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Abstract: Object recognition is the technique of specifying the location of various objects in images or
videos. There exist numerous algorithms for the recognition of objects such as R-CNN, Fast R-CNN,
Faster R-CNN, HOG, R-FCN, SSD, SSP-net, SVM, CNN, YOLO, etc., based on the techniques of
machine learning and deep learning. Although these models have been employed for various types
of object detection applications, however, tiny object detection faces the challenge of low precision. It
is essential to develop a lightweight and robust model for object detection that can detect tiny objects
with high precision. In this study, we suggest an enhanced YOLOv2 (You Only Look Once version
2) algorithm for object detection, i.e., vehicle detection and recognition in surveillance videos. We
modified the base network of the YOLOv2 by reducing the number of parameters and replacing it
with DenseNet. We employed the DenseNet-201 technique for feature extraction in our improved
model that extracts the most representative features from the images. Moreover, our proposed model
is more compact due to the dense architecture of the base network. We utilized DenseNet-201 as
a base network due to the direct connection among all layers, which helps to extract a valuable
information from the very first layer and pass it to the final layer. The dataset gathered from the
Kaggle and KITTI was used for the training of the proposed model, and we cross-validated the
performance using MS COCO and Pascal VOC datasets. To assess the efficacy of the proposed model,
we utilized extensive experimentation, which demonstrates that our algorithm beats existing vehicle
detection approaches, with an average precision of 97.51%.

Keywords: CNN (convolution neural network); YOLO (You Only Look Once); intersection over
union (IoU); mAP (mean average precision)

1. Introduction

Multimedia has deeply penetrated many realms of life in the present generation of
promptly emerging technologies. In daily life, many people utilize electronic devices
for various video applications i.e., animated videos, activity recognition, movies, etc.
Cameras have been utilized quickly over the last century for surveillance systems. A
surveillance system is a systematic method of monitoring behavior, actions, or other
changing information. This results in massive data accumulation in the form of images and
video clips, and it can be a tiring task to extract relevant information from this multimedia
content. The three essential phases in every surveillance system are object detection,
tracking, and recognition.
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Object identification and localization is the procedure of locating the location of objects
in images and videos captured by surveillance cameras. The objects can be classified and
detected in real-time using various computer vision techniques [1]. Furthermore, the objects
are specified by employing rectangular bounding boxes. There exist various applications
of object detection in industries and scientific research based on ML (Machine Learning)
and DL (Deep Learning), for example face detection [2], text detection [3], pedestrian
detection [4], logo recognition [5], object identification in the video [6], vehicle detection [7],
disease detection [8], medical imaging [9] and many more. Moreover, for vehicle detection
in autonomous driving systems, numerous challenges are still faced such as the algorithm’s
inability to detect faraway vehicles due to their small size, blurry conditions, night view,
and rainy seasons because of less precision in localization of present studies.

Traditional techniques based on ML (Machine Learning) have been used mostly for
object detection; the object area is computed first using a sliding window, then various
features are mined, and finally, traditional classifiers such as SVM (Support Vector Machine)
are used to classify the objects. Although the results are satisfactory, these methods are
incapable of accurately detecting and classifying objects ignoring the underlying deep
features. A researcher used the Haar feature descriptor to extract the linear, center, diagonal,
and edge features before classifying the objects using a Support Vector Machine. Moreover,
employing a hand-crafted feature descriptor requires human effort. As a result, researchers
are concentrating their efforts on deep learning algorithms like CNN, R-CNN, and YOLO,
which have greatly improved object detection performance.

Existing deep learning methods for object detection are dedicated to simplifying the
network and speeding up the detection process. These results are heavily reliant on the
accuracy of the proposals generated, such as when, for example, the researcher employs a
faster R-CNN approach to detect and count vehicles. Although this technique can accelerate
the detection process, it has lower detection accuracy than other traditional methods. Most
importantly, these methods are incapable of detecting distant vehicles. We propose an
improved Yolov2 algorithm with Densenet-201 as a base network in video surveillance
systems to detect far-away vehicles that appear in small sizes.

The rest of the paper is structured in the following manner. Motivation is covered in
Section 2, while the study’s related work is presented in Section 3. The problem statement
is discussed in Section 4, the methodology is discussed in Section 5 and the proposed
approach is presented in Section 6. Section 7 presents the experiments, and Section 8
concludes the findings.

2. Motivation

The motivation of the proposed model is to investigate the issue of object detection
(i.e., vehicle detection) in videos obtained from surveillance cameras employing the im-
proved YOLOv2 technique. Moreover, the vehicles have various sizes in videos, and as a
result, conventional approaches have a hard time detecting vehicles precisely. An improved
YOLOv2 algorithm is developed in this paper to cope with this challenge.

The key advantages of doing this investigation are as below:

1. The proposed model enhances an end-to-end trainable DL (Deep Learning) model i.e.,
improved YOLOv2 to detect tiny vehicles (e.g., Car, Bus, Truck) for video surveillance
systems. Two benchmarks are utilized to train the projected technique for vehicle
detection, and the outcomes showed that our proposed algorithm outperforms the
already-used methods.

