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Abstract: In tissue engineering, three-dimensional (3D) printing is an emerging approach to produc-
ing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows
for precise control of materials and other components in the tissue constructs in an automated way,
potentially permitting great throughput production. An ink made using one or multiple biomaterials
can be 3D printed into tissue constructs by the printing process; though promising in tissue engineer-
ing, the printed constructs have also been reported to have the ability to lead to the emergence of
unforeseen illnesses and failure due to biomaterial-related infections. Numerous approaches and/or
strategies have been developed to combat biomaterial-related infections, and among them, natural
biomaterials, surface treatment of biomaterials, and incorporating inorganic agents have been widely
employed for the construct fabrication by 3D printing. Despite various attempts to synthesize and/or
optimize the inks for 3D printing, the incidence of infection in the implanted tissue constructs remains
one of the most significant issues. For the first time, here we present an overview of inks with antibac-
terial properties for 3D printing, focusing on the principles and strategies to accomplish biomaterials
with anti-infective properties, and the synthesis of metallic ion-containing ink, chitosan-containing
inks, and other antibacterial inks. Related discussions regarding the mechanics of biofilm formation
and antibacterial performance are also presented, along with future perspectives of the importance of
developing printable inks.

Keywords: antibacterial properties; chitosan; 3D printing; metallic ions

1. Introduction

The human body provides an impressive potential for tissue regeneration; however,
this potential is limited by factors including tissue type and the requirement for growth
hormones for differentiation, and physical size (crucial defect) [1–3]. Any damage to
a tissue bigger than this crucial size requires the utilization of alternative aid, which

Polymers 2022, 14, 2238. https://doi.org/10.3390/polym14112238 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14112238
https://doi.org/10.3390/polym14112238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5782-8007
https://orcid.org/0000-0002-9824-0947
https://orcid.org/0000-0002-4716-549X
https://doi.org/10.3390/polym14112238
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14112238?type=check_update&version=2


Polymers 2022, 14, 2238 2 of 35

has led to the development of tissue engineering (TE) and/or regenerative medicine
(RM). For this, scaffolds are typically used to act as a support for cells’ functions and
growth, so as to generate new tissue, thus playing an important role in TE and RM [4–8].
Numerous studies have been conducted to create scaffolds by employing such traditional
approaches as porogen leaching and gas forming [8–12], but these approaches suffered from
many limitations, including low mechanical strength, residual solvents in scaffolds, no or
minimal control over pore size and interconnectivity, large energy consumption, prolonged
timescales, and the use of cytotoxic solvents [13,14]. To overcome these limitations, an
emerging approach known as three-dimensional (3D) printing has been developed based
on the principle of additive manufacturing, where the solution of one or more biomaterials
(referred to as ink) is deposited or printed, layer by layer, to create scaffolds with a 3D
structure [13,14].

Stereolithography (SLA), as the first 3D printing method, was invented by Charles
Hull in 1984. In 1988, bioprinting was first developed, while Klebe used Hewlett-Packard
(HP) to deposit cells by cytoscribing technology using fibronectin solution [15]. This
modern method was evolving rapidly until, in 2002, the first extrusion-based bioprinting
was introduced by Landers et al. and commercialized as “3D-Bioplotter”. Wilson and
Boland modified the HP printer and developed the first inkjet bioprinter in 2003 [16]. These
3D printing techniques allow for the creation of customized patient-specific designs with a
large scale of reproduction, as well as the incorporation of cells, if needed, to form cell-laden
matrices or constructs of various TE applications [17–24].

The synthesis of inks is critical to the success of 3D printing scaffolds for TE. An
ink should have appropriate properties, including printability, mechanical properties (or
stability), and biological properties (including degradation/insolubility in physiological
solutions, cytocompatibility, and non-immunogenicity [1–3,25]). Despite numerous stud-
ies that have been reported on ink synthesis and optimization [26–31] for printing, the
antibacterial behavior of inks has barely been investigated and documented. Bacterial
infections occurred in biomedical implants and TE scaffolds, and devices have become a
severe issue in recent years, resulting in implantation failure and/or escalating probability
of revision surgery. The creation of biofilm on the material surfaces triggers these bacte-
rial infections [32]. Since the first synthesis of penicillin in 1928, various new antibiotics
have been developed for remedying microbial infections, owing to its great bactericidal
action and minimal toxicity to mammalian cells. Considering that the growth rate of new
antimicrobial drugs can barely keep up with the advancement of bacterial resistance, it is
becoming progressively clear that the "post-antibiotic era" is on the horizon. Annually, more
than 700,000 patients pass away due to drug-resistant germs; as a result, there is a vital
requirement to generate new antibacterial biomaterials to enhance bacterial selectivity and
lessen antibiotic resistance [33]. In this regard, natural antibacterial materials such as Ag,
Au, and some oxides including ZnO, TiO2, and MgO have been utilized as additives to form
composites with antibacterial characteristics [34]. To effectively combat these infections, a
number of approaches, including surface chemical modifications and the compositional
differentiation of implants and TE scaffolds, have been developed and reported [35]. With
the latest advance in 3D printing, the hunt to design and generate antibacterial ink for
printing stands out and remains to be addressed by research [36–40]. Over the past years,
considerable progress has been made in the development of printable inks for 3D printing
and tissue engineering. Here, we review this progress with an emphasis on the essen-
tiality of antibacterial features in biomaterials, principles, and strategies to accomplish
biomaterials with anti-infective properties, and the synthesis of metallic ion-containing
inks, chitosan-containing inks, and other antibacterial inks for 3D printing, as well as some
future perspectives of importance in this field.

2. Why Antibacterial Features Are Necessary for Biomaterials?

Biomaterials play an essential function in disease treatment and healthcare improve-
ment. The diversity, function, and wide variety of biomaterials employed worldwide
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have improved considerably in recent years. Nevertheless, the attachment of harmful
microorganisms to biomaterial surfaces, leading to biofilm growth, continues to be a major
issue that seriously restricts the functional use of these systems [41]. Figure 1 depicts the
development of a biofilm, including initiation attachment of bacteria, colonization, early
development, maturation, and disintegration [25]. Under typical flow conditions, the
biofilm functions as a physical defense obstacle towards phagocytic predation and inhibits
cell detachment, along with a selective permeability barrier [25,42]. Physical and chemical
permeability allow the productive transfer of organic molecules and ions to cells positioned
at a distance from the biofilm’s surface, binding and concentrating nutrients alongside cells
to ensure the cell population’s survival [17]. The identical procedure inhibits the propa-
gation of bacteria-damaging chemicals, including systemic antibiotics employed to deal
with postsurgical infections and antibacterial drugs seeping out of the biomaterial matrix.
In other cases, the inability of conventional antibiotics to generate direct contact with the
bacteria leads to merely partial reductions of the infection, leading to chronic infections
and deadly outcomes. Subsequently, it is not surprising that dealing with biomaterial-
associated infections might be challenging, regularly necessitating the physical (surgical)
removal of the infected device [41]. Due to the improvements made in aseptic treatments,
environmental sterility control, and peri-surgical antibiotic prophylaxis in recent years,
anti-infective biomaterials have progressively become a primary approach for avoiding
medical tool-connected infections [43,44]. Antibacterial biomaterials are employed for the
manufacture of medical tools, with anti-infective supplementary bioactive characteristics
that find out their resistance to infections. They can likewise be utilized to render medical
compounds, whose main function is to prevent, treat, or reduce infections, to extend the
biomedical fields [45].
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Figure 1. Schematic of the formation of a single bacterial biofilm on a solid surface [25].

3. Strategies for Achieving Antibacterial Biomaterials

To accomplish biomaterials with anti-infective properties, a number of principles
and strategies have been uncovered and/or developed [44]. This section presents a brief
overview of the most common approaches based on two principles—aiming to lower the
susceptibility of medical tools to bacterial colonization and infection or using materials
with antibacterial properties.
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3.1. Surface Treatment with Bacteria Repelling and Antiadhesive Substances

Bacterial attachment to the surface is the initial phase in the development of foreign-
body infections. If the surface is treated with bacterial repelling substances, bacteria are
incapable of sticking and hence, colonization is certainly unattainable. Bacterial attachment
on biomaterial surfaces is considered to take place by a wide range of mechanisms; a
number of them are transversal to all microbial species, while others are specific to a
species or a particular type of strain. As a result of physicochemical surface connections,
the previous procedures lead to passive adsorption of bacterial cells on a solid surface.
The latter are active attachment mechanisms mediated through bacterial structures and
referred to as bacterial attachments [46,47]. Hydrophilic, extremely hydrated, non-charged
surfaces, including those generated through specific polymer brush coatings, are effective
surfaces with low attachment capability. These surfaces seem to restrict bacterial interaction
and feasible attachment on the material surface. When developing new coatings, the
approach through which the coating is positioned and stabilized on the biomaterial to
be resurfaced is vital. Recent approaches to functional antifouling coatings depend on a
number of strategies, such as self-assembled mono- or multilayer manufacturing, polymer
brushes, surface grafting, zwitterionic polymers, and hydrogels. In addition to chemistry,
the topography of the surface could be altered to restrict bacteria attachment. Rough and
porous interfaces are actually exhibited to boost bacterial interactions and escalate microbial
attachment. Reducing the size of the nanometric scale has been revealed in vitro to be
related to the minimum attachment of both Gram-positive and Gram-negative bacteria [48].

3.2. Materials with Antibacterial Properties

There are various materials that have intrinsically antibacterial properties for biomedi-
cal applications. These materials include metals (e.g., Ag, Zn, and Cu), polymeric materials
(e.g., CS) and their potentiated derivatives, as well as ceramics (e.g., ZnO, MgO, and
TiO2) [18,25,44]. Due to their bactericidal abilities, these materials have been widely uti-
lized in various biomedical applications, as summarized in Table 1.

