider range
of CO2 emissions due to its dependence of the electricity production mix. Then a
projection was made by assuming 14.2% growth rate of kindergartens. The result
showed that if more than 50-67% of the new building area connected to DH, a smaller
increase of CO2 emissions from the projected area could be achieved, depending on
the CO2 factors. This proved that buildings with DH were more robust than the
ones without DH in terms of CO2 emissions. This top-down question addressed the
identification of typical building types for development planning and the necessity
for diversifying local energy supply pathways.

Research Question 2: What factors shall be considered for building heating and
electricity operation and what are the differences between the two delivered energy
forms? It was answered in a study of 40 DH-supplied schools in Norway, using a
modified Z-Score to determine working days and holidays, linear regression anal-
ysis to predict DH and electricity load profiles, and quality criteria and a cluster
method to evaluate the prediction quality. The results showed that the modified Z-
Scores might point out the special energy use periods and show the energy demand
trend. Operation of the electric appliances might be concluded with reasonably fast
responses by following the attendance, while the DH demand mainly followed the
outdoor temperature and the daily work schedule, with a slow control response to
short holidays, resulting in a waste of some heat energy. The identified specific load
profiles may present the current energy use of schools in the Nordic climate. The
predicted annual DH demand was 72 kWh/m2 with a peak load of 48 W/m2; the
predicted annual electricity demand was 57 kWh/m2 with a peak load of 18 W/m2.
Thus, the buildings with DH may largely reduce the power grid strains.

This long-term prediction also highlighted the importance of accurate heating peak
load prediction, especially for the promising LTDH, which was addressed in Re-
search Question 3: How can the methods for developing and predicting heating load
profiles be improved for future daily LTDH operation? Hereby, a study of 20 DH-
supplied nursing homes in Norway proposed a hybrid prediction method, combining
long-term DH load prediction by means of linear regression for unit sizing and short-
term (day-ahead) load prediction by means of two Artificial Neural Network models,
f72 and g120 (with different input parameters). It was found that including the his-
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torical heating loads as the input to the forecasting model improved the prediction
quality, especially for the peak load and low-mild heating season, as proved by g120
outperforming in the prediction quality evaluation. Meanwhile, to fulfill the different
temperature requirements of domestic hot water and space heating, separate energy
conversion units shall be implemented on user-side to upgrade the temperature level
of LTDH network.

Lastly, the energy impacts due to COVID-19 were addressed in Research Ques-
tion 4: What are the energy and economic impacts of the buildings under special
circumstances? Since electric heating still accounts for a high share in the country,
a study of educational buildings and residential buildings with electric heating was
conducted to investigate the lockdown impacts. The results showed that during the
2020 lockdown period, the electricity demand and load profiles for educational build-
ings were almost the same as in previous years, while there were apparent changes for
the residential buildings. Further, three building operation scenarios were proposed:
Scenario 1 considered operation under normal settings, Scenario 2 considered the op-
eration of educational buildings under nighttime and weekend settings, and Scenario
3 considered the operation of residential buildings under work-at-home conditions.
The scenario-based analysis showed that the electricity demand might be reduced
by one-third in educational buildings, between 2.1-4.1 €/(m2·yr) might be saved for
kindergartens, and 1.4-2.7 €/(m2·yr) for schools by following Scenario 2. Meanwhile,
the electricity density of small apartments varied more significantly than the town-
house. Under Scenario 3, the apartment might spend 2.0-4.1 €/(m2·yr) more for
electricity, while the increased bill for the townhouse may be trivial. Moreover, in a
community with various building functions, the composition of each building type
adopting different working schemes may influence the unit sizing and utilization rate.

To conclude, the proposed methods may be efficiently applied to other public build-
ings in a similar climate. This allows public authorities to better understand the
energy needs of different building functions, project future demand changes taking
into account normal situations and future unforeseeable disruptions, and improve
the building energy efficiency.

Keywords: Load profile; Linear regression; Artificial neural network; Low-temperature
district heating; Educational buildings; Nursing homes; Residential buildings; COVID-
19 lockdown; Scenario-based analysis
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SAMMENDRAG

For å bygge et lavutslippssamfunn, skal de norske bybygningsmassene gi et betydelig
bidrag til å redusere energibruk og klimagassutslipp med forbedrede energieffek-
tiviseringsstrategier. I det nordiske klimaet brukes en stor mengde bygningsenergi
til oppvarming. I land som Norge, hvor energimarkedet domineres av vannkraft,
forventes fjernvarmesystemer (FV) å jobbe som en alternativ oppvarmingsmetode
for å redusere det økende presset på kraftnettet. Drevet av det grønne skiftet og
den økende andelen energieffektive bygninger, er det dessuten et stort behov for
å transformere dagens FV til lavtemperatur-FV (LT-FV) slik at FV selskaper op-
prettholder sine økonomiske og miljømessige konkurranseevnen i varmemarkedet.
Den betydelig senkede tilførselstemperaturen til LT-FV har utvidet mulighetene og
utfordringene for å integrere distribuerte fornybare energiressurser, og det krever
forbedring av intelligent prediksjon av varmebelastninger.

I den nåværende forskningen på energiforsyningssystemene og bygningens energibehov
brukes ofte de målte energidataene som en informasjonspakke, uten å ta hensyn
til energibruksmønstre knyttet til bygningstyper, mens de fleste energiprognoser
ennå ikke har foretatt dybdestudier om dimensjonering eller krav til energibehov for
typiske bygningstyper. Det mangler en bro mellom etterspørselsprofiler på bygnings-
massefunksjoner og urbane energiforsyningssystemer. I tillegg til normalsituasjon
har Norge og mange land gjennomført tiltak og regulering for å hindre smittespred-
ning i 2020. Avstandstiltakene og endret arbeidsregime har påvirket energibehovet
i stor grad, så det er jo viktig å forbedre eksisterende kunnskap om bygningsdrift
ved uforutsigbare forstyrrelser.

For å få en dypere forståelse av energibruken og effektivisere driften av norske by-
bygg, har denne avhandlingen jobbet på å identifisere representative energibelast-
ningsprofiler og utvikle hensiktsmessige prediksjonsmodeller for norske bybygg under
normale og spesielle situasjoner. Avhandlingen startet med en fremtidig utviklingspro-
jeksjon av miljøpåvirkningene ved å sammenligne bygningene med FV og kun med
elektrisitet, etterfulgt av tilnærmingen for typiske årlige energiprofiler. Videre ble
en hybrid oppvarmingsprediksjon foreslått for dimensjonering og dagligdrift. Til
slutt ble energibehovsendringene i løpet av nedstengte perioden studert for å un-
dersøke bygningsdriftsstrategier. Fire forskningsspørsmål ble stilt for å oppfylle
forskningsmålet.

I avhandlingen ble bygningens energibruk analysert basert på timemålte data fra
barnehager, skoler, sykehjem og boligbygg. Varigheten av energidataene var mel-
lom to og fire år. Siden bygninger med ulike gulvarealer, byggeår og energimerker
var involvert, for å definere representativ energibruk til bygninger med forskjellige
egenskaper, ble energibruken først omregnet til gjennomsnittlig spesifikk energibruk,
W/m2. Dette gjaldt de fleste analyser av forskningseksempler i avhandlingen.
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Start med forskningsspørsmål 1: Hva er miljøpåvirkningene av varmesystemer i
fremtidig byggutvikling? Det ble besvart i en studie av 28 norske barnehager med
FV, hvor det ble funnet tre tilfeller avhengig av energiandelen fra FV; dvs. høy an-
del FV, gjennomsnittlig andel FV og lav andel FV. Ved å følge ulike CO2-faktorer
for elektrisitet og lokal FV-produksjon, hadde den typiske barnehagen med høy
andel FV nesten det laveste årlige CO2-utslipp, hadde barnehagen med lavere an-
del FV eller uten FV vanligvis et bredere spekter av CO2-utslipp på grunn av sin
avhengighet av elektrisitetsproduksjonen. Deretter ble det gjort en fremskrivning
ved å anta 14,2% vekst av barnehager. Resultatet viste at dersom mer enn 50-67%
av det nye byggearealet koblet til FV, var det mulig å realisere en mindre økning av
CO2-utslippene fra det prosjekterte området, som var avhengig av CO2-faktorene.
Dette beviste at bygninger med FV var mer robuste enn de uten FV når det gjelder
CO2-utslipp. Dette ovenfra-ned-spørsmålet tok for seg identifiseringen av typisk
bygningstype for utviklingsplanlegging og nødvendigheten av å diversifisere lokale
energiforsyningsveier.

Forskningsspørsmål 2: Hvilke faktorer bør vurderes for bygningsvarme og elektrisitets-
drift og hva er forskjellene mellom de to energiformene? Det ble behandlet i en
studie av 40 norske skoler med FV, ved bruk av en modifisert Z-Score metode for
å identifisere arbeidsdager og ferie, lineær regresjonsanalyse for å forutsi FV- og
elektrisitetsbelastningsprofiler, og kvalitetskriterier og en klyngemetode for å eval-
uere prediksjonskvaliteten. Resultatene viste at de modifiserte Z-skårene kunne
peke ut de spesielle energibruksperiodene og vise trenden i energibehovet. De elek-
triske apparatene på skolene kunne ha gjort rimelige justeringer ved å overvåke
oppmøtet; mens FV-behovet fulgte hovedsakelig utetemperatur og daglig arbeid-
splan, med en langsom kontrollrespons på korte ferier, noe som resulterte i sløsing
med litt varmeenergi. De identifiserte spesifikke lastprofilene kan presentere dagens
energibruk til skoler i det nordiske klimaet. Det estimerte årlige FV-behovet var 72
kWt/m2 med en topplast på 48 W/m2; det estimerte årlige elektrisitetsbehovet var
57 kWt/m2 med en topplast på 18 W/m2. Derfor kan byggene med FV i stor grad
redusere belastningene på strømnettet.

Denne langsiktige prediksjonen fremhevet også viktigheten av nøyaktig prediksjon av
varmetopplast, spesielt for den lovende LTFV, som ble behandlet i forskningsspørsmål
3: Hvordan kan metodene for å utvikle og forutsi varmelastprofiler forbedres for frem-
tidig daglig LT-FV drift? En studie av 20 norske sykehjem med FV foreslo en hybrid
prediksjonsmetode, som kombinerer langsiktig FV-lastprediksjon ved hjelp av lineær
regresjon for enhetsstørrelse og kortsiktig (dag fremover) FV-lastprediksjon ved hjelp
av to Kunstig nevrale nettverk-modeller, f72 og g120 (med ulike inngangsparametere).
Det ble funnet at å inkludere de historiske varmelastene som input til prognose-
modellen forbedret prediksjonskvaliteten, spesielt for topplast og varm sesong, som
bevist ved at g120 utkonkurrerte i evalueringen. I tillegg, for å møte de forskjellige
temperaturkravene til varmtvann og romoppvarming, skal separate energikonver-
teringsutstyr implementeres på brukersiden for å oppgradere temperaturnivået til
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LT-FV-nettverket.

Den siste oppgaven var energibehovsendringene på grunn av COVID-19-pandemien
og det ble handlet i forskningsspørsmål 4: Hva er de energimessige og økonomiske
konsekvensene av bygningene under spesielle situasjoner? Siden elektrisk oppvarm-
ing fortsatt utgjør en høy andel i landet, ble det utført en studie av utdanningsbygg
og boligbygg med elektrisk oppvarming for å undersøke virkningene av nedstengn-
ing. Sammenligningsresultatene viste at strømbehovet til de undervisningsbyggene
var nesten samme som tidligere år, mens det var store endringer for bolighusene
under nedstengningene. Videre ble tre bygningsdriftsscenarier foreslått: Scenario
1 vurderte driften under normale situasjoner, Scenario 2 vurderte driften av un-
dervisningsbygg under natt- og helgeinnstillinger, og Scenario 3 vurderte driften av
boligbygg under jobb hjemmefra. De scenariebaserte analyseresultatene viste at
strømbehovet kunne reduseres med en tredjedel i undervisningsbygg, mellom 2,1-4,1
€/(m2·år) kunne spares for barnehager, og 1,4-2,7 €/(m2·år) for skoler ved å følge
Scenario 2. Samtidig varierte elektrisitetstettheten til små leiligheter mer betydelig
enn rekkehuset. Under Scenario 3 kunne leiligheten bruke 2,0-4,1 €/(m2·år) mer for
strøm, mens den økte regningen for rekkehuset kunne være triviell. Dessuten kan
sammensetningen av hver bygningstype ved å ta i bruk ulike arbeidsskjemaer påvirke
enhetsstørrelsen og utnyttelsesgraden, i et samfunn med ulike bygningsfunksjoner.

Til slutt kan de foreslåtte metodene effektivt brukes på andre offentlige bygninger i
lignende klima. Dette gir offentlige myndigheter en bedre forståelse av energibehovet
til ulike bygningsfunksjoner, noe som kan hjelpe myndigheter til å prosjekterer frem-
tidige behovsendringer med hensyn til normalsituasjon og fremtidige uforutsette
forstyrrelser, og forbedrer bygningens energieffektivitet.

Nøkkelord: Lastprofil; Lineær regresjon; Kunstig nevrale nettverk; Lavtemperatur
fjernvarme; Utdanningsbygg; Sykehjemsbygg; Boligbygg; Covid-19-nedstengning;
Scenariobasert analyse
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Abbreviation

ANN Artificial neural network
ASHRAE American Society of Heating, Refrigerating

and Air-Conditioning Engineers
CPT Changing point temperature
CV(RMSE) Coefficient of variation of the root mean squared error
DH District heating
DHW Domestic hot water
EB Electric boiler
ED Euclidean distance
EH Electric heating
ENS Energy not supplied
ES curve Energy signature curve
FV Fjernvarme (district heating in Norwegian)
GESD Generalized extreme studentized deviate
GMM Gaussian Mixture Model
HDD Heating degree day
HP Heat pump
LTDH Low-temperature district heating
LR Linear regression
MAD Median absolute deviation
MAE Mean absolute error
(s)MAPE (symmetric) Mean absolute percentage error
MET Norway Norwegian Meteorological Institute
ML Machine learning
M(N)LR Multiple (non-)linear regression
MSE Mean squared error
NMBE Normalized mean bias error
nZEB nearly zero-energy/emission buildings
OECD Organisation for Economic Co-operation and Development
PAA Piecewise aggregate approximation
PCC Pearson correlation coefficient
P2H Power-to-heat
PPP Purchasing power parities
SAX Symbolic aggregate approximation
SH Space heating
TELP Typical electricity load pattern
TMA Temperature moving average
TMY Typical meteorological year
WD Weekday
WE Weekend
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Special letters

el electricity
€ EUR (currency)
n number of observation
R2 coefficient of determination
tτ outdoor temperature at time instance τ (°C)
yr year
f72 ANN model with 72 input units defined in the thesis
g120 ANN model with 120 input units defined in the thesis
µ Mean value of a time-series
σ Standard deviation of a time-series

xiii



xiv



Contents

List of Figures xix

List of Tables xxiii

1 INTRODUCTION 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Current building energy use in Norway . . . . . . . . . . . . . 1
1.1.2 Benefits and challenges of low-temperature district heating . . 2
1.1.3 Current status and future projection of municipal buildings . . 4
1.1.4 Special circumstances . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis objectives, research questions and research tasks . . . . . . . . 6
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 LITERATURE REVIEW 13
2.1 Previous studies on load prediction methods . . . . . . . . . . . . . . 13

2.1.1 Short-term prediction methods . . . . . . . . . . . . . . . . . 13
2.1.2 Long-term prediction methods . . . . . . . . . . . . . . . . . . 16

2.2 Energy and economic impacts under lockdowns . . . . . . . . . . . . 17
2.2.1 Impacts on the energy load profiles . . . . . . . . . . . . . . . 17
2.2.2 Impacts on the energy demand . . . . . . . . . . . . . . . . . 18

2.3 Summary of literature review . . . . . . . . . . . . . . . . . . . . . . 18

3 BUILDING AND ENERGY DATA INVENTORY 21
3.1 Building information . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Energy data inventory . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 METHODS 25
4.1 Prediction Method 1 - Long-term energy load prediction with energy

signature curve models . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Energy signature curve model . . . . . . . . . . . . . . . . . . 25
4.1.2 Heating degree days . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Temperature moving average . . . . . . . . . . . . . . . . . . . 26

4.2 Prediction Method 2 - Short-term energy load prediction with Arti-
ficial neural network models . . . . . . . . . . . . . . . . . . . . . . . 27

xv



Contents

4.2.1 Inputs to Artificial neural network models . . . . . . . . . . . 28
4.2.2 Mathematical description of Artificial neural network models . 28

4.3 Prediction performance evaluation . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Quality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Cluster methods of discretization evaluation . . . . . . . . . . 30

4.4 Economic and environmental impact assessment . . . . . . . . . . . . 31
4.4.1 Economic impact assessment . . . . . . . . . . . . . . . . . . . 31
4.4.2 Environmental impact assessment . . . . . . . . . . . . . . . . 31

5 RESEARCH EXAMPLES 33
5.1 CO2 emissions considering different environmental factors in future

planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.1 Energy share between electricity and district heating in buildings 33
5.1.2 Annual CO2 emissions of one typical kindergarten and future

assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Approach for data analysis and prediction for annual energy load

profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 Modified Z-Score . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Annual district heating load profiles . . . . . . . . . . . . . . . 36
5.2.3 Annual electricity load profiles . . . . . . . . . . . . . . . . . . 37

5.3 Hybrid heating load prediction in low-temperature district heating . . 37
5.3.1 Typical domestic hot water use . . . . . . . . . . . . . . . . . 38
5.3.2 Sizing the heating supply system . . . . . . . . . . . . . . . . 38
5.3.3 Accumulation of daily load prediction from prediction Method 2 40

5.4 Analysis of electricity use and economic impacts for buildings with
electric heating under lockdowns . . . . . . . . . . . . . . . . . . . . . 40
5.4.1 Daily electricity profiles before and during COVID-19 lockdown 41
5.4.2 Three scenarios regarding different building operation strategies 41
5.4.3 Economic impact assessment . . . . . . . . . . . . . . . . . . . 42

6 RESULTS AND DISCUSSION 43
6.1 Results of CO2 emissions considering different environmental factors

for heating systems in future planning . . . . . . . . . . . . . . . . . 43
6.1.1 Comparison results of annual CO2 emissions of one typical

Nordic kindergarten . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 Impact of future building area development on CO2 emissions 44

6.2 Results of data analysis and prediction for annual energy load profiles:
an example for Nordic school . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.1 Results of modified Z-Score . . . . . . . . . . . . . . . . . . . 46
6.2.2 Profile results of district heating and electricity in a typical

Nordic school . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3 Results of prediction performance evaluation of a typical Nordic

school . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.4 Discussion and limitation . . . . . . . . . . . . . . . . . . . . . 52

xvi



Contents

6.3 Results of hybrid heating load prediction in low-temperature district
heating: an example for nursing homes in Nordic countries . . . . . . 53
6.3.1 Results of long-term district heating load prediction . . . . . . 53
6.3.2 Results of short-term district heating load prediction . . . . . 54
6.3.3 Prediction evaluation of different prediction methods . . . . . 56
6.3.4 Discussions of the models’ rationality and future study of tem-

perature upgrade in low-temperature district heating . . . . . 58
6.4 Results of lockdown impacts on electricity use and economic costs for

buildings with electric heating . . . . . . . . . . . . . . . . . . . . . . 59
6.4.1 Comparison results of daily electricity profiles before and dur-

ing lockdowns . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.2 Results of scenario-based electricity profiles . . . . . . . . . . . 63
6.4.3 Results of economic impact assessment . . . . . . . . . . . . . 64
6.4.4 Discussions of aggregation and consequence on energy planning 66

7 CONCLUSIONS AND OUTLOOKS 69
7.1 Main conclusions and contributions . . . . . . . . . . . . . . . . . . . 69
7.2 Limitations and future recommendations . . . . . . . . . . . . . . . . 71

Bibliography 73

A APPENDIX I
A.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
A.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVII
A.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIX

xvii



Contents

xviii



List of Figures

1.1 Overview of the publications . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 A basic ANN schematic architecture . . . . . . . . . . . . . . . . . . 14

4.1 Temperature lag moving average, where 5-hour lag yielded the highest
correlation between heating needs and outdoor temperatures . . . . . 27

5.1 Energy share between electricity and DH in each building . . . . . . . 34
5.2 Workflow of the data analysis of energy load profiles . . . . . . . . . . 35
5.3 Logistic diagram of predicting DH demand under different conditions 36
5.4 Correlation of electricity load profile 2015-2018 (52 weeks) . . . . . . 37
5.5 Workflow of the data analysis and modelling of DH load prediction

in low-temperature district heating . . . . . . . . . . . . . . . . . . . 38
5.6 Daily domestic hot water heat load profiles in the nursing homes,

divided by day of week and seasons . . . . . . . . . . . . . . . . . . . 39
5.7 Daily SH use vs. daily HDD, based on four different heating sea-

sons, summer, transition season, heating season, and very cold season
(high-heating season) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 Workflow of the electricity and economic analysis under lockdowns . . 40
5.9 Annual electricity spot prices in Trondheim 2016-2020 . . . . . . . . . 42

6.1 Annual CO2 emissions of one kindergarten of 700 m2; within the
dashed green square, blue bars for the Norwegian electricity (CO2-EL1)
with the DH average production (CO2-DH1), orange bars for the Nordic
electricity (CO2-EL2) with the DH average production (CO2-DH1), yel-
low bars for CO2-EL2 with DH production in 2015 (CO2-DH2), and
purple bars for CO2-EL2 with DH production in 2010 (CO2-DH3); out-
side of the green square, the pink bar for the Norwegian electricity
and red bar for the Nordic electricity . . . . . . . . . . . . . . . . . . 44

6.2 (a) Annual CO2 addition of 10 000 m2 new building area; (b) CO2
increasing rate of 10 000 m2 new building area . . . . . . . . . . . . . 45

6.3 Modified Z-Score of the district heating use regarding short holidays
during 2015-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Modified Z-Score of the electricity use regarding short holidays during
2015- 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xix



List of Figures

6.5 Energy signature curve models of DH load considering different op-
eration periods; below CPT, working hour period, ramp period, off-
working hour; above CPT, temperature less-dependent period . . . . 48

6.6 Measured vs. predicted DH load profile during 2015-2018 . . . . . . . 48
6.7 Predicted typical annual DH load profile under typical meteorological

weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.8 Measured vs. predicted electricity load profile during 2015-2018 . . . 50
6.9 Typical hourly load profiles for the school week, Easter week, short

holiday, and the normal days without these special days; for easy
reading, the load profiles for Easter week, autumn week, and one-day
holiday have the same Y-axis label of spring week . . . . . . . . . . . 50

6.10 PAA coefficients results, considering different seasons in each working
day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.11 Energy signature curve models of SH load considering different opera-
tion periods; below CPT, the black line represents working hours and
red line non-working hours; above CPT, temperature less-dependent
period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.12 Predicted DH load profile for 2019 with a breakdown of space heating
load profile (top row subplot) and domestic hot water heating load
profile (bottom row subplot) . . . . . . . . . . . . . . . . . . . . . . . 54

6.13 Predicted DH load for the 24-hour period following the date indi-
cated above each column, showing the randomly selected three dates
prediction results by model f72 (top row subplots) and by model g120
(bottom row subplots) . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.14 Predicted DH load for the 24-hour period following the date indi-
cated above each column, showing the selected three dates prediction
results by model f72 (top row subplots) and by model g120 (bottom
row subplots) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.15 Deviation plot between measured and predicted DH load by the three
models for 2019 (top row subplot), corresponds to the outdoor tem-
perature for 2019 (bottom row subplot) . . . . . . . . . . . . . . . . . 56

6.16 Four examples of peak load periods in 2019, measured vs. predicted
DH profiles by the three prediction models. Subplot A represents the
load profiles comparison from 1 o’clock on January 22 to 24 o’clock
on January 24. Subplot B represents the load profiles comparison
from 1 o’clock on February 4 to 24 o’clock on February 6. Subplot
C represents the load profiles comparison from 1 o’clock on March
5 to 24 o’clock on March 6. Subplot D represents the load profiles
comparison from 1 o’clock to 24 o’clock on November 9 . . . . . . . . 57

6.17 Schematic diagram of integrating two building-sized boosting heat
pumps for space heating and domestic hot water use . . . . . . . . . 59

6.18 The average daily electricity load profiles for kindergartens from March
to May 2018-2020, where a) are profiles on weekdays and b) are pro-
files on weekends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xx



List of Figures

6.19 The average electricity load profiles for the single apartment from
March to May 2019-2020, where a) are profiles on weekdays and b)
are profiles on weekends . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.20 The ED and PCC results of kindergartens in 2018-2020, where the
left is for weekdays, the right for weekends . . . . . . . . . . . . . . . 62

6.21 The ED and PCC results of townhouse and single apartment in 2019-
2020, where the left is for weekdays, the right for weekends . . . . . . 62

6.22 Annual electricity load profiles for kindergartens under Scenario 1 and
Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.23 Annual electricity load profiles for the single apartment and the town-
house under Scenario 1 and Scenario 3 . . . . . . . . . . . . . . . . . 64

6.24 Annual electricity cost estimation of kindergartens and schools under
Scenario 1 and Scenario 2, where the left is for the annual cost of
kindergartens, the right is for the annual cost of schools . . . . . . . . 65

6.25 Annual electricity cost estimation of the single apartment and the
townhouse under Scenario 1 and Scenario 3, where the left is for the
annual cost of the apartment, the right is for the annual cost of the
townhouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.26 Capacity factor vs electricity peak load for different residential build-
ing areas, comparing normal year with lockdown year when varying
percentages of work-from-home adoption . . . . . . . . . . . . . . . . 66

xxi



List of Figures

xxii



List of Tables

3.1 List of observed buildings’ information, Cohort 1 and Cohort 2 are
included . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 CO2 factors of DH production mix in Trondheim . . . . . . . . . . . 32

6.1 Evaluation results of the energy forecast by three criteria . . . . . . . 51
6.2 PAA coefficients results in Figure 6.10 transferred into SAX symbols . 52
6.3 Evaluation results of 2019 DH load forecast produced by the three

models. The criteria, namely MAPE, sMAPE, NMBE, and CV(RMSE)
are used for quality evaluation . . . . . . . . . . . . . . . . . . . . . . 58

xxiii



List of Tables

xxiv



1
INTRODUCTION

Men argue. Nature acts.

Voltaire

The Earth is a fine place and worth
fighting for.

Ernest Miller Hemingway

This chapter presents the research motivation, research questions and tasks, thesis
structure, and a list of publications that support the doctoral work.

1.1 Background and motivation
Building energy planning is part of energy planning and covers a wide range of top-
ics. Energy demands of end-users for electricity, heating and cooling are met by
the energy supply systems, which utilize conversion technologies to convert primary
energy sources into different forms of delivered energy and deliver the energy via
distribution systems. Finally, all of these contribute to emissions and pollutants to
the environment. Building energy demand is usually influenced by two sets of fac-
tors, technical and physical factors, and human factors. During the operation phase,
technical and physical factors cannot be easily changed. Instead, human influence
can be altered and defined by the building’s occupants. Proper maintenance is re-
quired to keep buildings running efficiently [1]. Additionally, social and economic
factors also have a non-negligible impact on building energy use.

This section gives a brief introduction to the current and future situation of building
energy use and supply in Norway and Norwegian public municipal buildings, as well
as energy impacts under special circumstances.

1.1.1 Current building energy use in Norway
About 36-40% of the world’s energy is used in building services each year. Specif-
ically, for example, in 2019, the building sector accounted for 35% of global final
energy use and 38% of energy-related CO2 emissions [2]. Although CO2 emissions
declined in 2020, mainly due to the COVID-19 pandemic, the building sector’s share
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of final energy use and CO2 emissions for the year was 36% and 37%, respectively,
almost the same as in 2019 [3]. Norway has committed to reducing national green-
house gas emissions by 30% from 1990 levels by 2020, 40% by 2030 and 80-95% by
2050, in order to achieve a low-emissions society. This is in line with the EU’s de-
sire to reduce emissions across all sectors [4]. Energy efficiency strategies for urban
building stocks are expected to make a significant contribution to reducing energy
use and greenhouse gas emissions.

In climates with high heating demand, such as in the Nordic countries, a large
amount of building energy is used for heating purposes, such as space heating (SH)
and domestic hot water (DHW). Due to the abundant hydro-power providing cheap
and green electricity, this strong electricity production has been dominating and
monopolizing the Norwegian energy system, making this country remains highly
dependent on electricity for heating in residential and service buildings. According
to statistics [5], nearly three-quarters of Norwegian households use electricity for
heating in the form of electric radiator, electric floor heating, air source heat pump,
or central electric heating. In the service sector, electricity accounts for about 77%
of total energy use, mainly for heating purposes. Furthermore, in the Nordic coun-
tries, although heat pumps (HPs) are gradually replacing direct electric heating,
electricity demand in the residential sector has been increasing over the last decade,
according to a report by Nordic Energy Research [6].

Given the rapid electrification in buildings, as well as the transport sector in coun-
tries such as Norway, alternative heating methods should be promoted to alleviate
the increasing stress on the grid. District heating (DH) systems play a vital role in
reducing primary energy use and CO2 emissions in the building sector. In general,
primary energy factors may vary due to changes in fuel and incentives from national
policies. On the European scale, the primary energy factor for electricity is 2-2.5
[7], while the DH is 0.6-1.3, depending on the mixed heat sources from renewables
to fossil fuels [8]. Therefore, DH has great potential to relieve stress on the grid in
this region. For example, in a neighboring country like Sweden, DH supplies 60% of
their total building heating demand [9]. Driven by the economic and environmental
benefits of DH, Norway has introduced relevant regulations and investment subsidies
to expand the DH systems. Over the past decade, DH use in Norway has doubled,
with 26.7% of DH production currently used for residential heating and 54.5% for
service heating [10].

1.1.2 Benefits and challenges of low-temperature district
heating

However, despite the higher efficiency of DH as introduced above, there are still two
challenges that may hinder the DH expansion, the competition from individual HPs
and the decrease in building heating demand. For the former, the high flexibility
of individual HPs makes them favored by end-users; for the latter, as renovation of
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existing buildings, low-energy buildings, passive houses and near-zero energy build-
ings account for an increasing proportion of the building market, the future building
stock will feature a highly improved envelope and accordingly significantly reduced
space heating (SH), as stated in e.g. the Norwegian standards [11] and regulations
[12], and the European Union’s legislative framework [13].

To stay economically and environmentally competitive in the heating market, the
DH development needs a transition to low-temperature DH (LTDH) by decreasing
the DH supply temperatures from the current 80-120°C level to a much lower level,
e.g. 45-55°C. LTDH provides wider opportunities for integrating distributed re-
newable energy in the system, such as employing building-sized HPs or renewables
for peak shaving [14]. Meanwhile, alternative economical piping materials, such
as PEX/Aluminum/PE can also be employed in LTDH by reducing construction
costs and heat loss through distribution networks. A pilot study of a renewable
energy-based Danish municipality proved several benefits of LTDH with a supply
and return temperature at 55°C and 25°C, that the reduction percentages of the
primary energy demand, the thermal grid, and the costs were 4.5%, 6%, and 2.7%,
respectively, comparing with the current 3rd generation DH system [15].

The desire for a circular economy and the increased power trading among neigh-
boring countries has promoted LTDH expansion based on both political landscapes
and energy efficiency directives requiring resource recovery and expansion of renew-
ables [14]. On the transition to LTDH, the change in heating load is the fundamen-
tal premise. Therefore, analyzing the potentials and challenges by understanding
the key heating loads from a planning and operational aspect is a stepping stone to
accelerate the transition. Some examples addressing the challenges are shown below.

From the investigation of the current European low-temperature based 5th genera-
tion district heating and cooling (LTDHC) systems, the review study concluded that
the LTDHC requires more advanced control strategies because of the bi-directional
energy flows and decentralized interactions [16], which highlights the information
and communication technologies will be required to advance LTDH [16]. For ex-
ample, after coupling the LTDH to the electricity grid using power-to-heat (P2H)
technologies, the heating and electricity load profiles and flow on demand side may
change [17], which may cause operational problems and therefore require enhanced
communication between the power supply and the DH system. Another example is
shown with the analysis of the challenges and potentials for LTDH in the Nordic
climate. The study found that an LTDH system is keen to the indoor set-point
temperature, and the prediction of the outdoor temperature compensation curve
needs to be optimized to benefit the indoor temperature and mass flow [18]. Briefly
summarizing, there are certain challenges that need to be tackled in order to achieve
the best performance for LTDH, and the establishment of viable tele-interaction be-
tween users and suppliers is one of the solutions. Therefore, LTDH and electricity
grids require intelligent prediction of peak thermal loads and control systems.
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1.1.3 Current status and future projection of municipal build-
ings

Local municipalities are responsible for monitoring and managing the operation of
public buildings, and the energy data for such buildings are in most cases available.
Among the public buildings, primary educational institutions such as schools and
kindergartens, and special residential buildings such as nursing homes, their energy
use has not been extensively studied, especially in the cold climate, as described in
[19].

Educational buildings are designed to educate pupils and students to be intellec-
tually and socially conscious in accordance with the laws of Norway and many other
countries regarding daycare seating and the right to education. Besides that, the
building operators are responsible to maintain the desired indoor environment in
energy-efficient manners [20]. According to the construction situation of the local
government in Norway [21], schools account for nearly 50% of the total local public
building mass and are one of the most important building types. It has been found
that energy expenditure is the second largest operation cost of American schools
after employee salaries [22]. In Italy, 60% of educational buildings were constructed
before 1976, and despite the extraordinary retrofits, most failed to meet the cur-
rent energy performance requirements [23]. Population is one of the main drivers of
educational building development. In anticipation of population growth and urban-
ization, there is a growing need for educational building expansions [24].

Currently, in Norway c.a.16% people over 65 reside in nursing homes, while the
average level of OECD countries is 13% [25]. The Norwegian Institute of Public
Health projects the population over 80 to double in two decades, similar to the
expected average demographic growth in OECD countries. Approximately 90% of
nursing homes in Norway are owned and managed by municipalities, along with a
few private enterprises subsidized by the authorities. In 2018, the long-term care
expenditure in Norway was 3.5% of GDP with 2250 USD PPP (purchasing power
parities), compared to the OECD average expenditure of 1.5% with 800 USD PPP
[26].

A modern nursing home usually covers a large floor area and includes residents’
private rooms with round-the-clock occupancies, large common spaces (i.e. dining
halls, activity rooms, etc.), on-site 24/7 nursing service, laundry and catering ser-
vices, and administrative offices. The functions and characteristics of this building
type make it an important public residential building for the advancement of social
welfare and the caring needs of residents in the aging society. As most of the Nordic
nursing homes are supplied by DH, it is important to study their energy needs dur-
ing the transition to LTDH and improve building energy supply, for which reliable
prediction methods are needed.
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1.1.4 Special circumstances

To examine whether building operation strategies are energy efficient and resilient,
it is necessary to study the energy impacts under special circumstances. The spe-
cial circumstances may be caused by equipment failures and/or by sudden demand
changes.

The supply-related special circumstances, such as the energy not supplied (ENS)
caused by grid faults, are generally low in the Nordic countries with the exception
of Iceland. Norway’s ENS in 2013 was 10 801 MWh, and the annual average for the
decade 2004-2013 was 3423 MWh. Grid disturbances happened 317 times in 2013,
of which 92 led to ENS. The increased failures were mostly weather-related and
reactive components. On July 27 of the same year, a lightning strike tripped two
parallel 132 kV lines in neighboring Sweden, causing more than 43 000 customers
to lose power for 45 minutes [27]. Therefore, diversification of energy sources, espe-
cially for heating, can enhance the thermal resilience of urban areas, which is very
important for Nordic countries.

Regarding demand-related special circumstances, since the World Health Organi-
zation (WHO) declared the COVID-19 disease a pandemic in March 2020, many
countries have adopted restrictive measures to tackle the pandemic and slow the
spread of the coronavirus [28]. Occupancy schedules for buildings have been adapted
to remote work due to partial or full lockdowns on public spaces, and commercial
and industrial programs. The drastic changes have had a major impact on energy
demand and put pressure on energy sector management and energy markets. An
investigation of the magnitude of the impacts of various restrictions on total en-
ergy demand examined four European countries with strict containment measures
and two European countries with less restrictive ones [29]. A comparison of total
electricity demand based on resident activities shows that electricity demand has
dropped significantly in the countries with strict lockdown measures [29]. These
sudden changes in energy demand have affected energy production and utility com-
panies’ investment plans. The power sector in Southeast Asia was examined in [30]
and the study finds the restrictions have exacerbated the vulnerability of the current
power system there. It highlights the significance of buildings as resilient systems
for this region. In addition to the economic strains on utility companies, changes
balance and increased uncertainty have created new challenges for load forecasting
and requirement for flexibility.

In order to comply with Norway’s national lockdown regime, which was launched
from March to May 2020, teaching activities on campus were severely disrupted and
switched to remote learning, with many employees following the work-from-home
regulations. Section 2.2 presents a literature review on the impacts worldwide and
the thesis examined the techno-economic impacts of lockdowns on building energy
demand.
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1.2 Thesis objectives, research questions and re-
search tasks

The main objective of this PhD research is to gain a deeper understanding of the
energy use of Norwegian urban buildings. Primarily, the research aimed to develop
appropriate prediction models and to identify representative energy load profiles for
Norwegian urban buildings, which may be used to improve the efficiency of urban
building energy supply systems.

The study was carried out based on measured data obtained from schools, kinder-
gartens, university buildings, nursing homes, and residential buildings. These build-
ings have diverse operating regimes and technological solutions for building energy
supply systems. Therefore, the methods proposed in the PhD thesis were aimed
to be applicable to the analysis of various building types. Finally, the following
questions were addressed to achieve the research purpose:

• Research Question 1: What are the environmental impacts of heating sys-
tems in future building development?

– Task 1.1: Identify the typical annual CO2 emissions from operating heat-
ing systems for certain building types.

– Task 1.2: Project the CO2 emissions for building development, with the
consideration of different environmental background factors.

• Research Question 2: What factors shall be considered for building heat-
ing and electricity operation and what are the differences between the two
delivered energy forms?

– Task 2.1: Analyze the demand patterns for heating and electricity sepa-
rately.

– Task 2.2: Develop a systematic approach for predicting heating and elec-
tricity load profile separately on an annual basis.

– Task 2.3: Evaluate the prediction performance of heating load and elec-
tricity load separately.

• Research Question 3: How can the methods for developing and predicting
heating load profiles be improved for daily LTDH operation?

– Task 3.1: Develop hybrid prediction methods for heating load prediction,
including long-term sizing and short-term prediction.