2. We employed Densenet-201 as a base network in YOLOv2, which extricates the most
exemplary features from the samples due to direct connections among all layers to
the classification layer. Furthermore, the proposed algorithm localizes the tiny objects
with high precision effectively.

3. For the cross-validation of our proposed model, we utilized MS COCO and Pascal
VOC datasets. We achieved significant vehicle detection performance for our proposed
model than existing techniques, which confirms that our proposed technique is robust.
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4. The proposed model is an efficient algorithm and performs a fast automated feature
extraction than the existing object detectors such as Faster RCNN. Moreover, it predicts
the coordinates of bounding boxes and classification at the same time. It is easy and
simple to employ for object detection in real-time videos.

5. The proposed model is lightweight and has fewer parameters than the original
YOLOv2 model.

3. Literature Review

Employing computer vision techniques to accurately identify on-the-road vehicles
is a thought-provoking issue that has been a scorching research topic for the past two
decades [10]. The surveillance videos of traffic have the ever-changing background due to
lighting effects. As a result, the exact size and location of vehicles are difficult to capture
due to the simultaneous movements of the vehicles on the road.

Recently, DL (Deep Learning) models have piqued the interest of numerous scholars,
and a plethora of deep learning object detection algorithms have been introduced. In
comparison to traditional methods, manual feature extraction in machine learning object
detection algorithms needs experts with years of experience in the associated domain.
Whereas, deep learning models necessitate a large amount of data to automatically acquire
the characteristics that can imitate differences in data, making it more demonstrative. Si-
multaneously, the procedure of feature extraction in the CNN layer in visual recognition
mechanisms is similar to the human visual mechanism. Deep learning-based detection
algorithms have achieved reasonable real-time performance compared to traditional al-
gorithms in recent years, requiring a continuous increase in data volume, and constant
updates of device hardware, and have attained recognition worldwide. Due to the better
real-time accuracy and performance in the academic field, the deep learning vehicle detec-
tion algorithm has been gradually developed in two directions; one is focused on accuracy
and the other one is on complexity.

For more than a decade, researchers have studied vehicle detection and recognition
extensively in the literature. Previously, numerous handcrafted features were removed for
vehicle detection, which requires manual intervention. Haar [11], HOG [12], and LBP [13]
were the three most commonly used feature descriptors. The classification framework was
evaluated for vehicle detection and found to be effective, i.e., a large number of vehicles
were detected. Additionally, the HOG feature in conjunction with the Support Vector
Machine classifier is commonly used with great success in vehicle detection. Moreover,
the mentioned features and classifiers with broad applications in vehicle detection tasks,
and statistical techniques using vertical and horizontal edge features were initiated for the
detection of vehicles and vehicle tracking at night by placing the tail lights. Table 1 presents
the recent works done on vehicle detection and classification.

Table 1. Summary of existing techniques for vehicle detection.

Ref. Methodology Dataset Evaluation Measures Results

[14] Real-time Vehicle
Detection

The homemade dataset
contains 9575 images.

YOLOv2 and Faster
R-CNN.

An improved YOLOv2
framework is proposed and
the results of the proposed
YOLOv2 show that the
accuracy is raised to 91.83%.

[15] Object Detection
Pascal VOC Dataset 2007
and 2012, containing 20
categories of objects.

YOLOv1, R-CNN, and
modified YOLO.

All the methods perform well
but our modified model takes
less processing time than the
previous methods.
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Table 1. Cont.

Ref. Methodology Dataset Evaluation Measures Results

[16] Large-scale Vehicle
Detection

A self-made dataset was
used consisting of 8000
images obtained from 30
traffic surveillance
cameras.

Feature descriptors,
large-scale indexing, and
feature selection.

A new method is proposed
that could detect or track
vehicles that are stolen in a
challenging urban
environment.

[17] Vision-based Vehicle
Detection

A KITTI benchmark
dataset was used
consisting of 11,129 images.

Deep learning, YOLOv3,
and ORB algorithm.

The proposed method
YOLOv3 measured two
aspects i.e., vehicle driving
direction and vehicle counting,
and they achieved an accuracy
of 92.3% and 93.2%.

[18] Vehicle Detection and
Recognition

A random dataset was
used consisting of 20,000
images of which 5000
images were of vehicles.

Haar, AdaBoost algorithm,
and LGBP histogram.

An accuracy of 97.3% was
achieved when detecting
vehicles in the traffic
surveillance system and an
accuracy of 92% was achieved
when recognizing the vehicles.

[19] Fast Vehicle Detection

The KITTI dataset has
15,000 images, while the
LSVH dataset contains
16 videos.

CNN and SINet.

The proposed method’s
detection accuracy is improved
because of the usage of RoI
pooling and a multi-branch
detection network. The SINet
achieves an accuracy of 37 FPS.

