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Abstract

In this paper we develop a method for relative pose estimation for two sets of corresponding geometric
primitives in 3D with a significant outlier fraction. This is done by using dynamical pose estimation as a
solver in registration problems formulated with graduated non-convexity for truncated least squares (GNC-
TLS). Dynamical pose estimation provides a unifying solver that can be used for point cloud registration,
primitive registration, and absolute pose estimation. The solver is straightforward to implement, and it
does not require specialized software for optimization. The main contribution of this paper is to show how
the dynamical pose estimation method can be extended to fit into the GNC-TLS framework so that high
outlier fractions can be handled. The proposed method is validated for point cloud registration, primitive
registration, and absolute pose estimation. The accuracy and robustness to outliers is shown to be on the
level of existing GNC-TLS methods.
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1 Introduction

Pose estimation with a high outlier fraction is impor-
tant in robotics, and is needed in 3D registration prob-
lems like point cloud registration, primitive registra-
tion, absolute pose estimation and category registra-
tion.

When there are no outliers the pose estimation prob-
lem can be formulated as the least-squares minimiza-
tion problem

min
T∈SE(3)

N∑
i=1

r(T ⊗Xi,Yi)
2 (1)

where Xi and Yi are corresponding geometric prim-
itives, T = (R, t) ∈ SE(3) is a rigid transforma-
tion, T ⊗ Xi is the rigid transformation of Xi, and
the residual error r(T ⊗ Xi,Yi) is the distance from
T ⊗Xi to Yi. In point cloud registration this prob-
lem is solved in closed form in (Arun et al., 1987)
and (Horn, 1987). Primitive registration with point-

to-plane, point-to-line and point-to-point correspon-
dences was solved with branch and bound in (Hart-
ley and Kahl, 2009) and (Olsson et al., 2009), and
with semidefinite programming (SDP) in (Briales and
Gonzalez-Jimenez, 2017). Absolute pose estimation
was solved with the Gröbner basis method by several
authors including Kneip et al. (2014), where the UPnP
method was presented, and with semidefinite program-
ming (SDP) (Agostinho et al., 2019).

Dynamical pose estimation was presented in (Yang
et al., 2021a) as a unifying method for point cloud reg-
istration, primitive registration, category registration,
and absolute pose estimation when there are no out-
liers. In this method the relative pose between the
geometric primitives Xi and Yi is found as the motion
of a virtual rigid body that is initially aligned with
the data set, and which is moved into alignment with
the model set through the action of virtual springs and
dampers connected between corresponding primitives
Xi and Yi.
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In the case of outliers, RANSAC (Fischler and
Bolles, 1981) has been widely used in registration prob-
lems. A drawback with RANSAC is slow convergence
and low accuracy for high outlier fractions, as noted
in (Parra Bustos and Chin, 2018), where a guaranteed
outlier removal (GORE) technique was proposed. An
alternative is to eliminate the need for RANSAC by
replacing the least-squares cost r(·)2 with some robust
cost ρ(r(·)), like the Huber cost, the Geman-McClure
cost or truncated least-squares cost (TLS) (Black and
Rangarajan, 1996), which gives the minimization prob-
lem

min
T∈SE(3)

N∑
i=1

ρ(r(T ⊗Xi,Yi)) (2)

The non-convexity of this problem was handled with
semidefinite relaxation for the TLS case in the
TEASER method (Yang et al., 2021b). Graduated
non-convexity (GNC) (Blake and Zisserman, 1987),
(Black and Rangarajan, 1996) is a continuation method
for non-convex problems which was used with the
Geman-McClure cost in (Zhou et al., 2016), and with
the truncated least-squares cost (GNC-TLS) in (Yang
et al., 2020). This method worked well for outlier rates
up to 70%–90%.

Related Work

The GNC-TLS approach requires that a solver is avail-
able for the minimization problem (6) (Yang et al.,
2020). Specialized solvers are available for the dif-
ferent types of problems, like point cloud registration
where a closed form solution based on SVD is used
(Arun et al., 1987), (Horn, 1987), primitive registration
based on SDP (Briales and Gonzalez-Jimenez, 2017),
absolute pose estimation with Gröbner basis methods
(Kneip et al., 2014), and shape alignment with convex
relaxation (Zhou et al., 2017) or a certifiable optimal
solution based on SOS relaxation (Yang et al., 2020).