– Task 3.2: Evaluate and compare the heating load prediction performance
of the hybrid methods.
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• Research Question 4: What are the energy and economic impacts of the
buildings under special circumstances?

– Task 4.1: Compare the energy load profiles of the buildings before and
after lockdowns.

– Task 4.2: Identify and estimate energy and economic saving potentials in
non-residential buildings.

– Task 4.3: Identify and estimate energy and economic increase in the res-
idential buildings regarding different household size and household mem-
bers.

1.3 Thesis organization
According to the research tasks, the thesis was divided into seven main chapters, as
listed in the following content:

• Chapter 2 presents a literature review of energy load prediction methods and
the impacts of lockdowns on energy and economy.

• Chapter 3 provides the data information of the observed buildings.

• Chapter 4 explains the theory and principal methods of data analysis, en-
ergy load prediction and prediction quality evaluation criteria, as well as CO2
emissions calculation.

• Chapter 5 describes the research examples of using the above methods to bring
about the thesis purpose.

• Chapter 6 presents the key results of the research examples.

• Chapter 7 demonstrates the main conclusions, acknowledges the limitation,
and recommends future research.

The main findings and results of the research work are shown in the collected papers,
as listed in Section 1.4.

1.4 Publications
The PhD thesis is built on four main papers including one conference paper and three
journal papers. The main papers address the research questions and are appended
in the thesis. During the PhD study, the author also contributed to six additional
papers extending the research questions and bringing new ideas to the project, and
two other papers reflecting the author’s previous working experience. An overview
of the main papers and additional papers is illustrated in Figure 1.1, which presents
how the 10 papers related to each research question and the addressed aspects.
The papers’ publication information and the author’s contribution to each paper
are as follows.
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Figure 1.1: Overview of the publications
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Main papers by the author INCLUDED in the thesis:

Paper I
Ding, Y., Brattebø, H. and Nord, N., 2019. Energy analysis and energy
planning for kindergartens based on data analysis. 1st Nordic conference
on Zero Emission and Plus Energy Buildings, IOP Conference Series:
Earth and Environmental Science, Volume 352(1), p.012031.
Author contribution: This paper is a full-length article. The concep-
tualization of this paper was initiated by the author and Natasa Nord.
The author conducted a formal analysis, methods, and the original draft.
Helge Brattebø and Natasa Nord supervised the work, reviewed and com-
mented on the paper.

Paper II
Ding, Y., Brattebø, H. and Nord, N., 2021. A systematic approach for
data analysis and prediction methods for annual energy profiles: An
example for school buildings in Norway. Energy and Buildings, 247,
p.111160.
Author contribution: This paper is a full-length article. The concep-
tualization of this paper was initiated by the author and Natasa Nord.
The author conducted a formal analysis, methods, and the original draft.
Helge Brattebø and Natasa Nord supervised the work, reviewed and com-
mented on the paper.

Paper III
Ding, Y., Ivanko, D., Cao, G., Brattebø, H. and Nord, N., 2021. Anal-
ysis of electricity use and economic impacts for buildings with electric
heating under lockdown conditions: examples for educational buildings
and residential buildings in Norway. Sustainable Cities and Society, 74,
p.103253.
Author contribution: This paper is a full-length article. The concep-
tualization of this paper was initiated by the author, Dmytro Ivanko,
and Natasa Nord. The author conducted a formal analysis, methods,
and the original draft. Dmytro Ivanko and Guangyu Cao reviewed and
commented on the paper. Helge Brattebø and Natasa Nord supervised
the work, reviewed and commented on the paper.

Paper IV
Ding, Y., Timoudas, T.O., Wang, Q., Chen, S., Brattebø, H. and Nord,
N., 2022. A study on data-driven hybrid heating load prediction meth-
ods in low-temperature district heating: an example for nursing homes
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in Nordic countries. Energy Conversion and Management, p.116163.
Author contribution: This paper is a full-length article. The concep-
tualization of this paper was initiated by the author, Qian Wang, and
Natasa Nord. The author conducted a formal analysis and methods with
the assistance of Thomas O. Timoudas and Qian Wang. The original
draft of the paper was written by the author. Shuqin Chen, Helge Brat-
tebø, and Natasa Nord supervised the work, reviewed and commented
on the paper.

Additional papers by the author not included in the thesis:

Paper V

Xue, K., Ding, Y., Yang, Z., Nord, N., Barillec, M., et al, 2020. A Simple
and Novel Method to Predict the Hospital Energy Use Based on Machine
Learning: A Case Study in Norway. International Conference on Neural
Information Processing, ICONIP 2020: Neural Information Processing,
Part of the Communications in Computer and Information Science book
series, CCIS, Volume 1332, pp.11-22.
Author contribution: This paper is a full-length article. The author
contributed parts of the methods, reviewed and commented on the paper.

Paper VI

Nord, N., Ding, Y., Skrautvol, O. and Eliassen, S., 2021. Energy Path-
ways for Future Norwegian Residential Building Areas. Energies, 14(4),
p.934.
Author contribution: This paper is a full-length article extended
from the paper published in Cold Climate HVAC Conference 2018, pp.
505–517, part of the Springer Proceedings in Energy book series (SPE).
The author conducted the extension draft of this paper.

Paper VII

Ivanko, D., Ding, Y. and Nord, N., 2021. Heat use profiles in Norwegian
educational institutions in conditions of COVID-lockdown. REHVA Eu-
ropean HVAC Journal, pp.55 - 58, 02/2021.
Author contribution: This paper is a short communication article.
The author reviewed and commented on the paper.

Paper VIII

Ding, Y., Ding, Y. and Nord, N., 2021. Data-driven analysis of electricity
use for office buildings: a Norwegian case study. Cold Climate HVAC &
Energy 2021, E3S Web of Conferences, Volume 246, p.04005.
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Author contribution: This paper is a full-length article. The author
reviewed and commented on the paper.

Paper IX
Ivanko, D., Ding, Y. and Nord, N., 2021. Analysis of heat use profiles
in Norwegian educational institutions in conditions of COVID-lockdown.
Journal of Building Engineering, 43, p.102576.
Author contribution: This paper is a full-length article. The author
contributed parts of the methods, reviewed and commented on the paper.

Paper X
Timoudas, T.O., Ding, Y. and Wang, Q., 2022. A novel machine learning
approach to predict short-term energy load for future low-temperature
district heating. CLIMA 2022 Conference.
Author contribution: This paper is a full-length article. The author
contributed parts of the methods, reviewed and commented on the paper.

Other papers by the author not included in the thesis:

Paper XI
Wang, S., Niu, Y., Zhu, G., Ding, Y., Guo, X. and Hui, S., 2021. NO
formation and destruction during combustion of high temperature pre-
heated pulverized coal. Journal of the Energy Institute, 99, pp.82-87.
Author contribution: This paper is a full-length article. The author
reviewed and commented on the paper.

Paper XII
Wang, S., Zhu, G., Niu, Y., Ding, Y. and Hui, S., 2021. Experimental
and kinetic studies on NO emission during pulverized coal preheating-
combustion process with high preheating temperature. Journal of the
Energy Institute, 97, pp.180-186.
Author contribution: This paper is a full-length article. The author
reviewed and commented on the paper.
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2
LITERATURE REVIEW

Facts are stubborn things, but
statistics are pliable.

Mark Twain

All models are wrong, but some are
useful.

George Box

This chapter introduces literature reviews of energy load prediction methods includ-
ing short-and-long-term prediction, as in Section 2.1, and the energy and economic
impacts on building energy demand under special circumstances, as in Section 2.2.

2.1 Previous studies on load prediction methods
By leveraging large amounts of measured data, data-driven methods such as sta-
tistical methods and machine learning (ML) have shown advantages in energy load
prediction.

2.1.1 Short-term prediction methods
In response to the challenges of LTDH as well as its integration with renewables,
smart tools and methods shall be employed to understand the heating load. The
ML research studies presented below consider their promising results and current
limitations. Section 2.1.1.1 briefly introduces the knowledge of Artificial neural
network (ANN) and afterward, Section 2.1.1.2 presents studies on the ANN-based
models, as ANN is one of the two load prediction methods used in the thesis, see the
mathematical description in Section 4.2; several other ML methods are introduced
in Section 2.1.1.3, which aims at presenting a more comprehensive literature search
on smart load prediction.

2.1.1.1 Introduction of artificial neural network

Artificial neural network (ANN) is one of the ML methods found to be the most
widely used in energy planning, followed by Support Vector Machines (SVM) and
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Auto-regressive Integral Moving Average (ARIMA) methods, and Statistical meth-
ods like Linear Regression (LR) [31].

The history of ANN can be traced back to the 1940s when Warren McCulloch and
Walter Pitts founded neural networks based on mathematics and an algorithm called
threshold logic. Later, the research of neural networks split into two directions, one
focuses on biological processes in the brain, and the other focuses on the application
of neural networks in artificial intelligence. The latter one is the method adopted in
the thesis. In the field of ML and cognitive science, ANN is a mathematical model
or computational model that imitates the structure and function of the biological
neural network, and is used to estimate or approximate functions. Neural networks
are calculated by connecting a large number of artificial neurons. A modern neural
network is a nonlinear statistical data modeling tool and is usually optimized by a
learning method based on mathematical statistics type. Figure 2.1 shows a basic
schematic of a feed-forward neural network architecture with three basic layers, an
input layer, a hidden layer, and an output layer [31]. The number of hidden layers
can be increased depending on the complexity of the tasks.

Figure 2.1: A basic ANN schematic architecture

Each neuron is connected to every other neuron in the previous layer through adap-
tive synaptic weights. Regardless of the ANN architecture, a training process is
needed for building an ANN model. With the available data inputs, the training
process is to train the ANN by modifying and adjusting the connection weights and
biases to learn the relationship among the inputs and capture the key information,
and finally, the desired output may be acquired.
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2.1.1.2 Artificial neural network-based studies

Mainly because of the early implementation of smart meters, ANN and other data-
driven approaches have focused primarily on electricity use rather than heat use. For
example, to estimate the occupancy-related electricity demand of air-conditioning
systems in non-residential buildings, using occupancy as input, an ANN-based model
was developed, which was identified by blind system identification, thereby improv-
ing the accuracy of electricity prediction [32]. However, the proposed model needed
validation over a period of at least one year to account for seasonal variations in the
interaction of occupancy with electricity profiles [32]. Another ANN-based model
compared two back-propagation learning algorithms (Bayesian regularization and
Levenberg-Marquardt) for day-ahead and hour-ahead electricity load prediction in
a downtown area involving many building types [33]. Aggregating prediction for
heterogeneous building types in the area improved day-ahead load prediction per-
formance by 7.9-11.9% compared to the total predicted load for the area [33].

The recent widespread implementation of smart heat meters to collect (sub)-hourly
heat use data has greatly promoted the quality of heating load prediction and clus-
tering studies for heating use data analysis [34]. As highlighted in [35], the knowledge
and experience obtained from the studies of building electricity demand data can be
used for heating demand analysis and uncertainty (such as weather forecast). Two
models, auto-regressive multiple linear regression (MLR) and auto-regressive mul-
tiple non-linear regression (MNLR), were first established to predict the DH load
curves of reference buildings, and then the defined reference load curves were ag-
gregated to urban district level [36]. The work showed that the ANN-based MNLR
outperforms MLR in terms of 4.2% reduction in mean squared error (MSE) for pre-
dicting buildings with high daily load variation, such as office buildings [36]. Three
ML methods, SVM, deep neural network (DNN) and extreme gradient boosting
(XGBoost), were respectively employed to establish a multi-step ahead forecasting
model of DH load, which also considered direct strategy and recursive strategy [37].
All three ML methods using both strategies may accurately predict the next day’s
DH load by using the previous day’s influencing factors. Finally, it was recommended
to further explore the potential of these heating load predictions to optimize the DH
systems operation. A Gaussian Mixture Model (GMM) clustering defined four typ-
ical DH operation modes in office buildings in a semi-arid climate (having cold and
dry winters) by considering sub-patterns related to temperature and occupant be-
haviors [38]. Combining the GMM clustering with regression and ANN models,
respectively, the accuracy of hourly heating load prediction was greatly improved
by 38.7-75.7% [38]. However, it was still difficult to predict peak heating loads from
night to morning because of the possible random operating behaviors. As presented
in [39], the prediction model established on Convolutional Neural Network Long
Short-Term Memory (CNN-LSTM), outperformed other ML methods in solving the
thermal inertia problem in DH systems, mainly thanks to the model’s combination
of the feature extraction capability of CNN and the advantages of LSTM’s 2D space

15



2. LITERATURE REVIEW

ability. However, this model required a large number of sensors, a large amount of
data storage, and needs daily re-training [39].

In conclusion, the ANN-based prediction models have enhanced energy load pre-
diction, especially the heating load prediction performance, such as computation
time and prediction quality, has been largely improved. However, problems such
as lack of big data for model training, difficulty in peak load prediction, regular
re-training and others, shall be solved.

2.1.1.3 Other machine learning-based studies

Additionally, a few research explored the uncertain potentials of reinforcement learn-
ing (RL) applied to energy prediction. As proposed in [40], three deep RL tech-
niques, asynchronous advantage actor-critic (A3C), deep deterministic policy gradi-
ent (DDPG), and recurrent deterministic policy gradient (RDPG) models were com-
pared with three supervised models for building cooling energy forecasting. RDPG
gave the best performance as improving the mean absolute error (MAE) by 16-32%,
whereas it requires over 100 times the model training time [40]. To identify the
typical electricity load patterns (TELPs) at an individual building level, a method
with two-step clustering analysis was suggested in [41]. The first step was to use the
Density-based spatial clustering application with noise (DBSCAN) algorithm clus-
tering technique to locate daily outliers, and the second step employed the k-means
algorithm to group similar TELPs. The effectiveness of this framework was veri-
fied by the time-series electricity data of several in-use office buildings. A transfer
learning-based approach was proposed in [42] to predict other buildings by lever-
aging massive well-measured building operating data. Quantitative assessment of
24-hour ahead building energy demand predicted by this method was studied on
office, school, and university building types. Compared to those individual mod-
els, this approach could reduce prediction errors by 15-78% and provide insights
for realizing the value of existing data in building energy management [42]. The
Q-algorithm was used to develop a data-driven model by dividing the data into two
parts by using a reference load QREF under three-level decision trees [35]. This model
is robust to district-wide heating load prediction. Nevertheless, the satisfied accu-
racy results (R2) claimed in [35] are significantly below the common value, which is
0.75 [43].

2.1.2 Long-term prediction methods
From the literature search, the main efforts on load prediction have been focused on
short-term prediction, contributing to optimal scheduling of building energy supply
systems, meanwhile mid- to long-term load prediction for typical building types has
not been addressed well. Mid- to long-term energy load forecasts for typical build-
ing types can be used for efficient operation/maintenance strategies of local energy
systems and building energy planning policies. A few studies on annual load profiles
for certain building types are introduced below.
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A method to automatically generate and reproduce the annual heating demand of
residential buildings was proposed in [44]. However, in order to achieve recoverabil-
ity of the relevant buildings and system parameters, data from reference buildings
are needed, and scaling the proposed method to a larger set of buildings has not been
validated yet. By involving tens of thousands of generation outputs from weather
data files by Monte Carlo simulations, a probabilistic approach was proposed to
formulate an annual cooling load profile for office buildings [45]. This prediction
method can save substantial over-cooling time, which has been verified by measure-
ment. A heating load weather normalization was proposed in [46], which segmented
the weather data and heating load with heating degree days (HDDs) and performed
multivariable linear regression. However, the method was only validated in two
multi-family residential buildings.

2.2 Energy and economic impacts under lockdowns

2.2.1 Impacts on the energy load profiles

Energy profile is a useful tool for energy system planning and management. They
reflect the customers’ total energy demand and energy use pattern requirements.
The COVID-19-related demand changes and corresponding energy load profiles are
worth studying for different grid levels and sizes.

In an analysis of electricity use trends during the pandemic in Ontario, Canada,
it was found that by April 2020, electricity had dropped by 14% and CO2 emissions
had decreased significantly [47]. The hourly-based load curve showed a shift in peak
weekly electricity demand from the second half of the week to the first half of the
week. Meanwhile, the morning and evening peaks were avoided, and the curve was
obviously flattened [47]. Based on an analysis of electricity data covering millions of
customers in Illinois, U.S., the results showed that the weekday load curves for res-
idential buildings were more likely to be weekend curves [48]. By extrapolating the
results of total load profiles, COVID-19-related profiles may alter long-term work
schedules and further influence peak hourly loads [48].

Four simulation scenarios of typical household energy use in Serbia were defined
in [49]: S1–reference case, S2–mild protection measures, S3–semi-quarantine mea-
sures, S4–complete quarantine to the relationship between user behavior and energy
source uses. Using the building’s occupancy profiles as inputs, the simulation models
showed that heating and electricity use increased during the pandemic due to the
increase in the users’ presence. Compared to normal conditions, the scenario-based
models implied heating and electricity use might increase by 31-32% and 54-58%,
respectively [49].
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2.2.2 Impacts on the energy demand
The Brazilian power system and its four subsystems were analyzed before and after
distancing measures became effective [50]. A comparison of weekly electricity use
and weekly change percentage showed a significant reduction in energy demand.
Additionally, the energy use trends of subsystems were observed in different dy-
namics according to geographic location [50]. A data-driven analysis was carried
out on the U.S. bulk power systems and electricity markets during the pandemic in
[51]. The power sector was severely affected from March to May 2020. From the
perspective of market analysis, the power operation and economic interests in the
Northeast region were most seriously affected. Accordingly, it is suggested that pos-
sible shocks and disproportionate effects between energy companies and consumers
deserve more attention and effort. According to an in-depth study of the global
power system operation [52], many countries have suffered considerable revenue
losses due to an 8%-30% reduction in total electricity demand. The sharp decrease
was mainly due to the temporary suspension of industrial, commercial, and public
transport activities. The conventional nuclear power generation suffered a reduc-
tion, while the contribution from renewables increased by 3.5-72%, depending on
the countries [52]. In addition to the economic problems of traditional utilities, the
challenges of load forecasting and the need for flexibility due to balance changes and
increased uncertainty were highlighted in [53].

2.3 Summary of literature review
In short, previous research focused on improving energy systems has looked at mea-
sured energy data as a package of information, while most energy forecasts have not
yet been conducted on sizing or energy demand requirements for typical building
types. This may lead to two negative effects. First, without energy data mining
or energy use pattern identification for different building types, abnormal energy
use may be misled as inputs and thus deviate from anticipated benefits. Second,
specifically with regard to LTDH, as only a few researchers have so far addressed
the problems of LTDH prediction and improved operations using data mining meth-
ods, there may be a gap between smart heat meters and DH suppliers that requires
bridges in between.

On the other hand, regarding the handling of special circumstances, the literature
review indicates that there are many investigations of COVID-19-related energy use
in non-cold climate regions. However, buildings in Norway and a similar climate
lack real-world data analysis and scenario-based modelling of electric heating use.

Therefore, the primary aim of the thesis was to understand and identify load profiles
of typical Norwegian urban buildings under normal conditions, with the consider-
ation of estimating annual CO2 emissions for typical building types, speculating
normal building energy operation strategies, and improving load prediction quality.
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Moreover, taking into account personal interests and municipal public expenditures,
the secondary aim was to investigate the energy use behavior and economic impacts
of buildings with electric heating in Norway during the COVID-19 pandemic, as well
as unforeseen future disturbances, which may also have implications for local energy
planning.
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3
BUILDING AND ENERGY

DATA INVENTORY

The studied buildings were divided into two cohorts depending on their connection
to district heating (DH), Cohort 1 - buildings without DH and Cohort 2 - buildings
with DH.

3.1 Building information
• Cohort 1 - Buildings without DH

For buildings without district heating, electricity is their main energy supply
source, for instance, space heating (SH), domestic hot water (DHW), venti-
lation, lighting, computers, and other electric appliances. In the thesis, 14
kindergartens, eight schools, one apartment, and one residential house were
used to analyze impacts on energy use in buildings with electric heating (EH)
under COVID-lockdowns, see Section 5.4. For SH supply, the kindergartens
and schools use electric panel heaters and ventilation heating, the apartment
with natural ventilation uses electricity for radiators, and the residential house
also with natural ventilation is heated by a radiant wood stove, electric radi-
ators, and an air-source heat pump (HP) for assistant heating.

The floor areas of Cohort 1 buildings are as follows, kindergarten buildings
ranged from 279 to 1143 m2, school buildings from 2157 to 5443 m2, the
apartment and residential are 40 m2 and 133 m2, respectively.

• Cohort 2 - Buildings with DH

For buildings with district heating, DH supplies SH and DHW needs. In
the thesis, 40 schools with DH were used to analyze for typical annual load
profiles, see Section 5.2, and 20 nursing homes with DH were used to improve
load prediction in low-temperature district heating (LTDH), see Section 5.3.

The floor areas of Cohort 2 buildings are as follows, school buildings ranged
from 1822 to 8996 m2, and nursing home buildings from 1350 to 10 940 m2,
respectively.
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3.2 Energy data inventory
The historical hourly DH and electricity use data of the public buildings were re-
trieved from the energy monitoring platform of Trondheim Municipality [54], which
is responsible for the operation and maintenance of local public buildings and insti-
tutions. Besides the observed buildings in the thesis, other public buildings such as
sports centers, public libraries, and fire stations, are also monitored in the platform.
Weather impacts (mainly outdoor temperature) were considered in the energy anal-
ysis and prediction, and the local historical weather data during the corresponding
years were obtained from the Norwegian Meteorological Institute (MET Norway)
[55]. Electricity data for the two residential buildings were voluntarily shared by the
dwellers, who retrieved the data from local grid provider Tensio AS [56].

Most of the buildings have been evaluated for energy performance. Building con-
struction year and energy labelling result of those buildings were obtained from the
Norwegian Energy Efficiency Agency (Enova) [57]. The energy labelling scheme goes
from A (best building energy performance) to G (worst performance) by considering
the calculated delivered energy to each building. Table 3.1 summarizes the building
information regarding energy label, construction year, and energy data duration 1.

Overall, Cohort 2 buildings were constructed more recently than Cohort 1 build-
ings and were better documented in the energy labelling scheme. As the buildings
cover different floor areas and are featured with different energy efficiencies, the
energy analysis was performed on the average specific load (W per m2) across build-
ings within each building type, in a search for defining the representative energy use
of each studied building type in the Nordic climate, by concerning buildings with
different characteristics.

1Due to a different aspect, the study shown in Section 5.1 did not address the in-depth analysis
of building energy use as the other three examples, and the detailed building information of the
study in Section 5.1 was not included.
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Table 3.1: List of observed buildings’ information, Cohort 1 and Cohort 2 are
included

Cohort 1 - Buildings without DH
Schools Data duration (Y/M/D): 2018.01.01- 2020.12.31; Location: Trondheim
Construction year Before 1950 1950- 1979 1980- 1999 2000- 2010 After 2010 No infor.
Building number / 4 2 / / / 2

Energy labels A B C D E F, G No infor.
Building number / / / 5 1 / 2
Kindergartens Data duration (Y/M/D): 2018.01.01- 2020.12.31; Location: Trondheim
Construction year Before 1950 1950- 1979 1980- 1999 2000- 2010 After 2010 No infor.
Building number / 4 / / 1 / 9

Energy labels A B C D E F, G No infor.
Building number / / 1 / 4 / 9
Apartments Data duration (Y/M/D): 2018.10.01- 2020.12.31; Location: Trondheim
Construction year Before 1950 1950- 1979 1980- 1999 2000- 2010 After 2010 No infor.
Building number / / 1 / / / /

Energy labels A B C D E F, G No infor.
Building number / / / 1 / / /
Townhouses Data duration (Y/M/D): 2018.10.01- 2020.12.31; Location: Trondheim
Construction year Before 1950 1950- 1979 1980- 1999 2000- 2010 After 2010 No infor.
Building number / 1 / / / / /

Energy labels A B C D E F, G No infor.
Building number / / / / 1 / /

Cohort 2 - Buildings with DH
Schools Data duration (Y/M/D): 2015.01.01- 2018.12.31; Location: Trondheim
Construction year Before 1950 1950- 1979 1980- 1999 2000- 2010 After 2010 No infor.
Building number 3 8 10 10 5 4

Energy label A B C D E F, G No infor.
Building number 1 5 8 14 7 1 4
Nursing homes Data duration (Y/M/D): 2016.01.01- 2018.12.31; Location: Trondheim
Construction year Before 1950 1950- 1979 1980- 1999 2000- 2010 After 2010 No infor.
Building number / / 7 9 3 1

Energy label A B C D E F, G No infor.
Building number / 4 6 6 3 / 1
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4
METHODS

This chapter explains the principal methods of this thesis. Section 4.1-4.2 introduces
the two energy load prediction methods, namely Method 1 and Method 2, with a
focus on long-term and short-term load prediction, respectively. Section 4.3 presents
the load prediction performance evaluation by following quality criteria and cluster
methods. Finally, the economic costs and environmental impacts of building energy
systems are introduced in Section 4.4.

4.1 Prediction Method 1 - Long-term energy load
prediction with energy signature curve mod-
els

In the thesis, long-term heating load prediction was made up of energy signature
curve (ES curve) models with the consideration of heating degree days (HDDs) and
temperature moving average (TMA), as introduced in Section 4.1.1-4.1.3, respec-
tively. Prediction Method 1 was designed for the following purposes: 1) to size
the heating system, 2) to evaluate building energy performance, and 3) to check
the boundary for the prediction load by prediction Method 2, which is described in
Section 4.2.

4.1.1 Energy signature curve model

The energy signature curve (ES curve) model is one of the important applications
of linear regression, which is normally used to describe the relationship between two
variables (predictor and response) by fitting a linear equation to the observed data
[31], here refers to outdoor temperature and heating load. This method has been ap-
plied in building energy planning and management by efficiently utilizing measured
data. Generally, ES curve consists of two parts, namely the temperature-dependent
part and temperature-independent part, which are divided by the changing point
temperature (CPT) or heating effective temperature. The ES curve may be ex-
pressed as:
If tτ ≤ CPT,

P (tτ ) = p1 · tτ + p2 + ϵ (4.1)
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If tτ > CPT,
P (tτ ) = p1 · tτ + p2 + ϵ; = p2 (4.2)

In Eqs.(4.1) and (4.2), p1 and p2 are the coefficients of each ES curve model, P (tτ )
is the heating load for a certain outdoor temperature t at time instance τ , and ϵ is
the residual error. The heating load follows the linear growth under the slope of p1.
When the outdoor temperature is below the CPT, the heating load highly depends
on the ambient condition, as shown in Eq.(4.1); when the outdoor temperature is
above the CPT, the heating load is either under a mild slope p1 or at a small and
constant volume as shown in Eq.(4.2). The building operation schedules are consid-
ered for establishing ES curve models for the corresponding periods. The ordinary
least squares method is adopted to identify the coefficients aiming to minimize the
error between predicted and observed values. A higher coefficient of determination
(R2) implies the model fits the data better. Technically, R2 shall not be less than
0.75 for a satisfactory model [58, 43]. From this, the identified ES curve models
may be applied to estimate building heating energy demand by combining the re-
gression coefficients in Eqs.(4.1) and (4.2) with the corresponding weather data. ES
curve model has been applied to the examples described in Section 5.2-5.3, and the
corresponding results are shown in Section 6.2-6.3.

4.1.2 Heating degree days
A degree day is a measurement to quantify the heating and cooling demand during
a certain period and assess the climate for different regions. In the thesis, heating
degree day (HDD) was used to segregate heating seasons, which compares the daily
difference between heating balance temperature tbal (assumed at 15°C) and hourly
outdoor temperature 1

24
∑24

τ=1(tbal − tτ ), the negative values were set to zero without
including cooling effects [46, 59]. Days with HDDs smaller than 5

24°C were treated
as the summer, between 5

24°C and 100
24 °C as the transition season, between 100

24 °C and
510
24 °C as the heating season, and over 510

24 °C as the very cold season. The application
of HDD is shown in Section 5.3.

4.1.3 Temperature moving average
By considering time delay due to building thermal inertia, the concept of temper-
ature moving average (TMA) was used to define a more accurate mathematical
relation between outdoor temperature and heating load with adjustment. Depend-
ing on building physics, buildings’ temporary heat storage capacities can be various.
For example, better-insulated buildings coupled with internal heat gains may expe-
rience longer time lags. The practices of TMA in studies [60, 61] present that the
lag time shall be considered in accordance with building physical characteristics.
When involving TMA, the empirical lag hour such as 24 and 48 hours were used as
the reference range values. A search for the highest correlation between the outdoor
temperature and heating load was performed by shifting the outdoor temperature
backward hour by hour until reaching the reference range limits. A higher abso-
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lute value of the correlation implies a better fit between the heating load and the
moved outdoor temperature. The effect of temperature lag is presented in Figure
4.1, where the highest correlation is located at five hours for the analyzed building
group [62]. Therefore, the linear regression between the outdoor temperature and
the heating load was identified with the outdoor temperature five-hour ago. TMA
has been considered in the examples using ES curve model.

Figure 4.1: Temperature lag moving average, where 5-hour lag yielded the highest
correlation between heating needs and outdoor temperatures

4.2 Prediction Method 2 - Short-term energy load
prediction with Artificial neural network mod-
els

In the thesis, prediction Method 2 refers to short-term prediction, which deals with
day-ahead prediction to solve the problem of predicting DH load for the next 24-hour
period at a given daily time point. The models may improve short-term DH pro-
duction planning and operation purposes. Two individual Artificial neural network
(ANN) prediction models were developed using different input parameters, to com-
pare the parameters’ impacts on the prediction accuracy. Method 2 has been mainly
applied to the example described in Section 5.3, and the corresponding results are
shown in Section 6.3.
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4.2.1 Inputs to Artificial neural network models
The first ANN model considered only the impacts from outdoor temperature, by us-
ing the measured outdoor temperature for certain hours p preceding the prediction
time point τ and the forecasted outdoor temperature for the following 24 hours. In
addition to the outdoor temperature considered in the first model, the second ANN
model contained the historical DH load, which is the measured DH load for certain
hours p preceding the prediction time point τ .

When considering the two categories of input, weather data both the historical data
and forecasted data are usually publicly accessible via meteorological institutions,
however, historical energy load data are in some cases either accessible with delays
and limitations or of low data quality. Therefore, the first model may be useful
when these challenges occur.

4.2.2 Mathematical description of Artificial neural network
models

The mathematical expression of the two ANN models are formulated as follows,
Qτ and tτ respectively represent the measured energy load and measured outdoor
temperature at hour τ , Q̂τ,s and t̂τ,s respectively represent to the predicted energy
load and forecasted outdoor temperature, from hour τ for each hour till hour τ + s,
defined for s = 1, . . . , 24. The prediction and historical inputs are expressed as the
following:

Q̂24
τ = (Q̂τ,1, . . . , Q̂τ,24), (4.3)

t̂24
τ = (t̂τ,1, . . . , t̂τ,24), (4.4)

Qp
τ = (Qτ−p+1, . . . , Qτ ), and (4.5)

tp
τ = (tτ−p+1, . . . , tτ ) (4.6)

where Qp
τ and Q̂24

τ represent, at hour τ , the measured DH load for the previous
p hours (including τ) and the targeted predicted DH load for the next 1 to 24
hours, respectively, meanwhile tp

τ and t̂24
τ represent, at hour τ , the measured outdoor

temperature for the previous p hours and the forecasted outdoor temperature for
the next 1 to 24 hours, respectively. With these notations, the two ANN models
may be described as:
a. considering only outdoor temperature as the predictor of the model,

Q̂24
τ = f(t̂24

τ , tp
τ ), (4.7)

b. considering both energy load and outdoor temperature as the predictors of the
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model,
Q̂24

τ = f(t̂24
τ , tp

τ , Qp
τ ), (4.8)

Mean squared error (MSE) was used as the loss function, and Adam was used for
the parameter optimization, in other words, to minimize a loss function. The two
ANN models were examined with 24, 48, and 72 hours of historical data (outdoor
temperature and/or DH load) in the search for the optimal historical p hours. Re-
garding the loss function, between using 24 and 48 hours of historical data was found
a significant difference, while between using 48 and 72 hours it was found a minor
difference. Benefiting from the faster speed of running the models, the number of
historical hours p was determined to be 48. Therefore, 48 hours of historical data
were selected. Structure of the both ANN models was built with one input layer, one
hidden layer, and one output layer, as depicted in Figure 2.1. The notation f72 repre-
sents model f(t̂24

τ , t48
τ ) in Eq.(4.7) and notation g120 represents model f(t̂24

τ , t48
τ , Q48

τ )
in Eq.(4.8), and the two notations were used in the thesis for simplicity.

4.3 Prediction performance evaluation
To examine the quality of the prediction models and the possibility of employing
the model for future use, a quality evaluation shall be performed. Four criteria are
introduced in Section 4.3.1, and they are Mean absolute percentage error (MAPE),
symmetric Mean absolute percentage error (sMAPE), Normalized mean bias error
(NMBE), and Coefficient of variation of the Root mean squared error (CV(RMSE)).
Evaluation results of using the quality criteria are shown in Section 6.2-6.3. In
addition, cluster methods of Piece-wise aggregate approximation (PAA) and Sym-
bolic aggregate approximation (SAX) are suggested for further evaluation if the
prediction model cannot satisfy the quality criteria evaluation, see Section 4.3.2, the
corresponding results are shown in Section 6.2.

4.3.1 Quality criteria
MAPE summarizes the relative mean error between the actual(measured) and pre-
dicted data in absolute value, which avoids the possible offsets between positive and
negative errors. The expression of MAPE is given as:

MAPE = 1
n

n∑
i=1

|Ai − Fi

Ai

| · 100% (4.9)

sMAPE is defined by modifying the original MAPE. sMAPE and can be used as a
supplementary criterion of MAPE, by setting lower and upper bounds. sMAPE is
given as:

sMAPE = 1
n

n∑
i=1

| Ai − Fi

(|Ai| + |Fi|)/2 | · 100% (4.10)

NMBE calculates the total error percentage over the examined data, and its direc-
tionality implies either an over-prediction or under-prediction. A negative result
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of NMBE means an over-prediction is made, and conversely, an under-prediction.
NMBE is given as:

NMBE = 1
n

∑n
i=1(Ai − Fi)

A
· 100% (4.11)

Root mean square error (RMSE) assesses the standard deviation of the prediction
errors, and CV(RMSE) normalizes the RMSE with the average value over the ex-
amined data. NMBE and CV are commonly used together to indicate whether the
model can reflect the real load shape. CV(RMSE) is given as:

CV (RMSE) =

√
1
n

∑n
i=1(Ai − Fi)2

A
· 100% (4.12)

In the expressions above, Ai is the measured value, A is the average measured value,
Fi is the predicted value, and n is the number of the observations.

As indicated by guidelines and handbook, when hourly data are utilized as the
case of the thesis, MAPE and sMAPE results shall be smaller than 20%, NMBE
within ±10%, and CV smaller than 30% for verifying a satisfied prediction model
[58, 63, 64].

4.3.2 Cluster methods of discretization evaluation
Moreover, cluster methods of piece-wise aggregate approximation (PAA) and sym-
bolic aggregate approximation (SAX) were also used for evaluating the prediction
models in the thesis. First, the annual load profile was extracted on a seasonal daily
average basis. Every 24-h was considered as a time-series. Second, the daily average
DH load was initially Z-normalized with Ci−µ

σ
, where µ and σ refer to the mean

value and the standard deviation of the time-series, respectively. The Z-normalized
time-series C = C1, C2, . . . , Cn were proceeded through the PAA approximation,
which aimed to reduce the dimensionality of the raw time-series by splitting them
into equally sized intervals [65, 66]. Each interval was then calculated by averag-
ing the values within the interval. The raw time-series C may be represented by
a dimensionally reduced new series as C = C1, C2, . . . , Cw. The number of data in
the new time-series, w, shall be much smaller than the original number n, typically
w ≪ n. The ith element of new time-series C may be expressed as:

Ci = w

n

w
n

i∑
j= w

n
(i−1)+1

Cj (4.13)

Therefore, here the 24-hour data (n) of each day was equally split into 8 (w) seg-
ments in the new time-series, aiming at approximating the raw 24-hour time-series
by a linear combination of eight boxes.

Lastly, the PAA coefficients were given with a string representation graph through
the symbolization process of SAX. In each interval, when the compared data (the
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measured and predicted data) have the same SAX strings, they may be clustered
as the same group, and their PAA coefficients do not have to be the same. Accord-
ing to [67], the binding of PAA and SAX may accelerate fault tracking and energy
performance when dealing with the fast growth of building data amount.

4.4 Economic and environmental impact assess-
ment

In the thesis, the electricity costs were considered in the economic aspect, and its
price model is introduced in Section 4.4.1; the environmental impacts were consid-
ered as expressed tonne CO2 for heating use per year, under different CO2 factors
of local DH production, as presented in Section 4.4.2.

4.4.1 Economic impact assessment
The current electricity price model contains fixed grid rent, tax, and variable power
market prices. Consequently, the monthly electricity cost was calculated as:

Cmon = (1 + 0.25) ·
720 or 744∑

t=1
vτ · Ėτ + f ·

720 or 744∑
t=1

Ėτ + F

12 (4.14)

where 0.25 is the tax rate on the electricity spot price, vτ the variable spot price at
time instance τ , Ėτ is the electricity use at time instance τ , f is the grid rent, and
lastly F is the annual grid fee to ensure customers’ access to electricity including
the costs associated with power grid operation. The price charging models in many
European countries are similar to the one described in Eq.(4.14) [68]. Tax is generally
determined by the authority, and grid rent and annual grid fee are determined by
the grid supplier. These values can vary depending on user and industry type, and
can be updated by the authorities from time to time. Additionally, a surcharge may
be applied for high peak load during winter season in some cases. In the thesis, the
local historical spot price was used as the variable price and retrieved from NordPool
[69]. The annual electricity expense was therefore calculated by summarizing the
monthly cost as shown in Eq.(4.14). The economic impacts were considered in the
example Section 5.4 and the corresponding results are shown in Section 6.4.

4.4.2 Environmental impact assessment
The environmental impact considered CO2 emissions for DH production mix. Be-
cause of the large transmission loss of the heating system, DH is unsuitable for
long-distance transport. Therefore, the equivalent energy and environmental fac-
tors associated with DH production are usually locally specified based on the fuel
source composition. From the information of Norsk Fjernvarme [70], during the
last decade more than half of the DH has been provided through waste-to-energy in
Trondheim and the whole Norway, followed by fossil gas with a 10 % contribution,
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and the rest production is made from electricity, bio-energy, ambient heat, and fossil
oil. In accordance with the Norwegian National Standard NS 3720-2018 [71], the
CO2 emissions associated with energy production (electricity and DH) from munic-
ipal solid waste have been allocated to the waste management sector, rather than
to the energy sector. Meanwhile, the CO2 factor of electricity shall be considered
within a certain border, as various CO2 values may occur through the transmission.
For example, the abundant hydro-power contributed to a low CO2 factor of 10 gCO2
per kWh electricity (named as CO2-EL1) within the Norwegian border, however, the
involvement of fossil fuels in the Nordic electricity production mix yield a high CO2
factor of 110 gCO2 per kWh electricity (named as CO2-EL2) within the Nordic region.