[20] Object Detection COCO dataset. Faster R-CNN-FPN
architecture with ResNet50

The accuracy achieved for the
COCO dataset is 89%.

[21] Vehicle Detection

Two datasets i.e.,
BIT-Vehicle (9580 images)
and CompCars (40,000
images) are used.

Improved YOLOv2
algorithm.

The proposed method
achieved an accuracy of 94.78%
in the BIT-Vehicle dataset.

[22] Multi-Scale Vehicle
Detection

A BIT-Vehicle public
dataset was used
consisting of 9580 images.

Improved YOLOv2
algorithm.

The proposed method revealed
that we can better predict the
sizes of vehicles. This method
achieved superior performance
accuracy of 97.30%.

[23] Vehicle Detection
Two types of datasets i.e.,
KITTI and PASCAL
VOC2007 are used.

CNN and HybridNet.

The experimental results on
KITTI and PASCAL VOC 2007
show us that this method
performs better than the
previous methods.

[24] Vehicle Detection

A BIT-Vehicle dataset was
used consisting of 3618
daylight images and 1306
nightlight images.

Semi-supervised CNN and
Softmax regression.

This proposed method
acquired a 92% accuracy rate.
The daylight recognition was
95.7% and the night-time
recognition rate was 88.8%.

4. Problem Statement

A vast number of techniques have been developed in the past era that have added
much-needed attention among researchers as a result of the development and improve-
ments in the domain of CV due to their vast surveillance applications. As a result of
advances in computer vision, the detection of objects in images is becoming increasingly
important because it can benefit a vast number of applications, including human detection,
face detection, vehicle detection, hammer detection, gun detection, knife detection, and
many others. With the advancement of technology and the increased number of vehicles on
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the road around the world, the traffic system has become increasingly reliant on automatic
vehicle recognition systems. Consequently, the vehicle detection and recognition system
must perform well in the context of time complexity and accuracy.

The main aim of this research paper is to investigate the challenge of vehicle detec-
tion in surveillance videos using deep learning. Due to the low-quality of surveillance
images, lack of background information, low lighting, and distance it is quite difficult to
detect vehicles.

Hence, we deduce a technique i.e., Improved YOLOv2 through surveillance videos
that distinguish between vehicles and non-vehicles based on deep learning. From various
research studies done previously, it is deduced that the current surveillance systems cannot
efficiently tell us which kind of model should be used for what kind of images. Surveillance
systems usually fail because they rely heavily on human operators who have physical
restrictions in the form of lethargy or loss of attentiveness due to monitoring several screens
for longer periods. These restrictions can be eased by enhancing the surveillance systems
to automatically detect the various objects that are present in an image. These proficiencies
can then enable surveillance systems to detect objects in various images. To have such
proficiencies, we need to deduce a mechanism that can not only capture images but can
also account for human emotion and behavior i.e., a method like object detection has to be
introduced that can detect the difference between different objects in an image.

Although various traditional methods are used to detect vehicles in surveillance
videos, the main problem is that the traditional methods are not as accurate and also,
they are very expensive. Nowadays researchers focus on using deep learning methods
to recognize vehicles. In this research, the Improved YOLOv2 algorithm, a type of DL
(Deep Learning) technology, was utilized to detect various vehicles (e.g., Car, Bus, Truck)
observed in surveillance cameras.

5. Materials and Methods

Conventionally, deep learning contains numerous layers of nonlinear processing
modules to obtain the features. All layers are cascaded and take the output from the
previous layer as input. Many researchers have attempted to build the network deeper
and larger to investigate the potential of deep learning. However, it has a challenge with
exploding or the vanishing gradient problem (VGP). As a result, many researchers build
multiple different structures of deep learning.

A range of deep learning structures has been proposed such as AlexNet [25], ResNet [26],
DenseNet [26], GoogLeNet [27], VGGNet [28]. The 2012 ImageNet Large Scale Visual
Recognition Competition (ILSVRC) winner, AlexNet, is comparable to LeNet and has ReLU
non-linearity and max-pooling. In the 2014 ILSVRC, VGGNet came at second place, with
deeper networks (19 layers) than AlexNet. To extract sparse correlating features in feature
map stacks, GoogLeNet, the ILSVRC 2014 winner, uses 1 × 1 convolution to minimize the
dimensions of feature maps earlier than the expensive convolutions, as well as parallel routes
with variable receptive field sizes. ResNet, the ILSVRC 2015 winner, proposes a 152-layer
network with a minimum of 2 layers of skipped or shortcut connections. Whereas, each
layer in DenseNet feeds forward the output of all preceding layers, providing N (N + 1)/2
connections in N layers, whereas outdated convolutional networks with N layers only deliver
N connections. DenseNet is capable of performing better than the cutting-edge ResNet
structure in the ImageNet classification test.