Contributions

In this paper, we present a new method where we com-
bine the dynamical pose estimation method of Yang
et al. (2021a) with the graduated non-convexity for
truncated least-squares (GNC-TLS) as presented in
(Yang et al., 2020). The main advantage of the pro-
posed solution is that it is straightforward to imple-
ment, and that it gives a unified approach to 3D reg-
istration with outliers, including point cloud registra-
tion, primitive registration, and absolute pose estima-
tion. Our solution is based on a systematic proce-
dure for selecting the masses, spring constants and
damping coefficients in the dynamical pose estima-
tions scheme for each iteration of the graduated non-

convexity method. Moreover, Lyapunov analysis is in-
cluded for point cloud registration to show that the
method is stable and converges for each iteration. We
demonstrate the performance of the method for point
cloud registration, primitive registration and absolute
pose estimation where the method is shown to perform
well with up to 70%–90% outliers.

2 Graduated non-convexity

Consider the truncated least-squares (TLS) cost

ρTLS(ri) = min
(
r2i , ε

2
)

(3)

where ε is the truncation threshold. This cost gives
a non-convex minimization problem (2). The gradu-
ated non-convexity (GNC) can be be used to optimize
this TLS problem in a GNC-TLS continuation pro-
cess (Black and Rangarajan, 1996), (Antonante et al.,
2022), (Yang et al., 2020), by minimization of the sur-
rogate cost function

ρµ(ri) = wir
2
i +

µ(1− wi)
µ+ wi

ε2 (4)

where the weights are given by

wi =


1, if r2i ≤ ε2α1
ε
|ri|

√
µ(µ+ 1)− µ, if ε2α1 ≤ r2i ≤ ε2α2

0, if r2i ≥ ε2α2

(5)

for α1 = µ/(µ + 1) and α2 = (µ + 1)/µ. Inserting the
expressions for the weights (5) in (4) gives

ρµ(ri) =


r2, if r2i ≤ ε2α1

2ε|ri|
√
µ(µ+ 1)

−µ(ε2 + r2i ), if ε2α1 ≤ r2i ≤ ε2α2

ε2 if ε2α2 ≤ r2i

It is seen that ρµ(ri) equals ρTLS(r) for r2i ≤ ε2α1 and
ε2α2 ≤ r2i , while there is a blend region for ε2α1 ≤ r2i ≤
ε2α2 as shown in Figure 1. It is seen that ρ′′µ(r) = 2
for small r, and ρ′′µ(r) = −2µ in the blend region. This
means that ρµ(r) will tend to a convex function when
µ tends to zero.

It is noted in (Yang et al., 2020) that the second
term in the cost function in (4) is independent from T ,
and it follows that the GNC-TLS minimization prob-
lem given by (2) and (4) is equivalent to the weighted
least-squares problem

min
T∈SE(3)

N∑
i=1

wir(T ⊗Xi,Yi)
2 (6)

where the weights are given by (5).
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Figure 1: The surrogate cost function ρµ(r) for GNC-
TLS for different values of the control param-
eter µ.

The TLS optimization problem (2) and (3) can then
be solved in a GNC continuation process (Black and
Rangarajan, 1996), (Yang et al., 2020) where the min-
imization problem (6) is solved first for a control vari-
able µ that is sufficiently small for the problem to be
approximately convex. For GNC-TLS µ can be initial-
ized using

µ =
ε2

2r2max − ε2
(7)

where r2max = maxi r(T ⊗Xi, Yi)
2 is the maximum

residual after the first variable update (Yang et al.,
2020). Then a sequence of minimization problems (6)
is solved for increasing values of µ. The final solution
is then found when the surrogate cost (4) is sufficiently
close to the truncated least-squares cost (3). When µ
becomes sufficiently large in this process the outliers
will ideally have weight wi = 0 and the inliers will ide-
ally have wi = 1, which means that only inliers will
contribute to the quadratic cost in (6). The method is
described in detail in (Antonante et al., 2022).