Table 1. Utilization of materials with antibacterial properties in biomedical applications.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

HAp-PEG Cu NP BTE

The antibacterial performance of
nHA-Cu/PEG specimens was higher,
and they were more effective toward

Gram-positive pathogens than
Gram-negative strains.

[49]

CS-PEG Cu Microporous
hydrogels Wound dressing

The addition of Cu2+ to the CS-PEG
films escalated the films’ antibacterial

performance.
[50]

Silicate
MBG-Pluronic

P123
Cu Powder BTE

The concentration of Cu in the MBG
composition influenced both

structural and functional
characteristics: as Cu levels grew,

SSA dropped, but antibacterial
performance towards S. aureus

escalated.

[51]

Wollastonite Cu Particles BTE

The incorporation of Cu to the
wollastonite improves the inhibition
zone against both S. aureus and E. coli

strains; however, the growth
inhibition towards Gram-positive

bacteria strains was determined to be
extremely effective.

[52]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

HAp Cu Scaffold BTE

Cu was added to the HA scaffolds,
which escalated antimicrobial

performance. On day 7, the cells on
the 5Cu–HA scaffolds treated with a
5% CuSO4 curing solution showed

good growth.

[53]

BG Cu Scaffold BTE

The scaffolds escalated cell response,
including cell viability and cell
attachment, drug delivery and

antibacterial behavior.

[54]

PGF Cu Fiber Wound healing

The opportunistic bacterium S.
epidermidis was killed most

effectively by the Cu2+ ions produced
by the 10% CuO glass fibers.

[55]

ESM-BG Cu Membrane Wound healing

The 5Cu-BG/ESM films were able to
generate Cu2+ ions for an extended

period of time and effectively
suppressed the survival of bacteria (E.

coli). Cu2+ ions produced by
Cu-BG/ESM nanocomposite films
have a critical role in angiogenesis

and antibacterial behavior.

[56]

BG, PCL Cu Coatings
Coating for
Mg-based

biomaterials

The generation of Cu2+ ions from
Cu-BGN coatings inhibited the

growth of S. carnosus and E. coli.
[57]

CPS Cu Powder BTE

After sintering at 1200 ◦C, the
bending strength of CPS increased

from 29.2 MPa to 63.4 MPa with the
addition of 3.0 wt. % CuO. Cu-CPS
bioceramics outperformed S. aureus

and E. coli strains in vitro,
demonstrating greater antibacterial

performance.

[58]

GO Cu-Ag Powder Biomedical
GO/AgNPs and GO/CuONPs

presented significant antibacterial
performance.

[59]

CS-HAp Cu-Zn Scaffold BTE

The incorporation of nCu-Zn to the
CS/nHA scaffolds boosted swelling,

reduced breakdown, escalated
protein adsorption, and enhanced

antibacterial behavior, while causing
no toxicity in rat osteoprogenitor

cells.

[60]

PCL Ag Membrane Wound dressing

Up to 0.5 wt. % AgNPs concentration,
tensile strength, elongation at break,

and tensile modulus were
substantially greater for PCL/Ag
nanocomposite membranes. After
incorporating 1 wt. % AgNPs, the

PCL’s intrinsic elastic nature
transformed to a brittle nature. The

antibacterial performance of PCL/Ag
toward S. aureus and E. coli was

outstanding.

[61]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

HAp/Gel/Alg/PVA Ag Scaffold BTE

The nanocomposite scaffolds exhibit
compressive strength in the range of
4.02 to 29.5 MPa and modulus in the
range of 34 to 198 MPa, according to
their mechanical characteristics. The
scaffolds have a great antibacterial

performance toward Bacillus
and E. coli.

[62]

CS-PEO Ag Nanofibers Wound dressing

The incorporation of Ag to the
CS/PEO blend solutions improved
the mechanical performance of the

CS/PEO nanofiber mats. The
antibacterial test revealed that

Ag-CS/PEO nanofiber mats exhibited
good bactericidal behavior toward

both Gram-negative E. coli and
Gram-positive S. aureus bacteria.

[63]

PLA Ag Nanocomposite TE

With an escalation in the
concentration of AgNPs in the PLA,

Ag/PLA-NC films had a considerable
antibacterial performance.

[64]

Cellulose/
PANI Ag Aerogels STE

The antibacterial performance of
BC/Ag/PANI aerogels toward E. coli
and S. aureus bacteria was substantial.

[65]

CS Ag Scaffold BTE

Antimicrobial performance,
biocompatibility with mammalian

cells, and enhancement of osteogenic
differentiation were observed in the

CS-Ag scaffold.

[66]

HA Ag Matrix TE AgNPs and HA/SNPs, unlike neat
HA, displayed antimicrobial action [67]

SF Ag Scaffold BTE

The antibacterial performance of silk
fibroin films encapsulated with
AgNPs was tested toward both
Gram-negative and antibiotic

resistant bacteria, and it was observed
to be successful in both cases.

[68]

Starch/PVA Ag Nanofibers STE
The antimicrobial property was

enhanced by coating the nanofibers
with AgNPs

[69]

HAp Ag Nanopowders BTE

In vitro antibacterial behavior of
Ag-doped hydroxyapatite specimens
toward S. aureus, E. coli, and Candida
albicans pathogens has been reported

in antimicrobial experiments.

[70]

Mg Ag Scaffold BTE

The antimicrobial behavior of
Mg-based scaffolds encapsulated

with Ag was examined, and it was
observed that escalating the content
of incorporated Ag suppressed the

development of E. coli and S. aureus in
the IZ around the Mg-based scaffolds.

[71]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

CS/PU Ag Membrane DBM and TE

The AgNPs in the membrane were
found to have an antimicrobial

impact. A medical dressing
membrane fabricated from a CS
membrane incorporating a trace

concentration of AgNPs can
be employed.

[72]

CS Ag Scaffold Skin TE

Ag was responsible for the
Ag@CMs/CS scaffold’s good

antibacterial behavior owing to its
prolonged release of Ag@CMs.
Nevertheless, all Ag@CMs/CS

scaffolds demonstrated good cell
growth and spread, as well as an
escalation in antibacterial activity,

owing to their sustained
release features.

[73]

Alg/HAp Ag Scaffold BTE

Silver has been shown to have no
influence on the scaffolds’ ability to

enhance osteoblast proliferation,
while also having a significant
bactericidal effect toward both

Gram-positive and Gram-negative
bacterial strains in in vitro

biological studies.

[74]

CS/HAp Ag Scaffold BTE

The IZ of the CS/nHAp/nAg
scaffolds toward E. coli and S. aureus

was determined to be
13.34 ± 2.75 mm and

12.78 ± 1.10 mm, respectively.

[75]

PHBV Ag Scaffold TE

Only silver incorporating PHBV
nanofibrous scaffolds had significant

antibacterial performance and
inhibited the growth of S. aureus and

K. pneumoniae bacteria.

[76]

Gel/PCL Ag Scaffold TE

Except for the Ag-coated PCL
nanofibrous scaffold loaded with

1.25% AgNO3 solution, there was an
obvious IZ around Ag-coated
nanofibrous scaffolds for both

Gram-positive and Gram-negative
bacteria. Only 0.8% Ag was detected
in this specimen. The bacteria tested
were not destroyed by the low dose

of Ag. Antimicrobial effects were
detected when the Ag amount was

escalated to 4.2%.

[77]

PCL Ag Scaffold TE
AgNPs escalated the antibacterial

behavior of PCL scaffolds, according
to disc diffusion experiments.

[78]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

SF/HAp Au-Ag Hydrogels BTE

Both Gram-positive and
Gram-negative bacteria were

inhibited significantly by hydrogels
containing AgNPs and AuNPs.

Utilizing osteoblastic cells,
cytocompatibility experiments

demonstrated that the hydrogels can
be employed as antimicrobial

materials with up to 0.5 wt. % AgNPs
and all amount of AuNPs, without

impairing cell behavior.

[79]

DEG Au-Ag Hydrogel Wound healing

Antibacterial activity of Ag
encapsulated hydrogels has been

found to be greater compared to Au
encapsulated hydrogels.

[80]

CS Au-Ag Nanocomposites Wound dressings

In vivo results exhibited that
CS-Au-Ag enhanced wound healing

significantly more than CS-Ag,
indicating that CS-Au-Ag has

considerable potential as a wound
dressing.

[81]

CS/PVA/HAp Au-GO Film BTE

In all experiments, the IZ for the
CS/PVA/HA/Au composite film

was greater than for the CS/PVA/HA
film. Moreover, the

Cs/PVA/GO/HA/Au film presented
the highest antibacterial performance.

[82]

PMMA Au Bone cement TKA, THR

In comparison to control specimens
(without AuNPs), live bacterial cells
were diminished by up to 54% and
56% for MRSA and Pseudomonas,

respectively, on bone cements made
by incorporating 1 wt. % AuNPs.

[83]

CS/PVA Au NP Wound healing

For the lowest and highest
encapsulation of AuNPs, the IZs

grew from 4.2 ± 0.9 mm to
13.1 ± 1.3 mm versus E. coli and from

6.4 ± 1.2 mm to 24.8 ± 2.4 mm
versus S. aureus, respectively.

[84]

PCL/Gel APA-coated Au Scaffold Wound dressings

Even when exposed with MDR
bacteria, APA-treated AuNPs
(Au-APA) showed significant

antibacterial performance. It also
exhibited a remarkable capacity to

treat MDR bacteria wound infections.

[85]

CS Au
Nanoclusters Nanoaggregate Wound healing

In contrast to their individual
components, the synergetic

combination fabricated by the Au
and CS in the nanoaggregates led to a
greater antibacterial action versus E.

coli and S. aureus bacterial strains.

[86]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

Gold Au NP Wound healing

Many conventional antibiotics have
lower antibacterial and antifungal
activities than AuNPs@F. vulgaris.

AuNPs@F. vulgaris also inhibited all
bacteria from growing at 28 mg/mL

concentrations and completely
eradicated them at 216 mg/mL

concentrations.