Accordingly, based on the annual production mix of energy sources, the local CO2
factors of DH production may be calculated giving the expression of gCO2 per kWh
heat. As listed in Table 4.1, three typical CO2 factors of local DH production were
found, they are the average value from 2010 to 2018 (named as CO2-DH1), the value
of 2015 as the 9-year’s lowest one (named as CO2-DH2), and value of 2010 as the 9-
year’s highest one (CO2-DH3); additionally, the CO2 values for fossil gas, bio-energy,
and fossil oil can refer to Norsk Energi [72]. The three factors were respectively
used as the background data for comparably estimating CO2 emissions. The CO2
emissions were considered in the example Section 5.1 and the corresponding results
are shown in Section 6.1.

Table 4.1: CO2 factors of DH production mix in Trondheim

2010-2018: 2015: 2010:
CO2-DH1 CO2-DH2 CO2-DH3

Fuel source Waste incineration 74.0 83.1 61.0
composition (%) Fossil gas 10.8 5.9 20.0

Electricity 8.5 5.0 6.0
Bio-energy 4.0 4.0 5.0
Fossil oil 1.9 1.0 7.0

Ambient heat 0.8 1.0 1.0
CO2 factors (gCO2/kWh heat) 41.7 23.5 76.3
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5
RESEARCH EXAMPLES

This chapter describes how the principal methods introduced in Chapter 4 may be
applied for certain research purposes. Research examples include the CO2 emis-
sions based on current building heating status to future building area planning as
presented in Section 5.1, the approach for identifying typical annual heating and
electricity load profiles as presented in Section 5.2, the hybrid heating load pre-
diction for utility production planning as presented in Section 5.3, and finally the
electricity and economic impacts of buildings with electric heating under lockdowns
as presented in Section 5.4.

5.1 CO2 emissions considering different environ-
mental factors in future planning

This example analyzed the current energy use of a typical building type and fore-
casted the impact of future building area development on CO2 emissions, based
on well-measured DH and electricity data of kindergartens in Trondheim. The key
steps are introduced below, for detailed description, see Paper I.

5.1.1 Energy share between electricity and district heating
in buildings

In buildings connected to DH, heating demand was provided by DH, and electricity
was mainly used for ventilation, lighting, computers, and other electric appliances.
To see the contribution from the two energy supply ways, Figure 5.1 demonstrates
the energy shares between electricity and DH in the analyzed buildings. From
the chart, three cases were defined, named DH average share, DH high share, and
DH low share, accounting for nearly 60.0%, 76.9%, and 31.4% of total energy use,
respectively.
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Figure 5.1: Energy share between electricity and DH in each building

5.1.2 Annual CO2 emissions of one typical kindergarten and
future assumption

The three cases of energy share were respectively considered for calculating the an-
nual CO2 emissions of a typical 700 m2 kindergarten. Next, a future new building
area of 10 000 m2 (Anew) was assumed to assess future CO2 emissions. Taking the
current total building area 70 413 m2, the building area growth rate is 14.2% (r),
which was used as the reference line and compared with the CO2 emissions growth
rate by varying the percentage of new building area connected to DH (x in percent-
age) under different CO2 factors, as introduced in Section 4.4.2. For the building
area not connected to DH (100 - x), their electricity demand was assumed as the
demand sum of the DH and electricity of the building area that was connected to DH.

The comparison (α) between building area growth rate (r) and CO2 emissions
growth rate (CO2-added

CO2
) for new building area is expressed as:

α = r − CO2-added

CO2
· 100% (5.1)

CO2-added = [Anew ·(1−x)·EEL+Anew ·x·EDH-EL]·CO2-EL2+Anew ·x·EDH-DH ·CO2-DHi
(5.2)

CO2 refers to the average annual average CO2 emissions of all the local kinder-
gartens, x refers to the percentage of new building area connected to DH, i refers
to the different DH production CO2 factors, EEL and EDH-EL refer to the electricity
demand of building area not connected to DH and connected to DH, respectively,
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and EDH-DH refers to the DH demand of building area connected to DH. When
α = 0, there is a break-even point that the growth rate of CO2 emissions is the
same as the growth rate of the new building area. When α < 0, it means if the
new building area was increased by 14.2%, it would generate more than 14.2% CO2
emissions. Contrarily, when α > 0, it implies that slower CO2 emissions growth
could be achieved.

5.2 Approach for data analysis and prediction for
annual energy load profiles

This example developed a systematic approach for data analysis and prediction
Method 1 for annual electricity and DH load profiles, based on well-measured DH
and electricity data of 40 schools in Trondheim, see Table 3.1 Cohort 2. The workflow
is illustrated in Figure 5.2, and the key steps are introduced below. For detailed
description, see Paper II.

Figure 5.2: Workflow of the data analysis of energy load profiles

5.2.1 Modified Z-Score

A modified Z-Score method defined in [73] is preferred to identify possible outliers
over the common practice of Z-Score. The modified Z-Score is expressed as:

Mi = 0.6745 · (xi − x̃)
MAD

(5.3)
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where xi refers to the measured data point, x̃ refers to the median value of the data
samples, and MAD denotes the median absolute deviation in the dataset, see below:

MAD = median(|xi − x̃|) (5.4)

If the absolute value of Mi to one data point is higher than 3.5, the point shall
be flagged as a potential outlier. In the thesis, this method explored whether the
building operation followed the schedule by considering the energy differences be-
tween normal days and special periods, showing the energy load profile trends by
observing “unusual” energy conditions, such as school weeks, public holidays and so
on. For instance, if there was an “unusually” low energy demand during the school
week noted with a negative Mi in a series, this might indicate the building operation
followed the low attendance. Contrarily, if a high positive Mi was in a series, high
energy use might be required.

5.2.2 Annual district heating load profiles

Figure 5.3 is a logic diagram of correlation coefficients under different conditions.
The typical annual hourly DH load profile can be acquired by substituting typical
meteorological year (TMY) weather data and the corresponding coefficients into
Eqs.(4.1) and (4.2). The analyzed outdoor temperature ranged from -18 to 26°C,
covering the cold design temperatures of several major Nordic cities, such as Stock-
holm (-18°C), Copenhagen (-11°C), Gothenburg (-17°C), and so on [74].

Figure 5.3: Logistic diagram of predicting DH demand under different conditions
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5.2.3 Annual electricity load profiles

The correlation of every two years’ electricity load profile between Week 1 and 52
(Week 2 to 53 in 2015 only) examined the similarity of electricity use over the
four years. The high correlation within every two years shown in Figure 5.4 implied
similar electricity use patterns over the four-year period. The small deviations can be
explained by the fact that study trips, activities, and public holidays were scheduled
on different days and weeks of the year.

Figure 5.4: Correlation of electricity load profile 2015-2018 (52 weeks)

From the modified Z-Score mentioned in Section 5.2.1, typical profiles for normal
and special days can be identified, separately. The four-year values as the predictor
and their average value as the response, and they were together trained in the
linear regression learner, with cross-validation for increasing the accuracy of the
final model. These typical profiles can be combined to extrapolate and estimate the
demand for future years.

5.3 Hybrid heating load prediction in low-temperature
district heating

This example developed hybrid heating energy prediction methods by combining
prediction Method 1 for plant sizing and the advanced prediction Method 2 for
optimizing daily operation, based on well-measured DH data of 20 nursing homes in
Trondheim, see Table 3.1 Cohort 2. The work flow is illustrated in Figure 5.5, and
the key steps are introduced below. For detailed description, see Paper IV.
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Figure 5.5: Workflow of the data analysis and modelling of DH load prediction in
low-temperature district heating

5.3.1 Typical domestic hot water use
Depending on building standards, the domestic hot water use (DHW) heat use in
nursing homes ranges from 15-20% to 40-65% of their total annual heat use [75].
Since DHW heat use is less sensitive to climate than SH, it is reasonable to separate
DHW from the total DH load to explore a more accurate relationship between out-
door temperature and SH load. Profiles of typical daily DHW heat use in Norwegian
nursing homes were identified in [19] with regard to the effects of season and day
type. These typical daily profiles provide representative DHW use patterns for the
given climate and resident type, and were used as reference profiles in the thesis.

The differences between the weekdays (WD as a shortcut) and weekends (WE as a
shortcut) in the same season are noted in Figure 5.6. These four typical daily DHW
profiles were extrapolated into an annual DHW profile and then extracted from the
total DH to obtain space heating (SH) use. A Danish study for demand side man-
agement in DH networks also addressed the necessity and challenges of separating
SH and DHW in the total heating load [76].

5.3.2 Sizing the heating supply system
Using the Heating degree day (HDD) introduced in Section 4.1.2, the obtained SH
use was clustered into four heating seasons, as shown in Figure 5.7. It can be con-
cluded that the daily SH operation generally followed the daily weather and was not
affected by the day type (weekdays or weekends), nor by manual false operation.
Therefore, the (energy signature) ES curve models for SH prediction were estab-
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Figure 5.6: Daily domestic hot water heat load profiles in the nursing homes,
divided by day of week and seasons

lished according to working hours and non-working hours, respectively, following
Eqs.(4.1) and (4.2), similar to the example in Section 5.2.

The regression line shows a good correlation between daily heating degree day
(HDD) and daily space heating (SH) demand in general, however, it might have
over-predicted the SH use during the short and very cold season, as shown by the
dark red diamond points.

Figure 5.7: Daily SH use vs. daily HDD, based on four different heating seasons,
summer, transition season, heating season, and very cold season (high-heating sea-
son)
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5.3.3 Accumulation of daily load prediction from prediction
Method 2

Due to the thermal and hydraulic inertia of DH systems and fuel availability, daily
operations are normally planned and scheduled beforehand based on heating energy
demand prediction to economically meet end-users’ heating needs. As introduced
in Section 4.2, the two ANN models f72 and g120 were respectively developed to
generate the next 24-hour heating load prediction at any hour τ , and the same
hour τ of each day can be chosen to schedule production for the following day. By
accumulating the daily prediction at the same hour τ from prediction Method 2, a
summed deviation between the measured and the predicted data over a time span
may be acquired. The deviation accumulated during the (high) heating season is
particularly important for evaluating the peak load prediction performance, which
can critically affect the balance between peak load supply and demand. Therefore,
the generated 24-hour ahead prediction made at 0 o’clock (τ) each day from January
1 to December 31 was accumulated for obtaining an annual DH load profile.

Figure 5.8: Workflow of the electricity and economic analysis under lockdowns

5.4 Analysis of electricity use and economic im-
pacts for buildings with electric heating under
lockdowns

This example shows how the confinement measures affected the electricity and eco-
nomic costs of educational and residential buildings, based on well-measured elec-
tricity data of 14 kindergartens, eight schools, one apartment, and one residential
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house in Trondheim, see Table 3.1 Cohort 1. The workflow is illustrated in Figure
5.8, and the key steps are introduced below. For detailed description, see Paper III.
Another example regarding the lockdown-related impacts on educational buildings
with DH can be found in Paper IX.

5.4.1 Daily electricity profiles before and during COVID-19
lockdown

Similar to the previous examples, the analysis was performed on the average specific
energy use, here Wel/m2, to define the representative electricity use for buildings
with different characteristics.

To compare the average daily electricity demand and load profiles for each building
type from March to May 2018(2019)-2020, the profiles with and without normal-
ization, and Euclidean Distance (ED) was used. The normalization was performed
by Pearson Correlation Coefficient (PCC) to identify the similarities discarding the
possible influence from outdoor temperature to electricity profile shapes, given as:

PCC(X, Y ) = cov(X, Y )
SXSY

=
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(5.5)

ED was to measure whether the big outdoor temperature difference led to a higher
electricity demand difference, given as:

dED(X, Y ) =
√√√√ n∑

i=1
(xi − yi)2 (5.6)

5.4.2 Three scenarios regarding different building operation
strategies

The different campus activities and attendance between normal weekdays and week-
ends generate remarkable energy use in the educational buildings. However, unlike
kindergartens and schools, residential buildings usually have lower energy demand
during working hours and higher demand when residents are at home. According
to different electricity use habits and patterns, three scenarios were proposed con-
sidering different operation strategies under lockdowns, as expressed below. The
electricity demand for each scenario was calculated.

• Scenario 1 considered the building operation under normal conditions with-
out disturbances from lockdown. This scenario applied to both educational
and residential buildings.

• Scenario 2 considered the energy-saving mode and assumed a temporarily
limited operation under a low electricity demand setting during normal week-
days’ nighttime and weekend, when electricity was typically observed at mini-
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mum levels for maintaining the acceptable indoor air quality under nearly zero
attendance. This scenario applied only to educational buildings with an aim
to estimate the electricity savings potential.

• Scenario 3 considered the operation of residential buildings under work-from-
home conditions. This scenario aimed to find the possible electricity increase
caused by lockdowns and to examine energy robustness regarding dwelling
scale.

5.4.3 Economic impact assessment
As shown in Figure 5.9, the electricity spot price fluctuated greatly from 2016 to
2020. Thus, three price cases were made, the spot price in 2018 was taken as the
case of the highest price level (shown by the yellow line), the spot price in 2020 as
the case of the lowest price level (shown by the green line), and the median values
of the remaining years as the case of the moderate price level (by the thick blue
line). These three levels were assumed to be representative of the electricity market
in recent years.

Figure 5.9: Annual electricity spot prices in Trondheim 2016-2020

By combining annual electricity profiles with each of the three price levels, the annual
electricity costs of the observed buildings under the three operation scenarios may
be calculated and further compared.
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6
RESULTS AND DISCUSSION

This chapter summarizes the publications during the PhD work by presenting the
main findings and contributions of the main papers. Each section in this chapter
corresponds to the research example in Chapter 5 and is dedicated to a specific
paper, presenting the main results and discussions.

6.1 Results of CO2 emissions considering different
environmental factors for heating systems in
future planning

This section shows the main findings of the current energy use of a typical kinder-
garten and the impact of future building area development on CO2 emissions. This
example answers Research Question 1, corresponding to the example described in
Section 5.1. A detailed explanation of the method and results are shown in Paper
I.

6.1.1 Comparison results of annual CO2 emissions of one
typical Nordic kindergarten

Figure 6.1 compares the annual CO2 emissions of a typical kindergarten with and
without DH connection. In Figure 6.1, the two separate bars on the right side
represent the building without DH. When the CO2 factor of electricity was changed
from the Norwegian electricity production 10 to the Nordic electricity production
110 gCO2/kWh, the annual CO2 emissions increased substantially from 1.2 tCO2 to
13.6 tCO2, which was the worst case. Within the dashed green square, three cases
of DH shares (from low to high share) were compared with four different CO2 factor
combinations. It can be seen that if electricity took on more energy supply, the total
annual CO2 emissions would vary greatly according to the CO2 factor of electricity.
Meanwhile, in the case of a high share of DH, the changes of CO2 emissions under
different CO2 background data were relatively small.
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Figure 6.1: Annual CO2 emissions of one kindergarten of 700 m2; within the dashed
green square, blue bars for the Norwegian electricity (CO2-EL1) with the DH average
production (CO2-DH1), orange bars for the Nordic electricity (CO2-EL2) with the DH
average production (CO2-DH1), yellow bars for CO2-EL2 with DH production in 2015
(CO2-DH2), and purple bars for CO2-EL2 with DH production in 2010 (CO2-DH3);
outside of the green square, the pink bar for the Norwegian electricity and red bar
for the Nordic electricity

6.1.2 Impact of future building area development on CO2
emissions

By varying the penetration (x) of new buildings with DH between 0 and 100%, three
new annual trends in CO2 emissions were calculated based on the DH production
CO2 factors.

As shown in Figure 6.2a), when all new building area was powered only with elec-
tricity, the annual increase in CO2 emissions was 194.9 tCO2/yr, and this was same
for the three growing trends. When half of the new building area was connected
to the DH system, the annual CO2 reduction was between 22.5 and 49.7 tCO2/yr.
Since CO2 was expected to decrease linearly with changes in DH penetration, annual
CO2 emissions would double if all new construction area was connected to DH. The
orange line represents the best case as 2015 has the smallest DH production CO2
factor, while the yellow line had the mildest slope of decline due to the selection
of the highest DH production CO2 factor, while the blue line for the average DH
production CO2 factor was in between.

In Figure 6.2b), the building area growth rate, 14.2%, was shown as the purple
reference line. Above the reference line, the CO2 increase rate was higher than the
building area growth rate, which means that if the building area was increased by
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14.2%, the CO2 emissions would increase by more than 14.2%; below the reference
line, the CO2 increase rate was less than the building area growth rate, which is
the expected result of slower carbon footprint growth in the future. The orange line
representing the smallest DH production CO2 factor (CO2-DH2) had the steepest
slope. A slower rate of CO2 increase may be achieved after using DH on more than
half of the new building area. While using the highest DH production CO2 factor
(CO2-DH3), the break-even point reached 67%, as shown by the yellow line. There-
fore, under different CO2 background data, the break-even point may be between
50 and 67% of the new building area connected to DH.

The results may be useful for future planning of building development where slower
CO2 increases may be achieved when appropriate energy supply methods are chosen.

Figure 6.2: (a) Annual CO2 addition of 10 000 m2 new building area; (b) CO2
increasing rate of 10 000 m2 new building area

6.2 Results of data analysis and prediction for
annual energy load profiles: an example for
Nordic school

This section shows the main findings of the annual heating and electricity profile for
a typical Nordic school and answers Research Question 2, corresponding to the
example described in Section 5.2. A detailed explanation of the method and results
are shown in Paper II.
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6.2.1 Results of modified Z-Score

For heating operations on short holidays and one-day holidays, the analysis was
carried out within a week (five weekdays) by comparing with the adjacent days as
usually there was not much difference in outdoor temperature between adjacent days.
In Figure 6.3, there were five days in each line marked with a week number. Most
DH demand was below the upper threshold, only No.6 in 2017 had an unusually
high demand when it was supposed to close on Whit Monday. Only No.1 and 3 in
2015, No.1 in 2016, No.1, 4, and 5 in 2017, and No.1 and 6 in 2018 followed public
holiday expectations for low DH demand, although some did not yet reach the lower
threshold compared to adjacent days.

Figure 6.3: Modified Z-Score of the district heating use regarding short holidays
during 2015-2018

As suggested in [77], for days with similar occupancy to previous days, the previous
days can be selected as their reference days. Therefore, the electricity demand for
short-day holidays was analyzed by comparing the same weekday number within
each season. Since electricity use was less sensitive to the outdoor temperature, it
was assumed that the electricity use followed a weekday schedule in each season.
In Figure 6.4, each line presents 13 points of the same weekday. Except for the
abnormally high use of No.4 in 2015, all other electricity demand was under the
upper threshold line. All the public holidays were detected as "outliers" or local
minima for the low electricity demand, compared to the DH use. Also, when a
one-day holiday was on Thursday, it was likely that the following Friday was also in
holiday mode or reduced school hours.
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Figure 6.4: Modified Z-Score of the electricity use regarding short holidays during
2015- 2018

It can be concluded that the control of electrical appliances in the schools made
reasonably fast responses by closely following the attendance and schedule. Never-
theless, the response of hydronic DH systems was a relatively slow process mainly
due to the long transport of heating fluid and complex control of the DH sub-stations,
as mentioned by others [74].

6.2.2 Profile results of district heating and electricity in a
typical Nordic school

The (energy signature) ES curve for DH load is shown in Figure 6.5, where the
critical point for changing point temperature (CPT) was found 13°C, obtained by
an adequate piece-wise approximation for an average school building. In the area
below 13°C, it was further segmented into three parts, the stable working hour, the
ramping hour, and the non-working hour. In the area above the CPT, the heating
needs were negligible and the impact on the energy supply system was small. Figure
6.5 shows the strong heating load differences.

Finally, the measured and predicted annual DH load profiles are compared in Figure
6.6 and the predicted typical annual DH load profile in a typical year is presented
in Figure 6.7. Due to the strong dependence on outdoor temperature, the DH load
fluctuated throughout the year with peak fluctuations. The peak load was around 48
W/m2, the minimum load was close to 1 W/m2, and the total annual heat demand
was 72 kWh/m2.
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Figure 6.5: Energy signature curve models of DH load considering different op-
eration periods; below CPT, working hour period, ramp period, off-working hour;
above CPT, temperature less-dependent period

Figure 6.6: Measured vs. predicted DH load profile during 2015-2018
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Figure 6.7: Predicted typical annual DH load profile under typical meteorological
weather

Figure 6.8 shows the overview of 4-year monitored and predicted annual profiles
of electricity. The identified typical hourly profiles for school week, Easter week,
short holidays, and the remaining normal days (excluding the above special days)
are shown in Figure 6.9. The peak load was around 18 W/m2, the minimum load
was 2 W/m2, and the total annual demand was 57 kWh/m2. The minimum load
was mainly used for some plug-in devices and low ventilation during the unoccupied
period. The peak load of electricity was only one-third of the peak load of DH (48
W/m2), and the total demand was 79% of that of DH (72 kWh/(m2· yr)). Therefore,
the power grid stress may be significantly reduced in buildings with DH compared to
buildings with electricity supply alone. This is especially important in winter when
both heating and electricity require a high energy supply. In addition, by analyzing
the heat and power profiles separately, the different requirements of heat and power
grids in terms of sizing and output are presented.

The energy density for the observed average school was 129 kWh/(m2·yr), with
nearly 56% for heating needs. The energy share for the heating purposes was al-
most the same as the average situation [24], while the total density was slightly lower
than the annual average energy use in Norwegian schools [24, 78], but the same as
the mean value of Swedish schools [79], and approach to the proposed nZEB energy
performance target level for Finnish educational buildings in FInZEB project, 104
kWh/(m2·yr) [80].
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Figure 6.8: Measured vs. predicted electricity load profile during 2015-2018

Figure 6.9: Typical hourly load profiles for the school week, Easter week, short
holiday, and the normal days without these special days; for easy reading, the load
profiles for Easter week, autumn week, and one-day holiday have the same Y-axis
label of spring week
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6.2.3 Results of prediction performance evaluation of a typ-
ical Nordic school

The prediction performance evaluation is summarized in Table 6.1. The mean ab-
solute percentage error (MAPE) results of the electricity prediction were less than
10%, the normalized mean bias error (NMBE) within ±1%, and the coefficient of
variation of the root mean squared error (CV(RMSE)) less than 20%, meeting the
criteria upper limits [58, 63, 64]. However, the MAPE results of the DH prediction
were higher than 20%. It can be said that the ES curve model was to some extent
convincing but not very accurate and further validation was therefore needed.

Table 6.1: Evaluation results of the energy forecast by three criteria

prediction of DH load profile prediction of electricity load profile
Year MAPE (%) NMBE (%) CV(RMSE) (%) MAPE (%) NMBE (%) CV(RMSE) (%)
2015 20.2 2.9 25.7 8.8 0.9 16.0
2016 23.2 -1.4 26.7 6.8 0.2 10.6
2017 24.0 -2.4 26.9 6.6 -0.3 11.7
2018 29.6 -4.9 30.2 (↑) 7.5 -0.4 10.1

The predicted DH profiles were further evaluated by the cluster methods of PAA
and SAX, introduced in Section 4.3.2. As recommended in [66], three breakpoints
(-0.67, 0, 0.67) were selected. The PAA coefficients for those below -0.67 were sym-
bolized with the string “a”, the PAA coefficients between -0.67 and 0 with “b”,
the PAA coefficients between 0 and 0.67 with “c”, and those higher than 0.67 with
“d”. In each interval, if the compared data from different datasets have the same
SAX strings, they may be clustered as the same group, at the same time the PAA
coefficients do not have to be the same. Figure 6.10 shows the comparison of the
PAA coefficients of the predicted and measured DH daily profiles by considering the
seasonal and weekday influences, and the corresponding SAX symbols are listed in
Table 6.2. In the SAX table, those with different SAX strings within the same PAA
interval are shown in italics, indicating that they cannot be clustered into the same
group. It can be concluded that the predicted and measured load curves for Winter
season had a very high similarity, as all the eight intervals between the predicted
and measured load curves for each weekday had the same clustering strings, more
importantly, Winter required most of the heating energy. However, the similarities
in other seasons were not as strong as in Winter. The reason for the large deviations
and errors in Spring and Autumn might be caused by seasonal changes and unstable
outdoor temperatures, which might lead to large temperature differences.

From the approximation of the PAA and SAX symbol results, the predicted DH
profiles for the average school turned out to be convincing and representative. In
addition to the advantages of using PAA for time series discretization and magnitude
normalization, it allowed us to present seasonal load patterns and shape comparisons
by extracting the desired day types.
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Figure 6.10: PAA coefficients results, considering different seasons in each working
day

Table 6.2: PAA coefficients results in Figure 6.10 transferred into SAX symbols

Weekday Winter Spring & Autumn Summer

Monday predicted a b d d d b a a b c d d c a a a b d d d b a a a
measured a b d d d b a a a b d d c b a a b c d d c a a a

Tuesday predicted a b d d d b a a b c d d b a a a b d d c b a a a
measured a b d d d b a a a b d d c b a a b c d d c a a a

Wednesday predicted a b d d d b a a b c d d c a a a b d d d b a a a
measured a b d d d b a a a b d d c b a a b c d d c d a a

Thursday predicted a b d d d b a a b c d d c a a a b d d d b a a a
measured a b d d d b a a a b d d c b a a b c d d c a a a

Friday predicted a b d d d b a a b c d d c a a b b c d d b a a a
measured a b d d d b a a a b d d c b a a b c d d c a a a

6.2.4 Discussion and limitation
This example identified the representative annual DH and electricity load profiles
for a typical Nordic school.

The identified annual typical load profiles may be used as input to energy sup-
ply simulation models to locate the key impacts of peak loads and determine energy
savings potentials. This is different from the previous studies, which usually used
packaged energy data from utility companies as input for optimal modeling of en-
ergy supply systems. Moreover, it would be interesting to further cluster buildings
into typical high energy-density, typical medium energy-density (mostly likely to be
the profiles identified in this example), and typical low-energy-density buildings, and
then to predict their corresponding energy profiles. Although the proposed approach
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is robust and transferable to other building types, the prediction accuracy shall be
further improved, for example, by using more advanced prediction techniques for
comparison. Meanwhile, source data quality and building energy management be-
havior (such as manual interference, random operation, or regular routine) are also
important for prediction accuracy.

6.3 Results of hybrid heating load prediction in
low-temperature district heating: an example
for nursing homes in Nordic countries

This section shows the main findings of the developed hybrid heating load prediction
in LTDH and answers Research Question 3, corresponding to the example de-
scribed in Section 5.3. A detailed explanation of the method and results are shown
in Paper IV.

6.3.1 Results of long-term district heating load prediction
The ES curve models for the SH load are shown in Figure 6.11, where the CPT was
found around 12°C to provide a suitable piece-wise approximation. During 77.6%
of the time, the outdoor temperatures were below the CPT, falling into the high-
heating season; while the remaining 22.4% of the time, the small space heating (SH)
loads were less temperature dependent and could be described by one regression line
regardless of working hours and non-working hours. Compared to buildings with
distinct clock-controlled operations as shown in the example of school buildings, the
SH differences between working and non-working hours in nursing homes were less
pronounced, it is still worth analyzing them separately.

Figure 6.11: Energy signature curve models of SH load considering different op-
eration periods; below CPT, the black line represents working hours and red line
non-working hours; above CPT, temperature less-dependent period
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Figure 6.12 presents a breakdown of the space heating (SH) and domestic hot water
(DHW) heat load profile. At outdoor temperatures of -11.6 – -9.3°C, the peak
SH load was 29–31 W/m2, while the minimum load was close to 0.9 W/m2 for the
network circulation; and DHW use was considered to be process heat with seasonally
stable usage patterns. The predicted total annual DH demand was 114 kWh/m2, of
which 15% was for DHW, following the statistical data of heat use demand as well
as the share for DHW heat use in nursing home [75].

Figure 6.12: Predicted DH load profile for 2019 with a breakdown of space heating
load profile (top row subplot) and domestic hot water heating load profile (bottom
row subplot)

6.3.2 Results of short-term district heating load prediction

Figures 6.13 and 6.14 compare the day-ahead prediction performance of the two
ANN models f72 (with 72 inputs) and g120 (with 120 inputs), in the examples from
different heating seasons. In both models, the next 24-hour heating load prediction
for the whole 2019 was made from 0 ’clock (τ) on January 1 to 0 o’clock (τ) on
December 31, giving a total of 8737 forecast results, respectively 1.

1Since 2020 weather was not included in the modelling, the prediction finished at 0 o’clock (τ)
on December 31 with the weather input by 23 o’clock on December 31. Therefore, each ANN
model ran 8737 times prediction (excluding 1-23 o’clock (τ) on December 31) and generated 8737
predictions, separately.
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Figure 6.13: Predicted DH load for the 24-hour period following the date indicated
above each column, showing the randomly selected three dates prediction results by
model f72 (top row subplots) and by model g120 (bottom row subplots)

Figure 6.14: Predicted DH load for the 24-hour period following the date indicated
above each column, showing the selected three dates prediction results by model f72
(top row subplots) and by model g120 (bottom row subplots)

In Figures 6.13 and 6.14, each column subplot shows the prediction for the next
24-hour period following the time instance indicated at the top, e.g. the prediction
of the heating load Q̂24

τ = (Q̂τ,1, . . . , Q̂τ,24) is plotted for the τ on the given date.
By looking at each column of subplots, it is easy to compare the performance of f72
and g120 on the same time instance. To hold statistical reliability, three prediction
outcomes out of the 8737 instances τ were randomly selected from the 2019 testing
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data using a uniform probability distribution. As shown in Figure 6.13, there were
two DH load spikes, one measured at 9 o’clock on September 16 and the other at
3 o’clock on October 27, see the green diamonds being pointed by grey arrows.
In Figure 6.14, the prediction results for three dates during January, February,
and December (high heating season) were randomly selected, covering the outdoor
temperature from -11 to 2°C. In all the seasons, the load predicted by g120 was
significantly closer to the measured load than the one predicted by f72, both in the
curve patterns and load values.

6.3.3 Prediction evaluation of different prediction methods
Since f72 and g120 respectively generated the next 24-hour heating load prediction
at (any) hour τ , the same hour τ of each day can be chosen to schedule production
for the next day. On this basis, the 24-hour ahead prediction results generated at
0 o’clock every day from January 1 to December 31 were accumulated to obtain
the annual load profile prediction for 2019, and a summed deviation between the
predicted and the measured data throughout a year may be visualized. Deviation
accumulated during (high-) heating seasons is particularly important for evaluating
peak load forecast performance. The deviation between the measured load and the
predicted load is considered as ∆(τ) = measured Q(τ) − predicted Q̂τ . Figure
6.15 shows the deviation for the three prediction models for 2019, and Table 6.3
summarizes the prediction accuracy evaluation.

Figure 6.15: Deviation plot between measured and predicted DH load by the three
models for 2019 (top row subplot), corresponds to the outdoor temperature for 2019
(bottom row subplot)

In the comparison in Figure 6.15, g120 held the prediction deviation within ±3
W/m2 most of the time, f72 had the highest deviation in the cold periods either
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over-predicting DH load or under-predicting DH load, and the ES curve kept the
prediction deviation in between. The high deviation spikes on October 27 were
mainly caused by a measurement failure, see Figure 6.13, when a sudden high DH
load was measured.

Figure 6.16 presents four examples of peak heating load periods. In the figure,
the model f72 was least sensitive to the outdoor temperature changes by under-
predicting the peak load and over-predicting the load during other time, also seen
in Figure 6.15; the ES curve model and g120 captured most of the peak load periods,
while the ES curve model might have over-predicted the peak load compared to the
model g120.

Figure 6.16: Four examples of peak load periods in 2019, measured vs. predicted
DH profiles by the three prediction models. Subplot A represents the load profiles
comparison from 1 o’clock on January 22 to 24 o’clock on January 24. Subplot B
represents the load profiles comparison from 1 o’clock on February 4 to 24 o’clock
on February 6. Subplot C represents the load profiles comparison from 1 o’clock on
March 5 to 24 o’clock on March 6. Subplot D represents the load profiles comparison
from 1 o’clock to 24 o’clock on November 9

As listed in Table 6.3, the MAPE and sMAPE results of the three models were less
than 20%, NMBE within ±10%, and CV less than 20%, meeting the criteria upper
limits [58, 63, 64]. Despite using the same training set for f72 and g120, g120 showed
the best prediction performance benefiting from using both historical heating load
and outdoor temperature as inputs, while f72 only considered the ambient condition
as inputs and its prediction accuracy was reflected in the poorest results regarding
all the criteria. However, as the criterion CV(RMSE) result of f72 was much lower
than the limit, 30%, it was still good to notice that the load predicted by f72 was
somehow able to capture the patterns from the measured load curves even without
the historical DH load as inputs. Besides setting the load boundary, the heating
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load prediction quality of the ES curve model was in the middle of the three models.

This means that the models and their predicted DH load curves provided high accu-
racy for subsequent work, regardless of the different input settings and algorithms
of the three prediction models.

Table 6.3: Evaluation results of 2019 DH load forecast produced by the three
models. The criteria, namely MAPE, sMAPE, NMBE, and CV(RMSE) are used
for quality evaluation

Prediction method MAPE (%) sMAPE (%) NMBE (%) CV(RMSE) (%)
Method 1 - ES curve model 13.94 12.81 -3.91 13.79

Method 2 - f72 16.77 14.75 -8.13 15.51
Method 2 - g120 7.23 7.28 -0.36 7.90

6.3.4 Discussions of the models’ rationality and future study
of temperature upgrade in low-temperature district
heating

6.3.4.1 Rationality of the models

By making good use of big data, data-driven models were selected over physical
models. As shown in Figure 6.13, there were two DH load peaks, while the load
profiles predicted by the two ANN models showed a smoother trend. After checking
outdoor temperatures for the two days, no "sudden" weather changes were recorded.
Therefore, these abnormal data values might have been caused by metering fail-
ures or mishandling. Nonetheless, the established models showed more reasonable
predictions. In addition to the proper algorithms, the three-year large data for
training/validation also contributed to achieving the appropriate predictions.

6.3.4.2 Temperature upgrade in low-temperature district heating

In addition to improving DH load prediction quality, when the building is connected
to LTDH system, the above heating load profiles for DHW and SH may be used
respectively utilized for the building energy supply operation. For example, inte-
grating two building-sized boosting heat pumps (HPs) in LTDH enables the system
to respond to the minimum supply temperature requirements of DHW and SH. This
may be considered a promising solution to one of the LTDH challenges. One possible
application may be proposed as shown in Figure 6.17, where from left to right side
are the emerging heat source from datacenter’s waste heat, the temperature upgrade
process, and the building user.
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Figure 6.17: Schematic diagram of integrating two building-sized boosting heat
pumps for space heating and domestic hot water use

According to the Norwegian regulation, the DHW temperature should be maintained
at not lower than 65°C to prevent Legionella’s growth when a water storage tank is
included at substation [81]. One booster HP (HP1) may be accordingly employed
to upgrade the heat source temperature e.g. 55°C to 65°C for DHW heating. The
second booster HP (HP2) may be employed to upgrade the heat source for satisfying
the peak SH load, when the outdoor temperature reaches a critical point that the
source temperature is unable to maintain thermal comfort. For example, when using
the conventional radiators in Nordic housings, the critical point may be determined
as in [82] giving the equation as:

tin = −0.75 · tτ (6.1)

where tτ is the outdoor temperature and tin is the minimum heating supply tem-
perature. Moreover, the selection of critical points shall also consider the energy
system’s flexibility and use of building thermal inertia as shown [83, 84]. Finally,
when boosting units are applied in LTDH, their annual costs for the heat source
upgrade process may be calculated and compared, for example using Eq.(4.14).

6.4 Results of lockdown impacts on electricity use
and economic costs for buildings with electric
heating

This section shows the main findings of the electricity use and economic impacts
for buildings under lockdowns and answers Research Question 4, corresponding
to the example described in Section 5.4. A detailed explanation of the method and
results are shown in Paper III.
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6.4.1 Comparison results of daily electricity profiles before
and during lockdowns

The average daily electricity profiles for kindergartens and the apartment from
March to May 2018(2019)-2020 are compared in Figures 6.18 and 6.19, respectively.

For the educational buildings shown in Figure 6.18, the electricity use followed the
opening hours and schedules. On weekdays, the demand generally arose between 6
and 17 o’clock with the peak demand at around 8 or 9 o’clock. The demand rising
ahead of the teaching activities aimed to extend thermal comfort and improve indoor
air quality. From 19 to 6 o’clock the next day, the energy supply systems maintained
low demand. It may be observed that the shapes of the three-year electricity profiles
from March to May were quite similar 2. Meanwhile, the electricity use pattern was
different in the apartment. As shown in Figure 6.19, demand during the weekday
day in 2020 was significantly higher than in 2019 and the weekday (WD) values were
similar to the weekend (WE) values, which was also mentioned in [48]. This may
indicate that the effect of occupants on private buildings plays a more important
role than in public buildings, and that household energy demand varies by resident
behavior, as discussed in [85, 86].

Figure 6.18: The average daily electricity load profiles for kindergartens from
March to May 2018-2020, where a) are profiles on weekdays and b) are profiles on
weekends

2Results of schools are similar to kindergartens and schools results are thus not shown in this
section.
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Figure 6.19: The average electricity load profiles for the single apartment from
March to May 2019-2020, where a) are profiles on weekdays and b) are profiles on
weekends

Further, the results of Euclidean distance (ED) and Pearson correlation coefficient
(PCC) measures within every two years for kindergartens and the residential build-
ings are compared in Figures 6.20 and 6.21. The PCCs are plotted by the red lines
with dots, and each dot refers to the same year of the bar where it is located. By
discarding the real energy demand scales influenced by the outdoor temperature, it
was observed that the PCC results from March to May during the three years were
higher than 0.93 in kindergartens on weekdays, and the highest PCCs were even
found within 2019-2020. This again demonstrated that the patterns and operation
of the three-year average daily energy use were of high similarity. The daily electric-
ity profiles and ED results for kindergartens showed there were much lower demands
on weekends than on weekdays. This is mainly because Norwegian educational in-
stitutions usually do not carry out teaching activities on weekends, but occasionally
can rent buildings to maximize the use of public resources [24].

Regarding the residential buildings, the ED and PCC results of the townhouse and
the apartment between 2019 and 2020 were compared in Figure 6.21. The ED values
of the townhouse were lower and more stable than those of the apartment within
the three months on weekdays and weekends, only with the exception of March
when the two were close. Additionally, the EDs of the townhouse on weekends were
smaller than on weekdays, which was backed by the high average PCC values. It
mostly implied that the residents kept their usual weekend plans and the occupant
behavior in smaller dwelling sizes had higher energy impacts and less robustness.