It is noted that the weighted least squares problem
(6) can also be used for to solve GNC for the Geman-
McClure cost (GNC-GM) (Zhou et al., 2016) by using
the weights (Yang et al., 2020)

wi =

(
µε2

r2i + µε2

)2

(8)

It is concluded that GNC-GM and GNC-TLS can be
solved by minimizing (6). This requires that a solver
is available for (6), and in this paper we will show how
dynamical pose estimation (Yang et al., 2021a) can be
modified so that it can be used as a solver.

3 Dynamical pose estimation for
GNC-TLS

3.1 Introduction

Dynamical pose estimation (Yang et al., 2021a) is a
solver for the minimization problem (1) based on a dy-
namic formulation where the primitives Xi in the data
set are modeled as point masses that are connected
with virtual springs and dampers to the primitives Yi
in the model set. The virtual springs will then pull
the data set so that it aligns with the model set, and
the displacement T is found from the motion involved
in the alignment. In the following we will present an
extension of the original method of Yang et al. (2021a)
which can be used as a solver for (6). This is done
by letting the mass points have different masses deter-
mined by the weight wi, and by scaling the spring and
damper coefficients with the weights.

3.2 Dynamic model

The model primitives Yi are considered to be fixed in
a rigid body By and the data primitives Xi are con-
sidered to be fixed in a rigid body Bx, where Bx is
obtained by the rigid motion T ∈ SE(3) of By. The
rigid bodies Bx and By are fixed in the world frame s.
Each primitive Xi has a point mass of mass mi at the
position xi in the coordinates of s.

The position of mass point i in Bx is given by

xi = x̄+ xri (9)

where x̄ is the center of mass of the rigid body Bx. It
is noted that

x̄ =
1

M

N∑
i=1

mixi,
1

M

N∑
i=1

mixri = 0 (10)

where M =
∑N
i=1mi is the total mass. The moment

of inertia of Bx about its center of mass is

J = −
N∑
i=1

mi (xri)
×

(xri)
×

(11)

where a× is the skew-symmetric form of a ∈ R3.
A moving virtual rigid body Bz is defined as a copy

of the rigid body Bx. The body frame b is fixed in Bz.
The mass points at xi in Bx are copied as the mass
points at ζi in Bz so that xi = ζi, where xi is given
in s and ζi is given in b. The virtual rigid body Bz
has center of mass with constant position ζ̄ = x̄ in the
body frame b. This gives ζi = ζ̄ + xri where ζi and
ζ̄ are given in the coordinates of b. It follows that the
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moment of inertia of Bz about its center of mass in the
coordinates of b is J as given by (11).

The displacement of frame b relative to frame s is
given by (Rz(t), tz(t)) ∈ SE(3). Then the position of
point i in in Bz in the s frame is

zi = Rzxi + tz (12)

The position of the center of mass of the rigid body Bz
in the s frame is therefore

zc =
1

M

N∑
i=1

mizi (13)

Then from (9), (10) and (12) it follows that

zi = zc +Rzxri , zc = Rzx̄+ tz (14)

The virtual rigid body has velocity żc = vc for the
center of mass, and angular velocity ω in the coordi-
nates of b. The initial values are zc(0) = x̄, vc(0) = 0,
ω(0) = 0 and Rz(0) = I. For each of the N primitives
there is one external force fi which acts on position zi.
The equations of motion of the virtual rigid body Bz
are given by (Yang et al., 2021a)

żc = vc (15)

Ṙz = Rzω
× (16)

v̇c = ac =
1

M
f (17)

ω̇ = α = J−1(τ − ω×Jω) (18)

where J , ω, α and τ are given in b, and zc, vc and
f are given in s. The force f on Bz is given by f =∑N
i=1 fi where fi is the force on particle i, and the

torque is τ =
∑N
i=1 xri × (RT

z fi). Figure 2 in (Yang
et al., 2021a) shows how the dynamics develop on a N -
primitive rigid-body with N = 4 geometric primitives.