In this research, we proposed DenseNet201 as the base network in YOLOv2 for vehicle
detection (e.g., Car, Bus, Truck) because of its remarkable performance. However, before
going into detail about DenseNet201, the traditional convolution neural network (CNN)
will be discussed first, followed by the distinctions between DenseNet and CNN.
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5.1. Convolution Neural Network (CNN)

A standard convolution neural network (CNN) normally includes (i) Convolution
(CONV) layer, (ii) Rectified linear unit (ReLU) layer, (iii) pooling (POOL) layer, (iv) Fully
connected (FC) layer, and (v) Softmax layer [29]. The following are the functions of the sev-
eral layers, with the convolution layer as the fundamental session of a CNN. Convolutional
input with various kernels produces the feature maps. It can be expressed mathematically
as presented in Figure 1.
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Succeeding the convolution layer, there exists the ReLU nonlinear activation function,
which is used to extract nonlinear features. The goal of the ReLU layer is to impart non-
linearity to the network. It is mathematically defined as Equation (1).

relu(v) = max(v, 0); (1)

The pooling layer works by geographically resizing the feature maps to reduce the
parameters, memory footprint, and network computation time. Each feature map is
subjected to the pooling function, and the most common pooling approaches are max
pooling as shown in Equation (2), and average pooling as presented in Equation (3).

ak =
1
|Rk| ∑

j∈Rk

Mj (2)

ak = max
j∈Rk

(Mj) (3)

M denotes the pooling region, while Rk represents the total elements along with the
pooling region. The confidential scores will be calculated through fully connected layers
and stored in a 1 × 1 × c volume. Each element represents class scores, while c refers to the
categories.

An individual neuron in the FC layer is linked to neurons in previous layers. In a
typical CNN, all the layers are progressively associated, as shown in Equation (4).

mr = Fr(mr−1) (4)

However, when the network grows deeper and larger, it is possible that the network
could explode or the gradient would vanish. As a result, researchers offered various
network architectures to solve the problem. ResNet, for example, changed this behavior by
using a short link as shown in Equation (5).

mr = Fr[(mr−1) + mr−1] (5)
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Rather than summing the feature maps’ outputs of the layer to the incoming feature
maps, DenseNet has direct connections among all layers and each current layer takes input
from all previous layers. The expression is rewritten as Equation (6).

mr = Fr[(m0, m1, m2, . . . mr−1)] (6)

where r denotes the layer number’s index, F denotes a non-linear function and mr denotes
the r-th layer’s output.

5.2. Densenet-201

Due to the capacities of feature reusability by succeeding layers, the DenseNet-201
employs the condensed network, allowing the tremendously parametrically efficient model,
which increases diversity in the succeeding layer input and enhances performance. The
DenseNet201 has performed admirably on a variety of datasets, including ImageNet [30]
and CIFAR-100 [31]. Direct connections from all preceding layers to all future layers are
introduced to boost connectivity in the DenseNet201 architecture, as shown in Figure 2.
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The advantages of DenseNet201, which includes 201 convolutional layers, are fewer
vanishing-gradient problems, excellent feature distribution, feature reusability, and a fewer
number of parameters.

Let’s assume that an image m0 is fed into a neural network with R layers and non-linear
transformation Fr (.), where r is the index of the layer. ResNet’s traditional skipping con-
nections are included in the feed-forward network that bypasses the non-linear alteration
with an identity function, as shown in Equation (7).

mr = Fr(mr−1) + mr−1 (7)

ResNet has one advantage here that from initial layers till final layer, a gradient can
move straight through the identity function. Whereas, direct end-to-end connections are
used in the dense network to maximize the amount of information in each layer. The r-th
layer receives all of the previous layer’s information as shown in Equation (8).

mr = Fr[(m0, m1, . . . . . . , mr−1)] (8)

In DenseNet, down sampling takes place at Dense Blocks, which are split into Transi-
tion layers; it contains a 1 × 1 convolutional layer (CONV) and a pooling layer (average)
with BN (batch normalization). The bulks from the transition layer ultimately spread to



Electronics 2022, 11, 3425 8 of 20

the dense layers. We transformed the entire average-pooling layer into a 2 × 2 max pool
layer for network utility. BN (Batch normalization) is performed previously in each of the
convolutional layers, making the model less complex. The hyperparameter k denotes the
network’s growth rate, making the DenseNet capable of producing cutting-edge results.
Pooling layers are eliminated, and the proposed detection layers are fully integrated and
related to the classification layers for detection. Even deeper network designs than the
201-layer network can be found in DenseNet-264 [32]. Because we don’t want to cast a
wide network, the 201-layer structure is suitable for detecting vehicles. Due to its manner,
which reflects feature maps as a global mechanism of the network, DenseNet201 performs
well even with a smaller growth rate. Figure 3 exhibits the DenseNet201 architecture:
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DenseNet-201 is based on the transfer learning concept, having 201 depth layers and
20 million parameters that have been trained using more than one million images attained
from the ImageNet dataset.