[87]

Gold Au NP Wound healing

GNPs generated by H. hemerocallidea
had an antibacterial effect versus all

of the microorganisms examined;
however, GNPs generated by G.

africana had an antibacterial effect
solely versus Pseudomonas

aeruginosa.

[88]

PEG Au Hydrogel Wound healing

PEG-AuNRs and PAH-AuNRs
hydrogels showed significant

antibacterial behavior in vitro versus
S. aureus and P. aeruginosa, as well as

great tissue regeneration
characteristics when applied topically

to wounds in an animal model.

[89]

SA/Cellulose ZnO Fibers Biomedical

The antibacterial performance of the
effectively manufactured

ZnO-SA-cellulose nanofiber versus
E. coli was outstanding.

[90]

Col ZnO Nanocomposites Wound healing

In the existence of all Col-ZnO
wound dressings, the development of

S. aureus strains was suppressed.
Nanostructured wound dressings

have a 5 mm growth zone of
inhibition.

[91]

CS/Gel ZnO Scaffold STE

While CS has antibacterial
characteristics, its antimicrobial

effects are inhibited at neutral pH.
The antibacterial behavior of the
scaffolds was raised as the ZnO

content was escalated.

[92]

Alg ZnO Nanocomposites Medical

After 2 h of exposure, all of the
ZnO–alginate nanocomposite

specimens demonstrated fast and
significant antibacterial action, with a

99.9% decrease for S. aureus and a
100% decrease for E. coli.

[93]

GO-COOH ZnO Nanocomposites BTE
Against S. mutans, ZnO/GO-COOH

nanocomposites demonstrated an
antibacterial activity.

[94]

SA/PVA ZnO Nanofibers Wound dressing

The antimicrobial effect of
SA/PVA/ZnO mats was tested using

two bacteria strains: S. aureus and
E. coli, and it was revealed that
SA/PVA/ZnO mats have an

antibacterial effect owing to ZnO
nanoparticles.

[95]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

CMC ZnO Hydrogel Biomedical

Antibacterial characteristics are better
in hydrogels containing more ZnO

nanoparticles. Gram-positive bacteria
were more resistant to CMC/ZnO

nanocomposite hydrogels compared
to the Gram-negative bacteria.

[96]

PU ZnO-
fMWCNTs Scaffold BTE

Electrospun scaffolds comprising
0.2 wt. % ZnO and 0.4 wt. %

fMWCNTs were shown to have an
antibacterial effect and good

biocompatibility, as well as unique
bioactive characteristics and
cell–biomaterial interaction.

[97]

Al-doped ZnO
(AZO) ZnO-Al NP Biomedical

Al-doped ZnO (AZO) zone of
inhibition versus E. coli and E. hirae
was reported to be 10.19 ± 0.04 mm
and 10.20 ± 0.02 mm, respectively.

Electrostatic interactions influenced
the antibacterial behavior of AZO,

which was reported to be escalated
when compared to ZnO.

[98]

PCL/HAp ZnO Scaffold BTE

An antibacterial effect was seen in all
PCL:ZnO scaffolds versus S. aureus,

which could be related to the
generation of Zn2+ ions.

[99]

PCL ZnO Nanocomposites TE

Pure PCL membranes and fiber mats
with less than 5% ZnONPs exhibited

less significant action toward the
germs tested. The PCL membrane

encapsulated with 5% ZnONPs
demonstrated statistically significant
antibacterial action versus E. coli and

S. aureus, with IZ diameters of
8.76 ± 1.2 and 9.98 ± 0.6 mm,

respectively.

[100]

P(VDF-TrFE) ZnO Scaffold LTE

S. aureus and P. aeruginosa biofilm
formation was inhibited by the

ZnO/P(VDF-TrFE) electrospun fiber
meshes, and the cell/scaffold

structures were effective to hinder S.
aureus adhesion, and P. aeruginosa

invasiveness, regardless of the
scaffold type.

[101]

CS TiO2 Scaffold Wound healing

In nursing care, the produced
CS/Sr-TiO2 nanocomposite coating

exhibits increased antibacterial
performance as well as superior joint

wound healing characteristics.

[102]

CS/PVA TiO2-Ag Nanofibers Biomedical

The nanofibers had antibacterial
performance versus S. aureus and

E. coli of 99 and 98 percent,
respectively.

[103]
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Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

GG TiO2 Film Wound healing

Antibacterial performance of
GG+TiO2-NTs (20 w/w percent) was
measured as a 16 ± 0.06, 16 ± 0.06,

14 ± 0.06, and 12 ± 0.25 mm IZ
versus S. aureus, Streptococcus, E. coli,

and P. aeruginosa, respectively.

[104]

PVA/Plur/PEI TiO2 Nanofibers Wound healing

The antibacterial effects of the
PVA-Plur-PEI/TiO2 nanofibers are

more effective versus Gram-positive
bacteria compared to the
PVA-Plur-PEI nanofibers

[105]

PCL CS-tetracycline
HCL Scaffold TE

The PCL/CS and nHA/PCL/CS
scaffolds were found to be ineffective

against E. coli and Bacillus cereus.
Because the CS level is low, blending

PCL with it has no antibacterial
characteristics. Tetracycline HCL

encapsulated in the scaffold
improved the blend’s antibacterial
characteristics and demonstrated

excellent results against both
Gram-positive and Gram-negative

bacteria.

[106]

SF CS Scaffold TE

When CS was used in higher
concentrations in the blends, it had

an antimicrobial impact. In addition,
as compared to blended scaffolds, CS

was more effective at inhibiting
S. aureus development.

[107]

PCL CS Membranes Biomedical

S. mutans and
A. actinomycetemcomitans bacteria

were resistant to CS. The antibacterial
properties of CS were affected by the

addition of PCL.

[108]

Gel/CS CS- cin-
namaldehyde Membranes Wound dressing

The antibacterial behavior of CS/Gel
was moderate, with a considerable

rise in inhibitory potential as the
cinnamaldehyde concentration was

elevated.

[109]

PCL CS-CMC Scaffold VTE

Both S. aureus and E. coli showed no
bactericidal effects towards the PCL
nanofibrous membrane. A smaller

number of bacteria were destroyed by
the PCL/CMC nanofibrous

membranes. On the other hand, a
large number of dead bacteria were

found on the PCL/CS surface.

[110]

TiO2 CS Nanocomposites TE

In the same amount, a neat nano-TiO2
impregnated disk exhibits no zone of

inhibition; whereas a TiO2–CS
nanocomposite reveals an inhibition.

[111]



Polymers 2022, 14, 2238 12 of 35

Table 1. Cont.

Materials Antibacterial
Nanoparticles Structure Application Results Ref.

CS CS-Gentamicin Film Biomedical

In comparison with the neat CS film,
the CFU of S. aureus and E. coli on
Col-GT’s agar culture dish were

substantially lower than CS
specimens. Compared to the CS film,

the CS-GT film has a markedly
improved antimicrobial performance.
The CFU on the agar culture dish of
CS-GT are much lower than on the

agar culture dish of the CS film.

[112]

PEGF CS Film Wound dressing

The antibacterial behavior of the
blend films versus P. aeruginosa and

S. aureus was impressive
(Kill percent > 99.76 ± 0.16%).

[113]

PU CS Film Medical

S. aureus and P. aeruginosa bacteria
had dramatically improved

antimicrobial property after being
treated with CS. After CS treatment

of PU films, the number of bacterium
colonies was reduced to around

102–105 CFU/mL, and the amount of
connected live bacteria dropped

considerably.

[114]

PCL CS Scaffold Wound dressing

The antibacterial behavior of the
PCL-CS scaffolds was remarkable,

with obvious IZ values of
13.97 ± 0.12 mm and

12.11 ± 0.13 mm versus E. coli and
S. aureus, respectively, that were

comparable to the native CS.

[115]

PEGDA
CS-TCS-Trp-

rich
peptides

Hydrogels Wound dressing

The specimen with the appropriate
formula of 15% PEGDA and 2% CS or

TCS had outstanding mechanical
adhesiveness, maintained

antibacterial peptide and plasmid
DNA release, and dramatically

enhanced in vivo wound healing.

[116]

Ag@CMs: Silver-loaded CS microspheres; Al: Aluminum; Alg: Alginate; APA: 6-aminopenicillanic acid; AuNR:
Gold nanorods; AZO: Al-doped ZnO; BC: Bacterial cellulose; BTE: Bone tissue engineering; BG: Bioactive glass;
CFU: Colony forming units; CMC: Carboxymethyl cellulose; Col: collagen; CS: Chitosan; DBM: Dental barrier
membranes; DEG: Diethyleneglycol; ESM: Eggshell membrane; fMWCNTs: Functionalized multi-wall carbon
nanotubes; F. vulgaris: Falcaria vulgaris; G. africana: Galenia africana; Gel: Gelatin; GG: Gellan gum; GO:
Graphene oxide; GO-COOH: Carboxylated graphene oxide; HA: Hyaluronic acid; HAp: Hydroxyapatite; H.
hemerocallidea: Hypoxis hemerocallidea; LTE: Lung tissue engineering; MBGs: Mesoporous bioactive glasses;
MDR: Remedying multidrug-resistant; Mg: Magnesium; MRSA: Methicillin-resistant Staphylococcus aureus; NP:
Nanoparticles; P. aeruginosa: Pseudomonas aeruginosa; PAH: Poly allylamine hydrochloride; PANI: Polyaniline;
PCL: Polycaprolactone; PEG: Polyethylene glycol; PEGDA: Poly (ethylene glycol) diacrylate; PEGF: Polyethylene
glycol fumarate; PEI: Polyethyleneimine; PEO: Polyethylene oxide; PGF: Phosphate-based glass fibers; PHBV:
Poly-(3-hydroxybutyrate-co-3- hydroxyvalerate); PLA: Poly (lactide acid); Plur: Pluronic F127; PU: Polyurethane;
PVA: Poly (vinyl alcohol); P(VDF-TrFE): Poly (vinylidene fluoride-co-trifluoroethylene); SA: Sodium alginate; SF:
Silk/fibroin; SSA: Specific surface area; STE: Soft tissue engineering; Sr: Strontium; Step: Streptococcus; TCS:
Thiolated chitosan; THR: Total hip replacement; TiO2: Titanium dioxide; TKA: Total knee arthroplasty; VTE:
vascular tissue engineering; WS: wollastonite; ZnO: Zinc oxide.