3.3 Graduated non-convexity with
dynamical pose estimation

Dynamical pose estimation is formulated in (Yang
et al., 2021a) as a minimization of the least-squares
problem (1). Each primitive has equal mass mi =
1, and all spring constants kp and all damping co-
efficients kd are equal. This means that Vp =
1
2kp

∑N
i=1 ‖r(zi,yi)‖2 is minimized.

We present an extension where different masses mi

are used for the point masses, and where the spring
and damper coefficients are scale with the mass using
kp,i = mikp and kd,i = mikd. Then by selecting mi =
wi, the potential energy will be

Vp =
1

2
kp

N∑
i=1

wi‖r(zi,yi)‖2 (19)

which means that the dynamical pose estimation
method will minimize the GNC-TLS problem (6).

GNC-TLS can then be solved with DAMP as shown
in Algorithm 1. The structure is similar to that of
(Antonante et al., 2022), while the difference is the
use of DAMP as the solver. The algorithm starts by
initializing the control variable µ according to (7) and
the weights wi are all set to 1. For each iteration,
dynamical pose estimation is used to solve (6). The
weights are updated according to (5) and the control
variable is increased. The algorithm terminates when
either the maximum number of iterations are used, or
when all inliers and outliers have been classified.

Algorithm 1: GNC-TLS

input : Model set Y = {Yi}Ni=1,
Data set X = {Xi}Ni=1,
Initial pose T (0) = (Rz(0), zc(0))
Truncation threshold ε > 0,
Control param. update factor γ > 1,
Max iterations jmax > 0

output: Final pose T = (Rz, zc),
Weights w = {wi}Ni=1

1 r2max(0) = maxi r(T (0)⊗Xi, Yi)
2

2 µ(0) = initializeMu(r2max(0), ε)

3 w(0) = {1}Ni=1

4 for j = 1 to jmax do

5 % DAMP solver shown in algorithm 2

6 T = DAMP(Y ,X,T ,w)

7 if w is binary and j > 1 then
8 break
9 else

10 r2 = {r(T ⊗Xi, Yi)
2}Ni=1

11 w = updateWeights(r2, ε, µ)
12 µ = γ · µ
13 end

14 end

The damp method used in Algorithm 1 was imple-
mented with Algorithm 2, which is based on the algo-
rithm of (Yang et al., 2021a). The algorithm starts by
initializing the particle point mass information for the
moving virtual body. An initial pose is passed to the
algorithm giving faster convergence, as past iterations
of GNC-TLS are utilized, the weights wi converge, and
the pose estimate approaches the final solution. In the
main loop, the moving virtual rigid body Bz is moved
and the forces for each particle are calculated using
the distance function defined for the given primitive
correspondence pair. The total force and torques are
calculated, and the states of the dynamic system are
updated. The algorithm terminates when either the
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maximum number of iterations are used, or the change
in the states is below a set threshold. In (Yang et al.,
2021a) the EscapeMinimum scheme is presented to pre-
vent DAMP from returning a sub-optimal solution. If
EscapeMinimum is used, the solution is recorded and
its corresponding potential energy is saved. The states
are then randomly perturbed, before a new dynamical
simulation is made. This is repeated for a given num-
ber of trials, and the solution that is returned is the
pose estimate that yields the lowest potential energy
in the system. We have modified this scheme to only
perturb the linear and angular velocities.

3.4 Point cloud registration

In point cloud registration the geometric primitives are
points with position yi and xi, and the residual in (6)
is r(T ⊗Xi,Yi) = ‖yi −Rxi − t‖. It is noted that in
this case (6) is Wahba’s problem with weights, which
has a closed form solution which is a straightforward
extension of the result in (Arun et al., 1987). To solve
this problem with dynamical pose estimation, we make
a slight modification of the approach in (Yang et al.,
2021a) by allowing for different masses mi, and select
the force acting on the point mass at zi as

fi = mikp(yi − zi)−mikdżi (20)

This is the force of a spring with spring constant mikp
and a damper with coefficient mikd. The resulting
torque about the center of mass of Bz is

τi = xri × (RT
z fi)

= mixri ×RT (kp(yi − zi)− kdżi) (21)

Using (14), żi = vc+Rzω
×xri is derived. Combined

with (10) applied to the point masses in By, the total

force f =
∑N
i=1 fi and the total torque τ =

∑N
i=1 τi

on the rigid body Bz is found to be (Yang et al., 2021a)

f = Mkp(ȳ − zc)−Mkdvc (22)

τ = kp

N∑
i=1

mix
×
riR

T
z yri − kdJω (23)

We note that the residual used in point cloud regis-
tration is the spring deflection given by

r(zi,yi) = yi − zi (24)

and that the resulting potential energy is given by (19).