5.3. YOLO (You Only Look Once) Theory

YOLO is an abbreviation of “You Only Look Once” [33], an advanced, one-stage
algorithm, to identify objects in real-time. The YOLO technique uses CNN, and object
recognition is performed as a regression scenario. CNN is employed to predict various
bounding boxes and class probabilities simultaneously. In comparison to Faster R-CNN,
YOLO obtains location and category predictive information without a region proposal
network (RPN).

5.4. Working Principle of YOLO

At the start, the network splits the input image into the R × R grid. When the central
point of an object lies in a grid cell, that grid cell is responsible for the detection of that
object. B bounding boxes and confidence scores are predicted in each grid cell for those
bounding boxes. Prob (Object) stands for whether there is a required object falling into this
cell. The mathematical equation of confidence C in YOLO-v2 is shown in Equation (9).

C(Con f idence) = Prob(Object) ∗ IoUtruth
pred (9)

Here, each grid cell predicts C conditional class probabilities, Pr (Class | Object), Prob
(Object) is the probability of predicting whether the boundary object contains the vehicle
object. If the object is present, Prob (object) is equal to 1, otherwise it is equal to 0.
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There are five components of the bounding box (x0, y0, wd, ht, confidence). The
confidence score reflects how self-assured the model is in the predicted box containing
an object and how correctly the box is that it predicts. The (x0, y0) coordinates refer to
the center of the box related to the bound of the grid cell and these coordinate values lie
between 0 and 1. The (wd, ht) box dimensions are width and height of the relative bounding
box to the whole image and are also normalized to 0 and 1. The category probability p is
calculated as shown in Equation (10).

Prob(Classi

∣∣∣Object) ∗ Prob(Object) ∗ IoUtruth
pred = Prob(Classi) ∗ IoUtruth

pred (10)

The confidence score is zero if no object lies in that cell. Otherwise, the confidence score
should be equivalent to the intersection over union (IoU) of the actual and predicted boxes.
Each grid cell creates B of these predictions, and there exist a total of R × R × B × 5 outputs
connected to bounding box predictions. The last layer of the pre-trained CNN model
predicts the tensor of size R × R × (B × 5 + C), where C is several classes.

If multiple objects exist in a single grid cell then to resolve this problem, we utilized the
concept of an anchor box. The anchor box enables the YOLOv2 to identify several objects
in a single grid cell. Due to this, a new idea of an anchor box i.e., one more dimension,
is added to the output labels by predefining several anchor boxes. After that, one object
will be assigned to each anchor box. Figure 4 illustrates the framework of the YOLO
methodology.
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5.5. Loss Function

The loss is split into two sub-parts, a loss for localization for predicting bounding box
offsets and a classification loss for predicting the probabilities of conditional class. The
squared error sum is utilized to compute both parts. Two scale parameters are used to
determine how much the loss from bounding box coordinates predictions should be in-
creased λcoord and how much we want to reduce the number of confidence score predictions
for boxes that are lost without objects λnoobj. As a result, the weighted technique is used
to balance the various types of losses. Generally, λcoord is set as 5 and λnoobj set as 0.5 to
minimize each loss. Otherwise, each loss may contribute differently to the overall loss,
rendering certain losses unsuccessful for network training. The loss equation is shown in
Equation (11):
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where xi and yi represent the center coordinates, wi and hi refer to the width and height of
the box, Ci represents the confidence of the box, and pi(c) is the class probability related to
the box of the i-th grid cell. Moreover, the equivalent predictions of xi, yi, wi, hi, Ci, and
pi(c) are xˆi, yˆi, wˆi, hˆi, Cˆi, and pi(c), the weight of the loss coordinates is λcoord, and λnoobj
represents the weight of the bounding boxes without any objects loss. S2 indicates the
S× S grid cells, B indicates the boxes whether there is an object that falls in the j-th bounding
box of the i-th grid cell, and λnoobj refers to the confidence consequence when there is no
object. In Equation (11),

λcoord

s2

∑
i=0

B

∑
j=0

Πobj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

is responsible for calculating the coordinate loss,

λcoord
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B
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ij

[
(
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ŵi)
2
+ (
√

hi −
√

ĥi)
2
]

is responsible for computing the bounding box size loss,

s2

∑
i=0

B

∑
j=0

Πobj
ij (Ci − Ĉi)

2

is responsible for determining the bounding box confidence loss with objects,

λnoobj

s2

∑
i=0

B

∑
j=0

Πnoobj
ij (Ci − Ĉi)

2

will calculate the bounding box confidence loss without objects, and

s2

∑
i=0

Πobj
ij ∑

c∈classes
(pi(c)− pi(c))2

is responsible for calculating the class loss.

6. Proposed Solution

Our proposed solution network’s structure comprises (i) the Input layer, (ii) network
for feature extraction, and (iii) detection network. The first stage in the network is to balance
the size of an input image to 224 × 224 pixels, after which the scaled data is passed into
DenseNet-201 for Feature Extraction. As previously indicated, we replaced the YOLOv2
baseline network Darknet-19 with DenseNet-201 and associated procedures, and now
we are looking into the network’s detection adjustments. The complete structure of our
proposed system is depicted in Figure 5.



