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Abstract 

Background:  Mass screening programs for cervical cancer prevention in the Nordic 
countries have strongly reduced cancer incidence and mortality at the population 
level. An alternative to the current mass screening is a more personalised screening 
strategy adapting the recommendations to each individual. However, this necessitates 
reliable risk prediction models accounting for disease dynamics and individual data. 
Herein we propose a novel matrix factorisation framework to classify females by the 
time-varying risk of being diagnosed with cervical cancer. We cast the problem as a 
time-series prediction model where the data from females in the Norwegian screening 
population are represented as sparse vectors in time and then combined into a single 
matrix. Using novel temporal regularisation and discrepancy terms for the cervical 
cancer screening context, we reconstruct complete screening profiles from this scarce 
matrix and use these to predict the next exam results indicating the risk of cervical 
cancer. The algorithm is validated on both synthetic and registry screening data by 
measuring the probability of agreement (PoA) between Kaplan-Meier estimates.

Results:  In numerical experiments on synthetic data, we demonstrate that the novel 
regularisation and discrepancy term can improve the data reconstruction ability as well 
as prediction performance over varying data scarcity. Using a hold-out set of screening 
data, we compare several numerical models and find that the proposed framework 
attains the strongest PoA. We observe strong correlations between the empirical 
survival curves from our method and the hold-out data, and evaluate the ability of our 
framework to predict the females’ next results for up to five years ahead in time using 
only their current screening histories as input.

Conclusions:  We have proposed a matrix factorization model for predicting future 
screening results and evaluated its performance in a female cohort to demonstrate 
the potential for developing prediction models for more personalized cervical cancer 
screening.
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Background
The mass screening programs against cervical cancer established in the Nordic countries 
may have prevented up to 80 % of malignancies [1]. Persistent Human papillomavirus 
(HPV) infection is the primary causes of cervical cancer – as well as several other cancer 
types – initiating a process of cellular changes from low-grade to high-grade (pre-can-
cerous) lesions to invasive cancer [2]. Early detection of pre-cancerous lesions, e.g. with 
cytology, histology, or HPV tests, could prevent cancer development if it is treated [3] 
and motivates the need for screening.

A key factor in the success of the cancer screening programs is repeated screening 
at regular intervals. However, the risk of being infected with HPV and the risk of pro-
gressing to cancer vary significantly between females [4]. Thus, too frequent screening 
may lead to over-treatment of clinically insignificant pre-cancers, while too infrequent 
screening risks missing pre-cancers warranting treatment.

An alternative to the current mass-screening is a more personalized strategy adapting 
the screening frequency to the individual risk of disease initiation. For instance, vacci-
nation of adolescent females has shown to improve protection against HPV infection 
[5], in which case the cancer screening programs may benefit from more flexible guide-
lines for the individual risk [6]. A step towards guidelines for more personalized recom-
mendations is developing prediction models for the time-varying risk of cervical cancer 
using existing screening data from centrally organized population-level registries. In 
this paper, we present a novel matrix factorisation framework for time-dependent risk 
assessment of cervical cancer. We use population-based data from the Norwegian Cervi-
cal Cancer Screening Program (NCCSP) and evaluate our method by comparing Kaplan-
Meier estimators from model predictions and a hold-out set.

The NCCSP database contains only the information needed by the Cancer Registry 
of Norway to administer the screening program. There are test results from 3 types of 
medical exams (cytology, histology, and HPV) but no further clinical information about 
the NCCSP participants. Following [7] we process these results into four states, reflect-
ing the risk of cervical cancer and clinical consequences: A normal state indicates an 
accepted baseline risk; a low-risk state indicating an early stage of carcinogenesis (low-
grade lesion) warranting more frequent screening to catch a potential progression to 
high-risk, requiring immediate treatment, and a cancer state, which can be seen as a fail-
ure of the screening program and a potentially lethal state for the woman.