3.5 Convergence for point cloud
registration

The stability and convergence of dynamic pose estima-
tion for point cloud registration can be studied with

Algorithm 2: DAMP for GNC

input : Model set Y = {Yi}Ni=1, Data set
X = {Xi}Ni=1, Initial pose
T (0) = (Rz(0), zc(0)), Weights (mass)
w = {wi}Ni=1 > 0, Spring and
damping coeff. ks > 0, kd > 0, Time
step ∆t > 0, Max iter. kmax > 0,
Stopping criteria σ > 0,
EscapeMinimum TRUE or FALSE,
Max EscapeMinimum trials tmax > 0

output: Final pose T = (Rz, zc),

1 M =
∑N
i=1 wi, x̄ = 1

M

∑N
i=1 wixi

2 xri = xi − x̄, J = −
∑N
i=1 wi(xri)

×(xri)
×

3 vc(0) = 0, ω(0) = 0

4 if EscapeMinimum then
5 trial = 0, T = ∅, V = ∅
6 end
7 for k = 1 to kmax do
8 zi = Rz · xri + zc, i = 1, . . . , N
9 fi = wi(ksr(zi,yi)− kdżi), i = 1, . . . , N

10 f =
∑N
i=1 fi

11 τ =
∑N
i=1 xri ×RT

z fi

12 % Update states (s = s+ ∆t · ṡ)
13 zc = zc + ∆t · vc
14 Rz = Rz · exp (∆t · ω)

15 vc = vc + ∆t · 1
M f

16 ω = ω + ∆t · J−1(τ − ω×Jω)

17 % Equilibrium point

18 if ‖ṡ‖ ≤ σ then
19 if EscapeMinimum and trial ≤ tmax

then
20 T = T ∪ (Rz, zc)

21 V = V ∪ ks
2

∑N
i=1 wi‖r(zi,yi)‖2

22 {vc,ω} ∼ N (0, I)
23 trial = trial + 1

24 else
25 break
26 end

27 end

28 end
29 if EscapeMinimum then
30 (Rz, zc) = T (arg min V)
31 end

LaSalle’s invariance principle (Khalil, 2002). The prob-
lem formulation leads to a virtual mass-spring-damper
system which is well known in energy-based Lyapunov
analysis. In (Yang et al., 2021a) the details of the Lya-
punov analysis are left out, while a detailed analysis
of the equilibrium points is included. In (Yang et al.,
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2021a, Theorem 11) it is shown that one optimal equi-
librium points is stable, while three other equilibrium
points which differ from the optimal equilibrium point
by a rotation of π, are unstable.

Consider the Lyapunov function candidate

V = Vk + Vp (25)

where the kinetic energy Vk of the rigid body Bz is
(Egeland and Gravdahl, 2002)

Vk =
1

2

N∑
i=1

miż
T
i żi =

1

2
MvTc vc +

1

2
ωTJω

and the potential energy Vp stored in the springs is
given by (19) for point cloud registration

Vp =
1

2
kp

N∑
i=1

mi‖yi − zi‖2 (26)

Note that the point masses mi are included in the ex-
pression for the potential energy. This is explained in
Section 3.3.