3.2.1. Antibacterial Activity of Copper

Even though the mechanism’s base metallic nanostructures’ biocidal activity is not
entirely comprehended, three hypotheses have been acknowledged and described in the
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literature: (1) the accumulation of NPs in the bacterial membrane layer altering its perme-
ability, with the generation of membrane biomolecules, and (2) the generation of reactive
oxygen species (ROSs) with subsequent oxidative damming, as shown in Figure 2A [26].
A couple of studies have been published, especially on the mechanism of the bactericidal
activity of CuNPs, which proposed that Cu2+ ions coming from the NPs may interact
with phosphorus and sulfur-containing biomolecules, including DNA and protein, dam-
aging their structures, and hence disrupting biochemical functions [117–119]. Copper’s
antibacterial characteristics are the main basis for its utilization for biomedical purposes.
In this regard, Sahithi et al. [49] produced nHAp and nHAp–Cu for BTE applications.
They found that whereas nHAp did not possess antibacterial action when it was soaked in
copper, it did have antimicrobial activity in both Gram-positive and negative pathogens.
Mishra et al. [50] also developed a multipotent wound dressing material out of copper ion-
(Cu2+) infused microporous CS-polyethylene glycol sheets. In comparison to CS films, their
antibacterial tests pointed out superiority in suppressing biofilm growth. The antibacterial
action of the films was examined on Gram-negative (E. coli) and Gram-positive (S. aureus)
bacteria, employing the modified disc diffusion assay as shown in Figure 2B [50]. The CS
films indicated no IZ in the disc diffusion assay, indicating remarkably low antibacterial
performance after neutralization, which is caused by the non-protonated form of CS. All
Cu2+-incorporated films presented outstanding antibacterial performance towards both
tested bacteria, with increasing IZ as a function of Cu2+ content. Based on the bulk of
the study results (Table 1), copper could be considerably more productive at generating
antibacterial effects on Gram-positive compared to Gram-negative bacteria.
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Figure 2. (A) The schematic illustration of the killing action involved in the antibacterial activity
of copper. Copper ions are released from the doped biomaterial (1) and cause membrane damage
leading to a loss of cytoplasmic content (2). Then, the production of reactive oxygen species (ROS)
(3) causes DNA fragmentation (4) and cell death [26]. (B) Inhibition zone against (a) E. coli and
(b) S. aureus, growth inhibition curve in TGY broth against (c) E. coli and (d) S. aureus [50].
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3.2.2. Antibacterial Activity of Silver

Despite the fact that silver and associated compounds were employed to cure ailments
and disease, their performance as antibacterial agents was not identified until the late
1800s [120]. Silver is actually an antibiotic with a wide range. In this regard, Suresh et al. [19]
reported biofabrication of silver nanocrystallites using Shewanella oneidensis, which indi-
cated favorable antibacterial properties for Gram-negative and Gram-positive bacteria [19].
Resistance to silver-based compounds is rare in organisms, especially Gram-negative bacte-
ria [20]. Bacteria destroyed by silver could possess 105–107 Ag+ molecules per cell, which is
the same order of magnitude as the predicted number of enzyme-protein molecules per cell.
Metallic silver is fairly inert chemically; however, its interaction with water on the skin’s
surface and wound liquids generates silver ions and its biocidal components. The possible
routes of antibacterial activity of AgNPs are portrayed diagrammatically in Figure 3 [46].
The positive charge of Ag+ interacts with the negative charge on the cell wall membrane
of bacteria, leading to modifications in cell wall membrane shape and an enhancement
in cell permeability or leakage, leading to cell fatality [121]. AgNPs possess a greater
affinity for interacting with phosphorous and sulfur-containing biomolecules identified in
external (membrane protein) and intracellular (DNA bases and protein) components; these
biomolecules impact cell division, taking in oxygen, and, eventually, cell survival [120].
Other reports have found that Ag+, which has a nitrogen and sulfur affinity, can prevent
and destabilize protein structures by connecting to thiol and amino groups [122]. The con-
nection of nanoparticles with thiol groups could be responsible for the generation of ROS,
which suppress respiratory enzymes and, for that reason, cause fatality [120]. Silver ions
are antibacterial due to the fact they interact with the peptidoglycan cell wall membrane
and the plasma membrane, and they likewise obstruct bacterial DNA reproduction by
interfering with sulfhydryl groups within proteins [121]. Silver has been broadly utilized
in TE and wound treatments as a result of its antimicrobial features [61–63,79].
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Figure 3. The schematic illustration of feasible antibacterial mechanisms of Ag nanoparticles (Ag-
NPs) [46].

In this respect, Augustine et al. [61] depicted electrospun PCL membranes infused
with biosynthesized AgNPs as antibacterial wound dressings. Their findings depicted
that the fabricated membrane-encapsulated AgNPs presented great antibacterial action



Polymers 2022, 14, 2238 15 of 35

towards both S. aureus and E. coli. In accordance with the results, neat PCL membranes had
no effectiveness towards the bacteria examined. The inhibitory zone diameter of the PCL
membrane-encapsulated 1 wt. % AgNPs was 11.6 ± 0.5 and 7.9 ± 0.6 mm towards S. aureus
with E. coli, respectively. Similarly, in another work, Saini et al. [62] fabricated Ag-HA-based
antibacterial 3D gelatin/alginate/PVA scaffolds for BTE purposes. Antimicrobial activity
examination for fabricated Ag-HA and Ag-HA incorporated with a gelatin-alginate-PVA
cryogel scaffold were conducted towards Bacillus and E. coli, implying that both scaffolds
presented bacteria destruction characteristics [62].

3.2.3. Antibacterial Activity of Gold

The utilization of gold nanoparticles (AuNPs) in the treatment of bacterial infections
has appeared as a feasible choice; nevertheless, the mechanism accountable for bacterial cell
lysis continues to be unidentified [123]. When AuNPs get into cells, they might occasionally
break down cell walls. Consequently, they can assist some antibiotics incapable of passing
through the cell wall membrane barrier. Findings have pointed out that inhibition by
AuNPs is induced via direct contact, which leads to cell wall infiltration, instead of by the
creation of ROS. Coradeghini’s group speculated that the absorption of AuNPs into cells
amplified with particle size. They found that particle size has an influence on antibacterial
functions. Smaller NPs have the capability to infiltrate cells. By acting on the surface,
larger NPs trigger cell lysis and death [124]. Nevertheless, no comprehensive, detailed
description of these systems exists as of yet. Extremely dispersed NPs have a higher contact
area, and their antibacterial action is distinct. Nanoparticles’ main ways of action consist of
injuring the cytoderm, destroying cytomembranes, and transforming the inside of bacterial
cells. Some NPs modified with a photocatalytic metal, on the other hand, depend on
light stimulation to generate free radicals for antibacterial reasons. Figure 4 depicts the
essential antibacterial performance of AuNPs [47]. It was suggested that two mechanisms
are accountable for the antibacterial performance of AuNPs. First, via breaking down the
membrane layer, which prevents ATPase action, and next, via suppressing the subunits
of ribosomes for tRNA binding. As opposed to the previously mentioned antibacterial
nanoparticles, AuNPs demonstrated ROS-independent antibacterial performance.
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AuNPs are employed in biomedical use, including TE and wound healing. For exam-
ple, Prakash et al. [82] fabricated CS/PVA/GO/HA/Au films using a gel casting approach
for possible orthopedic application. The zone of inhibition for CS/PVA/HA/Au composite
film attained from all the assessments was higher compared to the CS/PVA/HA film.
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Furthermore, CS/PVA/GO/HA/Au film exhibits the best antibacterial performance [82].
AuNPs of various shapes (rods and spheres) and surfaces were encapsulated in hydrogels
in Mahmoud et al.’s [89] study. Hydrogels of polyethylene glycol (PEG)-gold nanorods
(AuNRs) and cationic poly allylamine hydrochloride (PAH)-AuNRs exhibited outstanding
wound healing properties upon topical application on wounds employing an animal model.
Moreover, hydrogels of PEG-AuNRs and PAH-AuNRs displayed an effective role in in vitro
antibacterial performance towards S. aureus and P. aeruginosa and demonstrated marvelous
wound healing characteristics regarding topical applications on wounds utilizing an animal
model. In addition, hydrogels of PEG-AuNRs and PAH-AuNRs displayed potent in vitro
antibacterial performance towards S. aureus and P. aeruginosa [89]. Based on the studies
(Table 1), it seems that Au could be one of the suitable antibacterial metallic ions regarding
the contribution to TE and wound dressing management.