In our approach we use NCCSP data collected between 1991–2015. During this time 
period, females aged 25–69 with a prior normal result were invited to a routine screen-
ing every 3rd year. According to those guidelines, triennial screening amounts to about 
15 results in total and thus the state of the cervix is only observed at a few time points 
(scarce data). Moreover, since the recommendations are not strictly adhered to in prac-
tice the individual screening histories become irregular over time. Lastly, the majority of 
exam results are normal, making the data highly imbalanced. Specifically, in the NCCSP 
more than 90 % of test results are normal, 4–5 % low-risk and around 1 % are high-risk 
or cancer [8].
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In Fig. 1, we illustrate screening histories represented by sparse time series vectors fit-
ted into a matrix. Our goal is to estimate complete state profiles by filling the missing 
entries of these vectors and then use the completed state profiles in predicting the future 
state. Assuming correlation between subgroups of screening histories, we estimate the 
complete profiles using low-rank matrix factorisation (MF) and matrix completion (MC) 
techniques.

Existing methods applying MF to temporal data use similarity networks encoding 
temporal dependencies to facilitate constraints on the solution [9]. However, in our case 
the explicit temporal structure is not easily inferred from the data. Some recent work 
[10] extends the geometric deep learning (GDL) framework [11] to the matrix comple-
tion problem. Similarly to the temporal MF approaches, geometric deep learning meth-
ods also encode the structure of the data matrix using similarity graphs. The PACIFIER 
framework is a MF approach [12] specifically targeting the healthcare domain and the 
analysis of Electronic Medical Records, which can also be very sparse and noisy similar 
to the screening data. The PACIFIER performs MC by imposing sparsity and smooth-
ness constraints on the temporal evolution of the latent factors.

In this paper, we adapt the PACIFIER framework to the cervical cancer screening set-
ting and reconstruct complete state profiles from the scarce histories. We present a reg-
ulariser for the temporal dependencies between the results in histories and propose a 
discrepancy term for utilizing correlations between different histories. We evaluate our 
method on both synthetic data and registry data by measuring the probability of agree-
ment [13] between Kaplan-Meier estimates from model predictions and a hold-out set.

Results
In our experiments we consider five matrix factorization methods. The first method, 
referred to only as matrix factorization (MF), is our implementation of the PACIFIER. 
The second method, convolutional MF (CMF), extends the PACIFIER with more flex-
ibility to model the variability observed in the cancer screening data. Furthermore, 
we introduce time shifts into the CMF to better exploit correlations between screen-
ing histories and name this shifted CMF (SCMF). We also consider versions of the CMF 
and SCMF where the errors in the discrepancy term are weighted to emphasize par-
ticular exam results. These models are referred to in our experiments as weighted CMF 
(WCMF) and weighted SCMF (WSCMF).

Fig. 1  Matrix representation of cervical cancer screening histories. Individual cervical cancer screening 
histories as sparse time series fitted into a matrix Y . A green/yellow square indicates normal/low-risk state, 
and an orange cross denotes a high-risk/cancer state. The matrix columns corresponds to female age 
intervals of 3 months
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Moreover, we compare the matrix factorization models to the GDL approach for 
matrix completion (GDL) as in [10]. We studied different ways of constructing similarity 
graphs capturing the structure on the rows and columns of our matrix representation 
of screening histories, Y , as input to GDL. Our strongest results over various distance 
metrics, including Euclidean and Wasserstein distance, came with a 10-NN sequential 
column graph for temporal smoothness and a 10-NN row graph based on the cosine dis-
tance to connect similar screening histories. Both graphs are weighted by exp(−d(i, j)) 
with d(i, j) being the distance between two connected nodes i and j.

Synthetic data experiments

We generated synthetic data resembling the scarcity, irregularity and imbalance of the 
registry screening data. Latent state profiles were synthesized from linear combina-
tions of five basic profiles of the form Vt,k = exp(−10−3(t − µk)

2) and female-specific 
coefficients Un,k ∼ Exp(1) . We mapped each of the entries in the latent state matrix 
M ∈ R

N×T to an integer 1–4 with model (2) at θ = 2.5 . Entries were randomly removed 
from the resulting integer matrix using empirical probabilities of observing an entry 
conditioned on the previous state. Figure 2 compares the synthetic data and the cancer 
screening registry data.

To measure the reconstruction error between the model estimate M and the ground 
truth M over the unobserved entries, we use

Fig. 2  Comparing synthetic data to screening data. Randomly selected histories from synthetic data and 
data from the Norwegian Cervical Cancer Screening Programme (NCCSP). Green/yellow squares correspond 
to normal/low-risk results, and an orange cross signify either high-risk or cancer results
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The operator P�c : RN×T → R
N×T projects onto unobserved entries and |�c| is the 

fraction of entries from Y in �c . Figure 3 shows the reconstruction error for factoriza-
tion models MF, CMF and SCMF over varying data density |�| given as the fraction of 
observed entries.