From the above findings, the operation in educational buildings might not shift to
night/weekend settings as the hypothesis. For practical reasons, the schools and
kindergartens remained open during the period to support parents working in key
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Figure 6.20: The ED and PCC results of kindergartens in 2018-2020, where the
left is for weekdays, the right for weekends

Figure 6.21: The ED and PCC results of townhouse and single apartment in 2019-
2020, where the left is for weekdays, the right for weekends
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positions such as the health system, police station, transportation and so on. This is
similar to the heat use examined in the educational buildings [87], however unlike the
electricity use examined in the university laboratory building [88] and the nursery
school and elementary school buildings [89]. Meanwhile, as projected, the residential
buildings were affected by the changes in the dweller’s working schedule during the
period. Moreover, an apartment with a smaller floor area and one dweller may be
more sensitive to changes in use.

6.4.2 Results of scenario-based electricity profiles
Figures 6.22 and 6.23 illustrate the possible electricity profiles for kindergartens, the
apartment, and the townhouse in a typical weather year.

In Figure 6.22, under the normal operation settings (Scenario 1), kindergartens
may need 172 kWh/m2 per year as indicated by the red line; while under the energy-
saving mode (Scenario 2), only 112 kWh/m2 may be needed, as indicated by the
green line. Therefore, by reasonably setting up the building service systems and
improving the arrangement of the educational institutions, the electricity use may
be reduced by approximately 35% in the kindergartens. The scenario comparison
of the residential buildings is shown in Figure 6.23. Under the normal conditions
of low-daytime attendance (Scenario 1), the annual electricity demand of a typi-
cal year may be 222 kWh/m2 and 126 kWh/m2 in the apartment and townhouse,
respectively, as indicated by the solid lines. However, when the work-from-home
rule came into effect (Scenario 3), 26.9% more electricity may be needed in the
apartment, while the townhouse may only require 1.3% more electricity, as shown
by the dashed lines. The higher electricity density in the apartment made it more
sensitive to the changes.

Figure 6.22: Annual electricity load profiles for kindergartens under Scenario 1
and Scenario 2
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Figure 6.23: Annual electricity load profiles for the single apartment and the
townhouse under Scenario 1 and Scenario 3

6.4.3 Results of economic impact assessment
By combining the above electricity profiles with the three price levels described in
Section 5.4.3, the annual electricity costs for the analyzed building types were esti-
mated based on the three price cases.

Figure 6.24 compares the annual electricity costs of one 700 m2 representative kinder-
garten and one 4000 m2 representative school under the normal operation mode
(Scenario 1) and the night and weekend mode (Scenario 2), where moderate el

price, highest el price, and lowest el price are the shortcuts of the cases of moderate,
highest, and lowest electricity price. For the kindergarten, the cost reductions be-
tween the two operation modes varied from 1461 €/yr (equivalent to 2.1 €/(m2·yr))
under the case of lowest electricity price to 2873 €/yr (4.1 €/(m2·yr)) under the
case of highest electricity price, see Figure 6.24a). For the school, Figure 6.24b)
exhibits that between 5658 €/yr (1.4 €/(m2·yr)) and 10 946 €/yr (2.7 €/(m2·yr))
may be saved if the building was shifted to the night and weekend settings during
the lockdown. It is worth noting that the economic savings potential of switching
operating modes was greater when electricity prices were higher.

In the residential buildings, due to more time spent at home by the dwellers (Sce-
nario 3), between 78-164 € (2.0 €/(m2·yr)-4.1 €/(m2·yr)) more money may be
needed in the apartment annually, see Figure 6.25a), while the increase would be
less than 15 € (0.1 €/(m2·yr)) in the townhouse, see Figure 6.25b). Although the
large dwelling with multifamily members required higher overall electricity expendi-
tures than the small apartment, they might be more resilient and robust to changes
in use patterns.
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Figure 6.24: Annual electricity cost estimation of kindergartens and schools under
Scenario 1 and Scenario 2, where the left is for the annual cost of kindergartens, the
right is for the annual cost of schools

Figure 6.25: Annual electricity cost estimation of the single apartment and the
townhouse under Scenario 1 and Scenario 3, where the left is for the annual cost of
the apartment, the right is for the annual cost of the townhouse
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6.4.4 Discussions of aggregation and consequence on energy
planning

Analysis of energy use under special situations (e.g. lockdowns) may help local
energy planning. An imaginary community was assumed consisting of one kinder-
garten, one school, and one residential area composed of 40% of apartments and
60% of townhouses. By aggregating the annual electricity demand for the four
building types in a normal year (Scenario 1) and lockdown year (Scenario 2-3),
the annual total electricity use for this community may be compared. By varying
the residential area and the work-from-home adoption percentage, the electricity
demand, especially the peak demand and the capacity factor may be affected. The
energy plant capacity factor is the ratio of the actual total energy output to the
maximum output over a period of time, and it measures the overall utilization rate
of the power plant [90].

Figure 6.26: Capacity factor vs electricity peak load for different residential build-
ing areas, comparing normal year with lockdown year when varying percentages of
work-from-home adoption

Figure 6.26 shows the possible consequence of energy planning in terms of the ca-
pacity factor with the electricity peak demand by changing the work-from-home
adoption percentages from 0% to 100%, as indicated by the solid line, in the varia-
tion of residential areas between 10 000-90 000 m2. The solid circles in the dashed
cloud line represent the normal year conditions, which had a lower plant capacity
factor and needed higher peak demand than some of the work-from-home conditions
for the smaller residential areas (e.g. 10 000–50 000 m2). Interestingly, the energy
facilities may not be fully utilized in normal years, which may lead to uneconomical
production. While in larger residential areas (e,g. 70 000–90 000 m2), the plant ca-
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pacity can be better utilized through a higher capacity factor, however higher peak
demand may be required during lockdowns. It may be explained that the electricity
savings from the closed kindergarten and school may not be comparable to the more
electricity use, when most of the residents stay at home, in larger residential areas.
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CONCLUSIONS AND

OUTLOOKS

Never confuse education with
intelligence, you can have a PhD
and still be an idiot.

Richard Phillips Feynman

Stay hungry, stay foolish.

From "Whole Earth Catalog"

This chapter concludes the main findings of the thesis, as presented in Section 7.1,
acknowledges the limitations, and recommends future study, as presented in Section
7.2.

7.1 Main conclusions and contributions
The main objective of this PhD research is to gain a deeper understanding of the
energy use of Norwegian urban buildings and to help improve the efficiency of urban
buildings’ energy systems. The following issues were addressed: analyzing heating
and electricity use data, locating factors that may affect the building energy opera-
tion, identifying representative load profiles for heating and electricity for different
building types, developing appropriate models for long-term sizing and short-term
prediction, and estimating environmental and economic costs for future development
and special circumstances. The main findings are highlighted as follows.

The study was carried out based on measured data obtained from municipal and
residential buildings with different operating regimes and technical solutions for
building energy supply systems. For buildings featured with distinct night setback
control operations and different attendance levels between the weekdays and the
weekends, such as educational buildings, the heating operators most likely set mode
between weekdays and weekends, as well as long holiday mode during summer va-
cation and Christmas, with a slow control response to short breaks, which caused
part of heating energy being wasted. This implied that the DH demand was more
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likely prone to the outdoor temperature over the schedule on short breaks, while the
control of electrical appliances responded closely by following the attendance and
schedule. The energy density for the identified typical school was 129 kWh/(m2·yr),
of which nearly 56% was for heating needs. The energy density was slightly lower
than the average annual energy use in Norwegian schools, but on par with the
Swedish school average and close to the nZEB energy performance target level for
Finnish educational buildings. While for buildings featured with relatively stable
occupancy, such as nursing homes, the heating load profiles exhibited milder peak
load during the working hours and relatively higher levels during the non-working
hours. The DH density of a typical Nordic nursing home was found around 111-114
kWh/(m2·yr), almost twice that of a typical Nordic school. Additionally, from the
analysis of buildings with electric heating under lockdowns, the electricity demand
of the educational buildings was almost the same as in previous years, while the elec-
tricity demand of the residential buildings changed significantly. The scenario-based
analysis showed that with proper building operation during a temporary closure, the
electricity use could be reduced by 35% for kindergartens and by 29% for schools,
equivalent to 2.1-4.1 €/(m2·yr) for kindergartens, and 1.4-2.7 €/(m2·yr) for schools,
as estimated in the three spot price level cases. Meanwhile, electricity demand for
the apartment and the townhouse increased by around 27% and 1.3%, respectively,
equivalent to 2.0-4.1 €/(m2·yr) for the apartment and negligible for the townhouse.
The small apartment with higher electricity density was more electricity sensitive
than the large house. In general, the energy demand of the observed buildings has
shown the average demand level in Nordic countries.

Regarding future building expansion, the analysis of the aggregated electricity de-
mand showed that the size of local infrastructure may be affected by building area,
area composition of different building types, energy operation mode, and unintended
conditions. For the small residential area of i.e. 10 000 m2, the percentage changes in
peak demand were between -9.3% and -6.1% from 0% to 100% of work-from-home
adoption, and these changes for the large residential area of i.e. 90 000 m2 were
between -1.8% and 2.6%. As suggested in a study of one university campus with
multiple building types [91], an appropriate building type ratio may help reduce the
overall load and load fluctuation of a district. Therefore, it is important to analyze
the energy demand under different scenarios to discover the optimal sizing for future
planning. In addition to infrastructure sizing, based on the current energy demand,
a slower CO2 growth rate and enhanced energy resilience may be achieved for future
building area expansion, as long as diverse low-carbon energy resources are involved.

For short-term, such as the day-ahead heating load prediction, it is important to
include historical heating load, such as the previous one-to-three days’ load, to pre-
dict the next day’s load, as shown by the defined ANN model g120 (with 120 inputs)
compared to the ANN model f72 (with 72 inputs). However, historical heating load
data are unfortunately either accessible with delays or low data quality, i.e. low
time resolution. This is different from historical weather information, which is often
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publicly accessible via meteorological institutions. Although f72 showed a worse
prediction quality performance than g120 and the ES curve model, f72 can still con-
tribute a good heating load prediction even without previous days’ load as inputs.
Another potential contribution of the results is to map load prediction to other
relevant buildings, either existing buildings without high-quality data or new ones
without adequate training data. For example, the gained knowledge may be useful
in understanding new or existing nursing homes in need of renovation assessment,
by transferring the developed energy prediction models for a typical building type to
individual buildings through the Transfer Learning (TL) method, a state-of-the-art
machine learning (ML) technique [42].

The methods and results proposed in the thesis were constructed and evaluated
based on a certain amount of measured data for different building functions, taking
into account normal and unforeseen disruptions, and they may contribute to future
infrastructure development and better insight into building energy management.

7.2 Limitations and future recommendations
In the thesis, both long-term and short-term heating load prediction employed the
actual measured outdoor temperature (predictor) as the forecasted outdoor tem-
perature for prediction. In practice, such weather forecasts are however somewhat
inaccurate and may consequently lead to worse performance than observed here.
Therefore, it is important to build the base model as accurately as possible to re-
duce the possible spread and impacts of such weather uncertainties.

The accuracy of long-term heating load prediction for such as schools, shall be
improved. Currently, the ES curve was divided into four parts according to different
time periods and outdoor temperatures, and the prediction performance for transi-
tion and summer seasons was unsatisfactory, mainly due to the less dependence on
outdoor temperatures. Other methods shall be considered. Regarding the accuracy
of short-term heating load prediction for such as nursing homes, only one-layered
ANN model was employed. To cope with the small amount of training data avail-
able and the intelligent prediction of peak load and control systems required by
low-temperature district heating (LTDH) and electricity networks, newer types of
ANN architectures and other machine learning methods shall be examined.

For the analysis of lockdowns, Norway’s lockdown regime was in effect from mid-
March to mid-May 2020, and the outdoor temperature during this period (0-21°C on
weekly base) did not cover the local historical outdoor temperature range through-
out the year (e.g. -7 -21°C on weekly base in 2019), especially the low outdoor
temperature recorded in winter. Therefore, extrapolation of the Scenario 3-based
models to the typical year might not fully represent the annual household electricity
use profile. By extrapolating power characteristics over the limited outdoor temper-
ature range during lockdowns, the annual increase in household electricity demand,
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especially in winter, may be higher than the estimation made in the thesis. To better
address future unforeseen disruptions and trends in workplace and lifestyle, further
research using more data and seasonal correction factors is needed, for example,
to take experiments on home office activities involving more dwellings. This may
provide more comprehensive insights through more accurate prediction models and
better knowledge.

As discussed in Section 6.3.4.2, integrating separate temperature boosting units
may solve one of the challenges in LTDH, which is the different minimum allowable
temperature requirements for domestic hot water and space heating. To analyze the
impacts of different prediction models on the overall costs of the building heating
system, an in-depth study shall be carried out addressing several key factors, e.g.
types of boosting heat pumps (HPs) compressors driving force, operation optimiza-
tion strategy, the sizing of the boosting HPs and water storage tank.

The thesis mainly focused on building energy analysis, prediction, and supply in
buildings. When intermittent renewables and short-to-medium-term energy storage
are integrated into the district network, which is likely to come more in the near fu-
ture, it would be interesting to examine the interactive response between the energy
plant/network and the building side, and to optimize the network as a whole.
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Abstract. The aim of the study was to utilize different building data for prediction of 

development in energy use of a typical building type. In this study, energy use and its future 

development for kindergartens in Trondheim, Norway, were analyzed. The energy use data were 

retrieved from the energy monitoring platform of Trondheim Municipality. The total area of all 

the kindergartens was about 76 000 m2, where the area of each kindergarten was ranging from 

100 – 4 471 m2. Firstly, typical heat and electricity duration curves per m2 of kindergartens in 

Trondheim within six years were identified. Secondly, the kindergartens were divided into two 

cohorts based on their connection to district heating (DH). The average total annual energy use 

was 177 kWh/m2 for kindergartens without DH, and 168 kWh/m2 for kindergartens connected 

to DH. The peak load values were similar for both cohorts, about 140 W/m2. Analysis of the 

duration curves showed a bigger electricity load variation for the kindergartens without DH 

connection. Within the building cohort with DH, three cases were found depending on the energy 

share from DH; i.e. DH high share, DH average share, and DH low share. By following different 

background data for CO2 factors of electricity and local DH, the kindergarten with DH high share 

had almost the lowest annual CO2 emission. Contrarily, the annual CO2 emission of a 

kindergarten with lower share of DH, or without DH, usually had a wider range of emissions due 

to its dependence of the electricity production mix. Finally, a prediction was made by assuming 

14.2 % growth rate of kindergartens on the ground of the average six-year total kindergarten 

area. The result showed that if more than 50- 67 % of the new building area would be connected 

to DH, a smaller increase of CO2 emission from the projected area could be achieved, depending 

on the relevant CO2 factors. This proved that buildings with DH were more robust than the one 

without DH concerning CO2 emission. The suggested analysis method and identified duration 

curves could be used to as a reference example for defining energy profiles of other building 

types. These profiles are necessary for diversifying and upgrading local energy supply pathways, 

infrastructure sizing, and improving urban energy planning.    

1.  Background 

Approximately 36-40 % of energy is consumed in building service around the world each year, and it is 

responsible for nearly 40 % of direct and indirect CO2 emissions [1]. Therefore, urban building stocks 

are expected to make high contribution for low energy use and reduction of greenhouse gas emissions. 

In Norway, due to cheap and green electricity power from the abundant hydro-power, coverage rate of 

district heating (DH) system is small. DH only contributes approximately 11 % of total heating demand 
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in Norway [2]. Norwegian residential and service buildings are highly reliant on electricity for space 

heating (SH) and domestic hot water (DHW). Whereas, driven by the motivation of economic and 

environmental benefits of DH, relevant regulations and investment subsidies have been introduced to 

expand the build-up of DH system in Norway. As the third largest city in Norway, Trondheim 

municipality has been committed improving urban plans for better living environment under the pressure 

of urbanization, population growth, and mitigation of anthropological carbon footprint [3].  

The aim of this article was to identify energy profiles of one typical building type in Trondheim. 

Typical profiles of energy use can be used as input to building simulations and model calibration. The 

historical energy use data of kindergartens from 2013 to 2018 was retrieved from the energy monitoring 

platform of Trondheim Municipality [4]. The outdoor weather data and energy use was given in hourly 

resolution. Besides kindergarten, school, heath/nursing center, sports center and others are also 

monitored.  

2.  Methods 

2.1.  Building general information 

During the six years, numbers of total kindergartens have been increased from 83 to 99. Based on the 

connection to DH, the kindergartens were divided into two cohorts, Cohort 1 and Cohort 2. In Cohort 1, 

the buildings are not connected to DH, and supplied by electricity only, and in Cohort 2, the buildings 

are connected to DH. The yearly building numbers and building area of the two cohorts were compared 

in Table 1. In total, there were 559 hourly files of kindergartens being used in the analysis.     

Table 1. Building numbers and area of Cohort 1 and Cohort 2. 

  2013 2014 2015 2016 2017 2018 

Building numbers (-) Cohort 1 66 66 68 68 71 71 

Cohort 2 21 23 26 27 28 28 

Total 83 89 94 95 99 99 

Building area (m2) Cohort 1 36979 38855 40890 40890 43259 43259 

Cohort 2 24623 26317 30105 31766 32768 32768 

Total 61602 65172 70995 72656 76027 76027 

     

     It shows that generally the share of Cohort 2 is smaller than Cohort 1 but growing, especially when 

it comes to the building area. As shown in Figure 1, the blue square stands for Cohort 1 and the red for 

Cohort 2, and the green line demonstrates the percentage of Cohort 2, Cohort 2 covers around 43 % of 

total building area till 2018. This can be explained in Figure 2 by plotting the relation between building 

area and weekly-based load needs. Most of the kindergartens in Cohort 1 were built within small to 

medium size (in blue stars), while kindergartens in Cohort 2 were within medium to large size (red 

circles). The area of each kindergarten varies largely from 100 to 4471 m2. 

2.2.  Energy duration curve per m2 

There is a big variety of the building area of each kindergarten, hence, the load duration curves were 

analyzed based on energy demand per m2. For buildings in Cohort 1, the duration curves were made 

only by electricity use. For buildings in Cohort 2, the duration curves of electricity and DH were 

analyzed separately. Yearly duration curve of each building was obtained by sorting annual load hourly 

profile from highest to lowest values, and average duration curve was made by the mean values of all 

the curves. From the average energy use under its outdoor temperature, energy signature was established 

to imply the relation between energy demand per m2 and outdoor temperature. MATLAB was used for 

energy data analysis.  
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Figure 1. Building area comparison of 

Cohort 1 and Cohort 2. 

 

 
Figure 2. Building area vs Building weekly base 

load of Cohort 1 and Cohort 2. 

2.3.  Energy coverage rate in Cohort 2 

In Cohort 2, heating demand was provided by DH and the other energy demand by electricity. In order 

to see the contribution from the two energy supply ways, Figure 3 demonstrates the energy coverage 

rates from DH and electricity in Cohort 2. In Figure 3, DH was marked in red and electricity in blue, 

each bar stands for the average energy use situation of one kindergarten from 2013 to 2018, and all the 

28 kindergartens were included. From the bar chart, three cases were defined, they were named as DH 

average share, DH high share and DH low share. In the case of DH high share, nearly 76.9 % of total 

energy use comes from DH, 31.4 % higher than the case of DH low share. On average, DH supports 

60.0 % of total energy use, as listed in Table 2. 

 

2.4.  CO2 factors of electricity and DH production   

Benefitting from the modern transmission technology and the characteristic of electricity, electricity is 

capable of long-distance transmission with less than 5 % of loss. Norway is connected in the Nordic 

power grid and further expanded into the wider European grid, and electricity is traded in the free market. 

Within the Norwegian border, CO2 factor of electricity can be as low as 10 gCO2/kWh (named as CO2-

EL1), which is mainly contributed by the abundant hydro-power, however this factor can be high up to 

110 gCO2/kWh (CO2-EL2) in the Nordic region since fossil fuels are involved in the electricity production 

mix. Distinguished from electricity, the transmission loss of heating can be quite high, which makes DH 

not suitable for long-distance transport. Therefore, the equivalent energy and environmental factors of 

DH is mostly locally specified. From the information of Norsk Fjernvarme, during 2010 to 2018 most 

of the DH in Trondheim has been provided by waste incineration, followed by fossil gas with the 

Table 2. Energy coverage rate of three cases 

in Cohort 2. 

 

  

 From DH 

(%) 

From 

electricity (%) 

DH average 

share 

60.0 40.0 

DH high 

share 

76.9 23.1 

DH low 

share 

45.5 54.5 

 

 

 
Figure 3. Energy coverage rates of DH and 

electricity in Cohort 2. 
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contribution of around 10 %, and the small rest comes from flexible electricity, bio-energy, ambient 

heat, and fossil oil [5]. In Norway, in accordance to NS 3720-2018, the CO2 emission from waste-to-

energy for energy production (electricity and DH) has been allocated to the sector of waste management 

instead of energy sector [6]. The CO2 factors of DH production in Trondheim were calculated based on 

the annual production composition of energy sources. Three typical CO2 factors of DH were found, they 

are the average value from 2010 to 2018, value of 2015 as the 9-year lowest, and value of 2010 as the 

9-year highest. These factors were used as background data for the assessment of CO2 emission, 

respectively. The CO2 factors of DH production in Trondheim are listed in Table 3, and the CO2 data of 

fossil gas, bio-energy and fossil oil can be found in Norsk Energi [7].  

 

Table 3. CO2 factors of DH production in Trondheim. 

 2010-2018:  

CO2-DH1 

2015:  

CO2-DH2 

2010: 

CO2-DH3 

Composition 

of energy 

sources (%) 

Waste incineration 74.0 83.1 61 

Fossil gas 10.8 5.9 20 

Flexible electricity 8.5 5.0 6 

Bio-energy 4.0 4.0 5 

Ambient heat 0.8 1.0 1 

Fossil oil 1.9 1.0 7 

CO2 factors (gCO2/kWh)  41.66 23.5 76.3 

2.5.  Annual CO2 emission of one typical kindergarten and future prediction   

From Figure 2, a typical kindergarten in Trondheim was determined at 700 m2 concerning the main size 

ranges the two cohorts. For the buildings in Cohort 1, as addressed above regarding the difficulty of 

splitting energy share from heating and electricity, therefore, the annual CO2 emission comparison of 

one typical kindergarten between Cohort 1 and Cohort 2 was made based on the annual average energy 

demand of Cohort 1. For Cohort 2, the three cases regarding DH shares were considered separately.  

     After the annual CO2 emission calculation of one typical kindergarten was made and compared, the 

impact of new building area was predicted. In this article, 10 000 m2 of new building area of kindergarten 

(𝐴𝑛𝑒𝑤) was assumed to be added in Trondheim. The building area growth rate (𝑟) was defined as the 

ratio between (𝐴𝑛𝑒𝑤) and the annual average total building areas of kindergarten throughout the six 

years, which is 70 413 m2. The increasing building area rate is 14.2 %. This growth rate was used as the 

reference line, and compared with the CO2 growth rate based on different background data by varying 

the percentage of new building area connected to DH (𝑥). For simplicity, the annual CO2 emission was 

calculated based on the CO2 factor of Nordic electricity (CO2-EL2) and the three DH production factors. 

Meanwhile, for the new area connected to DH, the case of DH average share was used. In Function (1), 

as the denominator, the average annual average CO2 emission of all the kindergartens (𝐶𝑂2) was 

calculated from the annual average energy use of Cohort 1 and Cohort 2 within the six years. The 

comparison between growth rates of building area and CO2 can be explained as: 

 

 
𝑟 −

𝐶𝑂2−𝑎𝑑𝑑𝑒𝑑

𝐶𝑂2

∙ 100% 
(1) 

 

𝐶𝑂2−𝑎𝑑𝑑𝑒𝑑 = [𝐴𝑛𝑒𝑤 ∙ (1 − 𝑥) ∙ 𝐸𝐸𝐿 + 𝐴𝑛𝑒𝑤 ∙ 𝑥 ∙ 𝐸𝐷𝐻−𝐸𝐿] ∙ 𝐶𝑂2−𝐸𝐿2 + 𝐴𝑛𝑒𝑤 ∙ 𝑥 ∙ 𝐸𝐷𝐻−𝐷𝐻 ∙ 𝐶𝑂2−𝐷𝐻𝑖  
(𝑖 = 1, 2, 3) 

     When Function (1) = 0, there is a break-even point that the increasing rates of CO2 emission and new 

building area are same. When Function (1) < 0, it means if increasing new building area by 14.2 %, 
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more than 14.2 % more CO2 emission would be produced. On the contrary, when Function (1) > 0, it 

implies that slower CO2 emission growth could be achieved.  

3.  Results 

3.1.  Results of energy duration curve and Energy signature per m2 

The annual average duration curves were presented in Figure 4, Figure 5, and Figure 6, and the annual 

energy demand were summarized in Table 4. Average duration curves were plotted in black thick lines. 

The peak load for the two cohorts are almost same. The maximum deviation from the average curves 

are 27.2 % in Cohort 1 and 24.3 % in Cohort 2. The deviation considers 0- 4000 hour in the duration 

curve. Energy loads during the last 4760 hours are small, and have minor influence of the grid and plant 

sizing. Moreover, peak load for Cohort 1 can only expect from electricity; while the peak load for Cohort 

2 can be satisfied by DH and electricity, it releases the maximum demand of power grid. Although 

electricity use in Cohort 2 has weak relation with outdoor temperature, the duration curves of six years 

have similar pattern except higher use in 2013. It may be explained that fewer kindergartens were used 

for the analysis, and it caused the large deviation. The detailed annual duration curves can be found in 

Appendix Figure A 1 to Figure A 6, and there were several unknown high peak loads in Cohort 1. 

  
Figure 4. Average total energy duration curves of Cohort 1. 

 
Figure 5. Average heating energy duration curves 

of Cohort 2. 

 

 
Figure 6. Average electricity duration curves 

of Cohort 2. 
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Table 4. Average annual energy use of Cohort 1 and Cohort 2. 

  2013 2014 2015 2016 2017 2018 Average 

Cohort 

1 
𝐸𝐸𝐿  

(kWh/yr) 

182.3 169.6 169.6 

 

180.9 

 

180.8 

 

179.8 

 

177.2 

Cohort 

2 
𝐸𝐷𝐻−𝐷𝐻 

(kWh/yr) 

111.6 

 

100.9 

 

98.8 

 

102.2 

 

101.6 

 

102.9 

 

103.0 

 

𝐸𝐷𝐻−𝐸𝐿 

(kWh/yr) 

69.9 

 

65.4 

 

64.6 

 

62.9 

 

62.5 

 

63.1 

 

64.7 

 

      

     Moreover, to see if the energy use followed the outdoor temperature (𝑡𝑜𝑑), heating degree days 

(HDD)/ heating degree hours (HDH) and energy signature were adopted as rough measurements.  

     Firstly, heating degree days (HDD)/ heating degree hours (HDH) is the integral of difference between 

indoor and outdoor temperatures, and is robust tool of predicting space heating. 12- 18 °C are commonly 

used as the effective indoor temperature to avoid oversizing of heating plants [8]. In this article 18 °C 

was chosen to roughly estimate the colder and milder weather conditions. The HDH of the six years can 

be found in Table 5. The average annual heating use of Cohort 2 (𝐸𝐷𝐻−𝐷𝐻) better followed the outdoor 

temperature (𝑡𝑜𝑑) than the average annual energy use of Cohort 1 (𝐸𝐸𝐿). 

 

Table 5. Heating degree hours of six years. 

 2013 2014 2015 2016 2017 2018 

°C∙h 107562.4 94982.4 99146.4 106567.2 105487.2 106156.8 

 

     Secondly, energy signature curve can be used as a function of 𝑡𝑜𝑑 to describe and predict heating 

energy demand [8] [9]. Figure 7 and Figure 9 were made by average hourly energy demand of six years 

(105 168 hourly data). For buildings in Cohort 1, it is rather difficult to draw one interpolation curve to 

describe the relation between energy demand 𝑃(𝑡𝑜𝑑) and (𝑡𝑜𝑑) in the whole temperature range. There 

was a break around 5 °C, and energy demand turning back and forth with 𝑡𝑜𝑑. The appearance of break 

has been discussed before in caused by changing of heating equipment under different 𝑡𝑜𝑑 [10]. In this 

article, it can be explained that some electric heating equipment may be shut down during off- work 

hours in Cohort 1. For example, electric resistant heater has little thermal inertia, which makes it 

unnecessary to keep on with non-appearance of occupants. Since electricity is used both for heating and 

other electric appliances, it is not easy to make accurate calculation of energy consumption share for 

heating and other electric uses. To know the daily operation routine of these buildings is needed. For 

buildings in Cohort 2 of hydronic DH system, SH and DHW are measured in one meter. The DHW use 

of one kindergarten was assumed as constant as its six-year average use, and its annual use followed the 

Norwegian statistic data [12], which is around 9 kWh/m2 in most of Norwegian kindergarten. Figure 8 

presents the distribution of the ratio between the annual hot water use and total heating needs within the 

six years. Clearly, DHW accounted for less than 9 % of total heating demand in most of the kindergartens 

and had a small influence in the whole picture. In this article, to describe the relation between SH and 

𝑡𝑜𝑑 more accurately, DHW use was deducted from the total DH needs. DHW use profile was roughly 

assumed as the DH use when 𝑡𝑜𝑑 higher than 18 °C (the effective indoor temperature) in May, June, and 

August (kindergartens are mostly closed in July). For weekends, coefficient of 0.2 was considered. As 

shown in Figure 9, it is relatively easy to establish the energy demand function of 𝑡𝑜𝑑 in polynomials 

through the entire outdoor temperature range. The function was written as:  

 𝑃(𝑡𝑜𝑑) = 𝑝1𝑡𝑜𝑑
𝑖 + 𝑝2𝑡𝑜𝑑

𝑖−1 + 𝑝3𝑡𝑜𝑑
𝑖−2 + 𝑝4 (2) 

(𝑖 = 1, 2, 3. 𝐼𝑓 𝑖 − 2 < 0, 𝑝3, 𝑝4 = 0;  𝑖𝑓 𝑖 − 2 = 0, 𝑝4 = 0 ) 
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Figure 7. Energy demand vs Outdoor temperature of Cohort 1. 

 

 
Figure 8. Distribution of hot water use in total DH needs of six years. 

 
Figure 9. Energy signature curve of DH demand of Cohort 2 under 1st degree, 2nd degree, and 3rd 

polynomial. 
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To make sure of the goodness-of-fit of the model, the coefficients of determination R2 was used. The 

value of R2 should not be less than 0.75 as a rule of thumb in the analysis of building energy [12]. The 

coefficients of Function (2) and R2 of each polynomial were shown in Table 6. It can be seen that even 

the simplest 1st degree polynomials satisfies the requirement of R2 and fulfil the prediction of energy 

demand. This can be used to predict hourly heating load in the accordance with reference weather year, 

which is developed based on decades of weather data and can be found in database library [13]. The 

load profile can be used as input to energy system modelling, such as EnergyPLAN [14]. 

 

Table 6. Coefficients of Function (2) and R2 

 𝑝1 𝑝1 𝑝3 𝑝4 R2 

1st degree -1.414 18.82 / / 0.7927 

2nd degree 0.08309 -2.412 19.02 / 0.8977 

3rd degree -0.001359 0.1027 -2.403 18.72 0.8995 

  

3.2.  Calculation of CO2 emission of one typical kindergarten 

In Figure 10, the stand-alone two bars at right side represent the building without DH. The annual CO2 

emission can be hugely increased from 1.2 tCO2/yr to 13.6 tCO2/yr when CO2 factors of electricity 

changed from 10 to 110 gCO2/kWh by making it the worst case. In the green square, three cases of 

different DH shares were compared, and their combinations regarding CO2 factors were made as: blue 

bars of Norwegian electricity (CO2-EL1) with average DH production (CO2-DH1), orange bars of Nordic 

electricity (CO2-EL2) with average DH production (CO2-DH1), yellow bars of CO2-EL2 with DH production 

of 2015 (CO2-DH2), and purple bars of CO2-EL2 with DH production of 2010 (CO2-DH3). All the blue bars 

still gave the smallest values in each case since CO2 factor electricity was 10 gCO2/kWh. From the 

results, it can be seen that if electricity shoulders more energy supply, the total annual CO2 emission can 

be varied a lot depending on the CO2 factor of electricity. While in the case of DH high share, the 

variation of CO2 emission under different background data was relatively small. Generally speaking, in 

the comparison of building with and without DH by using the same total energy demand, even in the 

case of DH low share under the highest DH production factor (CO2-DH3), the total annual CO2 emission 

(11.7 tCO2/yr) can still be lower than the case without DH (13.6 tCO2/yr) by 14 %. 

 
Figure 10. Annual CO2 emission of one kindergarten of 700 m2. 

3.3.  Assessment of CO2 impact of new building area 

After 10 000 m2 of new building area of kindergartens was assumed to be built in Trondheim, the 

calculation of annual CO2 emission regarding the new area was made. Through changing the penetration 

rates of new building area supplied by DH (𝑥) between 0 % and 100 %, three kinds of growing trends 

of added annual CO2 emission were calculated by following each DH production factor. As plotted in 

Figure 11, when all new buildings had only electricity, the added annual CO2 emission would be 194.9 
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tCO2/yr, and this is same for the three growing trends. When half of the new building area being 

connected to DH system, annual CO2 reduction would be between 22.5 and 49.7 tCO2/yr. Since it was 

predicted to follow linear CO2 reduction with variation of DH penetration, the annual CO2 emission 

would be double if all the new building area being connected to DH. The orange line represents the best 

case since DH production factor in 2015 was smallest, while the yellow line has mildest reduction slope 

due to the choice of highest DH production factor, and the blue line of the average DH production factor 

is in between. 

     On the ground of the 6-year average annual area, the growth rate of building area, 14.2 %, was shown 

as the purple reference line in Figure 12. The region above the horizontal line had higher increasing rate 

of CO2 than that of building area. It means if 14.2 % more building area being introduced, more than 

14.2 % more CO2 would be emitted; while the region below the line had smaller CO2 increasing rate 

than the building area increasing rate, and this is what is expected to happen in the future to slower 

carbon footprint growth. The orange line representing the smallest DH production factor (CO2-DH2) had 

the steepest slope. After more than half of new building area using DH, slower CO2 increasing rate can 

be realized. When using the highest DH production factor (CO2-DH3), the break-even point can reach at 

67 % as shown in the yellow line of the mildest slope. Therefore, the breaking point located between 50 

% and 67 % of new building area connected to DH under different CO2 background data. 

4.  Summary and Future work 

In this article, a typical energy profile of kindergarten in Trondheim was identified. The energy use data 

was retrieved from energy monitoring platform of Trondheim Municipality in total 559 hourly files. 

Two cohorts, namely Cohort 1 (not connected to DH) and Cohort 2 (connected to DH) were analyzed 

and compared. Under various building areas of the kindergartens, energy profile per m2 of all 

kindergartens from 2013 to 2018 was defined and the average profile of each cohort was obtained. For 

Cohort 1, it is difficult to draw a robust energy signature regarding the energy demand and outdoor 

temperature, other issues and scheduling may be considered. While for Cohort 2, hot water use can be 

estimated as the only DH use in summer period and deducted from the total heating needs, in order to 

establish energy signature more accurately. Within the six- year duration curves, the annual average 

energy use of Cohort 1 was 177.2 kWh/(m2.yr), and annual average electricity and heating of Cohort 2 

was 64.7 kWh/(m2.yr) and 103.0 kWh/(m2.yr), respectively. Within Cohort 2, there were three cases 

depending on the energy contribution from DH and electricity, from DH high share, DH average to DH 

low share. 700m2 was chosen as the representative building area of one kindergarten. Its annual CO2 

was compared between with and without DH based on the same total annual energy use. For the 

background data of electricity, two CO2 emission were used. The one within Norwegian border gave the 

best results in all cases; when extended the border to the Nordic region, CO2 emission jumped to higher 

level. For the CO2 factors of DH production in Trondheim, the average factor from 2010 to 2018, the 

 
Figure 11. Annual CO2 addition of 10 000m2 

new building area. 

 

 
Figure 12. CO2 increasing rate of 10 000m2 

new building area. 
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factor in 2015 as lowest, and the factor in 2010 as highest, were used. The kindergarten with DH high 

share had lowest annual CO2 emission and smaller CO2 variation. By using the DH factor in 2015, it 

supported the lowest emission. For the kindergarten had low share of DH or even without DH, the CO2 

emission had a wider range. This is mainly caused by their higher dependence of the electricity 

production mix since electricity can be traded in the free market. Moreover, the building with only 

electricity is more likely to have unknown high peak load. As a mild prediction, 10 000 m2 was assumed 

to be built in Trondheim. On the ground of average total kindergarten area within six- year, the growth 

rate of building area, 14.2 %, was used as the reference line. The growth rate of CO2 emission could be 

slower than that of the building area, if more than 50 % and 67 % of new building area would be 

connected to DH. The break-point locates depending on the energy sources of local DH production, 

which determines the CO2 factor. 

     The results of this article showed that building connected to DH system was more competent than 

the building of only- electricity concerning the CO2 emission, and its energy demand easier to be 

predicted. In the future work, energy data and profiles of other building types and reference weather 

data in Trondheim shall be defined and analyzed. These profiles can be used to diversify and upgrade 

energy supply ways and improve urban energy planning. 

 

Appendices 

 
Figure A 1. Annual energy duration curves of Cohort 1 and Cohort 2 (only DH) in 2013. 

 
Figure A 2. Annual energy duration curves of Cohort 1 and Cohort 2 (only DH) in 2014. 
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Figure A 3. Annual energy duration curves of Cohort 1 and Cohort 2 (only DH) in 2015. 

 
Figure A 4. Annual energy duration curves of Cohort 1 and Cohort 2 (only DH) in 2016. 