3.2.4. Antibacterial Activity of Zinc Oxide

The antibacterial performance of zinc oxide nanoparticles (ZnONPs) has attained
considerable interest worldwide, specifically by rendering nanotechnology to fabricate
particles in the nanometer area [125]. Despite the fact that the antibacterial performance of
ZnONPs is referred to several issues, the exact toxicity mechanism is not entirely illumi-
nated and still questionable, as there are some concerns within the range of antibacterial
performance demanding profound descriptions. Unique mechanisms suggested in the
literature are outlined as follows: direct contact of ZnONPs with cell walls, leading to
the destruction of bacterial cell integrity, the release of antimicrobial ions, primarily Zn2+

ions, and ROS creation, as shown in Figure 5A [40]. Nevertheless, the toxicity mechanism
varies in different solutions, as the species of dissolved Zn could alter based on the medium
features besides the physicochemical characteristics of ZnONPs [125,126]. It is worth noting
that ZnONPs have been employed in biomedical fields. For instance, Varaprasad et al. [90]
fabricated ZnONPs by the precipitation approach and subsequently impregnated them
appropriately over cellulose fibers via a sodium alginate (SA) matrix. The antimicrobial
effectiveness of the ZnONPs–SA cellulose fibers (ZnO-SACNF) was tested toward E. coli.
The IZ for all the fibers was identified to be in the range of 2.1–3.6 mm. Based on the stan-
dard antibacterial test “SNV 195920-1992”, specimens exhibiting more than 1 mm microbial
zone inhibition are usually regarded as good antibacterial agents [90]. In another study,
Balaure et al. [91] synthesized bioactive dressings consisting of collagen and zinc oxide
3D scaffolds. Morphological details of the Coll/ZnO nanocomposites were demonstrated
through SEM images, as shown in Figure 5B (a–l), and the diameters of the growth IZ for
the composites are presented in Figure 5B (m,n) [91]. As it can be seen in Figure 5B, at
the lowest amount of ZnO@PorT, almost all of the NPs were encapsulated in the collagen
matrix. The greater tendency of NPs to form clusters is obviously visible. The increased
IZ of the nanostructured wound dressings is suitable and similar to the diameter of the IZ
attained for tested antibiotics (Figure 5B (m,n)) [91].
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Figure 5. (A) The schematic illustration of Gram-negative bacteria cell damage through the production
of reactive oxygen species (ROS) [40], and (B) scanning electron microscopy (SEM) micrograph
obtained at various magnifications, ×100 (a–c), ×1000 (d–f), ×5000 (g–i), and ×100.000 (j–l), of
the wound dressing, fabricated at the three diverse collagen (Col)/orange oil-functionalized zinc
oxide NP (ZnO@PorT) mass ratios: 10:1 (a,d,g,j), 10:2 (b,e,h,k), and 10:3 (c,f,I,l). The diameter of the
inhabitation zone (IZ) growth (measured at 20 h soaking duration at 37 ◦C) was created by different
Col-ZnO@PorT dressings, and through typically utilized antibiotics towards S. aureus (m) and E. coli
(n) strains [91].

3.2.5. Antibacterial Activity of Titanium Dioxide

Titanium dioxide nanoparticles (TiO2NPs) are essentially the most examined materials
in the area of antimicrobial use relating to their distinct capabilities, including bactericidal
photocatalytic activity, safety, and self-cleaning properties. The mechanism referred to the
antimicrobial action of TiO2 is typically connected to ROS, with great oxidative potentials
created within band gap irradiation photo-induced charge in the existence of O2. ROS have
an impact on bacterial cells through various mechanisms, which result in cell death [127].
Chen et al. [102] used TiO2 to heal joint wounds, employing polymeric dressings of CS/Sr-
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doped TiO2 with great antibacterial activity. They tested the wound healing properties
of CS/Sr-TiO2 in rabbit joint wounds. Their results confirmed that CS/Sr-TiO2 wound
dressing was capable of attaining a great wound healing rate of around 93% after 12 days,
as shown in Figure 6 [102]. In addition, Son et al. [103] also fabricated CS/PVA nanofibers
with antibacterial behavior via the electrospinning of a CS/PVA solution with a small
content of AgNO3 and TiO2. Their nanofibers presented antibacterial performance of 99
and 98% towards S. aureus and E. coli, respectively [103]. Generally, TiO2 is presented as a
favorable material for biomedical use, particularly for wound healing and TE [103–105].
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3.2.6. Antibacterial Activity of Chitosan

Chitosan (CS) is regarded to be probably the most preferred antibacterial material
because of its natural antibacterial characteristics, extensive source, and high yield [21,128].
The antimicrobial behavior of CS is due to its cationic character. The specific mechanism of
the antimicrobial behavior of chitin, CS, and their derivatives is still unidentified, although
various mechanisms are offered [107,129]. There are numerous inferences regarding the
mechanism of the CS antibacterial effect: (1) interaction between positively charged CS
molecules and negatively charged microbial cell walls might result in bacterial biofilm
split, and leakage of the resultant proteins and various other cellular elements, which result
in bacterial fatality. At lower amounts, binding of positively charged CS to the surface
of negatively charged bacteria may result in the accumulation of bacteria; a tremendous
number of positive charges might neutralize the charge on the surface of the bacteria and
induce the interruption of the bacteria with the escalating CS amount. (2) CS is employed
as a chelating agent to selectively bind metal ions, thus suppressing the generation of
toxins and the growth of microorganisms. (3) The components of the cell wall membrane
are triggered and combined by CS, leading to the bacterial cell wall membrane breaking
down and fatality. (4) Chitosan is additionally combined with DNA by infiltrating the
nucleus of microorganisms, interfering with and preventing mRNA and protein activity,
as shown in Figure 7 [129]. Various antibacterial performances could also imply numerous
antibacterial action mechanisms. Primarily, the antibacterial mechanism of powdered
chitin and CS was associated with the free amino groups existing in CS, which led to the
destruction of the cell wall.
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The antibacterial behavior of CS has also been evaluated broadly in TE and wound
dressing purposes (Table 1). For instance, Zhao et al. [32] produced a new series of in situ-
forming antibacterial conductive degradable hydrogels, applying quaternized chitosan-
(QCS) grafted polyaniline with oxidized dextran as a crosslinker for TE application. In
another study, Bhardwaj et al. [107] presented the porous polyelectrolyte complex scaffolds
of silk fibroin (SF) and amino polysaccharide CS. Their group examined the bactericidal
and prohibitive capacity of SF/CS blended scaffolds towards bacterial proliferation and
attachment. Their examination was carried out utilizing oral pathogen S. aureus demon-
strated an initial enhancement in optical density (OD) for whole matrices comparable to the
control (Figure 8A) [107]. The control comprised only bacterial cell suspension without any
scaffolds. Nevertheless, the OD of specimens in suspension diminished from 6 h onwards
and was considerably lower compared to those of the control, pure SF and SF/CS (2:1)
by 12 h, indicating CS was potent towards the inhibition of S. aureus growth and was
more efficient than blended scaffolds. SF/CS (1:1), SF/CS (1:2) and SF/CS (1:3) specimens
exhibited substantially lower (p < 0.001) OD. SEM observation of whole matrices after 24 h
revealed a similar trend (Figure 8B) [107]. Chitosan and blended scaffolds with a greater
amount of CS demonstrated fewer attachments of S. aureus than neat silk and SF/CS (2:1)
scaffolds. The antibacterial performance is compromised with escalating silk amounts in
the blends [107]. Similar types of findings are also noticed with membranes and blended
scaffolds of CS/PCL [108].

In Sarasam et al.’s [108] study, CS and PCL were blended in three various mass ratios
(25 wt. %, 50 wt. %, and 75 wt. % of PCL) and processed into membranes. They evaluated
the bactericidal properties of CS towards Gram-positive S. mutans by suspending the
membrane in bacterial broth and soaking in suitable media. Transient changes in the OD
(Figure 8C) [108] of the broth portrayed that, except for 50% PCL, all the biomaterials
exhibited a diminished growth of bacteria in suspension than the control sample. There
were no significant differences in the OD of the 25% and 75% PCL suspensions. At any
given time, the suspensions containing CS membranes demonstrated the least growth of
bacteria. Even so, the growth of bacteria in the existence of these membranes pointed out
that CS, PCL, or their blends are not bactericidal. When the experiments were repeated
with Gram-negative A. actinomycetemcomitans (Figure 8D) [108], growth was detected
in suspensions of whole membranes, such as CS, implying that they did not have a bac-
tericidal effect on this pathogen either. Surprisingly, in contrast to S. mutans, the growth
rates in the existence of these membranes were greater than in the control sample. This
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portrayed that the antibacterial performance of CS was more efficient towards S. mutans in
comparison with A. actinomycetemcomitans in suspensions. Generally, Sarasam et al. [108]
reported that the existence of PCL affected the antibacterial characteristics of CS [108].
In some studies, drug release is also utilized to enhance the antibacterial impact of CS,
as conducted by Kenawy et al. [109]. In their study, examination wound dressing was
fabricated from a CS biopolymer. Their study aims to prepare absorbable and antimicrobial
membranes depending on crosslinked gelatin/CS biopolymers. Furthermore, cinnamalde-
hyde was encapsulated in the membranes to elevate their antimicrobial actions. Their
results demonstrated a substantial enhancement in the inhibition percent with an escalating
cinnamaldehyde amount in the membrane matrix [109]. Figure 8E depicts the antimicrobial
performance of the developed crosslinked membranes towards three Gram-negative bacte-
ria (P. aeruginosa, Salmonella, and E. coli) and one Gram-positive bacteria (S. aureus) [109]. A
substantial escalation in the inhibition activity was detected with escalating cinnamalde-
hyde content. This enhancement can be described through Schiff base creation, where
coupling of amine groups with the aromatic aldehyde groups of cinnamaldehyde might
create hydrophobic sides of a long membrane matrix. This consequently increases the
interaction with peptidoglycan in the cell wall and lipoprotein in the outer membrane layer
and simplifies its adhesion to the microorganism cell wall membrane. In addition, the
inhibition (%) towards Gram-negative bacteria was greater than Gram-positive bacteria.
The interaction of positively charged amine groups with the negatively charged cell surface
leads to substantial modifications of cell wall membrane permeability [109].
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Figure 8. (A) Effect of matrix structures and composition on antibacterial activity of SF/CS scaffolds.
(B) Scanning electron microscopy (SEM) demonstrates attachment of S. aureus on neat and blended
scaffolds. Neat silk fibroin (SF) scaffolds (a), SF/CS (2:1) (b), SF/CS (1:1) (c), SF/CS (1:2) (d), SF/CS (1:3)
(e), and neat CS scaffolds (f). Note: Scale bar = 10 µm [107]. (C,D) Influence of blending on antibacterial
behavior of CS. Chitosan (CS), poly caprolactone (PCL), and blend membranes were soaked in bacterial
broths of S. mutans and A. actinomycetemcomitans and incubated aerobically at 37 ◦C [108]. (E) Antibacterial
activity of crosslinked gelatin/CS membranes, with various concentrations of cinnamaldehyde, towards
P. aeruginosa, S. aureus, Salmonella, and E. coli. Values are portrayed as mean and standard deviation (± SD;
n = 3) [109].
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4. Printed Constructs from Antibacterial Inks

Three-dimensional (3D) printing offers controlled deposition and patterning of poly-
meric or composite biomaterials, to produce well-defined constructs with the ability to
combine various materials and their compositions. 3D printing and bioprinting techniques
are progressively used for the biofabrication of 3D constructs in tissue engineering (TE). The
3D printing of biomaterials, termed biomaterial inks, allows the deposition of biomaterials
in a well-defined 3D scaffold, which can develop into living tissue-engineered constructs.
3D bioprinting offers admission to well-defined structures, accomplishing a varied range
of mechanical and biological properties. Nevertheless, the accessible biomaterial inks and
bioinks, which present proper printability and favorable antibacterial performance for
bioprinting and 3D printing, remain limited [22]. Bioprinting is achievable via various
3D printers, which are more and more reasonable, consistent, and user friendly, extending
from elementary to sophisticated setups [23].