The time derivative of the kinetic energy along the
trajectories of the system (17, 18) is

V̇k = vTc M v̇c + ωTJω̇ = vTc f + ωTτ (27)

where it is used that ωT(ω×Jω) = ωTω×(Jω) = 0.
The time derivative along the solutions of the closed-
loop system (17, 18, 22, 23) is therefore

V̇k = kpMv
T
c (ȳ − zc)− kdMvTc vc

+ kpω
T

N∑
i=1

mix
×
riR

T
z yri − kdωTJω (28)

The expression for the potential energy of spring i is
modified by using (14) and (9, 10) applied to both Bx
and By, which gives

Vp =
1

2
kpM‖yi−zi‖2 +

1

2

N∑
i=1

mi‖yri −Rzxri‖2 (29)

The time derivative of the potential energy along the
solutions of the system (17, 18, 22, 23) is then

V̇p = −kpMvTc (ȳ − zc)− kpωT
N∑
i=1

mix
×
riR

T
z yri (30)

The time derivative of the Lyapunov function candi-
date along the solutions of the system (17, 18, 22, 23)
is therefore

V̇ = −kdMvTc vc − kdωTJω = −2kdVk ≤ 0 (31)

Stability can then be analyzed with LaSalle’s invari-
ance principle. From

v̇c =
f

M
= kp(ȳ − zc)− kdvc (32)

it is seen that invariance at vc = 0 requires that ȳ = zc.
This ensures that the center of mass of Bz converges
to the center of mass of By. From

Jω̇ = kp

N∑
i=1

mix
×
riR

T
z yri − kdJω − ω×Jω (33)

it is seen that invariance at ω = 0 requires that

N∑
i=1

mix
×
riR

T
z yri =

N∑
i=1

mix
×
riR

T
zRxri = 0 (34)

This is the case for R = Rz, but also for R =
RzR(k, π), where R(k, π) is the rotation matrix of a
rotation π about some axis k. In (Yang et al., 2021a) it
is shown with local stability theory that solutions with
R = RzR(k, π) are unstable. This means that the
points zi will converge to the points yi, which means
that the solution is found from the final value of Rz

and zc.

3.6 Primitive registration

Primitive registration with dynamical pose estimation
was proposed in (Yang et al., 2021a), where Yi could
be points, lines or planes.

The first type of primitive is a point yi ∈ R3. The
residual is then as in point cloud registration.

The second primitive is a line

L(yi,ai) = {yi + αiai : αi ∈ R} (35)

where yi ∈ R3 is a point on the line and ai ∈ S2 is
a unit direction vector. The spring deflection is then
the distance from a point zi to the corresponding line
L(yi,ai), which is

r(zi,yi) = (I − aiaT
i )(zi − yi) (36)

The third primitive is a plane

H(yi,ni) = {y ∈ R3 : (y − yi) · ni = 0} (37)

where yi and y are points in the plane and ni ∈ S2 is
the unit normal vector. The spring deflection is then
the distance from the point zi to the corresponding
plane H(yi,ni), which is

r(zi,yi) = nin
T
i (zi − yi) (38)

The force on particle i is for all 3 cases

fi = −mikpr(zi,yi)−mikdżi (39)
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and the resulting potential energy is given by (19)
where r(zi,yi) is given by (24) for a point-point cor-
respondence, (36) for a point-line correspondence, and
by (38) for a point-plane correspondence.

3.7 Absolute pose estimation

In absolute pose estimation the model points yi and
the corresponding data points xi are given in the cam-
era frame. The primitives of the model are the points
yi, while the primitives of the data set are the lines
L(0,ai) through the origin of the camera frame with
direction vector ai = pi/‖pi‖, where pi are the im-
age points corresponding to the points xi (Hartley and
Zisserman, 2004). The virtual rigid body Bz is initially
aligned with By, and is moved to Bx by connecting each
point zi to the closest point on the corresponding line
L(0,ai) with a spring. Since the lines will spread out
from the origin of frame c, this alignment will also give
the right depth coordinates of the data points.

The residual is given by (36) as in the point-line
case, which gives r(zi,yi) = (I − aiaT

i )zi. The force
on particle i is then

fi = −mikp(I − aiaT
i )zi −mikdżi (40)

The resulting potential energy is given by (19).

4 Experiments

To validate the performance of the proposed method,
three different registration problems were simulated.
The results are presented in the following section. The
method was implemented in MATLAB using for-loops,
cell arrays and structure array to handle the different
primitive types. The implementation is without third
party libraries. This impacts the computation time of
the method, and a significant reduction in computation
time is expected with an optimized implementation in
C++. The experiments were run for a range of outlier
fractions, starting at 0% outliers, and incrementally
increasing up to 90% outliers. For each outlier fraction
20 Monte Carlo runs were simulated. The experiments
were run on a system with an Intel Core i7-8700 CPU.