 
Figure A 5. Annual energy duration curves of Cohort 1 and Cohort 2 (only DH) in 2017. 
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Figure A 6. Annual energy duration curves of Cohort 1 and Cohort 2 (only DH) in 2018. 
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a b s t r a c t

Current research on energy supply systems and building energy demand presents positive impacts from
the two sides, with potentials of combining top-down and bottom-up modelling. Mostly, the energy
demand input has been employed directly from energy utility companies as a package of information,
without considering energy use patterns regarding building type. There lacks a bridge between demand
profiles on building stock functions and urban energy supply systems. Accordingly, this article proposes a
framework that enables the prediction of annual energy profiles, applied to one educational building type
on an hourly basis. The work consists of five steps: (1) getting energy information of 40 district heating
(DH) supplied schools in Norway, (2, 3) processing data for getting the modified average hourly demand
per m2 and holiday breakpoints through a modified Z-Score, (4) energy forecast of DH and electricity load
profiles through temperature moving average, correlation, and linear regression analysis, (5) validation of
the predicted yearly profiles by three criteria, and further with the cluster methods for DH profiles. The
results showed that the suggested methods for annual energy forecast were satisfying. The defined load
profiles might represent the current energy demand of the Nordic school and the methods could be trans-
ferred to other building types. With energy analysis of typical building types, the proposed method
enables the planners to better understand the energy needs for different building functions.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

Every year approximately 36–40% of the energy supply is used
to serve buildings around the world, which is responsible for
nearly one-third of global CO2 emissions [1]. Energy efficiency
strategies in urban building stocks are expected to make a high
contribution to reductions in energy use and greenhouse gas
emissions.

There is fruitful research suggesting how to make positive
impacts from both energy system side and building side on the
total building stock use. Several relevant publications are intro-
duced below. Thellufsen et al. [2] investigated the possibilities of
achieving a smart energy city within a 100% renewable energy con-
text of Denmark and Europe. Averfalk et al. [3] found that lower
distribution temperatures provide higher profitability and would
facilitate transition to renewable and recycled heat supply in dis-
trict heating (DH) systems. Lund et al. [4] gave perspectives on
5th generation DH that has a strong focus on combined heating

and cooling as the main driver and may coexist with 4th genera-
tion technologies. From the view of enhancing building energy effi-
ciency, Moschetti et al. [5] proposed a pathway for transiting
building from zero energy to zero emission with a life cycle assess-
ment on the most influential buildings’ factors. When the techno-
economic benefits analysis of building refurbishment is performed,
Ascione et al. [6] emphasized the uncertainty in building occupant
behavior shall not be neglected.

However, the energy demand input has usually been employed
directly from utility companies as a package of information for
energy systemmodelling. Without energy data mining or targeting
energy use patterns on different building types, abnormal energy
use could be misleadingly used as the input, which may deviate
the anticipated benefits. According to the International Energy
Agency Energy in Buildings and Communities Programme Annex
53, the offset issues from the designed demand to the real building
energy were analyzed on different climates [7]. Meanwhile, Reyn-
ders et al. [8] explored the methodologies that enable residential
buildings to offer flexibility to the energy system by utilizing build-
ing thermal storage. Therefore, a better understanding of energy
usage and profiles in different building categories is needed and
possible, with the aim to treat energy system and building in a
holistic view.

https://doi.org/10.1016/j.enbuild.2021.111160
0378-7788/� 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1.2. Previous studies

As an important subset of non-residential buildings, the educa-
tional building aims to educate students with knowledge and
social mind, on the basis of laws on day-care seats and rights to
education in Norway and many other countries. This building cat-
egory contains kindergarten, school, and college/university. Mean-
while, the building operators are responsible to maintain the
required indoor environment in energy-efficient ways [9]. It has
been found that energy spending is the second biggest operating
cost for schools in the U.S., only beneath the employees’ salaries
[10]. In Italy, 60% of the educational buildings were built before
1976, most of which fail to meet the current energy performance
requirements despite of extraordinary retrofit [11].

According to the building conditions in Norwegian local govern-
ments [12], schools make up nearly 50% of the total local public
building mass and constitute the most important building type.
Population is one of the key drivers for developing educational
buildings. Under the expectation of population increase and urban-
ization to come, there is a growing need for educational building
expansion [13].

The aim of this study was to understand and identify load pro-
files of one typical Norwegian educational building type: the dis-
trict heating supplied school buildings. Local municipalities are
responsible to monitor and manage the operation of public build-
ings, hence energy data for such buildings are often available. Find-
ing appropriate energy statistical methods and prediction methods
are needed to achieve the study goal.

Sun et al. [14] developed a cooling load prediction strategy for a
super high-rise building in Hong Kong, by combining selection of
reference day, calibration with weather data, and model accuracy
enhancement. This method requires low computation load and is
feasible for online application of building load prediction in order
to optimize equipment operation and guide load shifting [14].

Fan et al. [15] proposed a transfer learning-based methodology
by utilizing the massive well-measured building operational data
to predict other buildings. A quantitative assessment of this
methodology for 24-hour ahead building energy demand was stud-
ied on building types of office, schools, and universities. Comparing
with individual models, this methodology could reduce 15–78% of
prediction errors and give insights to realize the value of existing
data in building energy management [15].

Liu et al. [16] suggested a method with two-step clustering
analysis to identify the typical electricity load patterns (TELPs) at
individual building level. Density-based spatial clustering applica-
tion with noise (DBSCAN) algorithm clustering technique is used in
the first step to detect daily outliers. The second step uses the k-
means algorithm to group similar TELPs. The effectiveness of this

framework was confirmed with the time-series electricity data of
office buildings in Chongqing [16]. Another k-means algorithm-
based clustering analysis was made by Gianniou et al. [17] for
studying residential district heating data. These single-family
houses in Aarhus were segmented based on heat use intensity
and representative patterns, by examining with the characteristics
of buildings and occupants, load profiles of households, and use
behavior changes.

Raza et al. [18] reviewed a number of artificial intelligence
based short term load forecasting techniques, among which artifi-
cial neural network (ANN) was praised with great performance for
complex problems. The findings show that improvement of train-
ing capability of neural network is needed to achieve promising
forecasting results.

From the literature study, the main efforts regarding prediction
have been put on short term energy load forecasting (time-series
based techniques and artificial intelligence based techniques), with
the contribution to optimal scheduling of energy equipment, spin-
ning reserve, evaluation of economic dispatch, etc. Medium to long
term load forecast for typical building types has not been stressed
well. Medium to long term load forecast, especially for the public
buildings, can be used for efficient operation/maintenance of the
local energy systemandbuildingenergyplanningpolicies.However,
there are few studies on annual load profiles for specific building
types. Melillo et al. [19] suggested a method enabling to automati-
cally generate and reproduce the annual heat demand for residential
buildings. However, data from a reference building is required for
achieving the recoverability of relevant building and systemparam-
eters, and scaling up the proposed method to a larger building set
has not been validated yet. Bao et al. [20] proposed a probabilistic
approach to formulate annual cooling loadprofile for office building,
by involving tens of thousands of generation outputs from weather
data files by Monte Carlo simulations. This prediction method can
save much more overcooling hours, which was validated by mea-
surements. Lundström et al. [21] proposed a heat load weather nor-
malization, by segmenting the weather data and heat load with
heating degree days andperformingmultivariable linear regression.
Theworkwas validatedwith twomulti-family residential buildings.

The novel contributions of this work may be summarized as fol-
lows. The defined specific hourly-based load profiles were built on
the analysis of a group of schools. These typical load profiles give
an insight to the general energy situation of schools and they can
be used for building simulations and model calibration. The pro-
posed systematic approach is simple and robust, and it can be
easily transferred to a large number of other public buildings in a
fast way. The findings and method are thought to benefit public
administrations and energy planners regarding local energy
planning.

Nomenclature

CV(RMSE) coefficient of variation of the root mean squared error
DH district heating
DHW domestic hot water
ES curve energy signature curve
GESD generalized extreme studentized deviate
MAD median absolute deviation
MAPE mean absolute percentage error
NMBE normalized mean bias error
PAA piecewise aggregate approximation
SAX symbolic aggregate approximation
SH space heating
TMA temperature moving average
TMY typical meteorological year

el Electricity
no. Number
tot outdoor temperature
R2 coefficient of determination
N number of observations
W number of data in the new series in PAA

Greek letters
r standard deviation
m average value
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The rest of the article is organized as follows. Section 2 briefs
the study methods about the data information of the observed
buildings and the prediction process of energy profiles. Section 3
shows the periods of special energy use by adopting a modified
Z-Score. Section 4 shows the prediction results of the typical
annual DH profile and electricity profile. The accuracies of the pre-
dicted profiles were evaluated in Section 5. The application and
limitations were discussed in Section 6. Finally, Section 7 con-
cludes the main findings of this study.

2. Methodology

The outline of the five main steps of the energy analysis is illus-
trated in Fig. 1. Section 2.1 gives the building information. Sec-
tion 2.2 explains how the energy data of the observed buildings
were processed for getting the modified specific hourly demand
for an average school building. Section 2.3 presents a modified Z-
Score method to describe the energy use trend, which can identify
the possible holiday breakpoints. Section 2.4, 2.5, and 2.6 describe
the specific energy use forecast of DH and electricity that was pro-
ceeded through regression analysis, by using the modified specific
hourly demand and considering the energy differences between
normal days and holiday. Finally, Section 2.7 briefly introduces
three quality criteria and cluster methods for validation. MATLAB
was used for the energy data analysis.

2.1. Description of the observed buildings

The observed DH supplied schools are located in Trondheim,
Norway. As the third largest city in Norway, Trondheim Municipal-
ity has been committed to improving strategies for a better living
environment under the pressure of urbanization, population
growth, and mitigation of anthropological carbon footprint.

The historical data of schools from 2015 to 2018 were retrieved
from the energy monitoring platform of Trondheim Municipality
[22]. Besides schools, other public buildings such as kindergartens,
health/nursing centers, sports centers are also monitored in the
platform. During the four years, the number of these schools regis-
tered in the monitoring platform increased from 36 to 40. The

retrieved annual data file of each building included annual DH
demand, electricity demand, and outdoor temperature in hourly
resolution [22]. A total of 153 annual data files were used in the
analysis. Table 1 summarizes the building information regarding
average measured energy demand, energy labelling, building year,
and building number in the data platform. The building year and
energy labelling of the buildings were obtained from the Norwe-
gian Energy Efficiency Agency (Enova) [23], which provides the
information of the energy labelling scheme. Most of the buildings
were built between 1980 and 2010 and labelled with C and D1. This
building composition of school group can represent the current Nor-
wegian situation that most of the schools have medium aged build-
ings and medium energy demand.

In the observed buildings, DH delivered the space heating (SH)
and domestic hot water (DHW), while electricity was mainly used
for ventilation, lighting, computers, and other electric appliances.
The building area of each school varied from 1 822 m2 to 8
996 m2, and their average annual demand for DH and electricity
of each building are shown in Fig. 2. The buildings regarding areas
versus their annual demand were clustered with k-means.

It can be seen that a larger building floor area accounted for
higher annual demand in general, but the relationship cannot be
simply explained by linear regression models, due to a poor corre-
lation. Hence, the energy analysis was performed on specific
energy use (kWh per m2) and the hourly resolution, in a search
for representative energy use profiles for the school building in
the Nordic climate.

2.2. Representative hourly energy demand

To find the representative hourly energy use, the simple way is

to use the average hourly energy value of the n buildings as
Pn

i¼1
ei

n ,

Fig. 1. The workflow of the data analysis of energy use profiles.

1 The energy labelling was performed during 2011–2015, and possible update of
equipment operation might happen afterwards, which may explain the building
number difference when considering the measured annual energy demand in the
platform and the labelling requirement. Contrarily, new buildings may have
nevertheless higher energy use than stipulated by the building code [24]. Hereby
the energy labelling result was used as reference.
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where ei is the hourly energy demand of building i , n is the total
building numbers. However, this might mislead to high or low
energy use. As stated in [15], the overall power use distribution
of buildings (including schools and universities) is observed as
right skewed, as few buildings have extremely high powers. The
authors considered such rare measurements should be removed
to avoid undesired model instability, with a threshold of maximum
10% extreme data of high powers being removed. In this study,
there was one possible situation leading to atypical energy use.
According to the report from Norwegian Water Resources and
Energy Directorate (NVE) [13], student halls and canteens can be
rented out for catering during evenings and weekends, which is
meant to maximize the utilization of public resources. In other
countries, such as the UK and the U.S., it is also seen opening part
of schools to the public after normal school hours [25]. Educational
buildings ‘‘can be used as communication means towards students
and their families, and can thus reach many different society
groups” [26]. Additionally, the working paper [12] addressed the
importance of maintenance of public buildings. The annual report
of Oslo [27], the Norwegian capital, specially emphasized the
development and maintenance of schools must be planned and
implemented with good functionality. Therefore, it was reasonably
assumed some atypical energy might be caused by renting out and
maintaining schools.

There is no widely accepted method to clear outliers automati-
cally. Several methods of locating the outliers have been devel-

oped, such as the methods of median, mean, grubbs, generalized
extreme studentized deviate (GESD), and observations beyond
the range of quartiles, and each method has its own characteristics
[28]. In this study, the method of ‘‘quartiles” was used. By follow-
ing this method, data beyond 1.5 inter-quartile ranges of the upper
(75 percentile) and lower quartiles (25 percentile) were detected
as outliers. This method has proved useful when data is not nor-
mally distributed [29,30], which also fits the monitored dataset
of the school group.

After clearing outliers of each hour, the average value of the
remaining dataset was used. The typical energy demand for each

hour was calculated as
Pn0

i¼1
ei

n0 , where ei is the hourly energy
demand of building i among the remaining datasets, and n’ is the
total remaining building numbers. For simplicity, this modified,
but still monitored average hourly energy demand was named as
modified average energy demand in this study. This process was
applied to both DH use and electricity use. By comparing the raw

average hourly energy demand
Pn

i¼1
ei

n in the original datasets with

the modified average hourly energy demand
Pn0

i¼1
ei

n0 in the remain-
ing datasets during the four years, only 9.5% of the differences

(j
Pn

i¼1
ei

n -
Pn0

i¼1
ei

n0 j=
Pn

i¼1
ei

n ) were higher than 10% and most of the dif-
ferences were minor. Hereby, it is appropriate to use the modified
average hourly energy demand without a bias.

Table 1
Information of the observed buildings.

Average measured annual energy demand (kWh/m2) �70 �100 �135 �175 �220 �280

Building number / 5 17 14 4 /
Energy labelling A B C D E F, G No infor.
Building number 1 5 8 14 7 1 4
Building year Before 1950 1950–1979 1980–2010 After 2010 No infor.
Building number 3 8 20 5 4
Monitored year in data platform 2015 2016 2017 2018
Building number 36 38 39 40

Fig. 2. a) Average annual DH demand vs building area, b) Average annual electricity demand vs building area.
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2.3. Modified Z-Score

The Z-Score is the number of standard deviations from the
mean value, by subtracting the mean value from a raw data point
and then dividing the difference by the standard deviation. If the
absolute value of Z-Score is higher, it implies the raw data point
is farther than the average. In this study, a modified Z-Score
method defined by Iglewicz et al. was introduced.

As recommended by Iglewicz et al., this modified Z-Score is pre-
ferred to identify possible outliers over the common practice of Z-
Score [31]. The modified Z-Score is defined as Eq. (1), xi refers to
the value of monitored sample, where ~x refers to the median value
of the samples, andMAD denotes the median absolute deviation in
the dataset, see Eq. (2). The detailed information regarding this
method can be found in [31].

Mi ¼ 0:6745 � ðxi � x
�Þ

MAD
ð1Þ

MAD ¼ medianð��xi � ~x
��Þ ð2Þ

If the absolute value of the Mi to one data point is higher than
3.5, the point shall be marked as a potential outlier. This method is
robust to detect outliers ranging from small to large sample size
[31]. Accordingly, this method was used in this study to explore
whether the building operation followed the schedule by consider-
ing the energy difference between the normal days and special
periods, by showing the energy profile trend and observing
‘‘unusual” energy conditions during each year, such as school
weeks, public holidays and so on. For instance, if there was an
‘‘unusually” low energy demand during school week noted with
a negative Mi in a series, it might indicate the building operation
followed the low attendance. Contrarily, if a high positive Mi in a
series, a high energy use might be needed.

2.4. Temperature moving average and energy signature curve

Energy demand for DHW is much less sensitive to outdoor tem-
perature than SH, and its use is relatively stable throughout a year.
According to the report from NVE, the energy demand for the
annual DHW in schools is less than 6% of their total heating needs
(SH + DHW) [13]. The DH meter in the platform did not have sub-
meters for monitoring DWH and SH, separately, thus energy for
DHW was not excluded in the heating analysis. Unlike other build-
ing types such as nursing home, where DHW may account for over
20% of total heating needs and shall be exclusively studied, such as
the work by Ivanko et al. [32].

Besides thermal inertia of the piping system, by considering the
impact of building thermal inertia, the concept of a temperature
moving average (TMA) was introduced to define a more accurate
mathematical relation between outdoor temperature and DH
demand. Depending on building physics, there is a big variety of
capacity for temporary heat storage. It is simply saying that better
insulation plus internal heat gains may yield longer time lag. The
practices of considering TMA have been addressed in literature
[33,34], and it is proven that the time lag hour shall be estimated
as per the building physical characteristics [33]. The empirical time
lag hour such as 24 or 48 h [33,34] was initially used as the refer-
ence range, and extended to 55 h. Within the range, the outdoor
temperature was shifted backward by each hour to find the highest
correlation between the outdoor temperature and the DH demand
and to get accurate model. When the correlation has a higher abso-
lute value, it implies a better fit between the moved outdoor tem-
perature by TMA and the DH demand. Fig. 3a) compares the
temperature lag with the highest correlation of each building.
Fig. 3b) presents the effect of temperature lag on the DH based

on the 4-year modified average hourly values. It can be found that
the lag of five hours yielded the highest correlation for the building
group in this study. Therefore, the outdoor temperature of five
hours ago at each time clock was used to identify the relationship
between outdoor temperature and DH demand. Meanwhile, there
was a second peak noted at 29 h, implying the outdoor tempera-
ture of 29 h ago might also have a good correlation with DH
demand. Similar finding was at 53 h. This may be explained that
the outdoor temperature at the same time clock between neigh-
boring days are usually similar. However, these correlations were
not as high as at five hours. This differed from both the empirical
number and the lag of 14 h found in [33], where a low-energy
building of better building physics was analyzed.

Instead of constructing a physical model with the detailed
building input data and parameters, data-driven approach defines
building energy demand through statistical relationships. Among
the data-driven approaches, there are regression analysis and
advanced techniques such as artificial neural networks and deci-
sion trees by requiring long computation time and sophisticated
knowledge. One of the important applications of linear regression
is the energy signature curve (ES curve), which is a function of
the outdoor temperature to predict heating energy demand [35–
37]. It has been applied to fruitful research and is welcomed by
utility companies. From the ES curve model, the DH use is usually
described by the composition of two parts, temperature-
dependent and temperature-independent. These two parts are
divided by heating effective temperature or changing point tem-
perature (CPT). The ES curve models may be expressed as:

If tot � CPT; P totð Þ ¼ p1 � tot þ p2 þ e ð3Þ

If tot > CPT; P totð Þ ¼ p1 � tot þ p2 þ e;� p2 ð4Þ
In Eqs. (3) and (4), p1 and p2 are the coeffiients of each ES curve

model. p1 denotes the slope, p2 denotes the intercept, and e is the
residual error. The regression model of P totð Þ as a function of tot
may be used to estimate heat use. When the outdoor temperature
is above the CPT, the heating demand is usually either at a small
and constant volume or under a mild slope with the outdoor tem-
perature. To solve the equations above, the ordinary least squares
method is traditionally adopted. The coefficients are determined
through the aim that the error between predicted and observed
values is minimized. The higher the R2, the better the model fits
the data. Technically, R2 shall not be less than 0.75 for a satisfying
model in accordance with ASHRAE [38,39].

Boxplot method can reveal descriptive statistics about disper-
sion [30]. As illustrated in Fig. 4, these boxplots for the daily DH
profiles were used to separate working and off-working hours, in
order to segment ES curve models with each operational period.
The observed DH data were assigned into four groups by consider-
ing seasonal and operational issues. Group I was for January,
February, March, and December. Group II was for April, October,
and November. Group III was for May, first-half June, second-half
August, and September. Group IV was for the whole July. Fig. 4
shows the considerable heat variation between the working and
off-working hours, the weekdays and weekends (without other
short or long holidays). It also shows the heating loads during
nights and weekends were close. From the boxplots, the DH system
was generally under operation from 6 to 18 o’clock on weekdays.
This is similar as depicted in [15], where the schools’ daily power
use typically rises at 6 and fall at 17 o’clock. It is a common practice
that building operators start the system early before occupants
arrive, and reduce the heat supply after they leave, to provide sat-
isfying thermal comfort. Ma et. al mentioned the extended heating
hours for coping with the complaints of freezing mornings [40].
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The minor heat fluctuation of demand in July reflected the
minimum water flow circulating in the piping system of the
DHW systemwhen the school was normally closed for the summer
holiday.

2.5. Typical meteorological year and prediction of DH profile

The importance of typical meteorological year (TMY) that
allows estimation of long term performance from a single year
analysis is elaborated in literature [41]. From the European Union
website, TMY 2007–2016 for Trondheim was retrieved and used
for heating prediction in this study [42]. The calendar of 2025 in
Norway was used as a reference year for acquiring information

on public holidays, and the methods can be adopted to calendars
of other years.

2.6. Electricity profile

It is acknowledged that each year starts and ends with different
day numbers. For example, it started with Friday in 2016 and with
Monday in 2018. Therefore, the 4-year similarity regarding the
electricity use was examined with the correlation for every two
years’ electricity profile between the week 1 and the week 52 (only
week 2 to week 53 for 2015). The remaining 1 or 2 days were dis-
carded, the correlation plot is shown in Fig. 5. The high correlation
numbers within every two years imply the similar electricity use

Fig. 3. a) Distribution of temperature lag regarding highest correlation of each building, where 5-hour lag had the highest frequency among the building group; b)
Temperature lag moving average based on the modified average DH demand, where 5-hour lag yielded the highest correlation.

Fig. 4. Boxplots for the daily DH profiles on weekdays and weekends during four groups, from top left to bottom right, they are Group I, Group II, Group III, and Group IV.
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during the four years. The small deviations can be explained by the
situation that study trips, activities, and public holidays were
arranged on different dates and weeks in each year. After the mod-
ified Z-Score mentioned in Section 2.3, typical profiles for normal
days and special days can be separately identified. The 4-year value
was treated as the predictor and their average value was treated as
the response, and they were together trained in the linear regres-
sion learner. Additionally, cross-validation was selected for
increasing the accuracy of the final model by using the full data.
Then these typical profiles can be combined to extrapolate and
estimate the demand for future years.

2.7. Validation procedures

To prove that the predicted energy profiles are convincing, an
evaluation process is needed for measure and verification. In this
study, all the profile models were verified through three mostly-
used quality criteria as the following: mean absolute percentage
error (MAPE), normalized mean bias error (NMBE), and coefficient
of variation of the root mean squared error (CV(RMSE)). If the
model meets the requirements of all the three criteria, it may be
regarded as a satisfying model. If the model fails to one of the cri-
teria, it is further checked with the cluster methods of piecewise
aggregate approximation (PAA) and symbolic aggregate approxi-
mation (SAX). The explanation and validation results of these
indices are presented in Section 5.1 and 5.2.

3. Results of modified Z-Score

The daily DH and electricity demand on weekdays are shown in
Fig. 6a) and Fig. 6b), separately, which was made based on the
equal division of every year’s 52 weeks into four seasons. It can
be seen that there were considerable seasonal energy demand vari-
ations and different requirements for DH and electricity. The red
and pink boxes for the winter and early spring required very high
energy demand, while the demand in the green boxes was lowest
and the blue boxes in between. The DH and electricity use was
then analyzed on seasonal and weekly base, separately, see Sec-
tion 3.1 and 3.2.

3.1. Analysis of DH use

The weekly DH demand based on the modified average DH
demand from 2015 to 2018 is shown in Fig. 7a), and the modified
Z-Scores within each season are given in Fig. 7b). A summary of the
seasonal Z-Scores is given in Appendix Table A1, and the abnormal
DH use with |Z|�3.5 are highlighted with numbers.

From the weekly DH aspect, most of the data were within the
threshold of ± 3.5. The high DH demand marked with No. 1, 2, 3

and 4 was mainly due to the extremely cold condition. From
Fig. 7a) and b), it was obvious to identify seasonality, but it was
not clear to detect the breaking points of weekly breaks such as
the school week, Easter week, when the DH demand was expected
to be low during the temporary low attendance. There was only
No. 6 of 2018 found with very low DH demand even though the
weekly coldest temperature was �11.1 �C.2

As for the heating operation of short and one-day holiday, the
analysis was performed within the week by comparing with the
adjacent days. This concerned that heat demand was dependent
on the outdoor temperature, while the outdoor temperature differ-
ence between neighboring days were not big. Thus, in Fig. 8 there
were five days in each line, and their modified Z-Scores are given in
Appendix Table A2, where the holidays were marked with num-
bers. Most of the DH demand was under the upper threshold, only
No.6 in 2017 had an abnormally high demand when it was sup-
posed to be closed for Whit Monday. There were only No. 1 and
3 in 2015, No. 1 in 2016, No. 1, 4 and 5 in 2017, and No. 1 and 6
in 2018 followed the expectation of the low DH demand on public
holidays, although some of them were not as low as to achieve the
lower threshold by comparing with neighboring days.

3.2. Analysis of electricity use

The 4-year weekly electricity is given in Fig. 9a). The corre-
sponding modified Z-Scores during each season are given in
Fig. 9b), and the breaking points are listed in Appendix Table A3.
Although the electricity demand also had seasonal variation, the
demand was much lower than DH, especially in early spring and
winter.

By comparing with the DH use, there was no weekly electricity
demand beyond the upper threshold, moreover, it was straightfor-
ward to distinguish the breaking points where weekly low demand
occurred on holidays.

As suggested in [14], for the days having similar occupancies as
their previous days, the previous days can be selected as their ref-
erence days. For example, the previous Tuesday is selected as the
reference day of this Tuesday due to their similar occupancy peri-
ods for electric chiller operation management [14]. Hence, regard-
ing the electricity demand during a short and one-day holiday, the
analysis was made by comparing the same weekday number
within each season. Since the electricity use was less sensitive to
the outdoor temperature, it was assumed that the electricity use
followed weekday schedule in each season. For example, all the
Mondays in season 1 were assumed having similar electricity use
if there were no holidays. Accordingly, in Fig. 10 each line presents
13 points of the same weekday. Except for the abnormally high use
of No. 4 in 2015, the other electricity demand was under the upper
threshold line. In contrast to the DH use, all the public holidays
were detected with the low electricity demand as the ‘‘outliers"
or the local minimum. Besides that, when the one-day holiday
was on Thursday, it would be probably that the following Friday
was also on holiday or had reduced school hours. For example,
No. 7 in 2015, No. 5 in 2016, and No. 6 in 2017 were found with
a local minimum, see Fig. 10. The corresponding modified Z-
Scores are given in Appendix Table A4.

3.3. Similarities and dissimilarities from the modified Z-Scores on DH
and electricity

Based on the weekly energy use diagrams of the DH and the
electricity use above, it was found that both Spring and Autumn

Fig. 5. Correlation of electricity profile during 2015–2018 (52 weeks).

2 Week 2 to week 53 of 2015 was in the analysis, the week number of 2015 in
Fig. 7a) and b) shall be plus 1 accordingly.
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school week were arranged in the same week number during the
four years, week 8 and week 41, respectively, while the Easter
weeks and other public holidays were of different week numbers,
causing various energy impacts on the neighboring weeks. The
school closure for summer vacation was approximately arranged
from week 26 to week 32, and the Christmas holiday during week
51 and week 52.

There was no extremely high electricity use generally, but pit
low use during the breaks. Season 1 and Season 2 had more "out-
liers" since most of the holidays were in the first half of the year,
see Fig. 9a) where there were considerable variations of weekly
electricity use, and Fig. 9b) where there were six out of eight
‘‘unusually” low demand. However, the modified Z-Scores for the

DH demand could not disclose the holiday breaks as in the case
of the electricity use, as shown in Fig. 7a) and b) where most of
the points were not below �3.5.

Based on the above introductory analyses, it can be concluded
that the control of electrical appliances in the school made rea-
sonably fast responses by closely following the attendance and
schedule. Nevertheless, the response of hydronic DH systems
was a relatively slow process mainly due to the long transport
of heating fluid and complex control of the DH sub-stations, as
mentioned by others [36,43]. From the modified Z-Scores, it
was most likely that the heating operators in the school set mode
between weekdays and weekends, and long holiday mode for
Summer vacation and Christmas week, without disturbing for

Fig. 6. Boxplots of energy use on weekdays, where a) DH use, b) electricity use. The red box refers to season 1 (week 1–13), the blue box refers to season 2 (week 14–26), the
green box refers to season 3 (week 27–39), and the pink box refers to season 4 (week 40–52). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. a) Weekly DH use 2015–2018, b) Modified Z-Score I of weekly DH use during 2015–2018.
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the short public holidays. This implied that the DH demand was
more likely prone to the outdoor temperature over the schedule
on short breaks.

4. Results on energy prediction

4.1. Results on ES curve models and prediction of DH profiles

The ES curve for DH demand is illustrated in Fig. 11, where the
CPT was found at 13 �C by giving the adequate piece-wise approx-
imation for an average school building. This CPT is in the range of
typical average national threshold temperatures for the current
European building stock, which vary between 10 and 15 �C [36].
In the area below 13 �C, it was the temperature-dependent DH
part. In Fig. 11, the red dots represent the stable working hour from
8 to 16 o’clock, the green dots represent the ramping hour at 6, 7

17, and 18 o’clock, and the blue dots represent the non-working
hour. The non-working hours included weekends and nights on
weekdays, since these two parts had close demand as mentioned
in Section 2.4. In the area above the CPT, the light blue dots only
covered a small share of the DH demand.

Fig. 11 shows the strong differences in energy demand among
the four parts, from dominating high to nearly negligible heating
use. The coefficients of Eqs. (3) and (4), and R2 of each part are
given in Table 2. In the outdoor temperature dependent area, only
the model of ramp period showed a bit weaker fitting and the other
two models were capable to predict the DH demand well. In the
area above CPT, the heating needs were trivial and had minor
impact on energy supply system. Fig. 12 is the logistic diagram
by giving the relevant coefficients under different conditions. Then
by inserting the weather data of TMY (see Section 2.5) and the
coeffects into Eqs. (3) and (4), the typical annual hourly DH load
can be predicted. The outdoor temperatures in the analysis were

Fig. 8. Modified Z-Score I of DH use regarding short holidays during 2015–2018.

Fig. 9. a) Weekly electricity use during 2015–2018, b) Modified Z-Score I of weekly electricity use during 2015–2018.
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between �18 and 26 �C, covering the cold design temperature of
several major Nordic cities, such as Stockholm (�18 �C), Copen-
hagen (�11 �C), Gothenburg (�17 �C), etc. [36].

Finally, the monitored and the predicted annual profiles for the
DH demand from 2015 to 2018 are compared in Fig. 13, where the
purple lines present for the monitored profiles and the green lines
present the predicted profiles. Meanwhile, the predicted typical
annual DH load profile in TMY is presented in Fig. 14. Owing to
the large dependence on the outdoor temperature, the heat load
fluctuated throughout the year with oscillation of peaks. The peak
load was around 48 W/m2 and the minimum load was close to
1 W/m2, and the total annual heat demand was 72 kW h/m2.

4.2. Prediction of electricity profiles

Fig. 15 shows the 4-year monitored and predicted annual pro-
files of electricity. The comparison plots were of the same color
pattern as in Fig. 13. There was one hour at around 2000-hour with

Fig. 10. Modified Z-Score I of electricity use regarding short holidays during 2015–2018.

Fig. 11. Energy signature curve models of DH demand.

Table 2
Coefficients of Eq.(3) and Eq.(4), and the corresponding R2.

Outdoor temperature dependent � 13 �C Outdoor
temperature less
dependent

Working hour Ramp period Off-working
hour

(13, 20 �C] >20 �C

p1 �1.2 �0.85 �0.58 �0.23 /
p2 18.3 13.4 9.5 5.6 1.2
R2 0.76 0.73 (;) 0.78 0.35 (;)
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a monitoring failure, and this was fixed in the prediction model.
There were 3.2–8.6% of predicted load differed from the monitored
load by 30–40% in the four years, and most of the predicted load
were close to the monitored load. The defined typical hourly pro-
files for school week, Easter week, short holiday, and the remaining
normal days (without the above special days) are shown in Fig. 16.

The predicted typical annual electricity load profile is presented
in Fig. 17, which showed the relatively stable pattern of electricity.
The peak load was around 18 W/m2 and the minimum load was
2 W/m2, and the total annual demand was 57 kWh/m2. The mini-
mum 2 or 3 W/m2 electricity load was mostly used for some plug-
in equipment and low ventilation in meeting the air quality
requirement during the unoccupied period. Additionally, it is seen
as a conventional custom in the Nordic region that a few lights in

the main entrance or hallways are kept on after a school is closed.
The peak load for electricity was only one-third of the peak DH
load (48 W/m2), and the total demand was 79% of the DH demand
(72 kWh/(m2�yr)). Hence, it remarkably reduced the strains of the
power grid for the buildings with DH comparing with the buildings
those were solely supplied with electricity. It was of significance
especially in the winter season when both heating and electricity
called for high energy supply. Moreover, by analyzing heat and
electricity profile separately, it presents the different requirements
for thermal and power grid in relation to sizing and production.

The total specific energy demand for the observed average
school was 129 kW h/(m2∙yr), with nearly 56% for heating needs.
The energy share for heating purpose was almost the same as
the average situation [13]. The total energy demand was slightly

Fig. 12. Logistic diagram of predicting DH demand under different conditions.

Fig. 13. Monitored vs. predicted DH profile during 2015–2018.
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lower than the annual average energy use in Norwegian schools
[13,44], but same as the mean value of Swedish schools according
to the Energy Statistics [24]. This predicted demand was also
approaching to the proposed nZEB energy performance target level
for Finnish educational buildings in FInZEB project, 104 kW h/
(m2∙yr) [45].

5. Validation results

5.1. Criteria results of MAPE, NMBE, and CV(RMSE)

After the regression analysis, the deviations between the pre-
dicted and observed profiles were examined through the verifica-
tion process with MAPE, NMBE, and CV(RMSE). If the verification
results are within the recommended range, it means the prediction
methods are reliable to be used for future modelling.

MAPE means the average error between the actual and pre-
dicted data to the actual data, and it is usually expressed in relative
numbers. The expression of MAPE is given as:

MAPE ¼ 1
n

Xn

i¼1

Ai � Fi

Ai

����
���� � 100% ð5Þ

where Ai is the actual and monitored value, Fi is the predicted
value, and n is the number of the observations. The absolute value
of MAPE avoids the possible offset among positive and negative
errors. MAPE is used as a common measure in the forecast of wide
areas such as finance, business, energy sectors and so on [18,46,47].
Table 3 lists the prediction quality when using MAPE criterion,
where the MAPE result is recommended less than 20% to verify an
accurate model [47].

NMBE calculates the total percentage of the error during the
evaluation period and this criterion is given as:

Fig. 14. Predicted typical annual DH load profile.

Fig. 15. Monitored vs. predicted electricity profile during 2015–2018.
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NMBE ¼ 1
n

Pn
i¼1 Ai � Fið Þ

A
� 100% ð6Þ

where A refers to the average value of the monitored data, the other
denotations are the same as for the MAPE. If a negative result is
obtained for the NMBE, it implies that the energy demand is over-
predicted, on the contrary, an under-prediction is made. The direc-
tionality of the NMBE shows the difference between the actual and
predicted use [46,48].

The Root Mean Squared Error (RMSE) assesses the mean
squared error, and CV(RMSE) normalizes the RMSE with the aver-
age energy demand during the evaluation time [46,48]. CV(RMSE)
is given as:

CVðRMSEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðAi � FiÞ2

q

A
� 100% ð7Þ

CV(RMSE) indicates whether the forecast model can reflect the
real load shape. The two metrics, NMBE and CV are commonly used
together to find out prediction performance. Under ASHRAE Guide-
line 14, the hourly criteria of NMBE and CV are limited within ± 10%
and 30% respectively for verifying a satisfying model [38,39].

As listed in Table 4, all the MAPE results regarding the electric-
ity demand were less than 10%, NMBE were with ±1%, and CV were
less than 20%, which meant the forecast of the electricity profile
was of high accuracy. Accordingly, it was reliable to estimate the
future profile for electricity by extrapolating the regression results
with adjustment of the calendar considering such as school weeks,
public holidays, etc., as mentioned in Section 3.2. However, from
the validation results on the DH profile that MAPEs were higher
than 20% and CV in 2018 was slightly beyond the ASHRAE criterion,
it can be said that the ES curve model was to some extent convinc-
ing but not very accurate. Further validation was thus needed for
the DH profile.

5.2. Discretization results for PAA and SAX

Since the prediction of the electricity profile passed via all the
three quality criteria, only the predicted DH profile was further
checked with piecewise aggregate approximation (PAA) and sym-
bolic aggregate approximation (SAX). In this study, weekdays from
the predicted typical annual DH profile were extracted to compare
with the 4-year monitored weekdays on Winter, Spring and
Autumn, and Summer, respectively. Each weekday (24-h) was trea-
ted as a time-series.

First, Fig. 18 illustrates the comparison of the daily DH profiles
during weekdays between the predicted profile (shown in Fig. 14)
and the 4-year monitored profiles. In Fig. 18, the red lines show the
Winter season, the greens line show the Spring and Autumn sea-
son, and the blue lines show the Summer season. In addition, the
thick lines depict the predicted profiles, while the thin dashed lines
describe the monitored profiles. It was noted that there was a peak

Fig. 16. Typical hourly profiles for school week, Easter week, short holiday, and the normal days without these special days; for easy reading, the profiles for Easter, autumn
week, and one-day holiday have the same Y-axis title of spring week.

Fig. 17. Predicted typical annual electricity load profile.

Table 3
MAPE criterion of evaluating forecast quality.

MAPE (%) Forecast quality

<10 Highly accurate forecasting
10–20 Good forecasting
20–50 Reasonable forecasting
>50 Inaccurate forecasting
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load arising at 9 o’clock. After manually adding 2 W/m2 at 9 o’clock
during the heating season (thick dotted line), the predicted profile
was seen closer to the observed one for the Winter season. The
peak heat load at 9 o’clock was also seen in the average weekly
heat load patterns of public administration buildings in [49]. How-
ever, since the outdoor temperature in the measured years and
TMY were not same, the predicted profile was not anticipated to
be the same as the measured ones.