4.1. Metallic Ion-Containing Inks

Synthetic polymers are extensively utilized for bone TE because of their tunable
physical characteristics and biocompatibility. Naturally, most of these polymers exhibited
poor antimicrobial behavior. Infection at a position close to the implantation site is a key
factor for failure or postponement in the bone healing procedure, and the production of
antimicrobial polymers is preferred. In this respect, silver has been the most commonly
utilized antibacterial agent for generating antibacterial inks in recent years, as summarized
in Table 2.

Table 2. Printing inks containing antibacterial agents.

Material Antibacterial
Agent

3D Printing
Method Antibacterial Assay Cellular Assay and Cell

Type App Ref.

PCL
Silver, using 1%
and 3% silver

nitrate
FDM based

Scaffolds encapsulated
with 3 wt. % Ag

presented large IZ,
while no clear IZ

detected for PCL and
1wt. % Ag

Higher cell response for
1 wt. % Ag than PCL, while
3 wt. % Ag presented poor

cell viability.Cell type: hFOB

BTE [37]

PCL-PPSu Ag Extrusion-
based

Copolymers
encapsulated with
AgNO3 presented

antimicrobial
performance toward
E. coli, P. aeruginosa,

S. aureus, and
C. albicans

Encapsulation of a high
amount of AgNO3 led to

reduction in viability, owing
to the release of a high

amount of Ag+ ions from the
scaffold to the surrounding

environment.
Cell type: HDF

STE [36]

CS/PEO/GP ZnO BioX bioprinter

ZnONPs with a size of
90 nm treated with UV
presented the greatest

antibacterial
performance

- TE [130]

PCL CS Extrusion-
based

Lower bacteria growth
rate was detected for
CS-treated scaffolds,

where the Mw of
chitosan has a less

significant effect on
antibacterial
performance

CS-treated scaffolds
exhibited excellent cell

attachment and cell viability.
Cell type: L929 fibroblasts

TE [39]

PLA Ponericin FDM

Both Gram-positive
and negative bacteria

were significantly
inhibited up to 24 h
and the IZ remained

stable up to 72 h

The scaffolds presented
excellent MC3T3-E1 cell
attachment, spread, and

growth.
Cell type: MC3T3-E1

BTE [40]
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Table 2. Cont.

Material Antibacterial
Agent

3D Printing
Method Antibacterial Assay Cellular Assay and Cell

Type App Ref.

3DPZS Ag Extrusion-
based

Ag-3DPZS presented
excellent antibacterial
behavior, owing to the
generation of Ag into

the surrounding
environment

No significant difference
between the Ag-3DPZS
sample and the control
sample was observed,

implying the
non-cytotoxicity of Ag

encapsulated with a zeolite
scaffold.

Cell type: MC3T3-E1

BTE [131]

β-TCP Ag
Printing

machine with a
sprayer

The scaffolds
encapsulated with
Ag@GO exhibited

excellent antibacterial
performance toward

E. coli

The scaffolds encapsulated
with Ag@GO escalated ALP

and osteogenic
differentiation

Cell type: rBMSCs

BTE [132]

PCL- PDA Ag FDM

PCL/PDA/AgNPs
scaffolds could reduce
bacterial attachment

and regeneration,
while increasing the
diameter of the IZ

PCL/PDA/AgNPs scaffolds
presented a suitable cell

response.
Cell type: BMSCs

BTE [133]

PAM/
HPMC
and CS

Ag FDM

No IZs around the
HPMC/CS-

encapsulated hydrogel
dressings were found,

while the
AgNP-crosslinked

dressings presented
obvious IZs toward
S. aureus and E. coli

All hydrogel dressings
presented good L929 cell

viability, and the release of
Ag from the crosslinked
dressing did not induce

cytotoxicity.
Cell type: L929

Wound
dressing [134]

iPDMS
and

silicone
oil

Ag Bioprinter

iPDMS/AgNPs could
significantly prevent

wound dressing
infection

Excellent biocompatibility,
promoting neo-epithelial

and granulation tissue
formation to accelerate
wound healing in vivo.

Cell type: Fibroblast

Wound
dressing [135]

ZrO2 ZnO
3D printer

(Makerbot Z18,
America)

The ZrO2-ZnO
ceramics had a

substantial
antibacterial
performance

ZrO2-ZnO ceramics
presented high cell viability

(around 80%).
Cell type: MC3T3-E1

Hip joint [136]

PLGA ZIF-8, Copper Extrusion-
based

PLGA/Cu(I)@ZIF-8
scaffolds destroyed S.
aureus bacteria, and

bacteria numbers were
considerably

diminished in infected
rats after implantation

with the scaffolds

The cells were well spread
and attached with a high

growth rate on
PLGA/Cu(I)@ZIF-8

scaffolds.
Cell type: mMSC

BTE [137]

PCL/
Lidocaine Ag Extrusion-

based

Scaffolds loaded with
Ag presented excellent
IZs towards S. aureus

and E. coli in a
dose-dependent

manner

Ag-encapsulated scaffolds
showed a toxic effect to

MC3T3 cells, as a result of
dual-released lidocaine and

Ag, while no cytotoxicity
effect was detected for the

neat lidocaine- or
Ag3PO4-loaded scaffolds.

Cell type: HFFs and MC3T3

Infection
preven-
tion and

pain relief

[138]

Ag: Silver; Ag@GO: Silver/graphene oxide nanocomposite; App: Application; BMSCs: Bone marrow mesenchymal
stem cells; BTE: Bone tissue engineering; CS: Chitosan; IZ: Inhibition zone; FDM: Fused deposition modeling; GO:
Graphene oxide; GP: Glycerol phosphate; HDF: Human dermal fibroblast; HFFs: Human foreskin fibroblasts; hFOB:
Human fetal osteoblast; iPDMS: Poly dimethylsiloxane; MGO: Magnesium oxide; PCL: Polycaprolactone; PCL-PPSu:
polycaprolactone-block-poly(1,3-propylene succinate); PDA: Polydopamine; PEO: Polyethylene oxide; PLA: Polylactic
acid; PLGA: Poly (lactide-co-glycolide); rBMSCs: Rabbit bone marrow stromal cells; STE: Skin tissue engineering; TE:
Tissue engineering; 3DPZS: Zincosilicate zeolite scaffolds; ZIF-8: Zeolitic imidazolate frameworks.
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Radhakrishnan et al. [37] prepared AgNPs-PCL solution by in situ reduction. In detail,
PCL/AgNPs composites were synthesized utilizing 1% and 3% AgNO3 via a customized
3D printing technique, which are labeled as C1Ag2 and C3Ag2, respectively (Figure 9A).
PCL, C1Ag2, and C3Ag2 were extruded into filaments; additionally, they prepared 3D
structures utilizing the PCL/AgNPs filaments via an FDM-based 3D printer (PRUSA i3)
(Figure 9B) [37]. Figure 9 depicts the results attained for their 3D printed scaffolds from
an inhibition examination conducted at 24 h. Negative control plates (without bacteria)
revealed clear nutritive soft agar plates. However, positive control plates (with bacte-
ria) demonstrated a homogeneous distribution of bacterial colonies inside the soft agar
(Figure 9C) [37]. With the 3Ag2 scaffold, a clear IZ (20.4 ± 1.7 mm) was detected in contrast
to no obvious IZ being detected for PCL and 1Ag2, as shown in Figure 9C. The existence of
an IZ around the 3Ag2 scaffolds evidences an antibacterial performance depending on the
infiltration of biocidal agents employing the soft agar. These biocidal agents could be silver
(i.e., Ag0 instead of Ag+ based on XPS analysis) and/or ROS [37].
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printed scaffolds, and (C) Soft agar plates inoculated with E. coli cells and incubated with 3D printed
scaffolds in their center for 24 h (Scale bar denotes 1 cm) [37].

Another recently published research paper on 3D printed constructs encapsulated with
antibacterial metallic ions is reported by Afghah et al. [36], who prepared a 3D printable
copolymer based on polycaprolactone-block-poly(1,3-propylene succinate) (PCL-PPSu),
loaded with antimicrobial Ag particles for STE. In their study [36], the E. coli, P. aeruginosa, S.
aureus, and C. albicans pathogens, which are associated with infections detected in implants
or burn wound areas, were seeded on lysogeny broth (LB) agar Petri dishes by spreading
from overnight cultures. Subsequently, the copolymer films with/without AgNO3 were
positioned meticulously on the LB agar. After overnight incubation, no indication of
antimicrobial influence towards E. coli, P. aeruginosa, S. aureus, and C. albicans strains
was observed in the copolymer specimens. Nevertheless, copolymers encapsulated with
AgNO3 displayed antimicrobial behavior towards all the tested microorganisms. Obvious
IZs were experienced close to the copolymer films, with varying sizes based on the various
microorganisms. Moreover, PCL-PPSu/AgNO3 films exhibited positive antimicrobial
performance versus C. albicans, a harmless member of the human microbiome, which might
result in life-threatening infections within particular circumstances [36]. In a similar fashion,
Li et al. [133] manufactured PCL scaffolds by FDM incorporated with polydopamine
(PDA) and Ag as an antibacterial agent. They reported no significant IZ for S. aureus was
experienced for PCL scaffolds and PCL/PDA scaffolds throughout 14 days of in vitro
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examination. The IZ for S. aureus utilizing PCL/AgNPs scaffolds lessens to zero after
14 days of culture. Employing PCL/PDA/AgNPs scaffolds, the IZ value presented a
progressive reduction with a sustainable antibiotic release after 14 days’ culture, where the
role of Ag as an antibacterial agent is obvious [133].