Figure 3 indicates that the temporal regularisation used in CMF produces more accu-
rate data reconstructions than the regularisation used in MF as reconstruction error 
is consistently smaller for CMF than for MF. Moreover, the shift mechanism in SCMF, 
exploiting correlations between screening histories, gives even smaller reconstruction 
errors.

In Fig.  4 we compare performance scores, �s (Eq. (8)) for different models, indicat-
ing the probability of agreement [13] between hold-out data and predictions. Predicting 
based on Eq. (5), we required at least two results to be observed prior to the prediction 
time and in addition we used a moving window to ensure that no result was observed 
within two years from the time to predict.

The PoA-based scores in Fig. 4 shows that SCMF typically achieves the strongest per-
formance, followed by CMF, mostly outperforming MF. Especially in classifying normal 
and low-risk, where the number of cases is higher than for high-risk and cancer, the 
SCMF and CMF attain the highest scores.

Screening data experiments

We randomly sampled two sets of 15K screening histories (training and test) with at 
least 3 results between 1991–2015 from the NCCSP data including over 1.7 million 
female participants. Each selected female was born between 1965–1970 and had her first 
screening at age 25 (the recommended age to start screening by NCCSP guidelines) to 

(1)D �

∥∥∥P�c

(
M − M̂

)∥∥∥
2

F

N T |�c|
.

Fig. 3  Reconstruction error on synthetic data. Comparing the reconstruction error ( D by (1)) from different 
factorization models specified in Table 3 over varying data density ( |�| ). The factorization models are Matrix 
Factorization (MF), Convolutional MF (CMF) and Shifted CMF (SCMF)
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minimize left-censoring. Organizing the histories as sparse time series and combining 
them produced training and test matrices, each with about 8% observed entries.

The training histories were used to estimate latent state profiles with the models from 
Table 3 and a GDL based on [10]. Classification thresholds were obtained by solving (6). 
The test histories were used for model performance evaluation by comparing observed 
and predicted results over time, like in experiments on synthetic data. Table 1 gives the 
normalized PoA score ( �s ; Eq. (8)) per prediction model.

The overall PoA score in Table 1 was highest for SWCMF from being the most accu-
rate model to predict normal ( �s = 0.36 ) and cancer ( �s = 0.86 ). High-risk and low-
risk was best predicted by SCMF ( �s = 0.35 and �s = 0.59 ). Note that CMF improves 
on MF and both shifted models (SWCMF and SCMF) mostly outperformed their non-
shifted variants.

Fig. 4  Probability of agreement on synthetic data. Classification performance on synthetic data of varying 
data density |�| . Model performance is given as the probability of agreement [13] score ( �s from (8)) with 
95% CI. Higher �s ∈ [0, 1] signifies better model fit. The prediction models are Matrix Factorization (MF), 
Convolutional MF (CMF) and Shifted CMF (SCMF)

Table 1  Classification performance on registry screening data. Model performance is given as the 
probability of agreement [13] score ( �s ) with 95% CI

The strongest performance per state is indicated in bold

 Higher �s ∈ [0, 1] signifies better model fit

�s

Model Normal Low-risk High-risk Cancer
∑

�s

GDL 0.35[0.32, 0.43] 0.087[0.077, 0.094] 0.15[0.13, 0.17] 0.47[0.44, 0.51] 1.1

MF 0.28[0.22, 0.35] 0.022[0.00, 0.063] 0.21[0.19, 0.24] 0.46[0.33, 0.54] 0.98

CMF 0.31[0.23, 0.39] 0.11[0.063, 0.12] 0.29[0.27, 0.32] 0.77[0.72, 0.83] 1.5

WCMF 0.31[0.26, 0.35] 0.25[0.23, 0.27] 0.27[0.24, 0.31] 0.78[0.73, 0.87] 1.6

SCMF 0.33[0.27, 0.39] 0.59[0.57, 0.62] 0.35[0.32, 0.37] 0.63[0.55, 0.71] 1.9

SWCMF 0.36[0.29, 0.41] 0.50[0.47, 0.51] 0.33[0.24, 0.41] 0.86[0.80, 0.90] 2.1
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Based on achieving the highest overall PoA score, we study SWCMF in classifying with 
a forecast horizon ranging from 0.5–5 years. The SWCMF performances from predict-
ing with all data within a given time from the target being removed are given in Table 2.