Electronics 2022, 11, 3425 11 of 20Electronics 2022, 11, 3425 11 of 20 

Figure 5. The overall structure of the proposed model. 

7. Experimental Evaluation
7.1. Dataset

Dataset is the main foundation to estimate any model’s performance. Improving the 
recognition rate of the proposed model requires sufficient data for vehicle detection train-
ing. More training data can enhance the recognition and generalization rate as well as the 
robustness of the model, whereas overfitting problems may occur due to an insufficient 
amount of datasets. We used two datasets, Kaggle [34] vehicle and KITTI [35] datasets for 
the training and testing of the model. Moreover, the MS COCO [36] dataset and Pascal 
VOC [37] dataset were used to cross-validate the proposed model. 

7.1.1. Kaggle Vehicle Dataset 
The vehicle dataset available on Kaggle is used for experimental purposes. The da-

taset is split into two parts i.e., train set and the test set. The Kaggle vehicle dataset con-
tains 22,852 training images and 5193 test images, containing a total of 28,045 images. 
There exist 17 classes (Ambulance, Car, Cart, Boat, Bus, Caterpillar, Helicopter, Barge, Bi-
cycle, Segway, Limousine, Motorcycle, Tank, Taxi, Snowmobile, Truck, and Van). The 
class-wise distribution of Kaggle datasets is presented in Table 2. 

Table 2. Comprehensive overview of the Kaggle dataset. 

Class Total Images (Kaggle) Training Images Testing Images 
Ambulance 132 44 88

Barge 202 42 160
Bicycle 1618 122 1496

Boat 8695 786 7909
Bus 2133 351 1782
Car 6781 1391 5390
Cart 51 29 22

Caterpillar 331 45 286
Helicopter 532 15 517
Limousine 74 63 11
Motorcycle 2986 797 2189

Segway 153 65 88
Snowmobile 123 46 77

Tank 206 85 121
Taxi 748 221 527

Figure 5. The overall structure of the proposed model.

7. Experimental Evaluation
7.1. Dataset

Dataset is the main foundation to estimate any model’s performance. Improving
the recognition rate of the proposed model requires sufficient data for vehicle detection
training. More training data can enhance the recognition and generalization rate as well as
the robustness of the model, whereas overfitting problems may occur due to an insufficient
amount of datasets. We used two datasets, Kaggle [34] vehicle and KITTI [35] datasets for
the training and testing of the model. Moreover, the MS COCO [36] dataset and Pascal
VOC [37] dataset were used to cross-validate the proposed model.

7.1.1. Kaggle Vehicle Dataset

The vehicle dataset available on Kaggle is used for experimental purposes. The dataset
is split into two parts i.e., train set and the test set. The Kaggle vehicle dataset contains
22,852 training images and 5193 test images, containing a total of 28,045 images. There
exist 17 classes (Ambulance, Car, Cart, Boat, Bus, Caterpillar, Helicopter, Barge, Bicycle,
Segway, Limousine, Motorcycle, Tank, Taxi, Snowmobile, Truck, and Van). The class-wise
distribution of Kaggle datasets is presented in Table 2.

Table 2. Comprehensive overview of the Kaggle dataset.

Class Total Images (Kaggle) Training Images Testing Images

Ambulance 132 44 88
Barge 202 42 160

Bicycle 1618 122 1496
Boat 8695 786 7909
Bus 2133 351 1782
Car 6781 1391 5390
Cart 51 29 22

Caterpillar 331 45 286
Helicopter 532 15 517
Limousine 74 63 11
Motorcycle 2986 797 2189

Segway 153 65 88
Snowmobile 123 46 77

Tank 206 85 121
Taxi 748 221 527

Truck 2033 559 1474
Van 1111 396 715

Total 27,909 5057 22,852
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7.1.2. KITTI

The KITTI dataset is freely available having 80,256 labeled objects in numerous images.
We utilized 7481 training photos and 2000 test images. All of the images are colored and
have been saved as “png” files. There are 80 classifiers (Car, Bus, Truck, Train, Motorcycle,
etc.). The class-wise distribution KITTI dataset is described in Table 3.

Table 3. Class-wise distribution of KITTI datasets.

Total Number of Classifiers: 80

Class Total Images (KITTI) Training Images Testing Images

Car

11,682 7481 2000
Bus

Truck
Motorcycle

Train

7.1.3. Pascal VOC

Pascal VOC contains 20 different classes (Vehicle: train, bicycle, boat, bus, airplane,
etc.), and 9963 images consisting of 24,640 annotated objects. For vehicle detection, we
utilized various class samples from the Pascal VOC dataset. More precisely, we employed
800 images in total to evaluate our proposed classifier for the detection of vehicles.