In addition to TE, antibacterial agents are one of the essential aspects of wound heal-
ing processes. For instance, the Ag-ethylene interaction and the 3D printing approach
employed by Wu et al. [134] to create the antibacterial super-porous polyacrylamide
(PAM)/hydroxypropyl methylcellulose (HPMC) hydrogel dressings via a home-made
3D bioprinter. They revealed that Ag-ethylene interaction is responsible for mediating the
creation, distribution, and crosslinking of AgNPs in the hydrogel matrix, along with the
crosslinking of the PAM networks. Simultaneously, this kind of organometallic complex
additionally manipulated the generation of AgNPs to balance the cytocompatibility and
antibacterial property of the AgNP-crosslinked hydrogels [134]. Other polymeric inks
encapsulated with Ag ions for wound dressing purposes were presented by Shi et al. [135]
(Table 2). As can be observed, iPDMS/AgNP is effortlessly folded and stretched (Fig-
ure 10i) [135]. Their findings depicted that the oil-infused 3D printed polydimethylsiloxane,
with antibacterial nanosilver (iPDMS/AgNPs) at 0.5 wt. % and 2.5 wt. %, can cater to
the various specifications of wounds, with antifouling, anti-blood staining, and can kill
bacteria (Figure 10ii) [135]. Moreover, iPDMS/AgNPs not only displayed biocompatibility
and excellent antibacterial behavior, but likewise successfully elevated neo-epithelial and
granulation tissue creation to boost the wound healing rate (Figure 10iii) [135].
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Figure 10. (i) Micrographs of 3D-printed mesh and nanosilver dotting. A: iPDMS membrane
with flexibility and different sizes; B1: folded oil-infused 3D-printed polydimethylsiloxane with
antibacterial nanosilver (iPDMS/AgNPs), and B2: stretched PDMS/AgNPs. (ii) The gross appearance
of bacteria in the six groups (co-cultured with S. aureus or E. coli). (iii) The wound profiles of
the infected wound from 1 day to 7 days [135]. Note: Negative control (A), positive Control (B),
PDMS (C), PDMS + oil (D), PDMS + 0.5%AgNPs (E), PDMS + 2.5%AgNPs (F), PDMS + 0.5%AgNPs
+ oil (G), and PDMS+2.5%AgNPs+oil (H).

Ag3PO4 and lidocaine-encapsulated PCL scaffolds were printed utilizing pneumatic
extrusion-based 3D printing in Shao et al.’s [138] study. They exhibited the antibacterial
characteristics of Ag-encapsulated inks. The released medium from their Ag-encapsulated
scaffolds demonstrated a noticeable IZ towards S.aureus and E.coli upon encapsulation
with 1% Ag3PO4 for up to 6 days and with 3% Ag3PO4 for at least 7 days. In terms of
cytotoxicity evaluation, they reported that although the Ag3L4 scaffolds (encapsulated
with Ag and lidocaine) revealed a toxic influence to MC3T3 cells, which could be owing to
the hypertonic influences of the dual-released lidocaine and Ag, the solely lidocaine- or
Ag3PO4-encapsulated scaffolds did not stimulate a toxicity effect for MC3T3 cells [138].
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In addition to encapsulating silver into polymers, incorporating this ion into ceramics
is another well-known approach for generating antibacterial inks, as was investigated
in Wang et al.’s [131] study. Wang et al. [131] encapsulated silver in 3D printing inks to
attain antibacterial constructs for BTE purposes. They manufactured Ag-encapsulated
zincosilicate zeolite scaffolds (with zeolite Ag-VPI-7 powders as the primary raw materials)
through the extrusion 3D printer, as illustrated in Figure 12A [131]. In the printing approach,
they employed the nanofibrous attapulgites, with appropriate rheological characteristics
and great bioactivities, as inorganic binders, which elevated the compressive strength and
Young’s modulus of Ag-3DPZS up to 8.38 and 111 MPa, respectively, where it is mentioned
that the mechanical properties are crucial for BTE purposes [25,26,131]. Figure 12B,C show
obvious bacterial IZs on the agar plate generated by Ag-3DPZS (the right scaffolds in
the figure), while there are no IZs around the 3D-printed zeolite scaffolds without the
encapsulation of Ag ions (3DPZS, the left scaffolds in the figure) [131]. The outcomes
demonstrate that Ag-3DPZS has an inhibitory influence on both bacteria (S. aureus and
E. coli) caused by the Ag release into the agar medium. Nevertheless, 3DPZS shows no
bacteriostatic performance. The bacteria growth trends related to S. aureus and E. coli
presented in Figure 12D,E exhibited that Ag-3DPZS drastically prevents the growth of
S. aureus and E. coli at each test point, implying the broad-spectrum antibacterial behavior
of Ag-3DPZS [131]. Since Ag-3DPZS was employed as an antibacterial scaffold for BTE,
it was required to assess its cytotoxicity. In this context, Wang et al. [131] incubated the
MC3T3-E1 cells for 48 h with the leaching solutions of various specimens; there was no
significant difference between the Ag-3DPZS specimen and the control specimen, implying
the non-cytotoxicity of the Ag-encapsulated zeolite scaffold. Ultimately, they presented Ag-
3DPZS as an antibacterial and cytocompatible scaffold for BTE, with excellent mechanical
behavior [131].

Another examination on incorporating Ag ions to attain antibacterial inks regard-
ing bone reconstruction is Zhang et al.’s [132] study. In their study, AgNPs were evenly
dispersed on GO to create a homogeneous Ag@GO coating with various Ag-to-GO mass
ratios, with this being fabricated via the liquid chemical reduction approach. Ag@GO
nanocomposites were effectively treated on the 3D-printed β-TCP scaffolds simply by a
soaking approach to attain bifunctional biomaterials with antibacterial and osteogenic
action. They revealed that the scaffolds with Ag@GO coating displayed remarkable an-
tibacterial behavior towards E. coli, as well as enhanced ALP and enhanced osteogenic
differentiation of rabbit bone marrow stromal cells (rBMSCs) [132]. Zinc oxide is another
antibacterial agent employed by Zhu et al. [136], which displayed 3D-printed ceramic
hip joints with accurate structures and excellent antibacterial performances implementing
ZnO-layered treated ZrO2. Their result depicted that the ZrO2-ZnO ceramics had an ex-
cellent antibacterial performance versus E. coli and S. aureus within 8 h, and above 80%
viability of MC3T3-E1 cells for all specimens [136]. Copper has been exhibited to have a
successful antibacterial performance towards a variety of bacteria, such as S. aureus [139]
and E. coli [140], the most prevalent microorganisms in bone infections. Hence, it seems
that the encapsulation of Cu into 3D printing inks is usually important for TE purposes.
In this regard, Cu-encapsulated zeolitic imidazolate-framework (ZIF-8) nanoparticles and
poly (lactide-co-glycolide) (PLGA) were combined to prepare PLGA/Cu(I)@ZIF-8 scaf-
folds, utilizing 3D printing approaches for infected bone repair in Zou et al.’s [137] study.
They revealed that in vitro, S. aureus cultured on the PLGA/Cu(I)@ZIF-8 scaffolds were
practically all dead, while in vivo inflammatory cell infiltration and bacteria numbers were
considerably diminished in infected rats implanted with PLGA/Cu@ZIF-8 scaffolds. In ad-
dition, the mMSCs cultured on the surface of PLGA/Cu(I)@ZIF-8 scaffolds were attached,
and spread, and staining with ALP and alizarin red were more amplified than with neat
PLGA scaffolds. The mineralization assay demonstrated an apatite-rich film was created
on the surface of PLGA/Cu(I)@ZIF-8 scaffolds, while barely any apatite was detected on
the surface of the PLGA scaffolds [137].
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4.2. Chitosan-Containing Inks