Table 2 shows that the SWCMF performance is relatively stable up to 3 year forecasts, 
which is the longest recommended exam interval. However, the performance drops 
noticeably at the 5 year forecast.

Plotting the Kaplan-Meier estimates for the hold-out set and the 2 year SWCMF pre-
dictions in Fig. 5 indicates a good overall fit as model predictions clearly correlate with 
the observed data. Note that the y-axis scale differs between the plots.

In Fig.  5, the normal rate is slightly underestimated over ages 34–42, as well as the 
low-risk rate for younger (ages 30–36) and older (ages 44–50) females. These 3 regions 
correspond well to the times when high-risk is overestimated, which is likely the result 
of our method for setting the probability thresholds by solving (6). Using time-varying 
probability thresholds could potentially improve the results here.

The PoA curves from Kaplan-Meier estimates in Fig. 5 are plotted in Fig. 6 to evaluate 
their agreement.

According to Fig. 6 there is a strong agreement between the cancer estimates, espe-
cially after around age 40. As observed in Fig. 5, the drop in PoA for high-risk is com-
plementary to the PoA for normal and low-risk, in which case overestimating high-risk 
leads to underestimating low-risk and normal in our classification model.

Discussion and conclusions
Deriving risk prediction models from existing cancer screening registries is a step 
towards more personalized screening. Here we present a matrix factorization frame-
work that, to our knowledge, is the first approach to use this method for classifying 
females by the time-varying risk of being diagnosed with cervical cancer from only their 
current screening histories.

Here we used screening histories from females participating in the Norwegian Cer-
vical Cancer Screening Programme (NCCSP) between 1991–2015, and represent 
these as sparse time-series vectors fitted into a single matrix. Comparing different 
algorithms for estimating complete screening profiles for each female we found that 
the proposed framework, accounting for temporal dependencies within histories and 
correlations between samples, gave the most accurate estimates.

Table 2  Classification performance for Shifted Weighted Convolutional Matrix Factorization over 
varying forecast horizon as the probability of agreement [13] score ( �s from 8) with 95% CI

Higher �s ∈ [0, 1] signifies better model fit

�s

Forecast (years) Normal Low-risk High-risk Cancer
∑

�s

0.5 0.35[0.26, 0.40] 0.61[0.52, 0.63] 0.21[0.18, 0.24] 0.91[0.86, 0.95] 2.1

1 0.32[0.25, 0.36] 0.59[0.56, 0.62] 0.45[0.35, 0.52] 0.90[0.83, 0.96] 2.3

2 0.36[0.29, 0.41] 0.50[0.47, 0.51] 0.33[0.24, 0.41] 0.86[0.80, 0.90] 2.1

3 0.38[0.33, 0.43] 0.40[0.38, 0.41] 0.24[0.21, 0.26] 0.79[0.70, 0.85] 1.8

5 0.20[0.086, 0.29] 0.024[0.020, 0.025] 0.20[0.10, 0.28] 0.68[0.66, 0.73] 1.1
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To illustrate the potential for developing risk prediction models for more personal-
ized screening recommendations, we validated the framework on the NCCSP registry 
data using Kaplan-Meier (K-M) estimates from model predictions and a hold-out set. 
The K-M curves showed a strong correlation and a corresponding high probability of 
agreement (PoA) [13] using an equivalence margin (−δ(t), δ(t)) based the time-vary-
ing standard deviation of the ground truth K-M curve.

A typical choice to check if two quantities are within q% of each other is δ = q/100 , 
but this fixed margin does not permit potential temporal variation in the similarity 

Fig. 5  Kaplan-Meier estimates. Comparing Kaplan-Meier estimates from 2 year predictions with Shifted 
Weighted Convolutional Matrix Factorization (SWCMF) and a hold-out set of registry data from the 
Norwegian Cervical Cancer Screening Programme (NCCSP)

Fig. 6  Probability of agreement. The probability of agreement ((PoA); φ(t) from (7)) between the 
Kaplan-Meier estimates in Fig. 5. Higher φ(t) ∈ [0, 1] means stronger agreement. The range of equivalence 
margins is given as δ(t) ∈ [a, b]
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measure depending on the uncertainty in the reference data. Using the time-varying 
standard deviation for margin, as in our case, gives a more strict measure if the uncer-
tainty in the ground truth K-M estimate is small but may potentially increase the PoA 
if this estimate has high variance As the choice for δ greatly affects the PoA measure, 
methods for selecting this parameter in cervical cancer screening contexts should be 
addressed in future work.