7.1.4. COCO

Common Objects in Context (COCO) is one of the most famous open-source datasets
for object identification and segmentation. Microsoft sponsors the COCO dataset, which
contains over 300,000 images and 90 object types. In recent years, semantic segmentation
has become the industry standard for image semantics understanding. Thus, we employed
only 500 images exhibiting various vehicles from the COCO dataset. Various training
samples are presented in Figure 6.
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7.2. Metrics

To analyze the performance of the proposed system, we have utilized the metric of
Accuracy [9], Intersection Over Union (IoU) [38], and mean Average Precision (mAP) [39].
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Accuracy relies upon true positive (TP) [40], false positive [41] (FP), true negative (TN),
and false negative (FN). Furthermore, the accuracy of the system indicates the correctly
classified images by the proposed system. Equation (12) is presented below.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

We have employed mAP i.e., the average precision to analyze the performance of our
proposed detector. The Equation (13) is shown below, where Q denotes the total number of
test images.

mAP =
Q

∑
i=1

AP (qi)

Q
(13)

7.3. Environment

We performed the experiments using a GPU NVIDIA card i.e., GEFORCE RTX 30
with 4 GB memory. The operating system was Windows 10 having a RAM of 16 GB.
The experiment was performed using Matlab 2021a. We trained our classifier for various
categories of vehicles employing parameters such as epochs: 100 and learning rate: 0.0001.

The primary goal of this paper is to propose an accurate approach for the detection
of vehicles correctly. The various experiments performed can provide insight into the
method’s robustness and capacity to run in real-time scenarios. To achieve a reliable vehicle
detector, we proposed an Improved YOLOv2 using DenseNet201 as the base algorithm
employing a transfer learning (TL) mechanism. The proposed model is based on the
outstanding performance of DenseNet as it performs on ImageNet dataset classification
tasks. Figure 7 shows results of the proposed model for the detection of Vehicles using the
Kaggle Vehicle dataset.
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7.4. Class-Wise Performance

The average precision (AP) for each vehicle class, was used to measure the perfor-
mance of recognition. The average recognition performance is depicted by the mean
Average Precision (mAP), whereas intersection over union (IoU) indicates the average
localization performance. In Object detection, mAP and IoU are significant measures for
evaluating a model’s performance. Table 4 shows that the proposed upgraded YOLOv2
with Densenet201 has an mAP of 97.51% and an IoU of 97.06%. Improved YOLOv2 with
Densenet20 worked well for single and multiple vehicle identification, according to our
findings. In our purposed method, the mAP of Taxi and Van reaches up to 98.9%, while
the remainder of the results ranges from 94.5% to 98.8%. In terms of localization and
recognition accuracy, our proposed technique surpassed others.

Table 4. Class-wise performance over Kaggle and KITTI dataset.

Model Class mAP (%) IoU (%)

Improved YOLOv2-
DenseNet201

Ambulance 97.4 98.3

Barge 98.6 98.2

Bicycle 98.4 97.4

Boat 96.4 98.2

Bus 97.2 98.5

Car 98.3 95.4

Cart 94.5 96.3

Caterpillar 95.3 96.2

Helicopter 94.8 96.3

Limousine 95.9 94.3

Motorcycle 98.7 97.4

Segway 98.6 97.3

Snowmobile 98.5 97.8

Tank 98.8 97.1

Taxi 98.9 97.3

Truck 98.5 97.4

Van 98.9 96.7

Average 97.51 97.06

7.5. Cross-Validation

The Pascal VOC and MS COCO datasets have been employed for the cross-validation
of the proposed model. For vehicle detection, we employed various samples from Pascal
VOC and MS COCO datasets. Using DenseNet-201, we determined the mAP for each
of the 20 classes in the PASCAL VOC dataset for Improved YOLOv2, and we achieved
81% mAP, which was approximately 2 percent higher than YOLOv2. Furthermore, our
proposed model achieved promising results and outperformed other detectors, as shown
in Table 5. For 1000 iterations, the training took around one hour. It was exhibited that
Fast RCNN [42] attained 70% mAP, YOLOv2 [43] achieved 76.8%, and Faster RCNN with
ResNet [43] achieved 76.4% mAP. The highest mAP was 81%, which was attained by our
proposed model, whereas the least mAP was 63.4% which was attained by YOLO [33].
Moreover, SSD300 [44] and SSD500 [44] achieved 74.3% and 76.8% mAP, respectively. On
the other side, Faster RCNN along with VGG-16 [45] and Improved YOLOv3-Net [46]
achieved 73.2% and 77.4% mAPs. It is concluded that our proposed algorithm transcends
the existing models due to an improved base network DenseNet-201. Our base network
retrieves the most relevant features, and due to dense connections the flow of information is
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accurate till the last layer. More precisely our proposed model is robust, to perform accurate
detection due to its dense architecture. In Figure 8, the comparison plot is depicted.

Table 5. Comparison of different Network Models using PASCAL VOC 2007.