The GNC-TLS was solved with dynamical pose es-
timation by running a sequence of iterations j =
0, . . . , nit. The weights were given by wi = 1 for j = 0,
and by (5) for j > 0. The initial value for the con-
trol parameter µj was set using (7). The control pa-
rameter was increased for each iteration according to
µj+1 = γµj , where γ = 1.4 as in (Yang et al., 2020).
The spring constant was set to kp = 2, as done by
(Yang et al., 2021a), and the damper constant was set
to kd = 2ω0, where ω0 =

√
kp, for a critically damped

system.

4.1 Point cloud registration

In point cloud registration the point-to-point corre-
spondence is used, as both the model set {Yi}Ni=1

and the data set {Xi}Ni=1 consist of corresponding 3D
points. The performance of Dynamical Pose Estima-
tion with Graduated Non-Convexity in point cloud reg-
istration was investigated. An experiment using the
Stanford Bunny from the The Stanford 3D Scanning
Repository (Curless and Levoy, 1996) was conducted
following the procedure in (Yang et al., 2020) (Fig-
ure 2). The Bunny point cloud was scaled to fit in-
side a unit cube to create the model set {Yi}Ni=1. A
random rigid transformation T = (R, t) ∈ SE(3) re-
stricted to the scene radius ‖t‖ = 1 was applied to the
model. Zero mean Gaussian noise with the standard
deviation σ = 0.01 was added to create the data set
{Xi}Ni=1. A subset of the given correspondences be-
tween points in the model set and data set is chosen
at random, limited to N = 100 correspondences. As
in (Yang et al., 2020) and (Yang and Carlone, 2019),
a given fraction of the model set points are replaced
by points uniformly sampled from a sphere with radius
r = 2 to create outliers for the problem. The DAMP
stopping criterion is set to ‖ṡ‖ ≤ 1e−4 and EscapeMini-
mum (Yang et al., 2021a) is not used. As in (Antonante
et al., 2022), the truncation threshold ε for TLS-GNC
is set to ε = σ

√
chi2inv(0.99, 3) = 0.0337.

Figure 2: Point cloud registration for the Stanford
Bunny. Green and red lines represent inlier
and outlier correspondences, respectively

The results of the experiment are presented in Fig-
ure 4. The experiment showed that Dynamical Pose
Estimation with Graduated Non-Convexity is robust
with up to 90% outliers. Compared to the results ob-
tained in (Yang et al., 2021a), the order of magnitude
of both the rotation errors and translation errors are
comparable, even though we have up to 90% outliers.
This result also outperforms what is reported in (Yang
et al., 2020) for GNC-TLS. The number of iterations
the method uses to converge is similar to (Yang et al.,
2020), and the method takes 0.101 s to run on the given
computer system with the MATLAB implementation.
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4.2 Primitive registration

In primitive registration the correspondences are be-
tween different geometric primitives in the model
set {Yi}Ni=1 and points of the measured data set
{Xi}Ni=1 are used (Yang et al., 2021a). The perfor-
mance of Dynamical Pose Estimation with Gradu-
ated Non-Convexity in primitive registration was eval-
uated in an experiment with point-to-point, point-to-
line, and point-to-plane correspondences. The exper-
iment followed the setup in (Antonante et al., 2022).
The aeroplane-2 mesh model from the PASCAL3D+
dataset (Xiang et al., 2014) was used (Figure 3). The
model set was assembled from the mesh model as a
set of 58 499 vertices, 126 813 edges, and 68 993 faces.
The point cloud of the data set was created by sam-
pling points on the vertices, edges and faces of the
mesh model. A rigid transformation T = (R, t) ∈
SE(3) restricted to the scene radius ‖t‖ = 1 was ap-
plied to the sampled points, and zero mean Gaus-
sian noise with the standard deviation σ = 0.005 dmesh