Second, during the approximation process of PAA, the predicted
data in the time-series were initially Z-normalized with Ci�l

r , where
m and r referred to the mean value and the standard deviation of
the time-series, respectively. More specifically, in this study the m
andrwere the daily average DH load and daily standard deviation,
respectively; and the daily DH load were normalized to [�2, 2]. It is
an essential step allowing the mining algorithm to focus on the
patterns’ similarities/dissimilarities instead of on the data ampli-
tudes in the time-series. This normalization step is different from
the modified Z-score in Section 2.3. Next, the Z normalized time-
series C ¼ C1;C2; � � � ;Cn, proceeded through the PAA. PAA is one
of the algorithms that is designed to reduce the dimensionality
of the raw time-series, and the basic idea is to split them into
equally sized intervals [50,51]. Each interval is computed by aver-
aging the values within the interval. The time-series C is repre-
sented by a dimensionally reduced new series as
C ¼ C1;C2; � � � ; Cwðw � nÞ, w is the number of data in the new ser-
ies. Theoretically, if w is close to n, it has a high accuracy of data
representation, however, it would lose the meaning of dimension-

ality reduction from the PAA. On the contrary, if w is very small
with for example only one or two intervals, it would hardly make
a sounding representation of the original dataset. Typically, it has
w � n. The ith element of new time-series C, or say the mean value
of the data falling within the ith interval, is calculated as Eq.(8)
[51]:

Ci ¼ w
n

Xn
wi

j¼n
w i�1ð Þþ1

Cj ð8Þ

Accordingly, in this study the 24-hour data (n) of each weekday
was split into 8 (w) equally sized segments in the new time-series.
The representation was aimed at approximating the raw 24-hour
time-series by a linear combination of 8 box functions.

Finally, after deciding the value of w that suits the dataset, the
PAA coefficients are assigned with a string representation graph
through symbolization process of SAX. As recommended in litera-
ture [51], three breakpoints (�0.67, 0, 0.67) were chosen here. The
PAA coefficients for those below the �0.67 were symbolized with
the string ‘‘a”, the coefficients between �0.67 and 0 were with
‘‘b”, the coefficients between 0 and 0.67 were with ‘‘c”, and those
higher than 0.67 were with ‘‘d”. In each interval, if the compared
data from different datasets have the same SAX strings, they may
be clustered as the same group and the PAA coefficients do not
have to be exactly same.

The comparison of the PAA coefficients between the predicted
and the monitored DH daily profiles is shown in Fig. 19, and the
corresponding SAX symbols are listed in Table 5. The PAA coeffi-
cients and the SAX symbols of the predicted profile were calculated
based on the thick dotted line in Fig. 18. In the SAX Table, those had
different SAX strings within the same PAA interval were marked
with the italic font, implying they cannot be clustered as the same
group. It can be concluded that the predicted and monitored load
profile for the whole Winter had very high similarity, since all
the eight intervals between predicted and monitored load profile
on each weekday had same clustering strings. And Winter also
consumed most of the heating energy. However, the similarities
for the other seasons were not as strong as Winter, but there were
still more than half belonged to the same group within the same

Table 4
Evaluation results of the energy forecast by three criteria.

Year prediction of DH load profile prediction of electricity load
profile

MAPE
(%)

NMBE
(%)

CV(RMSE)
(%)

MAPE
(%)

NMBE
(%)

CV(RMSE)
(%)

2015 20.2 2.9 25.7 8.8 0.9 16.0
2016 23.2 �1.4 26.7 6.8 0.2 10.6
2017 24.0 �2.4 26.9 6.6 �0.3 11.7
2018 29.6 �4.9 30.2 (") 7.5 �0.4 10.1

Fig. 18. Comparison between the predicted and monitored DH profiles.
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interval, (23 + 29) out of (40 + 40). The relatively large deviation
and error during the Spring and Autumn seasons might be
explained by the changing seasons with unstable outdoor temper-
atures, which might cause larger temperature differences. From
the approximation of the PAA and the SAX symbol results, the pre-
dicted DH profile for the average school was proved convincing and
representative. Besides the advantages of using PAA for time-series
discretization and amplitude normalization, it also enabled us to
present seasonal load patterns and shape comparisons through
extracting the required day types. For example, from the trans-
ferred SAX strings, it shows the daily heat load varies in all the sea-
sons with peak intervals ‘‘d”, valley intervals ‘‘a”, and transition
intervals ‘‘b” and ‘‘c”, even when the heat load was low in Summer.
Miller et al. praised the benefits of the PAA and SAX, which may
accelerate clustering building performance for building commis-
sioning and fault tracking in response to the rapid increase of
building data amount [52].

6. Application and limitations

The suggested analysis method for the ES curves and identified
load profiles could be used as a reference example for stating
energy use of other building types in the Nordic climate. An artifi-
cial urban area may be aggregated and synthesized by involving

different building types. The method may be used as input data
for modelling energy supply optimization.

Electricity has been traded freely in the European market after
the regulation being removed since the 1990s, and the CO2 emis-
sion of electricity counts on market production. To estimate the
annual CO2 emission and economic cost of electricity use in an
urban area, there are two approaches to follow. The first one is
to use the annual energy demand multiplied with the annual aver-
age CO2 factor and average electricity price. For example, within
the Nordic region, the CO2 factor is approximately 110 g CO2/
kWh and the number can be higher in the wider European region
when fossil fuels are involved [53]. The second approach is to
adopt the hourly energy demand multiplied with the hourly CO2

factor and price in the spot market. The real-time data of the CO2

factor of electricity and spot price can be retrieved from electric-
ityMap and Nord Pool separately [54,55]. The benefit of employing
the hourly energy demand with spot market information is that it
can better locate the critical impacts from the peak load and define
the energy-saving potentials, for example how to perform load
shedding and energy storage, and transition to higher DH coverage
system and so on.

Due to the length of this paper, only the most representative
load profiles for the average Nordic school were identified, without
separating the buildings with typical high energy–density profiles
and typical low energy–density profiles. In addition, the evaluation

Fig. 19. PAA coefficients results of the comparison related to Fig. 18.

Table 5
PAA coefficients results in Fig. 19 transferred into SAX symbols.

weekday Winter Spring& Autumn Summer

Mon predicted a b d d d b a a b c d d c a a a b d d d b a a a
monitored a b d d d b a a a b d d c b a a b c d d c a a a

Tue predicted a b d d d b a a b c d d b a a a b d d c b a a a
monitored a b d d d b a a a b d d c b a a b c d d c a a a

Wed predicted a b d d d b a a b c d d c a a a b d d d b a a a
monitored a b d d d b a a a b d d c b a a b c d d c b a a

Thur predicted a b d d d b a a b c d d c a a a b d d d b a a a
monitored a b d d d b a a a b d d c b a a b c d d c a a a

Fri predicted a b d d d b a a b c d d c a a b b c d d b a a a
monitored a b d d d b a a a b d d c b a a b c d d c a a a
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process was made by using the modified average data that were
extracted for the regression analysis. It may also be necessary to
use the current statistically typical profiles and individual build-
ings to compare and reflect the energy use trend and load scales.
And the selection of the sample individual buildings shall be care-
fully considered with regards to sample sizes, representativeness,
etc.

Although the proposed approach is robust and transferable, the
model accuracies for annual heat load profiles shall be further
improved. More advanced statistical based techniques and artifi-
cial intelligence based prediction techniques shall be selected.
These AI methods are mostly developed for short term load predic-
tion, it is still worthwhile to extrapolate the time-series prediction
to yearly ones.

7. Conclusions

This study proposed a systematic approach to identify the typ-
ical energy load profiles of the average Nordic school connected to
the DH system, which was made up of the modified average load of
the 40 schools. The observed buildings involved different building
ages, areas, energy labelling levels, and operation in the Nordic
climate.

The work was done through five steps, including data collection
and processing, detection of special energy use period, prediction
of annual DH and electricity load profiles, and validation process.
The main findings are the following:

	 The selected modified Z-Score may point out the special energy
use periods and show the energy demand trend. The electric
appliances in the schools might be concluded with reasonably
fast responses by following the attendance. While the DH
demand mainly followed the outdoor temperature and the daily
work schedule, with a slow control response to the short holi-
days, which caused part of heating energy being wasted.

	 The ES curve models combining temperature moving average
and segmented piece-wise linear regression gave satisfying
descriptive results.

	 The identified specific load profiles may present the current
energy use of schools in the Nordic climate. The predicted peak
load of DH was 48 W/m2 and the annual demand was 72 kWh/
m2. The predicted peak load of electricity was 18 W/m2 and the
annual demand was 57 kWh/m2. Accordingly, the buildings
with DH may largely reduce the power grid strains.

	 The symbolization cluster methods of PAA and SAX were effi-
cient and robust for validating building energy prediction.

	 The suggested approach does not require much time-consumed
computation and can be efficiently applied to other public
buildings under the similar climate. This benefits public admin-
istrations to have a better understanding of energy needs for
different building functions and project future demand changes
by varying penetration of various building types.

In the future work, the authors are going to synthesize an arti-
ficial urban area by aggregating representative load profiles for dif-
ferent building types, which is to be used as input for modelling
and optimization of the energy system. Advanced statistical and

Table A1
Results of modified Z-Score of unusual weekly DH use.

Year No. in figure Week no. Remarks |Modified Z-Score| �3.5 (Y/N)

2016 1 1 Coldest temp was �17.3 �C Y
2 2 Coldest temp was �15 �C Y
3 45 Coldest temp was �10.9 �C Y

2018 4 9 Coldest temp was �17.5 �C Y
5 12 Y
6 13 Easter; Coldest temp was �11.1 �C Y
7 39 Y

Table A2
Results of modified Z-Score of DH use regarding short holidays 2015–2018.

Year No. in figure Date Week no. Holiday (Y/N) |Modified Z-Score|�3.5 (Y/N) Remarks

2015 1 4.6 W15 Y Y Easter
2 4.10 W15 N Y
3 5.1 W18 Y N (but local minimum) Labor Day
4 5.14 W20 Y N Ascension Day
5 5.25 W22 Y N Whit Monday
6 5.29 W22 N Y

2016 1 3.28 W13 Y N (but local minimum) Easter
2 5.5 W18 Y N Ascension Day
3 5.16 W20 Y N Whit Monday
4 5.17 W20 Y N Constitution Day

2017 1 4.17 W16 Y N (but local minimum) Easter
2 5.1 W18 Y N Labor Day
3 5.5 W18 N N (but local minimum)
4 5.17 W20 Y N (but local minimum) Constitution Day
5 5.25 W21 Y N (but local minimum) Ascension Day
6 6.5 W23 Y Y Whit Monday, abnormally high demand

2018 1 4.2 W14 Y N (but local minimum) Easter
2 5.1 W18 Y N Labor Day
3 5.10 W19 Y N Ascension Day
4 5.14 W20 N Y Abnormally low demand
5 5.17 W20 Y N Constitution Day
6 5.21 W21 Y N (but local minimum) Whit Monday
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artificial intelligence based techniques shall be selected and per-
formed to enhance the accuracies of the load profiles. Moreover,
in order to make more precise energy planning, on the trend of
more efficient buildings into the market, which is dominated by
the medium-aged buildings, it is needed to make dynamic building
stock forecast and separate the representative load profiles based
on building energy density.
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Appendix

Table A1–A4 are listed in Appendix.

Table A3
Results of modified Z-Score of unusual weekly electricity use.

Year No. in figure Week no. Remarks |Modified Z-Score|�3.5 (Y/N)

2018 1 1 Involve holiday Y
2015–2018 2 8 School week N in 2015 (local minimum); Y
2016 3 12 Easter Y
2018 4 13 Easter Y
2015, 2016 5 14 in 2015; 13 in 2016 Easter Y
2017 6 15 Easter N (local minimum)
2015–2018 7 41 School week N in 2015 (local minimum); Y
2015–2018 8 53 in 2015; 52 Christmas N in 2015 (local minimum); Y

Table A4
Results of modified Z-Score of electricity use regarding short holidays during 2015–2018.

Year No. in figure Date Week
no.

Holiday (Y/N) |Modified Z-Score|�3.5 (Y/N) Remarks

2015 1 2.16–2.20 W8 Y Y school week
2 3.30–4.3

6.29–7.3 W14; W27 Y Y Easter; summer
vacation

3 4.6 W15 Y Y Easter
4 4.13, 4.14 W16 N Y Abnormally higher use
5 5.1 W18 Y N (but local minimum) Labor Day
6 5.14 W20 Y Y Ascension Day
7 5.15 W20 N N (but local minimum) After holiday 5.14, some schools might have

reduced school hour
8 5.25 W22 Y Y Whit Monday

2016 1 2.22–2.26 W8 Y 2.22–2.25 Y; 2.26 N (but local
minimum)

school week

2 3.21–3.25 W12 Y Y Easter
3 3.28 W13 Y Y Easter
4 5.5 W18 Y Y Ascension Day
5 5.6 W18 N N (but local minimum) After holiday 5.5, some schools might have

reduced school hour
6 5.16 W20 Y Y Whit Monday
7 5.17 W20 Y N (but local minimum) Constitution Day

2017 1 4.11–4.14 W15 Y N (but local minimum) Easter
2 4.17 W16 Y N (but local minimum) Easter
3 5.1 W18 Y N (but local minimum) Labor Day
4 5.17 W20 Y N (but local minimum) Constitution Day
5 5.25 W21 Y N (but local minimum) Ascension Day
6 5.26 W21 N N (but local minimum) After holiday 5.25, some schools might have

reduced school hour
7 6.5 W23 Y N (but local minimum) Whit Monday

2018 1 1.1 W1 Y Y
2 2.19, 2.20 W8 Y Y school week
3 3.26, 3.27 W13 Y Y Easter
4 4.2 W14 Y Y Easter
5 5.1 W18 Y Y Labor Day
6 5.10 W19 Y N (but local minimum) Ascension Day
7 5.17 W20 Y N (but local minimum) Constitution Day
8 5.21 W21 Y Y Whit Monday
9 6.26 W26 Y Y summer vacation
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A B S T R A C T   

The COVID-19 pandemic has caused significant impacts on energy demand in Norway and many countries. It is 
important to improve the existing knowledge of building operation under unforeseeable disturbances. This study 
aimed to identify the potential problems of electricity use patterns for four building types with electric heating: 
kindergartens, schools, apartments, and townhouses. By comparing the electricity profiles for the lockdown 
period 2020 with the normal condition in previous years, it showed that the electricity demand in the two 
educational institutions was almost on the same level, while there were apparent changes for the residential 
buildings. To estimate the energy saving potential and increase, three scenarios were developed considering 
different operation strategies: Scenario 1 considered operation under normal settings; Scenario 2 considered 
operation of educational buildings under nighttime and weekend settings; Scenario 3 considered operation of 
residential buildings under work-at-home conditions. Energy signature curve models were built to predict yearly 
demand. The results showed that the electricity demand might be reduced by one-third in educational buildings 
by following Scenario 2. Meanwhile, the electricity density of small apartment varied more significant than the 
townhouse, causing an electricity increase of 27% for the apartment and 1.3% for the townhouse under Scenario 
3.   

1. Introduction 

Since the World Health Organization (WHO) announced COVID-19 
disease as the pandemic in March 2020, many countries have under-
taken restrictive measures to tackle the pandemic and slow down the 
spread of the coronavirus [1]. Due to the partial or full lockdown 
imposed on public places, commercial, and industrial schemes, building 
occupancy schedules have been adapted into remote work. The drastic 
changes have led to significant impacts on energy demand and put 
pressure on energy sector management and energy market. 

Energy profiles are powerful tools in energy system planning and 
management. They reflect the requirements of total demand and energy 
use patterns of the customers. The COVID-19 related demand variation 
and corresponding energy load profiles have been analyzed on different 
grid levels and scales in several publications. 

In the analysis of electricity use trends during the pandemic in 
Ontario province, Canada, it is found a 14% of electricity decline with a 

considerable CO2 reduction in April 2020 [2]. The hourly-based load 
curve shows the weekly highest electricity demands were moved from 
the latter part of the week to the earlier part. Meanwhile, the morning 
peak loads, and the evening peak loads were avoided, which yielded a 
noticeable flattened curve [2]. Peak load shift is also reported in other 
studies [3–6]. From the analysis of electricity data covering millions of 
customers in Illinois, USA, the results show that weekday load profiles 
for dwellings became more likely to weekend profiles [3]. Through 
extrapolation of the findings on total load profiles, COVID-19 related 
profiles may change long-term workplace arrangements and further 
influence peak hourly loads. In a study of a Canadian social housing 
building during the 4-month of lockdown, it was found out that on 
average the daily electricity use was slightly increased by 2% while the 
daily hot water use was slightly decreased by 3% [4]. The biggest im-
pacts on energy use were mostly seen during the first two months (April 
and May) of the lockdown period, for example, in April the electricity 
use increased by 46% and the hot water increased by 103% during the 
middle of the day [4]. An online survey to explore the impacts of 
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California’s Shelter-in-place order on energy activities in the residential 
buildings under the confinement measures was conducted in [5] and the 
responses indicate an increase of energy demand from 10 to 15 o’clock, 
which is also related to the characteristics of respondent and dwelling. 
The main findings present the relationship between such COVID-19 
related changes and intention to adopt smart home technologies, 
which may benefit household practices in the future [5]. The Brazilian 
power system and its four subsystems before and after adopting the 
distancing measures were analyzed in [6]. The comparison results of the 
weekly electricity profiles and the weekly change percentages show a 
remarkable reduction of energy demand. And the energy use trends of 
the subsystems were observed with different dynamics depending on the 
geographic locations. 

The energy use and energy profiles for certain building types were 
investigated in [7–10]. The impacts on energy use in residential aged 
care facilities were analyzed in [7]. From the comparison of electricity 
peak demand and profiles experiencing lockdown in four Australian 
climatic zones, the energy use and peak loads are shown greatly climatic 
related. Another study was performed on one energy-intensive labora-
tory building at a university campus [8]. After the lockdown, it was 
found that the unregulated electricity use in the laboratory reduced the 
power demand by half. The authors suggest a communication with the 
building managers about the typical building function and the actions 
taken during lockdown [8]. Four simulation scenarios of energy use in a 
typical Serbian household were analyzed in [9]: S1 – reference case, S2 – 
mild protection measures, S3 – semi-quarantine measures, S4 – complete 
quarantine, to assess the link between user behavior and energy source 
uses. By using the occupancy profiles in the building as input, the 
simulation models show that there was an increase in heating and 
electricity use during the pandemic due to the increased user presence. 
Compared with the normal conditions, the increase of heating and 
electricity use for the scenario-based models could be 31-32% and 
54-58% respectively [9]. From the energy analysis in a southern Bra-
zilian city, Florianópolis, during the lockdown [10], it was observed that 
the electricity use of administrative buildings, elementary schools, and 
nursery schools was reduced by 38.6%, 50.3%, and 50.4%, respectively, 
comparing with the same period of 2018-2019. These almost unoccu-
pied municipal buildings do require considerable energy demand with 
nearly half of the energy being used regardless of the occupants’ pres-
ence [10]. 

The extent of total energy demand influence from the various 
restrictive approaches was examined in [11]. The investigation contains 
four European countries with strict containment measures and two Eu-
ropean countries with less restrictive ones. By comparing the total 
electricity demand depending on the residents’ activities, it shows that 
there was a considerable electricity demand decline in the countries 
with severe lockdown measures [11]. These sudden changes of energy 
demand have influenced energy production and utility company’s in-
vestment plans. Regarding the energy supply side, the following 
research has worked on the problems on energy production, economy, 
and security experiencing the confinement measures. 

The power sector in Southeast Asia was examined in [12] and the 
study finds out the restrictive action has aggravated the vulnerabilities 
of their current power system. It highlights the significance of buildings 
as a resilient system in this region. A data-driven analysis was performed 
on the U.S. bulk power systems and electricity markets during the 
pandemic in [13]. The power sector was severely affected from March to 
May 2020. From the market-specific study, the northeast region suffered 
the most severe impacts on power operation and economic interests. 
Meanwhile, the authors believe more attention should be paid to 
possible shocks and disproportionate impacts between energy com-
panies and consumers. From a thorough study of global power system 
operation [14], many countries have suffered considerable revenue loss 
due to a reduction of ca.8 to 30% of total electricity demand. The sub-
stantial decrease mainly came from the temporary halt of industrial, 
commercial, and public transportation activities. Power generation from 
the conventional nuclear power was affected, meanwhile it was noticed 
that the contribution from renewable energy increased by 3.5- 72% 
depending on the countries [14]. In addition to the economic problems 
of conventional utility companies, the authors in [15] underscore the 
challenges on load forecasting and required flexibility because of the 
changed balance and increased uncertainty. 

The COVID-19 related indoor air quality issues have been studied as 
well. The indoor CO2 concentration in residential buildings experiencing 
the home office regime was investigated in [16]. It shows that the 
adoption of a proper aeration process can minimize the increase of 
heating energy caused by changing the room function [16]. Another 
study shows that the mean daily PM2.5 concentration rose by approxi-
mately 12% and the mean volatile organic compound concentration by 
37% to 559% comparing with the condition before and during the 
COVID-19 lockdown [17]. 

The literature review shows that there is a number of investigations 
regarding COVID-19 related energy use in non-cold climate region. 
However, the real data analysis and scenario-based modelling of electric 
heating use are missing for buildings in Norway and the similar climate 
zones. Therefore, the main objective of this study is to investigate the 
energy use behavior in Norwegian buildings with electric heating during 
the COVID-19 pandemic. The reason to study electric heating in build-
ings is that the country remains highly dependent on electricity. Ac-
cording to the statistics [18], nearly three quarters of Norwegian 
households are using electricity for heating purposes in the form of 
either electric radiator, electric floor heating, air source heat pump, or 
central electric heating. In the service sector, electricity accounts for 
approximately 77% of total energy use by supplying heating demand at 
a large extent. Moreover, within the Nordic region, although heat pumps 
are gradually replacing direct electric heating, the electricity demand in 
the residential sector has been increasing over the last decade, according 
to the report from the Nordic Energy Research [19]. 

As an important section of non-residential buildings at a municipal 
level, kindergartens and schools are commonly dispersedly located in 
cities or towns. Statistically, costs for building operation management 
become the second biggest expenditure of educational institutions, only 
beneath salaries of employees [20]. Building operators are therefore 
responsible for maintaining the required indoor environment in 
energy-efficient ways. 

By complying with the Norwegian national lockdown regime 

Nomenclature 

ASHRAE American Society of Heating, Refrigerating and Air- 
Conditioning Engineers 

BAS building automation systems 
DHW domestic hot water 
ED Euclidean distance 
ES curve energy signature curve 
GESD generalized extreme studentized deviate 
MAPE mean absolute percentage error 
PCC Pearson Correlation Coefficient 
SH space heating 
TMY typical meteorological year 
WD weekday 
WE weekend 
el electricity 
n number of observations 
R2 coefficient of determination 
S standard deviation 
tot outdoor temperature 
yr year 
€ currency of Euro  
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initiated in March till May 2020, the teaching activities on campus were 
severely interrupted and transferred into remote learning, meanwhile 
many employees followed work-at-home rules. Therefore, this study 
focuses on the educational buildings and residential buildings in Norway 
and similar climatic regions. Concerning both for personal interests and 
municipality’s public expenses, the secondary objective is to estimate 
the energy demand and economic impacts on the buildings with electric 
heating during the lockdown and future unforeseeable disturbances, 
which may also have influences on local energy planning. 

To fulfill the research purposes, the three questions shall be 
answered: 1) whether the educational buildings were managed in an 
energy-efficient way during the temporary closure? 2) are there any 
energy and economic saving potentials in the educational buildings that 
might have been neglected and how much saving potentials may be 
reached? 3) how much electricity and economic impacts influenced the 
residential buildings with different household size and family members? 

The novel contributions of this study may be summarized as follows. 
In our analysis, we utilized the measured electricity use data in real 
buildings during the lockdown and normal time. In such a way, the 
analysis was based on statistics rather than certain assumptions. It was 
found out that the common assumptions about energy use during 
COVID-lockdown in publications for public buildings were not always 
true and the household scale affected energy use in these buildings. 
Three scenario-based models were proposed, and they were used to 
discuss their impacts on energy management and local energy planning 
by varying building type ratio. 

The rest of the paper is organized as the following. Section 2 in-
troduces the study methods including the data information of the 
observed buildings, and the description of the three scenarios that were 
used to establish the energy models. The main results of the study are 
presented in Section 3. The electricity profiles under the three scenarios 
were analyzed and compared based on the measured data. The regres-
sion models’ accuracies were evaluated by ASHRAE criteria. An eco-
nomic analysis was further carried out to compare the annual electricity 
costs for the scenario-based models. Due to the different use character-
istics between the educational buildings and the residential buildings, 

the feasible energy-saving strategies were proposed for the former ones, 
and the impacts on increased bill were studied for the latter ones. Lastly, 
the limitations, future work, and conclusions are discussed and sum-
marized in Section 4 and Section 5. 

2. Methodology 

The outline of the main steps for this study is illustrated in Figure 1. 
Section 2.1 collects the building information. Section 2.2 – Section 2.4 
explain the three scenarios regarding the different building operation 
strategies. In Section 2.5, the method for the economic analysis is 
introduced by considering the three levels of electricity spot price. 
Section 2.6 introduces the method for assessing the consequence on 
local energy planning. 

2.1. Description of the observed buildings 

During the lockdown, the educational buildings were supposed to be 
closed with minimum energy use, meanwhile the residential buildings 
were supposed to have higher energy demand under work-at-home 
conditions. To answer the above research questions, 14 kindergartens, 
eight schools, one apartment, and one residential house located in 
Trondheim, Norway, were analyzed in this study. The building areas of 
the kindergartens are between 279 and 1 143 m2, while those of the 
schools are between 2 157 and 5 443 m2, of which six are primary 
schools, one is a middle school, and one is a mixed one. All of them use 
electricity as their main building energy supply source, for instance, 
space heating (SH), domestic hot water (DHW), ventilation, and other 
electric appliances. About the space heating demand, there are electric 
panel heaters and ventilation heating in the kindergartens and schools. 
The maintenance and operation of these educational institutions are 
handled by Trondheim Municipality. The energy data were retrieved 
from the municipality’s energy monitoring platform [21]. The historical 
annual demands of these observed buildings were close to the local 
average level. Therefore, these buildings may be representative to pre-
sent the energy use changes and variations during the pandemic period. 
The residential house is a two-story townhouse with a floor area of 133 
m2, where accommodates a family of two adults and two pupils. The 
building is supplied by natural ventilation, and heated by a radiant wood 
stove, three electric radiators, and supplemented by an air source heat 
pump. In addition to the electric assistant heating, electricity is used for 
DHW, lighting, and other appliances. The apartment with natural 
ventilation has a floor area of 40 m2, where accommodates an adult. It 
uses electricity for radiator (for SH), DHW, and other appliances. The 
electricity data of the two residential buildings were voluntarily shared 

Figure 1. The workflow of the analysis of electricity use  

Table 1 
List of building information.  

Building type Floor area (m2) Data duration (Y/M/D) 

Kindergarten 279- 1 143 2018.01.01- 2020.12.31 
School 2 157- 5 443 2018.01.01- 2020.12.31 
Apartment 40 2018.10.01- 2020.12.31 
Townhouse 133 2018.10.01- 2020.12.31  
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by the dwellers who retrieved them from the local power grid supplier 
Tensio [22]. All these observed buildings have no submeter. 

Weather conditions were considered in the energy analysis, and the 
historical weather data were obtained from the local meteorological 
station [23]. The electricity use of the educational buildings was from 
the beginning of 2018 to the end of 2020, while the electricity use of the 
two residential buildings was from October 2018 to the end of 2020 due 
to the upgrade into smart meter in September 2018. The data informa-
tion is briefly explained in Table 1. The analysis was performed on 
average specific electricity use (kWhel/ m2), to define the representative 
electricity use concerning buildings with different characteristics. 
MATLAB was used for the data analyses. 

2.2. Scenario 1 - Electricity demand based on normal operation mode 

Scenario 1 considered the electricity use under normal conditions 
without the disturbance from lockdown or other temporary disruption 
from 2018 to 2020 except March - May 2020. In the educational 
buildings, there is a remarkable difference in electricity demand be-
tween daytime on weekdays and off-work hours, which is mainly caused 
by the different campus activities and attendance between the two time 
slots. Whereas, the electricity use pattern in residential buildings is 
unlike kindergartens and schools. It generally has low demand during 
working hours and high demand when dwellers are at home. 

As addressed before, large proportion of electricity is used for heat-
ing purposes in the electric-heated buildings in the cold climate areas. 
Accordingly, outdoor temperature (tot) may be regarded as the key 
predictor to determine the related heating electricity use in buildings 
under different operation strategies. To find the relationship between 
the electricity demand and outdoor temperature, energy signature curve 
(ES curve) was used in the study. ES curve has been widely utilized in 
building energy planning by researchers and engineers at all levels 
[24–26]. ES curve generally consists of two parts, the temperature 
dependent part and temperature independent part. They are divided by 
changing point temperature (CPT) or heating effective temperature. The 
formulas for the ES curve may be expressed as: 

If tot ≤ CPT, P(tot) = p1⋅tot + p2 + ε (1)  

If tot > CPT, P(tot) = p1⋅tot + p2 + ε; ≈ p2 (2) 

In Eqs.(1) and (2), p1 and p2 are the coefficients of each ES curve 
model, and ε is the residual error. The heating demand follows the linear 

growth under the slope of p1. Besides the outdoor temperature, the work 
schedules also decide the operation settings and affect the electricity 
use. In the educational buildings, the ES curves were made for weekdays 
and weekends, separately. Concerning the possible random operation of 
electric appliances, which may cause irregular electricity use, the ES 
curves for the residential buildings were defined based on average 
weekly base. 

The importance of using typical meteorological year (TMY) to esti-
mate building energy performance from one single year analysis is 
highlighted in [27]. The outdoor temperature is made based on the most 
“representative” conditions over the last decade. In this analysis, TMY 
data 2007- 2016 of Trondheim were retrieved from the European Union 
website [28]. Combining the acquired energy signature under Scenario 
1, the TMY data were applied to obtain the electricity use of the typical 
year. This scenario was applied to both the educational buildings and the 
residential buildings. 

2.3. Scenario 2 - Electricity demand based on night and weekend 
operation mode in the educational buildings 

This scenario referred to the energy-saving mode for a limited 
operation of buildings during a temporary closure. It was assumed that 
building management sector switched the energy supply operation to 
the settings of low demands during normal weekdays’ nighttime and 
weekend to save energy. In the educational buildings, the electricity use 
was usually observed at minimum levels to maintain the acceptable 
indoor temperatures and air quality during weekends and off-work 
hours on weekdays, with the almost zero attendance. Similar as the 
study in [11], the weekday demand profiles for educational buildings 
during the pandemic were assumed to be identical as the weekend 
profiles of the reference week in 2019. Thus, Scenario 2 was only applied 
to the educational buildings in this study. 

The hypothesis was made by considering the guidance of building 
operation in epidemic situations by the American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE). It highlights 
that buildings equipped with or without a building automation systems 
(BAS) are not recommended to completely shut down the HVAC systems 
during the temporary closure or no occupancy [29]. The buildings shall 
be maintained “within a reasonable range of temperature and humidity” 
by setting the HVAC systems with relaxed temperature and humidity. 

To find the electricity characteristics for Scenario 2, the ES curve was 
developed based on the hourly electricity use during the normal 

Figure 2. Electricity spot price vs Outdoor temperature, and Correlation of electricity spot price in 2016- 2020  
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weekdays’ nighttime and weekends. After that, by following the similar 
way as Scenario 1, the electricity use of the TMY under Scenario 2 was 
acquired. It enables us to see the possible electricity reduction that may 
be achieved in the educational buildings when the building energy 
supply system runs at a low demand level. 

2.4. Scenario 3 - Electricity demand based on lockdown operation mode 
in the residential buildings 

When the rule of home office was in effect, the hypothesis of elec-
tricity use in the residential buildings might be higher than normal sit-
uation, especially during daytime since the work schedules of dwellers 
changed, similar as in the Canadian residential community [4]. Scenario 
3 was to find the increased electricity use caused by the influence from 
lockdown in the residential buildings, and to study energy robustness by 
dwelling scale. 

The ES curve was established based on the average weekly electricity 
use from March to May 2020. The electricity characteristics for this 
scenario were extrapolated to the whole typical year by using the co-
efficients acquired from this period. Then a yearly electricity use was 
obtained by using the similar methods for Scenario 1 and Scenario 2. 

2.5. Economic impact assessment 

In Norway, the specific electricity price contains two parts, the fixed 
grid rent price (fi) and the variable price (vi), see Eq.(3). This pricing 
mode is commonly adopted in many European countries [30, 31]. fi 
refers to the fee and tax when using the grid, which is generally deter-
mined by the local authority and the value is normally constant within a 
certain amount of time, while vi varies a lot based on the demand and 
supply in the power market. 

pi = fi + vi (3) 

Using the spot price as reference, each energy company charges with 
different price packages concerning their own interests. To calculate the 
annual electricity costs in this study, the fixed price was retrieved from 
Statistic Norway [18], and the variable price was considered with the 
spot price of Trondheim from NordPool (2016- 2020) [30]. 

The five-year spot price versus the outdoor temperature is plotted in 
Figure 2, where the orange dots represent the main price groups and the 
blue dots represent the extreme price groups (very high and low spot 
price). These extreme data points were separated from the main clouds 
by the method of Generalized extreme studentized deviate (GESD). The 

explanation and application of GESD can be found in [32, 33]. More-
over, as illustrated in the correlation heatmap at the bottom right in 
Figure 2, the five years had weak relation with each other. Most of the 
two-year correlation factors were smaller than 0.3. In Figure 3, it com-
pares the annual spot price profile from 2016- 2020, showing the 
high-price level in 2018 in yellow line, the low-price level in 2020 in 
green line, and the others in between. Both the heat map and the annual 
spot price profiles were adjusted with the same starting day of the five 
years. As shown in Figure 2 and Figure 3, it is rather difficult to define a 
simple mathematical method explaining the variations of the five-year 
spot prices. Regarding the complex prediction of electricity prices, 
some examples are shown in [34–36]. Thus, in this study, three price 
cases were made. The spot price of 2018 was treated as the case of 
highest price level, that of 2020 for the case as the lowest price level, and 
the median values of the rest of the years as the case of moderate price 
level. The thick blue line is for the median values as shown in Figure 3. It 
was assumed that these three price levels were capable to represent the 
electricity market situation in recent years. 

By combining the annual electricity profiles of a TMY and the three 
price levels, it allows us to calculate the annual electricity costs for the 
observed buildings regarding the three operation scenarios and further 
compared the costs. 

2.6. Aggregation and consequence on energy planning 

Local energy planning may be improved by analyzing the energy use 
during critical and special circumstances such as lockdown. An imagi-
nary community could be assumed to be made up of one kindergarten, 
one school, and one residential area composed of 40% of apartment and 
60% of townhouse. By aggregating the annual specific electricity de-
mand for the four building types in a normal year (Scenario 1) and 
lockdown year (Scenario 2 and Scenario 3), the annual total electricity 
use for this community was calculated as 

Enor yr = enor yr,kind⋅Akind + enor yr, sch⋅Asch + enor yr, apm⋅Aresi⋅40%

+ enor yr, house⋅Aresi⋅60% (4)  

Eld yr = eld yr, kind⋅Akind + eld yr, sch⋅Asch + eld yr, apm⋅Aresi⋅40%⋅i

+ enor yr, apm⋅Aresi⋅40%⋅(1 − i) + eld yr, house⋅Aresi⋅60%⋅i

+ enor yr, house⋅Aresi⋅60%⋅(1 − i) (5)  

where enor yr, kind, enor yr, sch, enor yr, apm, and enor yr, house refer to the annual 
specific electricity use for kindergarten, school, the apartment, and the 

Figure 3. Annual electricity spot price profiles in 2016- 2020  
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townhouse in a normal year, respectively; eld yr, kind, eld yr, sch, eld yr, apm, 
and eld yr, house refer to the annual specific electricity use for kindergarten 
(Scenario 2), school (Scenario 2), the apartment (Scenario 3), and the 
townhouse (Scenario 3) in a lockdown year, respectively; Akind, Asch, and 
Aresi refer to the building area of kindergarten, school, and the residen-
tial area, respectively; and i refers to the percentage of work-from-home 
adoption in the residential area. By varying the residential area Aresi and 
the work-from-home adoption percentage i, the electricity demand 
especially the peak demand and the capacity factor may be affected. 

Capacity factor of an energy plant is the ratio of the actual total energy 
production over a period to the maximum output if the plant operates at 
its rated capacity, and it measures the overall utilization of an energy 
plant [37]. These influences on local energy planning are discussed in 
Section 4. 

3. Results 

The analysis results of electricity daily profiles before and during 
COVID-19 lockdown are presented in Section 3.1, the scenario-based 
electricity demands are illustrated in Section 3.2, Section 3.3 shows 
the electricity profiles in a TMY under the three scenarios, and the yearly 
electricity costs under different scenarios and price levels are compared 
in Section 3.4. 

Table 2 
Monthly average temperature   

March April May 

2018 -3.1 ⁰C 4.7 ⁰C 12.3 ⁰C 
2019 -0.4 ⁰C 6.7 ⁰C 7.4 ⁰C 
2020 1.4 ⁰C 3.5 ⁰C 6 ⁰C  

Figure 4. The average daily electricity profiles for kindergartens from March to May in 2018- 2020, where a) profiles on weekdays, b) profiles on weekends  

Figure 5. The average electricity profiles for schools from March to May in 2018- 2020, where a) profiles on weekdays, b) profiles on weekends  
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3.1. Analysis of daily electricity profiles before and during COVID-19 
lockdown 

According to previous research and statistics, nearly half of energy 
use in buildings is used for heating in the cold climate. Therefore, the 
outdoor temperature has large influence on the total electricity use. The 
average monthly outdoor temperature between March and May during 
the three years are listed in Table 2, where 2018 had the coldest March 
and the warmest May, 2019 had the warmest April, and 2020 had the 
warmest March and the coldest April and May. 

Considering different schedules and occupancy levels on weekdays 
and weekends, the electricity use profiles were therefore analyzed 
separately. The average daily electricity demand profiles for kinder-
gartens, schools, and two residential buildings during March to May 
2018- 2020 are compared in Figure 4 - Figure 7, respectively. In these 
figures, WD denotes weekday and WE denotes weekend, and the dashed 
lines stand for 2018, the dashed lines with plus symbol for 2019, and the 

solid lines for 2020. 
For the educational buildings shown in Figure 4 and Figure 5, the 

electricity use followed the opening hours and schedules. On weekdays, 
the demand generally arose between 6 and 17 o’clock with the peak 
demand at around 8 or 9 o’clock. The demand rising ahead of the 
teaching activities was aimed extending the thermal comfort and 
improve the indoor air quality. From 19 to 6 o’clock next morning, the 
energy supply systems maintained at a low demand. It may be observed 
that the shapes of the three- year electricity profiles from March to May 
were quite similar. The average demands were mostly in line with the 
average monthly outdoor temperature. Also, kindergartens generally 
require higher energy demand than schools, which follows the statistical 
data due to the higher requirement of thermal comfort and hygiene in 
kindergartens [38]. 