Models Names mAP

Fast R-CNN [42] 70.0

YOLOv2 [47] 76.8

Faster R-CNN ResNet [43] 76.4

YOLO [33] 63.4

SSD300 [44] 74.3

SSD500 [44] 76.8

Faster R-CNN VGG-16 [45] 73.2

Improved YOLOv3-Net [46] 77.4

Improved YOLOv2 (DenseNet-201) Proposed Model 81.0
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7.6. Comparison with Existing Models

To evaluate the performance of our proposed model, we conducted two separate
experiments. In the first experiment, we employed Pascal VOC 2007 to train our detector
for vehicle detection. We analyzed the effectiveness of the proposed technique and matched
it with predominant techniques over Pascal VOC 2007 dataset. We utilized only three
class samples from the dataset as Bus, Car, and Truck. The proposed model performed
significantly better than existing techniques. This training method employed a batch size
of 64 and 0.001 is the learning rate. It was done using the IoU Threshold of 0.50. Four
distinct dimensions of network models have been perceived such as Improved YOLOv2,
YOLOv3, and YOLOv3-Net and our proposed model Improved YOLOv2-Net-201. The
statistics are shown in Table 6. The best mAP of 82.7% was achieved for Improved YOLOv2-
Net-201 due to the proposed dense architecture as the base network in YOLOv2. Each
layer attains data from all the preceding layers and passes it to all coming layers. More
precisely, the classification layer has a direct connection with previous layers, extracting
the most valuable features for the detection of vehicles. Our proposed model is capable of
significant vehicle detection and outperforms the existing techniques. The comparison plot
is presented in Figure 9, exhibiting the better performance among existing models.

Table 6. Comparison of Proposed Networks with existing models on Pascal VOC Dataset.

NETWORK
MODEL NAME

CORE
NETWORK AP (Car) AP (Bus) AP

(Truck) mAP

YOLOv2 Darknet19 78.9 67.3 72.3 72.8

YOLOv3 Darknet53 69.4 78.6 77.3 75.1

Improved YOLOv3-Net DenseNet-121 86.2 79.8 77.5 81.1

Improved
YOLOv2-Net-201 (Our) DenseNet-201 88.3 81.2 83.9 82.7
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In the second phase, the COCO dataset has been used to train the detector for vehicle
detection like Buses, Car, and Trucks. The statistics are shown in Table 7. The best mAP
of 75.1% was achieved by our proposed model, and the least mAP was 60% attained by
the original YOLOv2. Meanwhile, YOLOv3 and Improved YOLOv3 achieved 66.2% and
71.2% mAPs, respectively. Our proposed model has attained the best performance among
existing models. Our proposed model effectively identifies the vehicles more than the
predominant models. Moreover, our model is based on DenseNet which overcomes the
problem of vanishing gradient and is better in terms of compactness than ResNet. The
comparison graph for performance over the COCO dataset is shown in Figure 10.

Table 7. Comparison of Proposed Network with existing models on the COCO dataset.

NETWORK
MODEL NAME

CORE
NETWORK AP (Car) AP (Bus) AP

(Truck) mAP

YOLOv2 Darknet19 67.5 61.5 51.1 60.0

YOLOv3 Darknet53 72.5 59.8 66.4 66.2

Improved YOLOv3-Net DenseNet-121 76.5 65.3 72.9 71.6

Improved
YOLOv2-Net-201 (Our) DenseNet-201 79.9 73.0 72.3 75.1
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8. Conclusions

In this study, an innovative and vigorous system for Vehicle detection is proposed
using a deep neural network established on YOLOv2 (You Only Look Once). Our proposed
technique uses DenseNet-201 as a Feature Extraction network swapping darknet18 in
the original YOLOv2. We employed two benchmarks such as the Kaggle vehicle dataset
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and the KITTI dataset as: 70% for training and 30% for testing of our proposed model.
Moreover, we utilized samples from 17 classes exhibiting various vehicles such as buses,
trucks, cars, carts, bikes, etc. We performed extensive experimentation to evaluate the
performance of the proposed model and achieved better average precision for our model
than existing techniques. Moreover, our proposed model is more compact and utilizes
more representative features due to dense connections among layers. More precisely, each
coming layer is directly connected with all previous layers till the classification layer in
our proposed base network, and this mechanism ensures a good flow of information from
the input layer to the last one. Furthermore, our proposed model detects tiny vehicles
with more precision and more accurately calculates bounding boxes due to compactness
in the base network than the original YOLOv2. We also performed cross-validation to
determine the robustness of our proposed technique using two prominent datasets, Pascal
VOC and COCO. We attained excellent performance for our proposed model compared
to state-of-the-art techniques, achieving 81% mAP. We believe that our proposed model
is robust and an effective framework for vehicle detection such as for cars, buses, trucks,
etc. In the future, we aim to modify and fine-tune our model to attain better accuracy and
mAP for vehicle detection along with classification. Moreover, we will try to utilize our
framework for other object detection applications such as abnormal activity detection.
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