Adapting screening recommendations to females at reduced or elevated risk may 
improve efficiency and precision of cancer screening programs. Prediction models 
for the individual risk can assist screening programs in adapting to such personal-
ized strategies. The framework presented herein demonstrates the potential for 
using matrix factorization to derive prediction models for personalized risk estima-
tion based on individual screening data. We also believe that our approach could be 
applied to data from other types of mass-screening programmes such as breast, colo-
rectal and prostate cancer, which we plan to investigate in future work.

Methods
We represent the cervical cancer screening data as a partially observed matrix Y ∈ N

N×T . 
Each row in Y is a one-dimensional time series for a single screening history and each col-
umn represents a 3 months time interval. Based on recommendations of 3 years screen-
ing intervals for healthy females, and 3 to 6 months for females at elevated risk, choosing 
3 months for the time discretisation of the data provides thus a reasonable compromise 
between temporal resolution and sparsity of the data. In the following, we denote the set 
of indices where observations in Y are available by � ⊂ {n}Nn=1 × {t}Tt=1 . Moreover, each 
observed entry Yn,t ∈ Y , representing a normal, low-risk, high-risk or a cancer state, is 
numerically encoded with integer values s ∈ {1, 2, 3, 4} where 1 is normal and 4 is cancer, 
as in [7].

A latent state model for cervical cancer screening data

Our basic assumption is that the discrete observed states Yn,t are possibly inaccurate meas-
urements of a continuous latent state Mn,t that evolves slowly over time for each female. 
We take each state Yn,t to be observed with probability based on a Gaussian distribution of 
mean Mn,t and variance 1/2θ . The parameter θ > 0 models the reliability of the estimate. 
Thus,

for some normalization constant CMn,t . With this model we have the maximum likeli-
hood estimate

where |�| is the number of observations in �.
Furthermore, we assume that each latent state profile is a linear combination of a small 

number of basic profiles v1, . . . , vr with r ≪ min{N ,T } . Then the matrix M of all such pro-
files can be approximately decomposed as M ≈ UV

⊤ with V ∈ R
T×r being the collection 

(2)p(Yn,t = s | Mn,t) � CMn,t exp(−θ(s −Mn,t)
2)

θ⋆ =
|�|

2
∑

(n,t)∈�

(
Yn,t −Mn,t

)2 ,
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of basic profiles and U ∈ R
N×r being the female-specific coefficients. Figure 7 illustrates 

the latent state model.
For the simultaneous reconstruction of U and V , we propose the variational method of 

solving

Here, W ∈ R
N×T sets all matrix entries (ñ, t̃) /∈ � to 0 and multiplies the error over the 

predicted values at the observed entries (n, t) ∈ � with some weights Wn,t > 0 . These 
weights provide a flexible way to incorporate additional information such as uncertain-
ties in exam results and adjusting for entries Yn,t not missing at random with inverse 
propensity weighting [14]. The matrix R ∈ R

N×N is used to enforce some time-reg-
ularity on the basic profiles v1, · · · , vr . We consider two choices of R , the first being 
the forward difference matrix R = D . This has the effect of enforcing a high tempo-
ral smoothness and is in line with the approach of [12]. As an alternative, we propose 
R = KD with the forward difference matrix D and K being the Toeplitz matrix with 
entries Kij = exp(−γ |i − j|) . This leads to a weaker penalisation of the profiles at faster 
scales and consequently allows for a larger local variability. The same variability is also 
observed in the NCCSP data as long intervals with normal results followed by rapid 
recurrent exams after an abnormal result is detected.