Regarding the residential buildings, the electricity use patterns were 
different. In the apartment see Figure 6, there was distinct higher de-
mand during the daytime on weekdays in 2020 than 2019. Meanwhile 

Figure 6. The average electricity profiles for the single apartment from March to May in 2019- 2020, where a) profiles on weekdays, b) profiles on weekends  

Figure 7. The average electricity profiles for the townhouse from March to May in 2019- 2020, where a) profiles on weekdays, b) profiles on weekends  
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several local peak demands were noticed, such as 10, 13, and 14 o’clock 
in March, 14 and 15 o’clock in April, 9 and 13 o’clock in May. Addi-
tionally, the average higher demand in the evening was mainly due to 
the running of appliance, and the peak load in the midnight was used for 
recharging the hot water tank. The use pattern during weekends were 
similar with weekdays, but due to more time spent indoors there were 
several local peak loads both in 2019 and 2020. In the townhouse see 
Figure 7, March 2020 had slightly higher daytime electricity use, while 
April 2020 and May 2020 used more electricity during daytime than 
2019. The morning peaks arising at 7 or 8 o’clock in 2019 was shifted 
later to 9 or 10 o’clock in 2020 due to the study- and- work- at home 
regime. Again, several local peak demands were also noted during the 
daytime on weekdays, such as around lunch period. The specific elec-
tricity demand in the single apartment was generally higher than the 
townhouse. The WD values were similar to the WE values in the resi-
dential buildings, which is also mentioned in [3]. This may indicate that 

the effect of occupants on private buildings plays a more important role 
than in public buildings, and the household energy demand varies based 
on residents’ behavior, as mentioned in [39, 40]. 

In general, among the four building types, March claimed the highest 
electricity, May needed the lowest electricity, and April was in between, 
with an exception of the unusually cold May in 2020. To identify the 
effect from the outdoor temperature difference to the electricity, 
Euclidean Distance (ED) was calculated to prove that the larger outdoor 
temperature difference was supposed to yield the higher ED and vice 
versa. ED was calculated as: 

dED(X, Y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

√

(6)  

where X and Y refer the vector of the average daily profile in each year, 
xi and yi refer to the electricity demand at i-th hour in each year. 

Figure 8. Z-Scores of average daily electricity profiles for kindergartens from March to May in 2018- 2020, where a) Z-Scores for weekdays, b) Z-Scores for weekends  

Figure 9. Z-Scores of average daily electricity profiles for schools from March to May in 2018- 2020, where a) Z-Scores for weekdays, b) Z-Scores for weekends  
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Besides the difference defined by ED, the average daily profiles were 
further performed with Z standardization (Z-Score) and Pearson Corre-
lation Coefficient (PCC) analysis to identify the similarities. Through the 
calculation of Z-Scores and PCC, the amplitudes of demand values were 
normalized by making the profiles of compatible scales, and the shape 
similarities of each two profiles can be measured by PCC. This may avoid 
the possible influence of the outdoor temperature to the energy profile 
shapes. The benefits of using the PCC measures to effectively recognize 
the profiles similarities were highlighted in [41]. 

The Z-score and PCC were calculated as Eqs.(7) and (8), respectively: 

Zi =
xi − x

S
(7)  

where xi refers to the electricity demand at i-th hour, S refers to the 
standard deviation of the day (24 hours), x refers to the mean value of 

the day. 

PCC(X, Y) =
cov(X, Y)

SXSY
=

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(yi − y)2

√ (8)  

where cov means the covariance. 
The Z-Scores of each average daily profile corresponding to Figure 4- 

Figure 7 are presented in Figure 8- Figure 11. When demand scales were 
normalized and discarded, the educational buildings reflected a highly 
similar pattern on weekdays during the three months from 2018 to 
2020. However, the energy use on weekend varied from month to 
month. As for the residential buildings, the energy use patterns over the 
three months from 2019 to 2020 were quite different, with noticeable 
local peak demand during daytime on weekdays, for example from 12 to 
16 o’clock in the single apartment 9 to 14 o’clock in the townhouse. 

Figure 10. Z-Scores of average daily electricity profiles for the single apartment from March to May in 2019- 2020, where a) Z-Scores for weekdays, b) Z-Scores 
for weekends 

Figure 11. Z-Scores of average daily electricity profiles for the townhouse from March to May in 2019- 2020, where a) Z-Scores for weekdays, b) Z-Scores 
for weekends 
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The results of ED and PCC measures within every two years for 
kindergartens and schools are compared in Figure 12 and Figure 13, 
where the yellow bars stand for the EDs within 2018- 2019, the green 
bars for the EDs within 2018- 2020, and the light blue bars for the EDs 
within 2019- 2020. The PCCs are plotted by the red lines with the dots, 
and each dot refers to the same year of the bar where it is located. By 
discarding the real energy demand scales influenced by the outdoor 
temperature, it was observed that the PCC results from March to May 
during the three years were higher than 0.93 in kindergartens and 0.91 
in schools on weekdays, and the highest PCCs were even found within 
2019- 2020 (the red dots located at the light blue bars). Even on 
weekends, there were also several PCCs beyond 0.7 between 2019 and 
2020. This proved again that the patterns and operation of the three- 
year average daily energy use were of high similarity. The higher tem-
perature deviation from 2018 to the other two years led to larger energy 
demand differences, which was reflected in the ED results. The closer 
outdoor temperature between 2019 and 2020 led to the smaller ED on 

weekdays. Comparing with weekdays, both the daily profiles and the ED 
results of electricity presented much lower demands on weekends in 
kindergartens and schools. This is mainly because the educational in-
stitutions in Norway usually do not carry out teaching activities on 
weekends, but the buildings can be occasionally rented out to maximize 
the public resource usage [38]. This explained the much lower impact 
from the outdoor temperature difference to the energy demand on 
weekends than that on weekdays, and the weekend demand was alike 
the night mode. 

About the residential buildings, the ED and PCC results of the 
townhouse (purple columns and black dots) and the single apartment 
(blue columns and red crosses) between 2019 and 2020 are compared in 
Figure 14. The ED values of the townhouse were lower than those of the 
apartment within the three months both on weekdays and weekends, 
only with the exception in March when the two were close. Additionally, 
the EDs of the townhouse on weekends were smaller than on weekdays, 
which was also backed by the high average PCC values. It mostly implied 

Figure 12. The ED and PCC results of kindergartens in 2018- 2020, where a) for weekdays, b) for weekends  

Figure 13. The ED and PCC results of schools in 2018- 2020, where a) for weekdays, b) for weekends  
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that the residents kept their usual weekend plans, for example the out-
door activities. Generally, EDs of the townhouse were rather stable. 
Whereas the apartment had much larger ED values and more various 
PCC values, which was similar with the findings in the average profiles 
in Figure 6 since more time was spent at home. The occupant behavior in 
smaller dwelling size had higher energy impacts. 

Based on the findings from the weekday electricity profiles of kin-
dergartens and schools during the lockdown period, the operation might 
not shift to night/weekend settings as the hypothesis. Due to the prac-
tical reasons, the schools and kindergartens were still open during the 
period to support the parents who were working in the critical positions 
such as health system, police station, transportation and so on. Both 
kindergartens and schools showed similar operation strategies between 
March and May from 2018 to 2020, by showing their similar electricity 
use patterns with the close average daily profiles and PCC results. This is 
unlike the electricity use examined in the university laboratory building 
[8] and the nursery school and elementary school buildings [10]. In the 
former building, most of the users are adults and able to take care of 
themselves [8]; in the latter buildings, although most of users are chil-
dren same as in this study, nearly half of electricity demand was reduced 
[10]. 

Meanwhile the residential buildings showed a large variation influ-
enced by the changes of the dweller’s working schedule during the 
period as projected. Besides that, there was a bigger influence on specific 
electricity demand in the single apartment than the multi-member 
townhouse. Since the apartment has a smaller floor area and one 
dweller, it may be more sensitive with the changes. And the wood stove 
in the townhouse was not treated in the study. 

3.2. Analysis of scenario-based electricity demands 

This section studies the electricity use under the three scenarios in 
the observed buildings. All the ES curve models were established based 
on the measured data. 

In the educational institutions, as shown above, the building energy 
systems were most likely maintained at normal level during the lock-
down. Hence, the electricity use in kindergartens and schools during 
2018- 2020 was treated under normal operation. In Scenario 1, the 
daily-based ES curve models of weekdays and weekends were built 
separately. The ES curve models of kindergartens are shown in 
Figure 15, where the weekdays (blue dots) and weekends (purple dots) 
have great demand differences. Since the ventilation, heating, and other 

Figure 14. The ED and PCC results of townhouse and single apartment in 2019- 2020, where a) for weekdays, b) for weekends  

Figure 15. Energy signature curve models for kindergartens for Scenario 1  
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appliances were much less operated on weekends, the electricity de-
mand was lower than weekdays by around 35- 40%. The CPT was 
identified at 14◦C both on weekdays and weekends by giving the 
adequate piece-wise approximation. The needs for electricity demand 
became less when the outdoor temperatures were above the CPT, that 
the regression lines had milder slopes than the ones below the CPT. This 
was mainly because of the reduction for electric space heating. Schools 
had similar electricity demand characteristics and their ES curve models 
are shown in Appendix Figure A1. 

For the residential buildings in Scenario 1, the ES curve models for 
the single apartment and the townhouse were built on the weekly 
electricity use by excluding the lockdown period. Figure 16 presents 
their weekly-based ES curve models, where the orange dots are for the 
apartment and the blue dots for the townhouse. The CPT of 13◦C gave a 
proper division between the temperature-dependent and temperature- 
independent electricity use in the apartment. Meanwhile, the rela-
tively low electricity density in the townhouse made it follow the same 
linear relation over the whole outdoor temperature range without a CPT. 
When the outdoor temperature was below the CPT, the slope for the 
apartment was steeper than the townhouse. When the outdoor temper-
ature was close and above the CPT, the slopes for the two residential 
buildings were close. This implied that when it was cold outside, the 
share of electricity used for space heating in the apartment was much 
higher than in the townhouse. 

Table 3 gives the coefficients and the accuracy evaluation of the ES 
curve models for all the observed buildings for Scenario 1. Accuracy of 

Figure 16. Energy signature curve models for the single apartment and the townhouse for Scenario 1  

Table 3 
Coefficients and Accuracy of the ES curve models for Scenario 1   

Coefficients of model Accuracy of model 
Building type CPT 

(◦C) 
p1  p2  R2 MAPE 

(%) 

Kindergarten 
(WD) 

14 -1.3 (≤
14◦C) 

30.8 (≤
14◦C) 

0.90 11.9 

-0.4 
(>14◦C) 

18.1 
(>14◦C) 

Kindergarten 
(WE) 

14 -0.9 (≤
14◦C) 

17.9 (≤
14◦C) 

0.79 

-0.1 
(>14◦C) 

7.6 (>14◦C) 

School (WD) 14 -1.2 (≤
14◦C) 

25.1 (≤
14◦C) 

0.82 18.2  

-0.3 
(>14◦C) 

13.6 
(>14◦C) 

School (WE) 14 -0.7 (≤
14◦C) 

15.1 (≤
14◦C) 

0.80  

-0.2 
(>14◦C) 

7.7 (>14◦C) 

Apartment 13 -2.3 (≤
13◦C) 

38.5 (≤
13◦C) 

0.80 18.2 

-0.2 
(>13◦C) 

12.2 
(>13◦C) 

Townhouse / -0.6 17.9 0.63 
(↓) 

14.6  

Figure 17. Energy signature curve models for kindergartens for Scenario 2  
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the regression models were evaluated by two criteria, the coefficient of 
determination (R2) and the mean absolute percentage error (MAPE). 
Except for the townhouse, the ES curve models for all the other building 
types had the R2 higher than 0.75 and the MAPE lower than 20%, which 
meant they all satisfied the requirements of ASHEAE Guidelines for 
carrying out a satisfying model [42, 43]. The lower R2 for the regression 
model in the townhouse might be explained by the relatively low share 
of electricity used for space heating purpose, while the other electric 
appliances accounted for a reasonably high share of electricity accord-
ingly. It led to the linear relationship between the outdoor temperature 
and electricity not as strong as the other building types, where the space 
heating was only supplied by the electricity. However, according to the 
proposal from Henseler that R2 with 0.5 is moderate in scholarly 
research as a rule thumb [44]. Also, the MAPE of the model for the 
townhouse was lower than 20% as required in [45] for a good fore-
casting. Therefore, the ES curve model for the townhouse was regarded 
qualified at some extent and may be utilized for a rough identification of 
profile in TMY in the following section. 

As explained in Section 2.3, Scenario 2 considered the electricity 
demand level for buildings with low attendance during nighttime and 
weekends under normal situation. This energy-saving mode was regar-
ded as the hypothesis of the operation mode that the kindergartens and 
schools should have adopted during the temporary closure. 

The ES curve models for the kindergartens were carried out on 
hourly-based data, see Figure 17. It was noted that there were some 
outliers, marked within the dashed cloud. This must be caused by the 
occasional activities held during the weekends with high use of lighting, 
ventilation, and other appliances, as mentioned in Section 3.1. The ES 
curve models for schools were similar with kindergartens, and they are 
shown in Figure A2. The coefficients and the accuracy criteria of the ES 
curve models for kindergartens and schools under Scenario 2 are briefed 
in Table 4. The CPT of the two building types were still noted at 14◦C 
with proper piecewise regression. The MAPE for the two building types 
were below 20%, and R2 for the two building types are no less than 0.75. 
The ES curve models for the educational buildings meet the ASHRAE 
requirement of satisfying regression models. 

Scenario 3 meant to identify the electricity use when the work-at- 
home regime was adopted. The weekly-based ES curve models for the 
two residential buildings under Scenario 3 are plotted in Figure 18. 
There was a noticeable higher electricity demand for the apartment 
under Scenario 3 than Scenario 1 (Figure 16), within the same outdoor 
temperature range. It indicated that there was higher electricity impact 
on the apartment, which was also consistent with the findings in the 
average daily profiles and ED results above. Because of the relatively 
small range of outdoor temperature during the work-at-home period, 
one linear model was sufficiently identified for the apartment without a 
CPT. 

Table 5 gives the coefficients and the accuracy criteria of the ES 
curve models for the two residential buildings under Scenario 3. The R2 

for the two building types were higher than 0.8, and the MAPEs were 
below 10%, indicating these ES curve models were accurate to be used in 
the following work. 

3.3. Scenario-based electricity profiles 

A yearly electricity use profile may be predicted by combining the 
regression coefficients defined in Section 3.2 and the outdoor temper-
ature in a typical weather year. Figure 19- Figure 21 illustrate the 
possible electricity profiles for kindergartens, schools, the single apart-
ment, and the townhouse. 

As shown by the solid red lines in Figure 19 and Figure 20, kinder-
gartens and schools needed 172 kWh and 139 kWh electricity per m2 in a 
typical year, under the normal operation settings (Scenario 1). These 
demand values were lower than the Norwegian Statistics, 183 kWh/ 
(m2∙yr) for kindergartens and 167 kWh/(m2∙yr) for schools [38]. While 
under the energy-saving mode (Scenario 2), only 112 kWh/m2 was 
needed in kindergartens and 99 kWh/m2 in schools in a TMY, as shown 
by the green dashed lines. From the comparison between the two 
building management modes, it indicated that there was a remarkable 
energy saving potential during a temporary shutdown. By implementing 
proper settings for the building service systems and improving the 
arrangement of the educational institutions, the electricity use may be 
reduced by approximately 35% in the kindergartens and 29% in the 

Table 4 
Coefficients and accuracy of the ES curve models for Scenario 2   

Coefficients of model Accuracy of model 

Building type CPT (◦C) p1  p2  R2 MAPE (%) 
Kindergarten 14 -0.9 (≤ 14◦C) 17.9 (≤ 14◦C) 0.76 15.9 

-0.1 (>14◦C) 7.6 (>14◦C) 
School 14 -0.7 (≤ 14◦C) 15.4 (≤ 14◦C) 0.75 19.4  

-0.1 (>14◦C) 7.1 (>14◦C)    

Figure 18. Energy signature curve models for the single apartment and the townhouse for Scenario 3  

Table 5 
Coefficients and Accuracy of the ES curve models for Scenario 3   

Coefficients of model Accuracy of model 

Building type CPT (◦C) p1  p2  R2 MAPE (%) 
Apartment / -1.6 41.9 0.88 8.1 
Townhouse / -0.5 17.7 0.84 9.2  
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schools. Since kindergartens usually have longer opening hour and 
higher indoor temperature requirements than schools, it explains kin-
dergartens may have 6% more electricity reduction possibility than 
schools. 

Regarding the scenario comparison in the residential buildings, the 

impact on the specific electricity demand was much higher in the single 
apartment than in the townhouse, as plotted in Figure 21. Under the 
normal situation when the daytime attendance was low, the annual 
electricity demand of a typical year was 222 kWh/m2 and 126 kWh/m2 

in the apartment and townhouse, respectively, as shown in the solid 

Figure 19. Annual electricity profiles for kindergartens under Scenario 1 and Scenario 2  

Figure 20. Annual electricity profiles for schools under Scenario 1 and Scenario 2  

Figure 21. Annual electricity profiles for the single apartment and the townhouse under Scenario 1 and Scenario 3  
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lines. Comparing with the Norwegian Statistics of the average energy 
use per household, this apartment used 20% more energy than the 
average level, and this townhouse used 14% less electricity than the 
average level (the fuel of wood was not considered) [18]. However, 
when the rule of work-at-home was in effect, 26.9% more electricity was 
needed in the apartment, while the townhouse only required 1.3% more 
electricity, as shown in the dashed lines. Again, the higher electricity 
density in the single apartment makes it more sensitive after the use 
pattern changed. Unlike the educational institutions, it may not be 
straightforward to point out the energy saving potential in the 

residential buildings. The possibilities and measures to save electricity 
can be realized by upgrading the building energy supply methods in the 
apartment building or its neighborhood community, for example, to 
introduce ground source heat pump, or connect to a district heating 
network if available [46–48]. 

3.4. Results of economic costs calculation 

By combining the predicted electricity profiles defined in Section 3.3 
and the three price levels described in Section 2.5, the annual electricity 

Figure 22. Annual electricity cost estimation of kindergartens and schools under two operation scenarios, where a) annual cost of kindergartens, b) annual cost 
of schools 

Figure 23. Annual electricity cost estimation of the single apartment and the townhouse under two operation scenarios, where a) annual cost of the apartment, b) 
annual cost of the townhouse 
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costs for the four building types were estimated according to the three 
price cases. 

In the educational buildings, the building area of kindergartens and 
schools was assigned with the Norwegian average area of 700 m2 and 4 
000 m2, respectively [38]. Figure 22 compares the annual electricity 
costs of one representative kindergarten and one representative school 
under the normal operation mode (Scenario 1) and the night and 
weekend mode (Scenario 2), where moderate el price, highest el price, 
and lowest el price are the shortcuts of the cases of moderate, highest, 
and lowest electricity price. For the kindergarten, the cost reductions 
between the two running modes varied from 1 461 €/yr (equivalent as 
2.1 €/(m2.yr)) under the case of lowest electricity price to 2 873 €/yr 
(4.1 €/(m2.yr)) under the case of highest electricity price, see 
Figure 22a. For the school, Figure 22b exhibits that between 5 658 €/yr 
(1.4 €/(m2.yr)) and 10 946 €/yr (2.7 €/(m2.yr)) may be saved if the 
building was shifted to the night and weekend settings during lockdown. 
It is worthy noted that the economic saving potential from switching 
operation mode was greater when the electricity price was higher. It 
further emphasized the importance of carrying out energy-efficient 
operation strategy during low attendance on campus. 

In the residential buildings, the economic impacts were interpreted 
differently from the educational buildings. Due to more time spent at 
home by the dwellers, between 78 - 164 € (2.0 €/(m2.yr) - 4.1 €/(m2.yr)) 

more money may be needed in the apartment, see Figure 23a, while the 
increase would be less than 15 € (0.1 €/(m2.yr)) in the townhouse, see 
Figure 23b. Although the larger dwelling of multi family members 
required higher total electricity expenditure than the smaller single 
apartment, they might act more robust in the changes of the use 
patterns. 

To sum up, based on the findings from both energy and economic 
point of view, the yearly electricity costs were dependent both on the 
building management settings and the power market price. For example, 
at the lowest electricity price level, the expenses for normal operation in 
both kindergarten and school were still lower than the energy-efficient 
mode concerning the other two price cases. It was similar as in the 
residential buildings, the home office mode at the lowest price level 
might even cause less expenditures than the others. 

4. Discussions and limitations of this study 

In this study, there are three points worthy to be discussed. 
Firstly, in these observed buildings, there are no submeters for 

separating the electricity used for heating purpose, lighting, and appli-
ances. However, based on the evaluation results of the model accuracy, 
the R2 and the MAPE, most of the developed ES curve models met the 
requirement of satisfying regression models, mainly because a large 

Figure 24. Electricity duration curves for different residential building areas, comparing normal year with lockdown year when varying percentages of work- 
from-home 

Figure 25. Capacity factor vs electricity peak demand for different residential building areas, comparing normal year with lockdown year when varying percentages 
of work-from-home adoption 
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share of electricity goes to space heating. During the pandemic, the 
energy response of the buildings may be region and country related, 
which may be influenced by the building function, social aspects, and 
rule tightness [10, 11, 49]. Therefore, it is worthy using the ES curve 
models as a robust and fast method to predict the electricity demand 
based on different operation strategies, especially for buildings without 
submeters. However, the model accuracy may be weaker such as in low 
energy building and passive house, where space heating accounts for 
lower energy share. 

Secondly, the COVID-19 related impacts on the buildings’ annual 
CO2 emissions were not included. It was considered adequate to identify 
the electricity demand changes and possible energy saving potential, 
because the change percentage of the CO2 emissions would be the same 
as demand changes regardless of the CO2 factors. However, it will still be 
interesting to find credible source of CO2 factor and investigate the CO2 
emissions in response to future unforeseeable disruption. 

Thirdly, the consequence on the local energy planning was discussed 
based on the example of the imaginary community by following Eqs.(4) 
and (5) in Section 2.6, where Akind, Asch, and Aresi were chosen with 700 
m2, 4000 m2, 10 000 – 90 000 m2 with each step of 20 000 m2, 
respectively. As shown in Figure 24, the thick lines represent the elec-
tricity duration curves in the normal year, and the thin lines represent 
the electricity duration curves in the lockdown year by varying the 
percentages of work-from-home adoption from 0% to 100%. For each 
residential area group, the 0% of work-from-home adoption is shown 
with the lowest line, and the 100% is shown with the highest line. It is 
apparent that the duration curves in the normal year are steeper than 
most of the work-from-home conditions for all the residential area 
groups. 

Figure 25 further compares the capacity factor with the electricity 
peak demand regarding different residential areas. The solid circles in 
the dashed cloud line stand for the normal year condition. The lockdown 
year’s result for each residential area is shown with the solid line by 
varying work-from-home adoption from 0% to 100%. As noted in 
Figure 25, normal year had lower plant capacity factor and needed 
higher peak demand than some of work-from-home conditions for the 
smaller residential areas (e.g. 10 000 – 50 000 m2). It is interesting to see 
the energy utilities may not be fully utilized in normal year, which may 
lead to uneconomic production. In the larger residential areas (e.g. 70 
000 – 90 000 m2), although the plant capacity can be better used with a 

higher capacity factor, it may require higher peak demand during the 
lockdown. For example, the percentage changes of the peak demand for 
the residential area of 10 000 m2 were between -9.3% and -6.1% from 
0% to 100% of work-from-home adoption, and these changes for the 
residential area of 90 000 m2 were between -1.8% and 2.6% from 0% to 
100% of work-from-home adoption. It may be explained as the saved 
electricity from the closed kindergarten and school may not be compa-
rable with the more electricity being used when most of the residents 
stay at home, for a larger residential area. The detailed changes 
regarding each residential area are listed in Table A1. 

From this example, it may be concluded that the local infrastructure 
sizing may be influenced by different aspects, such as the areas of resi-
dential and educational buildings, energy operation mode, and some 
unintended conditions. As suggested in a study of one university campus 
with multiple building functions [50], an appropriate building type ratio 
would be helpful to reduce the total load and load fluctuation of a dis-
trict. Therefore, it is important to analyze the energy demand under 
different scenarios to discover the optimal sizing in the future planning. 

Since the lockdown regime in Norway was in effect from mid-March 
to early May 2020, the outdoor temperature during this period (0 - 21◦C 
on weekly base) did not cover the local historical outdoor temperature 
range throughout a year (such as -7 - 21◦C on weekly base in 2019), 
especially the recorded low temperature in winter. Hence, the extrap-
olation of the Scenario 3 based ES curve models to the TMY might not 
fully represent the annual household electricity profile. The increased 
annual household electricity demand (especially in winter) may be 
higher than the estimation in this study, by extrapolating the electricity 
characteristics under the limited outdoor temperature range during the 
lockdown. Moreover, as shown in the results, the electricity use density 
to the outdoor temperature in the apartment was much higher than in 
the townhouse, making the deviation even larger for the apartment than 
for the townhouse. To better prepare for the future unforeseen disrup-
tions as well as the trends of workplace and lifestyle, more data and/or 
seasonal correction factors are necessary for further study, for example, 
to take experiment of home office activities involving more dwellings. 
This may present a more comprehensive insight with more accurate 
forecasting models and better knowledge. 

5. Conclusion 

The COVID-19 pandemic has put heavy stress and crucial challenges 
around the world. Accordingly, many countries have carried out 
confinement regulation to hinder the infection spreading. Due to the 
changed work regime, the significant impacts on energy sectors have 
been seen in many countries. This study was focused to analyze the 
electricity profiles and the relevant changes in Norwegian buildings with 
electric heating. Two Norwegian educational building types at munic-
ipal level (kindergartens and schools) and two Norwegian residential 
buildings (a single apartment and a townhouse) during the lockdown 
were studied on the measured data. 

The scenario-based analysis in this study was mainly made for 
identifying the possible electricity demand and corresponding electricity 
increase and saving potential at a macro scale if new disruption would 
be introduced. To achieve the aim, the article developed the three sce-
narios regarding the different building operation strategies. Scenario 1 
modeled the electricity use under normal conditions, Scenario 2 
modeled the electricity on settings during normal weekdays’ nighttime 
and weekends for kindergartens and schools, and Scenario 3 modeled 
the household electricity use under the work-at-home conditions. 

The work was conducted as follows. The average daily electricity 
profiles before and during the lockdown were identified. It was found 
that there were almost no changes of electricity use pattern in the two 
educational building types, but there was demand variation in the res-
idential buildings. The ES curve models were then developed for 
describing the electricity characteristics under each scenario. Most of 
the models were qualified as satisfying regression models by evaluating 

Table A1 
Peak demand and its changes regarding different residential area under normal 
condition and changing percentage of work-from-home adoption  

Residential 
area (m2) 

Peak 
demand 
(MW) – 
normal 
condition 

Percentage of 
work-from- 
home adoption 
(%) 

Peak 
demand 
(MW) – 
work-from- 
home 

Percentage 
changes of the 
peak demand 
(%) 

10 000 0.498 0 0.452 -9.3 
10 0.453 -9.0 
50 0.460 -7.7 
100 0.468 -6.1 

30 000 1.164 0 1.108 -4.8 
10 1.113 -4.4 
50 1.132 -2.8 
100 1.155 -0.8 

50 000 1.829 0 1.774 -3.0 
10 1.782 -2.6 
50 1.813 -0.9 
100 1.851 1.2 

70 000 2.495 0 2.439 -2.2 
10 2.450 -1.8 
50 2.494 -0.1 
100 2.548 2.1 

90 000 3.160 0 3.105 -1.8 
10 3.119 -1.3 
50 3.175 0.5 
100 3.244 2.6  
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with the accuracy criteria R2 and MAPE. These scenario-based ES curve 
models were used for making annual electricity profiles in a typical 
weather year. Under Scenario 1, around 172 kWhel/m2 and 139 kWhel/ 
m2 were needed in a TMY for kindergartens and schools, respectively. 
These electricity use could be reduced by 35% for kindergartens and by 
29% for schools, with proper building operation during a temporary 
closure, as suggested by Scenario 2. Meanwhile, when the dwellers’ 
schedules changed into home office regime (Scenario 3), approximately 
27% and 1.3% more electricity were required for the single apartment 
and the townhouse, respectively. The small apartment with higher 
electricity density made it more electricity sensitive than the large 
house, especially during the lockdown period. The annual power bills 
were estimated in three spot price level cases, showing that more 
expensive electricity yielded bigger driving forces to adopt better 
building management. With proper settings, between 2.1 - 4.1 €/(m2.yr) 
may be saved for kindergartens, and 1.4 - 2.7 €/(m2.yr) for schools. The 
apartment may spend 2.0 - 4.1 €/(m2.yr) more for electricity, while the 
increased bill for the townhouse may be trivial. 

The analysis on the aggregated electricity demand showed that the 
local infrastructure sizing may be influenced by the areas of residential 
and educational buildings, energy operation mode, and some unin-
tended conditions. For the residential area of 10 000 m2, the percentage 
changes of the peak demand were between -9.3% and -6.1% from 0% to 
100% of work-from-home adoption, and these changes for the residen-
tial area of 90 000 m2 were between -1.8% and 2.6%. Therefore, it is 
important to analyze the energy demand under different scenarios to 

discover the optimal sizing in the future planning. 
The methods and results of this article may be useful to similar or 

other building types in response to future unforeseeable disruption, 
especially the buildings in the similar climatic conditions. 
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Appendix A 

Figure A1, A2 and Table A1 

Figure A1. Energy signature curve models for schools for Scenario 1  

Figure A2. Energy signature curve models for schools for Scenario 2  
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A B S T R A C T   

In the face of green energy initiatives and progressively increasing shares of more energy-efficient buildings, 
there is a pressing need to transform district heating towards low-temperature district heating. The substantially 
lowered supply temperature of low-temperature district heating broadens the opportunities and challenges to 
integrate distributed renewable energy, which requires enhancement on intelligent heating load prediction. 
Meanwhile, to fulfill the temperature requirements for domestic hot water and space heating, separate energy 
conversion units on user-side, such as building-sized boosting heat pumps shall be implemented to upgrade the 
temperature level of the low-temperature district heating network. This study conducted hybrid heating load 
prediction methods with long-term and short-term prediction, and the main work consisted of four steps: (1) 
acquisition and processing of district heating data of 20 district heating supplied nursing homes in the Nordic 
climate (2016–2019); (2) long-term district heating load prediction through linear regression, energy signature 
curve in hourly resolution, providing an overall view and boundary conditions for the unit sizing; (3) short-term 
district heating load prediction through two Artificial Neural Network models, f72 and g120, with different pre-
diction input parameters; (4) evaluation of the predicted load profiles based on the measured data. Although the 
three prediction models met the quality criteria, it was found that including the historical hourly heating loads as 
the input to the forecasting model enhanced the prediction quality, especially for the peak load and low-mild 
heating season. Furthermore, a possible application of the heating load profiles was proposed by integrating 
two building-sized heat pumps in low-temperature district heating, which may be a promising heat supply 
method in low-temperature district heating.   

1. Introduction 

The background, literature review, and objective of this study are 
presented in Sections 1.1–1.3, respectively. 

1.1. Background 

In 2019, the building sector accounted for 35% of the global final 
energy use and 38% of energy-related CO2 emissions [1]. Although there 
was a drop in CO2 emissions in 2020, mainly due to the COVID-19 

pandemic, the building sector’s share of the final energy use and CO2 
emissions that year were 36% and 37%, respectively, almost the same as 
in 2019 [2]. 

District heating (DH) systems play a vital role in reducing primary 
energy use and CO2 emissions in the building sector. In general, the 
primary energy factor may vary due to variation of the fuel and in-
centives within national policies. In the European context electricity has 
a primary energy factor of 2–2.5 [3], while DH of 0.6–1.3 depending on 
the heating sources varying from renewable-based to fossil-based fuels 
[4]. For example, in Sweden DH supplies 60% of the total building 
heating demand [5], while in Norway DH use has doubled over the past 
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decade, and currently 26.7% of DH production is used for the residential 
heating and 54.5% of DH production for the service heating [6]. Given 
the rapid electrification process in buildings, and in countries like 
Norway also in the transportation sector, DH has great potentials to 
alleviate the pressure on power grid in climates with high heating de-
mands, such as the Nordic countries. However, DH expansion also faces 
two challenges, the competition from heat pumps (HPs) due to their high 
flexibility for the end users and consequent reduction in the final energy 
demand, and the decrease in the building heating demand. For the latter, 
this is due to the future building stock, with a growing share of reno-
vated existing buildings, low-energy buildings, passive houses, and 
nearly zero energy/emission buildings (nZEB), are commonly charac-
terized by improved building envelope, space heating (SH) demand will 
be greatly reduced, as noted in e.g., the Norwegian standards [7] and 
regulations [8], as well as the European Union’s legislative framework 
[9]. Low-temperature DH (LTDH) enables the exploitation of econom-
ical piping options, such as PEX/Aluminum/PE material with low heat 
loss through distribution networks, and more importantly, provides 
wider opportunities for integrating distributed renewable energy, such 
as by use of building-sized HPs or renewables for peak shaving [10]. 
These advantages of the LTDH were proven in a pilot study of a 
renewable energy-based Danish municipality, which showed that pri-
mary energy demand was reduced by 4.5%, thermal grid loss was 
reduced by 6%, and costs were reduced by 2.7%, when the current 3rd 
generation DH system was changed to an LTDH system with the supply 
and return temperature of 55 and 25 ◦C, respectively [11]. 

The desire for circular economy may facilitate LTDH expansion in 
the Nordic countries as a result of the ban of using oil for heating [10] 
and increased capacity stress on the power grid due to increased power 
trading among neighboring countries requiring resource recovery and 
expansion of renewables [12]. Therefore, decreasing the DH supply 
temperatures from the current 80–120 ◦C range to a much lower level is 
accelerated by both political landscapes and energy efficiency directives 
[10]. To upgrade either the existing DH system to LTDH or build new 
LTDH, the change of heating load is the fundamental premise. There-
fore, analyzing the potentials and challenges by understanding the key 
heating loads from planning and operating perspectives is the first 
necessary step to accelerate the LTDH transition. 

A review study investigated the existing low-temperature based 5th 
generation district heating and cooling (LTDHC) systems in Europe, and 
reported that the LTDHC requires more advanced control strategies due 
to bi-directional energy flows and decentralized interactions [13]. 
Therefore, the information and communication technologies will be 
required to advance LTDH [13]. For example, heating and electricity 
load profiles on demand side may change after using power-to-heat 
(P2H) technologies to couple LTDH with electricity networks [14]. 
The change on heat and power flow may lead to operational problems 
and require enhanced communication between the power supply and 

the DH system. A control algorithm applying fuel shift control was 
proposed to avoid high peak power load and reduce DH network loss 
[14]. Another example is the need to address the impacts on DH oper-
ation network when utilizing datacenter’s (DC) waste heat, e.g. due to 
the changing DC workload and dynamic heating load distribution, there 
is a need to improve DC management for automatic dynamic resources 
allocation, computing workloads for power management, and heating 
load balancing [15]. From the analysis of the challenges and potentials 
for LTDH in a Nordic climate, it can be seen that an LTDH system is very 
sensitive to the indoor set-point temperature, and it is necessary to 
optimize the outdoor temperature compensation curve prediction to 
facilitate the indoor temperature and mass flow rate [16]. Moreover, 
another crucial task in the LTDH system management is peak shaving, as 
this provides the possibility of expanding the heat network to connect 
more heat users without enlarging the infrastructure capacity [17]. To 
conclude, the above explained challenges and findings in achieving the 
best performance for LTDH and in establishing the feasible interaction 
among users; LTDH and electricity networks require intelligent predic-
tion of peak heating load and control system, which can be adjusted by 
measures such as thermal storage implementation [18] and load dis-
tribution over the preceding hours [19]. 

1.2. Previous studies 

As introduced above, LTDH and its integrations with renewables still 
face fundamental challenges to understand the heating load by using 
smart tools. Accordingly, energy prediction must be improved for 
effective sizing and operation of LTDH. By utilizing a large amount of 
measured data, data-driven methods, such as statistical methods and 
machine learning (ML), have shown strength in predicting heating load 
[20–22]. 

Artificial neural network (ANN), one of the ML methods, is found to 
be the most widely used one for energy planning, followed by support 
vector machine (SVM) and autoregressive integrated moving average 
(ARIMA) method, as well as statistical methods like linear regression 
(LR) [23]. A review of the last 30 years’ applications of ANNs in building 
energy analysis shows that there is a strong growing development of 
ANN-based building energy analysis towards the exploitation of newer 
and extended types of ANNs [24]. Due to early implementation of smart 
meters, ANN and other data-driven methods have been mostly focused 
on electricity use, but not on heat use. For example, to estimate 
occupancy-related electricity demand by air-conditioning systems in 
non-residential buildings, an ANN-based model was developed by using 
occupancy as the input, which was determined by the blind system 
identification, showing an improved accuracy of energy prediction [25]. 
However, the proposed model needed to be validated for at least a one- 
year period, to account for seasonal variations of occupancy interactions 
with the electricity profiles [25]. Another ANN-based model compared 

Nomenclature 

ANN artificial neural network 
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers 
CPT changing point temperature 
CV(RMSE) coefficient of variation of the root mean squared error 
DC datacenter 
DHW domestic hot water 
ES curve energy signature curve 
f72 ANN model with 72 input units defined in this study 
g120 ANN model with 120 input units defined in this study 
HDD heating degree day 
HP heat pump 

LTDH low-temperature district heating 
(s)MAPE (symmetric) mean absolute percentage error 
NMBE normalized mean bias error 
SH space heating 
WD weekday 
WE weekend 
el electricity 
€ EUR (currency) 
n number of observations 
R2 coefficient of determination 
tτ outdoor ambient temperature at time instance τ 
yr year  
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two back-propagation learning algorithms (Bayesian regularization and 
Levenberg-Marquardt), which were carried out respectively for day- 
ahead and hour-ahead electricity load forecast in a district [26]. 
Comparing with the total forecasted load for the district, aggregating the 
forecasts of heterogenous building types in the district may improve the 
day-ahead load forecasting performance by 7.9–11.9% [26]. The recent 
broad implementation of smart heat meters collecting (sub-)hourly heat 
use data has largely accelerated better quality in heating load prediction 
and clustering research for heating use data analysis [20]. The knowl-
edge and experience gained from studies of building electricity demand 
data were transferable to heating demand analysis and uncertainties (i.e. 
weather forecasting), as mentioned in [27]. Two types of models, 
autoregressive multiple linear regression (MLR) and autoregressive 
multiple non-linear regression (MNLR), were firstly built to predict the 
DH load profiles of reference buildings and then aggregated the defined 
reference profiles into district levels [21]. In the work, it was shown that 
for predicting buildings with high daily load variation (such as office 
buildings), the ANN-based MNLR gives better performance than MLR in 
terms of a 4.2% reduction in mean squared error (MSE) [21]. Three ML 
methods, SVM, deep neural network (DNN, i.e. ANN with two or more 
hidden layers), and extreme gradient boosting (XGBoost), were respec-
tively adopted to establish a multi-step ahead forecasting model of DH 
load with direct strategy and recursive strategy [22]. By feeding day- 
before influential factors, all three ML methods using these two strate-
gies may accurately forecast the day-ahead DH load. Finally, it is rec-
ommended to further explore the potential of these heating load 
forecasting to optimize operation of the DH system [22]. Gaussian 
mixture model (GMM) clustering enables defining the four typical DH 
operation patterns in office buildings in a semi-arid climate (with cold 
and dry winters) by considering temperature and occupant behavior 
related sub-patterns [28]. After combining the GMM clustering with the 
regression and ANN models respectively, the qualities of hourly heating 
load forecasting are improved by 38.7–75.7% [28]. However, it was still 
difficult predicting the peak heating loads during night-to-daytime pe-
riods due to possible random operation behaviors [28]. A forecasting 
model based on convolutional neural network long-short term memory 
(CNN-LSTM) outperforms other ML methods when solving thermal 
inertia problems in DH system, mainly thanks to its integration of CNN’s 
feature extraction ability and LSTM’s two-dimensional space ability as 
shown in [29]. However, this model requires large numbers of sensors, 
large data storage, and re-training every day [29]. Two ML methods, 
SVM and nonlinear autoregressive exogenous recurrent neural network 
(NARX-RNN), were compared for DHC load prediction [30]. The results 
present that the NARX-RNN exceeds the SVM regarding the quality in-
dicators and computation time. However, the overfitting tendency of 
NARX-RNN needs further study [30]. As introduced above, ANN-based 
prediction methods have enhanced energy prediction, especially 
greatly improved heating load prediction performance, such as 
computation time and prediction quality. However, the models’ prob-
lems such as lack of big data for training, difficulty in peak load pre-
diction, regular re-training, and others, need to be solved. 