The printing of CS ink has actually been examined for around 10 years via imple-
menting certain factors, including printing in Petri dishes comprising dry ice [141,142].
Nevertheless, few reports exist regarding the antibacterial performance of CS inks, and
productive examination regarding boosting this crucial feature for protecting against the
resultant infections of bone scaffold implantation has been ignored. Tardajos et al. [39]
employed CS in order to fabricate antibacterial inks. They established an innovative surface
treatment approach on electrospun and 3D-printed PCL scaffolds by grafting methacrylic
acid N-hydroxysuccinimide ester (NHSMA) onto the surface following Ar-plasma/air acti-
vation, to subsequently react the introduced NHS groups with different molecular weights
(Mw) of CS as potential antibacterial materials. The antibacterial assessment towards
S. aureus and S. epidermidis pointed out a sluggish bacterial growth rate on the surface of
the CS-treated scaffolds, independent of the Mw of the chitosan. Furthermore, a lactate
dehydrogenase assay (LDH) employing L929 fibroblasts exhibited the cell adhesion and cell
viability potential of the treated samples [39]. In spite of the remarkable development in the
improvement of scaffolds that can enhance bone healing, bacterial colonization of surgically
implanted scaffolds continues to be a clinical issue that could endanger the results of the
regenerative treatment [143]. In this respect, Ramesh et al. [130] presented the formula-
tion and subsequent 3D deposition of a material system mixing the osteoconductivity of
CS-glycerol phosphate (GP) hydrogel with the antibacterial performance of ZnONPs for
purposes in BTE [130]. Nanoparticles presenting antibacterial properties attract huge atten-
tion in scaffold-based TE techniques, caused by their simplicity of encapsulation and for the
manufacturing of well-designed 3D scaffolds. Ramesh et al. [130] fabricated 3D scaffolds of
CS-polyethylene oxide (PED)-glycerol phosphate (CPG) using a bioprinter in a controlled
atmosphere, and CPG scaffolds before and after crosslinking are shown in Figure 11 [130].
Likewise, the influence of the ZnO amount on antibacterial behavior was analyzed utilizing
UV-treated ZnONPs at different amounts, namely 0.01, 0.05, 0.1, 0.5, 1, 2, and 4 mg/mL.
To identify the NPs’ characteristics with the highest antibacterial performance, ZnONPs
of sizes 20 and 90 nm, both with (UV+) or without (UV-) being exposed to UV light, were
examined for their antibacterial performance towards E. coli. ZnONPs of 90 nm size treated
with UV demonstrated the greatest antibacterial performance, with nearly a 4-log reduction
in bacterial survival as opposed to the control (without ZnO). ZnO at a higher amount
(2 mg/mL) led to the prevention of more than 99.99% of the growth for E. coli; however,
even 1 mg/mL drastically prevented the growth of S. aureus, with inhibition of 99.999%
of the cell. Gram-positive bacteria have typically been detected to be more sensitive to
ROS-mediated killing [144], which might reveal the greater antibacterial performance of
ZnONPs towards the Gram-positive S. aureus than that of the Gram-negative E. coli.

4.3. Other Antibacterial Inks

Li et al. [53] prepared a PLA scaffold through the FDM approach that consisted of
extremely interconnected porosity, adequate nutrient supply, and antibacterial performance.
Accompanied by dopamine polymerization on the surface of the substrate, grafting with
gelatin (Gel)/hydroxyapatite (HA) and ponericin G1 was additionally performed. In their
examination, both E. coli and S. aureus were significantly prevented up to 24 h, and the IZ
could remain for 72 h. Specifically, when the amount of ponericin solution was controlled
at 250 µg/mL, the antibacterial performance did not differ with the raised amount of
gelatin, implying that the integrating ponericin amount is not dependent on the viscosity
of the solution. Nevertheless, when the amount of gelatin was controlled at 3%, the OD
value of the bacteria culture was diverse to a significant level in proportion with the
amount of ponericin solution (ranging from 50 to 750 µg/mL). For E. coli, the greatest
antibacterial performance was accomplished at 250 µg/mL, although for S. aureus, the
value amplified to 500 µg/mL. After 24 h culture, the identical trend was attained both for
E. coli and S. aureus as at 18 h, and the comparative concentration was still fulfilled with
merely a small reduction in the antibacterial behavior. Their findings demonstrated that
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the ponericin encapsulated scaffold was more sensitive to E. coli compared with S. aureus
and the scaffold was capable of maintaining a long-term antibacterial behavior [53].
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5. Conclusions and Future Perspectives

Biomaterials perform an essential function in disease treatment; however, the presence
of infective microorganisms on biomaterial surfaces lead to major issues that seriously
restrict the functional use of these devices. To create biomaterials with anti-infective
properties, a number of approaches have been developed. The numerous antibacterial
materials that have been intrinsically used for biomedical applications include metals (e.g.,
Ag, Zn, and Cu), polymeric materials (e.g., CS) and their composites, and ceramics (e.g.,
ZnO, MgO, and TiO2). Due to their intrinsic antibactericidal activity, these materials have
been extensively employed in numerous biomedical applications.

Biomaterial inks and bioinks with characteristic antibacterial activity are of specific at-
tention for TE application due to the increasing number of bacterial infections accompanied
by the compromised regeneration of tissues. Nevertheless, the achievement of cell-laden
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bioink by effective antibacterial activity, although associated with tissue regeneration, is
demonstrated to be challenging [24]. In order to address this problem, novel antibacterial
bioinks have been established for 3D bioprinting in TE applications.

Over the past decades, 3D printing techniques have been rapidly developed and
widely employed to create scaffolds for various TE applications. Nevertheless, many issues
remain to be addressed for the applications of 3D-printed biomaterials, such as regulatory
concerns, a sterile environment for component manufacturing, and the accomplishment
of target material characteristics with the preferred structures [25]. For creating efficient
TE constructs, multi-material structures consisting of cells might be printed along with
organic or inorganic components. These strategies have been drawing extensive attention,
while leaving a lot to be desired. Among them, cell viability is a crucial issue for the
bioprinting process and the shelf-life of materials, with and without cells, is another
considerable challenge. Furthermore, due to considerable variation in the stiffness of the
cells and materials to be deposited, careful procedure optimization is required to create
scaffolds that could be employed for additional in vitro or in vivo examination. Another
essential requirement is vascularization or new blood vessel network creation, based on the
principles of angiogenesis and vasculogenesis [145]. Alternatively, the escalating infectious
diseases after operations are primary restrictions in biomedical applications [146]. Bacterial
infections on the surface of the biomaterial biofilm have threatened to utilize biomaterials
in the body [146]. Regardless of the reliable host immune system, the implant surface might
be quickly filled by bacteria, leading to infection persistence, implant failure, and even
death of the patients. It is challenging to deal with these issues due to the fact that bacteria
display complex attachment mechanisms to the implants that differ based on bacterial
strains. Various biomaterial coatings have been created to generate antibiotics to destroy
bacteria. Nevertheless, antibiotic resistance takes place very regularly. Hence, encapsulating
antibacterial agents into the biomaterial matrix has attained much consideration in the past
few years [147]. Antibacterial biomaterials are comparatively capable of repelling bacterial
cells, inhibiting their adhesion, or inactivating/destroying cells attached to the surface,
while not sufficiently productive in destroying the pathogens due to the complicated
mechanisms of bacteria [148–172]. Thus, developing highly effective and specifically
targeted biomaterials that generate antimicrobial agents and their service in 3D printing
inks is vital for TE applications. In addition, adopting the mechanisms for preventing
bacterial attachment and biofilm creation is crucial. In this regard, the majority of research
for presenting favorable inks containing antibacterial features, including metallic and
metal oxide (e.g., Ag, Cu, Au, TiO2, MgO, and ZnO) nanoparticles with low cytotoxicity, is
potentially going to be broadly employed in the foreseeable future for eliminating numerous
infectious situations. Regarding antibacterial inks based on natural polymers such as CS,
numerous essential factors, including the difficulties of print parameter optimization,
selecting suitable and non-toxic crosslinkers which do not clog the nozzle, and issues
of structure stability preservation, should be considered before the bioprinting tissues.
In addition, more significant attention should be provided regarding the interactions
between polymers and metallic ions in order to fabricate well-designed tissue constructs
with high antibacterial performance. Furthermore, other aspects, including evaluating
the biocompatibility of the antibacterial inks encapsulated with metallic ions and obvious
concentration on the non-harmful limit to biocompatibility, likewise necessitate extensive
exploration. The latest advancements in approaches for fabricating antibacterial inks
in combination with great printability could be very valuable for the manufacturing of
innovative bactericidal biomaterials, for the preservation of their long-term performance,
and aid in reducing biomaterial infection in the body. Taken together, we believe that
bioink-related biomaterials containing antibacterial agents are developing very rapidly and
pave the way for further research to prevent infection during/after implantation.
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172. Sikorski, D.; Bauer, M.; Frączyk, J.; Draczyński, Z. Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens.
Polymers 2022, 14, 1690. [CrossRef] [PubMed]

http://doi.org/10.3390/met12020207
http://doi.org/10.3390/polym14091764
http://doi.org/10.3390/polym14091737
http://doi.org/10.3390/polym14091736
http://doi.org/10.3390/polym14091705
http://www.ncbi.nlm.nih.gov/pubmed/35566875
http://doi.org/10.3390/polym14112205
http://doi.org/10.3390/polym14091671
http://www.ncbi.nlm.nih.gov/pubmed/35566841
http://doi.org/10.3390/polym14081603
http://doi.org/10.3390/polym14081600
http://doi.org/10.3390/polym14081558
http://doi.org/10.3390/polym14081537
http://doi.org/10.3390/polym14051012
http://doi.org/10.3390/polym14040692
http://doi.org/10.3390/polym14030650
http://doi.org/10.3390/polym14030600
http://www.ncbi.nlm.nih.gov/pubmed/35160589
http://doi.org/10.3390/polym13244337
http://www.ncbi.nlm.nih.gov/pubmed/34960888
http://doi.org/10.3390/polym13213838
http://doi.org/10.3390/polym13091523
http://doi.org/10.3390/polym13040659
http://www.ncbi.nlm.nih.gov/pubmed/33672118
http://doi.org/10.3390/polym12102193
http://doi.org/10.3390/polym12030621
http://doi.org/10.1177/00405175221086892
http://doi.org/10.1108/IJCST-05-2021-0071
http://doi.org/10.3390/polym12051072
http://doi.org/10.3390/polym14091690
http://www.ncbi.nlm.nih.gov/pubmed/35566859

	Introduction 
	Why Antibacterial Features Are Necessary for Biomaterials? 
	Strategies for Achieving Antibacterial Biomaterials 
	Surface Treatment with Bacteria Repelling and Antiadhesive Substances 
	Materials with Antibacterial Properties 
	Antibacterial Activity of Copper 
	Antibacterial Activity of Silver 
	Antibacterial Activity of Gold 
	Antibacterial Activity of Zinc Oxide 
	Antibacterial Activity of Titanium Dioxide 
	Antibacterial Activity of Chitosan 


	Printed Constructs from Antibacterial Inks 
	Metallic Ion-Containing Inks 
	Chitosan-Containing Inks 
	Other Antibacterial Inks 

	Conclusions and Future Perspectives 
	References