In the NCCSP data we also observe strong correlations between screening histories 
although as slightly shifted in time. To better exploit these correlations, we extend (3) 
with female-specific shift matrices Zn ∈ {0, 1}T×T containing ones in the zn-th diagonal 
and zeros everywhere else. Now V⊤

Zn shifts the basic profiles zn ∈ Z time points either 
forward ( zn > 0 ) or backward ( zn < 0 ) to improve alignment with screening history Yn . 
We limit zn to at most 3 years shift forward or backward in time. To simultaneously opti-
mize U , V and the vector z of N offset values, we solve

Here Wn , Yn and Un are vectors from the n-th row of each matrix.

(3)min
U,V

{∥∥∥W ⊙

(
Y −UV

⊤
)∥∥∥

2

F
+ α1�U�2F + α2�V�

2
F + α3�RV�

2
F

}
.

(4)
min

U,V, z

{
N∑

n=1

∥∥∥Wn ⊙

(
Yn −UnV

⊤
Zn

)∥∥∥
2

F
+β1

N∑

n=1

�Un�
2
2

+β2�V�
2
F + β3�RV�

2
F

}
.

Fig. 7  Latent state model for cervical cancer screening data. The matrix M ∈ R
N×T  of latent state profiles 

decomposed into female-specific coefficients U ∈ R
N×r and a small number ( r ≪ min {N, T } ) of basic profiles 

V ∈ R
T×r
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Following [12], we optimize (3) by alternating between solving for U at fixed V , and 
solving for V at fixed U . To optimize z in (4) we add an exhaustive search over candidate 
zn . In numerical experiments, we initialize the iterations with Vt,k ∼ N (0, 1) and z as a 
vector of zeros. The iterations abort once the relative difference between consecutive 
estimates M̂(i+1) and M̂(i) is less than 10−6.

Based on the models (3) and (4), we define five factorization models used in numerical 
experiments. Table 3 characterizes the factorization models by temporal smoothness model 
R , discrepancy weights Wn,t ∈ W and female-specific shifts zn.

As specified in Table 3, the weights in WCMF and SWCMF incorporate inverse propen-
sity weighting. for our experiments, we derived propensity estimates p̂((n, t) ∈ �) using 
the method in [15] and uncertainties in the medical the exam types (i.e., cytology or histol-
ogy) from [16].

Predicting the next screening result

To evaluate the proposed framework, we compare here Kaplan-Meier estimates from 
model predictions with a hold-out set. In future work we plan to evaluate our method for 
the prediction of individual results.

To predict the future state of a single female, we assume that we are given her current 
screening record x ∈ N

T with observations at times t0 ≤ tp, . . . , tq < T  , and that m ∈ M is 
the latent state profile underlying x . To predict a future state s at tq+1 > tq , we consider the 
conditional probability

Here p(xtq+1 = s | m) corresponds to model (2) and p(m | x) ∝ p(x | m)π(m) requires 
a prior π(m) for profile m . In our approach, we use the empirical distribution of M̂ as a 
proxy for the true distribution π(m) . This yields the estimated conditional probabilities

Applying estimator  5 to each value s ∈ {1, 2, 3, 4} gives a comprehensive probabilistic 
overview of a female’s risk. To classify a female into a state from these risk estimates, 
we consider probability thresholds τ = {τs ∈ (0, 1)}4s=2 as a way to alleviate the impact 

p(xtq+1 = s | x) ∝

∫
p(xtq+1 = s | m) p(m | x) dm.

(5)

p̂(xtq+1 = s | x) ∝

N∑

n=1

CM̂n,tq+1
exp(−θ(s − M̂n,tq+1)

2)

×

q∏

j=p

CM̂n,tj
exp(−θ(xtj − M̂n,tj )

2).

Table 3  Matrix factorization models ((3) and (4)) used in numerical experiments

Model name R Wn,t : (n, t) ∈ � max zn (years)

Matrix Factorization (MF) D 1 –

Convolutional MF (CMF) KD 1 –

Shifted CMF (SCMF) KD 1 3

Weighted CMF (WCMF) KD p̂(s | ǫ) / p̂((n, t) ∈ �) –

Shifted WCMF (SWCMF) KD p̂(s | ǫ) / p̂((n, t) ∈ �) 3
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of data imbalance. Recall that in the registry data, the states are heavily skewed towards 
normal, which dominates the risk inference and bias predictions towards the normal 
state. For each state s, we check if the condition p̂(xtq+1 = s | x) ≥ τs holds – in which 
case we predict xtq+1 = s . The states are evaluated in order from xtq+1 = 4 down to 
xtq+1 = 2 . This means that if the condition is satisfied for cancer ( s = 4 ), we classify the 
female into a cancer state and ignore the probabilities of high-risk and low-risk. If nei-
ther of the conditions are satisfied we predict normal ( xtq+1 = 1).