Additionally, Q-algorithm was used for developing a data-driven 
model by splitting the data into two parts with a reference load, QREF, 
under three-level decision trees [27]. This model is robust for heating 
load prediction at district scale. Nevertheless, the claimed favorable 
accuracy results (R2) in [27] are clearly lower than the common value, 
ca. 0.75 [31]. Based on 10-year DH production data, operation logics 
and outdoor temperatures were identified as the fundamental drivers for 
DH load prediction by analyzing load profile patterns and energy 
signature curves (ES curves) of the network [32]. The authors pointed 
out that, in the future, the parameters of a heating system should be 
studied according to features of each building type [32]. However, the 
conclusion that hourly time steps are not numerically useful is contrary 
to the research in [28], which presented ES curve in each cluster. 
Considering use of data-mining for DH operation, a temperature control 
method for the secondary network for transforming the existing DH to 

LTDH was introduced in [33]. Based on operation data and weather 
data, the optimized supply temperature could be obtained by summing 
the defined minimum return temperature and optimized temperature 
difference, which was evaluated by a LR model for hour-ahead return 
temperature prediction. This optimization strategy may contribute to 
stable daily operation. Meanwhile, the authors mention that this control 
strategy was limited within certain areas [33]. So far, only a few re-
searchers have addressed the problems of LTDH’s prediction, load 
analysis, and improved operation by using data-mining methods. 

As the IEA DHC Annex TS2 puts forward, future decarbonized 
heating systems need enhanced DH technologies [10], such as installa-
tion of HPs in future’s multi-energy systems [34]. This implies that 
shifting from competition between HPs and DH system to ensuring a 
collaboration between the two may be a promising approach in LTDH. 
An investigation of two combinations (central HPs only and central HPs 
plus booster HPs) for supplying space heating (SH) and domestic hot 
water (DHW), showed that the latter combination enables the DH sys-
tem running at significantly lower temperatures and reduces operation 
costs by 39% over the former combination [35]. With the focus on 
predictions at district scale, the authors used daily average ambient air 
temperatures instead of hourly values [35]. This may not accommodate 
well for predictions at building scale, where in-depth heating response 
from atmospheric condition is crucial to be accounted for. 

1.3. Objective and structure of this study 

Previous research that focusses on improving DH system treats the 
measured energy data as a package, while most energy forecasts have 
not yet conducted in-depth studies on sizing or energy demand re-
quirements for typical building types. Therefore, a bridge must be built 
to link the gap between smart meters and DH suppliers. In this study, the 
main objective was to develop hybrid heating energy prediction 
methods for typical building types, by combining the advanced ANN- 
based prediction method and a plant sizing method based on well- 
measured energy data. To focus the scope of the study, one important 
public building type, nursing home, was selected for the analysis. The 
reasons for selecting this building type and its wider applications are 
discussed in Section 4.1. The novel contribution of this study may be 
summarized as follows. Three-year measured DH use data in real 
buildings were utilized for analysis and modelling, which was to predict 
another year’s DH demand in hourly resolution. The heating load pro-
files predicted by the hybrid methods are of high accuracy and can help 
plant sizing and daily operation with different inputs. Finally, the pre-
dicted load was proposed to be fed as building user’s demand input in an 
LTDH system integrating two building-sized HPs, which may benefit the 
operation of building energy supply system in LTDH and compare the 
cost impacts from different load prediction, as discussed in Section 4.2. 

The rest of the paper is organized as follows. Section 2 briefs the 
methods including the data information of the observed buildings and 
description of the two DH prediction methods. The main results of this 
study are presented in Section 3. Lastly, the limitations, future work, and 
conclusions are discussed and summarized in Sections 4 and 5. 

2. Methods 

The proposed framework consists of four phases. Section 2.1 explains 
Step 1, how building information is collected. Sections 2.2 and 2.3 
explain Step 2 and Step 3, the two heating load prediction methods, 
dealing with the long-term and short-term prediction, respectively. Step 
4 works on the prediction performance evaluation, as introduced in 
Section 2.4. 

2.1. Building and energy data inventory 

Statistically, the annual representative specific energy demand of 
Norwegian nursing homes is 260 kWh/m2 with deviations between − 25 
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and +6 kWh/m2 according to different statistics sources, nearly half of 
which is for heating purpose owing to its high requirements of hygiene 
and thermal comfort under stable occupancy [36]. The high heating 
needs in the cold climates may involve considerable saving potential. In 
this study, 20 DH supplied nursing homes located in Trondheim, Nor-
way, were used for the analysis. These observed buildings have heated 
floor areas ranging from 1350 to 10,940 m2. DH delivers the SH and 
DHW to each building, which were recorded summarily in the meter. 
The DH use data in hourly resolution of the 20 buildings from 2016 to 
2019 were retrieved from the energy monitoring platform of Trondheim 
Municipality [37]. Weather impacts were considered in the heat energy 
analysis, and the local historical weather data over the period were 
obtained from the Norwegian Meteorological Institute [38]. 

The building information regarding annual DH demand, energy 
labelling, and construction year, is briefed in Table 1. The building 
construction year and energy labelling were obtained from the Norwe-
gian Energy Efficiency Agency (Enova) [39]. The labelling scheme goes 
from A (best building energy performance) to G (weakest performance) 
by considering the calculated delivered energy to each building. Except 
one building without information, all the others were built no earlier 
than 1980s, and most of them are labelled with C or D level [39]. The 
analysis was performed on the average specific DH load across the 20 
buildings (W/m2), to define the representative heating demand con-
cerning buildings with different characteristics. 

2.2. Prediction Method 1 – Prediction of annual district heating profile 
with energy signature curve models 

As addressed above, large proportion of energy is used to heat 
buildings in cold climates, following the building’s heating curve rela-
tive to the outdoor temperature. 

In nursing homes DHW heat usage accounts for 15–20% to 40–65% 
of their total annual heat use, depending on the building standard 
(buildings built in 1980 s, passive house standard, etc.) [40]. Since DHW 
heat use is less sensitive to climate than SH, it is reasonable to separate 
DHW from the total DH load, for exploring a more accurate relationship 
between the outdoor temperature and the SH load. The typical per- 
room’s hourly DHW heat use profiles for Norwegian nursing homes were 
identified in [41] providing detailed description and giving represen-
tative DHW profiles for the given climate and resident type. These 
typical hourly profiles (kW/room) were transferred into specific load 
density (W/m2) and used as reference profiles in this study. As sum-
marized in Fig. 1, there are apparent differences between the weekdays 
(WD as shortcut) and the weekends (WE) in the same season, especially 
during the peak load periods, as shown by the solid line and the dashed 
line of the same color. In Fig. 1, the solid lines represent the WDs, and 
the dashed lines the WEs. Meanwhile the seasonal differences between 
the same day type are small. As assumed elsewhere in literature [42], the 
daily DHW demand can be treated nearly constant throughout the year, 
and any effect on DHW would be insignificant. Similarly, in this study 
these four typical daily DHW profiles in Fig. 1 were extrapolated into an 
annual DHW profile, which was then extracted from the total DH to 
obtain SH use. The necessity and challenges of separating SH and DHW 
in the aggregated heating load was also mentioned in a Danish example 
for demand side management in DH networks [43]. 

The relationship between the outdoor temperature and SH load was 

identified by using energy signature curve (ES curve). This method has 
been widely employed in building energy planning and management by 
researchers and engineers at all levels. The ES curve generally consists of 
two parts, the temperature dependent part and temperature indepen-
dent part, which are divided by the changing point temperature (CPT) or 
heating effective temperature. The ES curve may be expressed as: 

if tτ ≤ CPT, P(tτ) = p1 • tτ +p2 +ε (1). 
if tτ > CPT, P(tτ) = p1 • tτ +p2 +ε;= p2 (2). 
In Eqs. (1) and (2), P(tτ) is the SH load for a given outdoor temper-

ature t, p1 and p2 are the coefficients of each ES curve model, and ε is the 
residual error. The SH load follows the linear growth under the slope of 
p1. In addition to the outdoor temperature, the building operation 
schedules were also considered in the models. The identified ES curve 
model may be applied to estimate building energy performance in 
another year by combining the regression coefficients in Eqs. (1) and (2) 
with the corresponding weather data. Finally, Method 1 was used for the 
following purpose in this study: (1) for the system sizing, (2) to define 
boundary conditions of the DH units, and (3) to check boundary for the 
prediction load by Method 2. 

2.3. Prediction Method 2 – Artificial neural network short-term district 
heating prediction 

In this study, day-ahead prediction refers to the problem of, at a 
given point in time, predicting the DH load for the following 24-hour 
period. This prediction was done with an hourly resolution. Two sepa-
rate ANN prediction models were developed to serve as decision- 
supporting tools for short-term planning and operation purposes in the 
future LTDH transitions. The first model considered only the historical 
and forecasted outdoor temperature, which are the measured outdoor 
temperature for the 48 h preceding the prediction period plus the 24- 
hour forecast for outdoor temperature. The second model included the 
historical DH load, the measured DH load for the 48 h preceding the 
prediction period, in addition to the outdoor temperature used in the 
first model. The first model might be helpful when there is difficulty to 
access real-time energy data or when data storage failure occurs with 
many missing values for planning energy generation. 

The two models can be mathematically formulated as follows: Qτ and 
tτ represent the measured DH load and the measured outdoor temper-
ature, at hour τ, respectively; and Q̂τ,s and ̂tτ,s represent the predicted DH 
load and the forecasted outdoor temperature, respectively, at hour τ for 
each of the hours τ+s (defined for s = 1,⋯,24). Historical data from the 
previous 48 h were used to make the prediction as the following: 

Q̂
24
τ =

(
Q̂τ,1,⋯, Q̂τ,24

)
, (3)  

t̂24
τ =

(
t̂ τ,1,⋯, t̂ τ,24

)
, (4) 

Q48
τ = (Qτ− 48+1,⋯, Qτ), and (5) 

t48
τ = (tτ− 48+1,⋯, tτ) (6)  

where Q48
τ and Q̂

24
τ represent, at hour τ, the historical measured DH load 

for the previous 48 h (including τ) and the predicted DH load for the next 
24 h, respectively. Similarly,t48

τ and t̂24
τ represent, at hour τ, the his-

torical measured outdoor temperature for the previous 48 h (including 

Table 1 
List of observed buildings’ information.  

Average measured annual DH demand (kWh/m2) ≤70 ≤90 ≤120 ≤160 ≤190 >190  
No. of buildings / 7 6 6 1 /  
Energy labelling with maximum 

Delivered annual energy (kWh/m2) 
A B C D E F, G No infor. 
140 190 240 295 355 440, >440  

No. of buildings / 4 6 6 3 / 1 
Construction year Before 1950 1950–1979 1980–1999 2000–2010 After 2010  No infor. 
No. of buildings / / 7 9 3  1  
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τ) and the predicted outdoor temperature for the next 24 h, respectively. 
Using these notations, the two models could be expressed mathemati-
cally as: 

if historical heating load is not an input to the model, Q̂
24
τ = f

(
t̂24

τ , t48
τ
)
, (7)  

if historical heating load is an input to the model, Q̂
24
τ = g

(
t̂24

τ , t48
τ ,Q48

τ
)

(8) 

where f and g are the abstract representations of the two ANN pre-
diction models. Eq. (7) presents the first model considering outdoor 
temperature as the predictor, while Eq. (8) presents the second model 
considering both outdoor temperature and DH load as the predictors. 

Both ANN models were established with one input layer (the first 
model, f , with 72 input units, and the second model, g, with 120 units), 
one hidden Rectified Linear Unit (ReLU) layer with 64 nodes and one 
output layer. 64 nodes were determined through hyperparameter 
search. For simplicity, notation f72 represents model f

(
t̂24

τ , t48
τ
)

in Eq. (7) 

and notation g120 represents model g
(
t̂24

τ , t48
τ ,Q48

τ
)

in Eq. (8). These two 
notations are used in the following text. All the layers are densely con-
nected. Mean squared error (MSE) was used as the loss function, and 
Adam was used for the parameter optimization with the maximum 
number of epochs at 100. The models were originally tested with 24, 48, 
and 72 h of historical data (weather and/or DH load). It was found that 
the difference between using 48 and 72 h of historical data was not 
significant while between using 24 and 48 h was significant, regarding 
the loss function. 48-hour historical data were therefore chosen due to 
the faster speed of running the models. The datasets of 2016 and 2017 
were used as the training set establishing the ANN model, and the 
dataset for 2018 were used as the validation dataset for assessing the 
model performance during building and tuning the model process. To 
examine whether the model overfits the training set and is capable for 
future deployment, the resulting models were used to predict the DH 
load profile for 2019 and the prediction quality was evaluated using the 
measured data for the entire 2019, which was an unseen dataset during 
modelling process. 

2.4. Evaluation of the prediction performance 

Quality of the prediction models was evaluated by the commonly 
used criteria: mean absolute percentage error (MAPE), normalized mean 
bias error (NMBE), and the coefficient of variation of the root mean 
squared error (CV(RMSE)); meanwhile symmetric mean absolute per-
centage error (sMAPE) was also used as a supplementary criterion of 

MAPE, with lower and upper bounds. MAPE summarizes the relative 
error between the actual and predicted use in absolute value with a 
division by the observation number n. The directionality of the NMBE 
implies whether there is over-prediction or under-prediction. CV(RMSE) 
indicates whether the predicted model can reflect the real load shape. 
The criteria NMBE and CV(RMSE) shall be no more than 10% and 30%, 
respectively, when analysis is on hourly basis, according to the ASHRAE 
guidelines [31,44], while the MAPE shall be no more than 20% for a 
good forecasting model [45]. 

MAPE was given as: 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Ai − Fi

Ai

⃒
⃒
⃒
⃒ • 100% (9) 

sMAPE was given as: 

sMAPE =
1
n
∑n

i=1

⌈Ai − Fi⌉

(⌈Ai⌉ + ⌈Fi⌉)/2
• 100% (10) 

NMBE was given as: 

NMBE =
1
n

∑n
i=1(Ai − Fi)

A
• 100% (11) 

CV(RMSE) was given as: 

CV(RMSE) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Ai − Fi)

2
√

A
• 100% (12)  

where Ai is the measured value, Fi is the predicted value, and n is the 
number of the observations. 

3. Results 

The daily SH profiles, analysis results of the ES curve model, and the 
predicted annual DH profiles are presented in Sections 3.1 and 3.2. The 
24-hour period prediction results for the warm and cold seasons are 
presented in Section 3.3. Lastly, the prediction performance is evaluated 
in Section 3.4. 

3.1. Average daily space heating profiles and heating degree day results 

After removing the daily DHW heat use in Fig. 1, the average daily 
SH load profiles for the nursing homes 2016–2018 were made by using 
arithmetic mean value of each hour, as shown in Fig. 2. This was to 

Fig. 1. Daily DHW heat load profiles in the nursing homes, divided by day of week and seasons.  
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compare the load profiles between seasons and day types in general. In 
Fig. 2, the solid lines with stars and the dashed lines represent weekdays 
(WD) and weekends (WE), respectively. 

The seasonal month group 1 included November – March, the sea-
sonal month group 2 included April, May, September and October, and 
the seasonal month group 3 included June, July and August. Among the 
three seasonal groups, the heating load generally arose between 6 
o’clock and 16–17 o’clock with the peak load at around 9 o’clock, which 
could be noted on weekdays, weekends, and short holidays. This is in 
line with the survey that most of the nursing homes take their main daily 
activities such as medical treatment, health training, and reading, be-
tween 7 and 16 o’clock, when large SH demand is needed in common 
areas. Due to stable occupancy of patients and residents, the heating 
load profiles for nursing homes demonstrate a milder peak load during 
the working hours and relatively higher level during the non-working 

hours in nursing homes, comparing with the buildings featured with 
distinct night setback control operation and different attendance levels 
between the weekdays and the weekends, such as educational buildings, 
office buildings, and other administrative buildings [46,47]. 

Further, to see whether day types might affect SH use, the obtained 
SH use was segregated into four heating seasons by using the heating 
degree days (HDDs) [48,49]. HDD was calculated as the daily average 
difference between heating balance temperature tbal and hourly outdoor 
temperature: 1

24
∑24

τ=1(tbal − tτ), by assuming tbal at 15 ◦C and setting 
negative values to zero. Days with HDD lower than 5

24
◦C were considered 

as summer, between 5
24 and 100

24
◦C as the transition season, between 100

24 
and 510

24
◦C as the heating season, and with over 510

24
◦C as the very cold 

season. As shown in Fig. 3, it can be concluded that the daily SH oper-
ation generally follows the daily HDD closely, without influence of the 

Fig. 2. Average daily SH load profiles 2016–2018, considering three seasonal month groups.  

Fig. 3. Daily SH use vs. daily HDD, based on four different heating seasons, summer, transition season, heating season, and very cold season (high-heating season).  
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day type (weekday or weekend) nor manual false operation. Therefore, 
the ES curve models for SH prediction were established based on 
working hours and non-working hours, respectively, by following Eqs. 
(1) and (2). 

3.2. Energy signature curve model and annual district heating profile 

The ES curve models for the SH load are presented in Fig. 4, where 
the CPT was found at around 12 ◦C for providing a proper piece-wise 
approximation. The outdoor temperatures above the CPT covered 
22.4% of the entire heating periods, when the SH loads were less tem-
perature dependent as shown under the mild and constant slope. These 
small loads could be described by one regression line regardless of 
working hours and non-working hours. The remaining 77.6% of the 
time, the outdoor temperatures were below the CPT, falling into high- 
heating season. Along the regression lines below the CPT, there was a 
small region where non-working hours might need a slightly higher SH 
load than working hours under the same outdoor temperature (ca. 
10–12 ◦C). This might be explained by residents spending more time 
outdoor during working hours at higher outdoor temperatures, causing 
the ventilation heat demand to decrease slightly due to changes in oc-
cupancy. The quality of regression models was evaluated with the co-
efficients of determination R2, and the results are given in Table 2, 
together with the coefficients for the ES curves. 

In Table 2, for the outdoor temperatures lower than CPT, it might be 
noted that R2 were much higher than the required 0.75 for achieving a 
satisfying regression model [31,44]. However, for the part above the 
CPT, the SH needs had minor impacts on energy system requiring small 
load within short duration time. Comparing with those buildings with 
distinct time clock control operation, there were not pronounced SH 
differences between the working and the non-working hour periods in 
nursing homes, it is still worth analyzing them separately. 

By using Method 1 introduced in Section 2.2, the reversely predicted 
annual DH profile of 2016–2018 was compared with each year’s 

measured DH profile in Fig. 5. It can be observed that the DH load had 
large seasonal variation with the peak load during winter and early 
spring, and most of the predicted DH loads (green lines) were close to the 
measured DH loads (red lines). The annual DH demand of the three years 
were around 111–113 kWh/m2 with peak SH load 31–35 W/m2. By 
using the coefficients and knowledge obtained from the three years, the 
annual DH profile for 2019 was predicted, as shown in Fig. 6 giving a 
breakdown of the SH and DHW heat load profile. The peak SH load was 
29–31 W/m2 at outdoor temperature of − 11.6 to − 9.3 ◦C and the 
minimum load was close to 0.9 W/m2 for the network circulation, while 
the DHW use was considered process heat with seasonally stable usage 
patterns. The predicted annual total DH demand for 2019 was 114 kWh/ 
m2, 15% of which was for DHW heat use. The results follow the statis-
tical data of heat use in nursing home including the share for DHW heat 
use [40]. From this, a typical nursing home with an average area of 
7000 m2 may need around 800 MWh energy for heating purpose 
annually with a peak SH load of 203–245 kW under the similar climate. 
This also provides the boundary conditions that the day-ahead pre-
dictions shall be constrained by the operation scenarios, instead of 
allowing the network temperature drift freely with load variations. 

3.3. Results of short-term district heating load prediction 

The day-ahead prediction performance of the two models f72, g120 are 
compared in Fig. 7 and Fig. 8, and examples from different heating 
seasons were selected. To recall, model f72 did not consider the historical 
DH load as input, whereas g120 did consider the historical DH load, as 
stated in Section 2.3. In both models, the next 24-hour heating load 
prediction for the whole year of 2019 was made from 0 o’clock (τ) on 
January 1 to 0 o’clock (τ) on December 31 and gave 8737 prediction 
results in total, respectively.1 

In Figs. 7 and 8, the top row subplots show the prediction results for 
f72, and the bottom row subplots the results for g120. Each column sub-
plot shows the prediction for the next 24-hour period following the time 
instance indicated at the top, e.g., the prediction of the heating load 
Q̂τ =

(
Q̂τ,1,⋯, Q̂τ,24

)
is plotted for the τ on the given date. By looking at 

each column subplots, it is therefore easy to compare the performance of 

Fig. 4. Energy signature curve models of SH load. The black line below CPT represents working hours and red line non-working hours.  

Table 2 
Coefficients of Eqs. (1) and (2), and the corresponding R2.   

Outdoor temperature dependent ≤ 12 ◦C Outdoor temperature less 
dependent 

Working hour Non-working hour 13–20 ◦C >20 ◦C 

p1  − 1.1  − 0.94  − 0.3 / 
p2  16.7  15.9  8.0 0.9 
R2  0.89  0.90  0.37 (↓)  

1 Since weather of 2020 was not included, the prediction finished at 0 o’clock 
(τ) on December 31 with weather input by 23 o’clock on December 31. 
Therefore, each model ran 8737 times prediction (excluding 1–23o’clock (τ) on 
December 31) and produced 8737 prediction results, respectively. 
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model f72 and model g120 for the same time instance. In Figs. 7 and 8, the 
dashed black line represents the forecasted outdoor temperature for the 
corresponding 24-hour period, which are the actual outdoor tempera-
ture and used for evaluation in this case. To hold statistical reliability, 
three prediction results out of the 8737 instance τ were randomly 
selected from the 2019 testing data using a uniform probability distri-
bution. The sample results are presented in Fig. 7, in which there were 
two DH load spikes, one was measured at 9 o’clock on September 16 and 
the other one at 3 o’clock on October 27, see the green squares pointed 
by the gray arrows. Since the first random samples were not part of the 
(high-) heating season (cold period with high heating demand), further, 
the prediction results for three dates during January, February, and 
December were randomly selected, covering the outdoor temperature 
from − 11 to 2 ◦C, as shown in Fig. 8. In all the seasons, the load pre-
dicted by model g120 was apparently closer to the measured load than 

the one predicted by model f72, both to the curve patterns and load 
values. 

3.4. Results of the prediction performance evaluation 

Due to thermal and hydraulic inertia in DH systems, and energy 
source availability, daily operation is commonly planned and arranged 
based on energy demand prediction for satisfying end-users’ heating 
need in an economical way. By accumulating the daily prediction from 
Method 2 introduced in Section 2.3, a summed deviation between the 
predicted and the measured data throughout a year may be visualized. 
The deviation accumulated during (high-) heating season is especially 
important for evaluating peak loads prediction performance. Since the 
models, f72 and g120, respectively produced next 24-hour heating load 
prediction at (any) hour τ, it is possible to select the same hour τ of each 

Fig. 5. Measured vs. predicted DH load profile during 2016–2018 (subplot A–C), and predicted DH duration curves during 2016–2018 (subplot D).  

Fig. 6. Predicted DH load profile for 2019 with a breakdown of SH load profile (top row subplot) and DHW heating load profile (bottom row subplot).  
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day for planning the next-day’s production. Accordingly, the 24-hour 
ahead prediction results made at 0 o’clock every day from January 1 
to December 31 were accumulated for obtaining the annual predicted 
load profile for 2019. It shall be noted that these accumulated annual 
profiles were obtained differently than the one presented in Section 3.2, 
which was made by Method 1, the ES curve model – directly on a long- 
term basis. 

Fig. 9 compares the predicted load profiles for 2019 made by Method 
1- ES curve model (the green line), Method 2, model f72 (the dark red 
line), and model g120 (the yellow line), with the measured load profile 

(the blue line). The deviation between the measured load and the pre-
dicted load, Δ(τ) = measured Qτ − predicted Q̂τ , by the three models 
for 2019 are shown in Fig. 10, and the prediction accuracy evaluation of 
the three models is summarized in Table 3. In Fig. 9 all the three pre-
dicted load profiles followed seasonal variations, and the profiles by 
models f72 and g120 fell within the sizing boundary set by Method 1. g120 
demonstrated an advantage in predicting heating load in mild- and low- 
heating seasons, during which most of the heating needs were DHW use 
and therefore had a weak linear relationship with the outdoor 

Fig. 7. Predicted DH load for the 24-hour period following the date indicated above each column, showing the randomly selected prediction results by model f72 (top 
row subplots) and by model g120 (bottom row subplots). 

Fig. 8. Predicted DH load for the 24-hour period following the date indicated above each column, showing the selected three dates prediction results by model f72 

(top row subplots) and by model g120 (bottom row subplots). 
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temperatures, as indicated by the red circle. In Fig. 9, the horizontal 
dash-dotted line refers to the reference line of the outdoor temperature 
at − 9 ◦C, and only outdoor temperatures below − 5 ◦C are presented as 
shown in the black dashed line; the red arrows point to the four 

examples of the peak heating load periods, as presented in Fig. 11. As 
compared in Fig. 10, g120 held the prediction deviations within ±3 W/ 
m2 during most of the time, f72 had highest deviations during cold pe-
riods either over-predicting DH load or under-predicting DH load, and 
the ES curve kept the prediction deviation in between. The deviation 
high spikes on October 27 were mostly caused by measurement failure, 
see Fig. 7, when a sudden high DH load was measured. 

In Fig. 11, Model f72 was least sensitive to the outdoor temperature 
changes by underpredicting the peak load and overpredicting the load 
during other time, also seen in Fig. 10; the ES curve model and model 
g120 catch most of the peak load periods, whereas the ES curve model 
might have overpredicted the peak load and caused unnecessary costs 
comparing to g120. To recall Fig. 3, the regression line generally corre-
lated well between the daily HDDs and the daily SH demand, however it 
might have overpredicted the SH use in the short and very cold season. 

Fig. 9. Measured vs. predicted annual DH load profiles by the three models for 2019.  

Fig. 10. Deviation plot between measured and predicted DH load by the three models for 2019.  

Table 3 
Evaluation results of 2019 DH load forecast produced by the three models. The 
criteria, MAPE, sMAPE, NMBE, and CV(RMSE), are used for quality evaluation.  

Prediction method MAPE 
(%) 

sMAPE 
(%) 

NMBE 
(%) 

CV(RMSE) 
(%) 

Method 1-ES curve 
model  

13.94  12.81  − 3.91  13.79 

Method 2-model f72  16.77  14.75  − 8.13  15.51 
Method 2-model g120  7.23  7.28  − 0.36  7.90  
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Since the ES curve model below the CPT was determined by considering 
heating season and very cold season together, this might explain the 
possible overprediction of the peak SH load by Method 1. 

As listed in Table 3, the MAPE and sMAPE results of the three models 
were less than 20%, NMBE within ±10%, and CV less than 20%, 
meeting the criteria upper limits [31,44,45]. Despite using the same 
training set for f72 and g120, g120 had the best prediction performance on 
a yearly basis benefitting from using both the nearest historical two-day 
heating load and the outdoor temperatures as inputs, while f72 only 
considered the ambient condition as the inputs and its prediction ac-
curacy was reflected by the poorest results regarding all the criteria. 
However, it was still good to notice that the load predicted by f72 to some 
extent was able to catch the pattern from the measured load curves, even 
without historical DH load as inputs, as reflected by its criterion CV 
(RMSE) result, much lower than the limit, 30%. Besides setting load 
boundary, the heating load prediction quality of the ES curve model was 
in the middle of the three models. 

This means the models and their predicted DH load profiles provided 
high accuracy for use in the following work, regardless of the different 
input settings and algorithms of the three prediction models. 

4. Discussions and future study 

Selection of the analyzed building type data is reasoned in Section 
4.1. Section 4.2 discusses three points, rationality of the models, limi-
tation, and future work. The value of transferring this work is presented 
in Section 4.3. 

4.1. Rationale of building type data inventory 

A selection of nursing homes in the city of Trondheim was selected 
for the data analysis and modelling. A modern nursing home covers a 
large floor area and includes residents’ private rooms with round-the- 
clock occupancies, large common area, 24/7 nursing service, and 
administrative offices. In 2018, the Norwegian long-term care expen-
diture accounted for 3.5% of GDP, while the average expenditure in 

OECD countries was 1.5% [50]. The function and characteristics of this 
building type make it an important public residential building with 
respect to social welfare progress and residents’ care needs in the aging 
society. 

The energy use in special residential building types, such as nursing 
homes, has more true-needs for users during whole heating seasons, and 
has not yet been extensively studied compared to residential buildings, 
especially in the cold climate, as mentioned in [41]. Since most of them 
are supplied by DH, it is important to study their energy needs in the 
transition to LTDH and to improve building energy supply, and for this, 
it is important to develop reliable prediction methods. 

4.2. Discussions 

4.2.1. Rationality of the models 
By making good use of big data, data-driven models were selected 

over physical models. In Fig. 7, there were two DH load spikes, whereas 
the load profiles predicted by the two ANN models demonstrated a 
smoother trend. After checking the outdoor temperature during the two 
days, no “sudden” weather changes were recorded. Thus, these unusual 
data values might have been caused by metering failures or false oper-
ation. Nonetheless, the established models showed more reasonable 
heating load prediction. Besides the proper algorithms, the three-year’s 
large data for training/validation also contributed to the appropriate 
prediction. 

4.2.2. Limitation 
The models adopted the actual measured outdoor temperature (the 

predictor) as the forecasted outdoor temperature for prediction. Prac-
tically, this weather forecast would however be inaccurate to some 
extent and may consequently cause a weaker performance than the 
observed in this study. Therefore, it is important to build the base model 
as accurately as possible, to reduce the spread and impacts of such 
weather uncertainties and inaccuracies. Meanwhile, due to this study’s 
limited scope and length, only the hybrid of a linear regression model 
and an ANN model was considered. Although the prediction results were 

Fig. 11. Four examples of peak load periods in 2019, measured vs. predicted DH profiles by the three prediction models. Subplot A represents the load profiles 
comparison from 1 o’clock on January 22 to 24 o’clock on January 24. Subplot B represents the load profiles comparison from 1o’clock on February 4 to 24 o’clock 
on February 6. Subplot C represents the load profiles comparison from 1 o’clock on March 5 to 24o’clock on March 6. Subplot D represents the load profiles 
comparison from 1 o’clock to 24 o’clock on November 9. 
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satisfactory, a further study shall investigate whether there are other 
types of prediction methods, and newer types of ANN architectures may 
achieve better results, even with less training data available. 

4.2.3. Future work – integration of building sized heat pumps in low- 
temperature district heating 

In addition to improving DH load prediction quality, the above- 
described heating load profiles for DHW and SH may be utilized 
respectively in building energy supply operation when the building is 
connected into LTDH system. For example, it would be helpful to 
respond the different minimum allowable supply temperature re-
quirements of DHW and SH by integrating two building-sized boosting 
HPs in LTDH. This may be regarded as a promising solution towards one 
of the challenges in LTDH. One possible application may be proposed as 
shown in Fig. 12, where from left to right side are the emerging heat 
source from waste heat, the temperature upgrade process, and the 
building user. 

According to the Norwegian regulation, when a water storage tank is 
included, the DHW temperature should be maintained at not lower than 
65 ◦C to prevent Legionella’s growth [51]. One booster HP (HP1) may be 
accordingly employed for upgrading the heat source temperature e.g., 
from 55 to 65 ◦C for DHW heating, which connects to a water storage 
tank and a heat exchanger at substation. 

The second booster HP (HP2) may be employed for upgrading the 
heat source for satisfying the peak SH load, when the outdoor temper-
ature reaches a critical point that the source temperature is unable to 
maintain thermal comfort. For example, when using the conventional 
radiators in Nordic housings, the critical point may be determined as in 
[52] giving the equation as: 

tin = − 0.75 • tτ + 51 (13)  

where tτ is the outdoor temperature and tin is the minimum heating 
supply temperature. Additionally, selection of the critical point shall 
also consider the energy system’s flexibility and use of building thermal 
inertia as shown elsewhere [53,54]. 

When the HPs or other boosting units are electric-driven, the annual 
electricity bill for heat source upgrade process is calculated by sum-
marizing the monthly cost, which may follow Eq. (14): 

Cmon = (1 + 0.25) •
∑720or744

t=1
vτ•Ėτ + f •

∑720or744

t=1
Ėτ +

F
12

(14)  

where τ is the time instance, 0.25 is the tax rate on spot price, vτ is the 
variable power market price, considered with the NordPool spot price of 
Trondheim in 2019 [55], Ėτ is the hourly electricity use, f is the grid rent 
with a value of 0.023€/kWh, and F is the fixed annual fee with a value of 
190€/yr to ensure customers’ access to electricity covering the costs 
associated with power grid operation, retrieved from grid company 
Elvia [56]. Many European countries adopt a price charging model 
similar to the one shown in Eq. (14) [57], containing fixed grid rent, tax, 
and variable market price; in some cases, surcharge of high peak load in 
winter are also included. 

To analyze the impacts from different prediction models on the 
overall costs of the building heat supply system, a thorough study shall 
be carried out involving several key factors, e.g., types of HPs com-
pressors driving force, operation optimization strategy, and sizing of the 
boosting HPs and water storage tank to avoid high peak surcharge. In 
addition to focusing heating load prediction and supply on building side, 
it would be interesting to examine the interactive response between DH 
plant/network and building user side. For example, when integrating 
renewables and short-to-medium-term thermal storage into LTDH, 
which is likely to come more in the near future, pricing models for both 
heat source and boosting costs shall be considered in the overall network 
cost optimization. Due to the length of the paper, an in-depth analysis 
and scenario-based projection of system cost shall be the goal of future 
study. 

4.3. Value of transferring the developed models 

There is a noticeable difference in heating load prediction perfor-
mance between the model using historical heating loads and outdoor 
temperature as prediction inputs (g120) and the models only using the 
outdoor temperature as inputs (the ES curve model and f72), e.g. during 
the mild-low heating season. One reason could be the thermal inertia 
effects of the buildings and suboptimal control of the heating loads, 
which likely makes the historical heating loads be useful to model. 
Additionally, during this period, DHW heat use accounted for a higher 

Fig. 12. Schematic diagram of integrating building-sized HPs.  
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share of heat demand under the weaker relationship between the out-
door temperature and the heating load. This evidence presented a basis 
for future LTDH transitions under different climates, that more heating 
loads may fall into mild-heating season and only peak loads into high- 
heating seasons. 

Although it is important to include historical heating load for pre-
diction models as found in the results, historical heating load data are 
unfortunately either accessible with delays or low data quality, i.e., low 
time resolution, different from historical weather data, which are usu-
ally publicly accessible via meteorological institutions. Accordingly, 
another potential application of the results is to map load predictions in 
other relevant buildings, either existing ones without high quality data 
collection or newly built ones with limited data for training. One of the 
promising methods is transfer learning (TL), which is a state-of-the-art 
ML technique showing excellent performance in different fields. 
Lately, TL has shown advantages for building energy management with 
adjustment of buildings’ identities [58]. The gained knowledge is 
therefore beneficial for understanding such as newly built nursing 
homes or existing ones in need of renovation assessment, by transferring 
the developed energy prediction models of one typical building type to 
individual buildings. 

5. Conclusions 

This study proposed hybrid heating load prediction methods and 
examined the feasibility of integrating two building-sized HPs in an 
LTDH system. The work was established on the average heating load of 
20 nursing homes, involving different building ages, areas, and energy 
labelling levels in the Nordic climate. 

The main findings are as the following:  

• From Method 1, the ES curve model provided a long-term heating 
load prediction in hourly resolution, showing a strong linear rela-
tionship between the outdoor temperature and the heating load over 
half of the heating seasons.  

• Under the sizing boundary by Method 1, it was found to be important 
to include historical heating data as inputs when developing the two 
ANN models in Method 2, f72 and g120. Through the accumulation of 
every day’s day-ahead prediction, models f72 and g120 were compa-
rable with the ES curve model on a yearly basis.  

• The three models were evaluated on the actual measured data from 
real cases, demonstrating the feasibility of such prediction models. 
Among them, benefitting from considering both the historical heat-
ing load and the outdoor temperature as the inputs, the ANN model 
g120 showed the best results in the quality evaluation, especially in 
predicting the heating load in the mild-low heating season and peak 
periods.  

• As one of the challenges in LTDH system, the different minimum 
allowable temperature requirements of DHW and SH, may be 
handled by integrating two building-sized heat pumps, with the 
respective load profiles for DHW and SH as demand inputs. 

This study demonstrated hybrid building heating load prediction 
methods and present their possible application in building energy supply 
operation. The proposed methods and results were established and 
evaluated on a large amount of measured data and may give a better 
insight into building energy management and the LTDH system. 
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