was added. The diameter of the aeroplane-2 model is
dmesh ≈ 0.76, resulting in noise with standard devia-
tion σ = 0.0038. Correspondences between the model
and data sets were set up, randomly selecting 40 point-
to-point, 80 point-to-line, and 80 point-to-plane corre-
spondences between the model and the data, creat-
ing N = 200 correspondences. Outliers were added by
imposing false correspondences between a given frac-
tion of the 200 selected points and randomly selected
primitives in the model set that were not a part of
original 200 correspondences. The DAMP stopping
criterion was set to ‖ṡ‖ ≤ 1e−4 and EscapeMinimum
(Yang et al., 2021a) was used, allowing a re-run of
DAMP one additional time following a random per-
turbation of the linear and angular velocities of the
rigid body system. As in (Antonante et al., 2022),
the truncation threshold ε for TLS-GNC was given by
ε = σ

√
chi2inv(0.99, 3) = 0.0128.

The results from the experiment are presented in
Figure 5. The results show that Dynamical Pose Es-
timation with Graduated Non-Convexity was robust
up to 80% outliers when applied to primitive registra-
tion. The errors are comparable to those shown in
(Yang et al., 2020), as are the number of iterations
used to return a solution. Our method takes on aver-
age 0.739 s to converge on the stated computer system
with the unoptimized MATLAB implementation. The
use of EscapeMinimum in DAMP is needed as some
unsuccessful runs were observed without it.

4.3 Absolute pose estimation

In absolute pose estimation a set of model points are
aligned with a set of bearing vectors as defined by

Figure 3: Primitive registration problem for the
Aeroplane-2 mesh model. Green and red
lines represent inlier and outlier correspon-
dences respectively

image points and the camera frame. For this prob-
lem the point-to-line correspondence is used. The per-
formance of Dynamical Pose Estimation with Gradu-
ated Non-Convexity in absolute pose estimation was
evaluated in an experiment following the setup used
in (Yang et al., 2021a) with the inclusion of outliers.
N = 200 points in 3D were uniformly sampled from a
[−2, 2]× [−2, 2]× [4, 8] box in the camera frame. The
points were projected into the image plane and zero
mean Gaussian noise with standard deviation σ = 0.01
was added to the projections. The bearing vectors were
formed from the noisy projections, creating the data
set {Xi}Ni=1. The original point cloud was transformed
with a random rigid transformation T = (R, t) ∈
SE(3) restricted to the scene radius ‖t‖ = 1 to cre-
ate the model set {Yi}Ni=1. Outliers were added to the
data set according to the given outlier fraction, by cre-
ating new bearing vectors from new 3D points sampled
in the same [−2, 2]× [−2, 2]× [4, 8] box in the cam-
era frame. The DAMP stopping criterion was set to
‖ṡ‖ ≤ 1e−4 and EscapeMinimum (Yang et al., 2021a)
was used, allowing a re-run of DAMP three additional
times following a random perturbation of the linear
and angular velocities of the rigid body system each
time. The GNC-TLS truncation threshold was set to
ε = σ

√
chi2inv(0.99, 3) = 0.0337.

The results from the experiment are presented in
Figure 6. We observe that Dynamical Pose Estima-
tion with Graduated Non-Convexity is able to return
an accurate solution for up to 70% outliers, but fails
when the outlier fraction increases beyond 70%. There
is a major computational cost to running DAMP with
EscapeMinimum enabled, but it is required for robust-
ness of the algorithm, as the absolute pose estimation
problem is reported in (Yang et al., 2021a) to be a
challenging problem for DAMP. The algorithm uses on
average 5.368 s to return a solution in the MATLAB
implementation.
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Figure 4: Box plots showing rotation errors, translation errors, and number of iterations used for Point cloud reg-
istration using the Stanford Bunny data set, solved using Dynamical Pose Estimation with Graduated
Non-Convexity.
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Figure 5: Box plots showing rotation errors, translation errors, and number of iterations used for Primitive
registration using the Aeroplane-2 mesh model in the PASCAL3D+ data set, solved using Dynamical
Pose Estimation with Graduated Non-Convexity.
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Figure 6: Box plots showing rotation errors, translation errors, and number of iterations used for Absolute pose
estimation using a synthetic sample problem, solved using Dynamical Pose Estimation with Graduated
Non-Convexity.
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