To select probability thresholds we first construct Kaplan-Meier estimates Ŝs for 
each state from model predictions and the corresponding estimates Ss from the ground 
truths. An event in the Kaplan-Meier estimate is taken to be the first encounter of a spe-
cific state in the screening history of a female; if there are several events, we only record 
the first one. In the second step we solve

to obtain the threshold values. Here we use the differential evolution algorithm [17] to 
search for threshold values although an exhaustive search could improve performance 
at the cost of higher computational complexity. The choice to minimize |Ss(t)− Ŝs(t)| 
comes from our measure of model performance specified in the next section.

Model performance evaluation

As a way to assess the potential for developing prediction models for more personal-
ized cervical cancer screening, we validate numerical models over a female cohort. We 
measure model performance as the probability of agreement (PoA) [13] between Kaplan-
Meier estimates derived from model predictions and a holdout-set of screening data. 
This method relies on an appropriate choice of an indifference region (−δ, δ) to deter-
mine the similarity between the two estimates.

At time t ∈ [t0,T ] the PoA evaluates to

Here φs(t) is the probability that the distribution of Ss(t)− Ŝ(t)s is contained within ±δ 
to support a conclusion about the similarity of the true survival functions. A higher φs(t) 
implies that Ss and Ŝs are more similar. Currently lacking scientific support for an indif-
ference region eligible in cervical cancer screening, we simply let δ(t) = 2 σ̂ (Ss(t)) esti-
mated from 1000 bootstrap samples.

To quantify model performance in a single number, we estimate the normalized area 
under the PoA curve

Here �s ∈ [0, 1] where �s = 1 indicates perfect model fit. We use the estimate in (8) to 
compare different models in numerical experiments.

(6)min
τ

∑

s

∫ T

t0

|Ss(t)− Ŝs(t)| dt

(7)φs(t) � p
(
|Ss(t)− Ŝs(t)| ≤ δs(t)

)
.

(8)�s �
1

T − t0

∫ T

t0

φs(t) dt.
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SWCMF	� Shifted weighted convolutional matrix factorization
WCMF	� Weighted convolutional matrix factorization

Acknowledgements
We thank Dr. Braden C. Soper (Lawrence Livermore National Laboratory) for useful discussions and advice.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 23 Supplement 12, 2022: Fifth and Sixth Computa-
tional Approaches for Cancer Workshop. The full contents of the supplement are available online at https://​bmcbi​oinfo​
rmati​cs.​biome​dcent​ral.​com/​artic​les/​suppl​ements/​volume-​23-​suppl​ement-​12. 

Author contributions
GSREL, MS, VN and MG developed the model. GSREL and MS implemented the algorithms, and JFN contributed to fram-
ing the experiments. GSREL carried out the experiments. MN and JFN provided the registry cancer screening data and 
expertise on cervical cancer screening. All authors read and approved the final manuscript.

Funding
This work is supported by the IKTPLUSS-program of the Research Council of Norway through the Decipher project 
(300034). The funder had no role in the design of the study, data collection, analysis or interpretation, or in writing the 
manuscript. Publication costs are covered by the Decipher project funds.

Availability of data and materials
The cervical cancer screening datasets used in this study can be made available from the Cancer Registry of Norway 
pursuant the legal requirements mandated by the European GDPR, Article 6 and 9. The data are not publicly available 
due to individual privacy and ethical restrictions. Source code (Python™) for synthetic data and numerical models can be 
provided by the corresponding author.

Declarations

Ethics approval and consent to participate
The project conducting this study is approved by the South East Norway Regional Committee for Medical and Health 
Research Ethics (application ID: 11752). All the research herein was performed in accordance with the relevant guidelines 
and regulations. The health registry data used in this study does not originate from clinical trials and therefore the ethical 
committee granted this study with an exception from informed consent.

Competing interests
The authors declare that they have no competing interests.

Received: 12 September 2022   Accepted: 16 September 2022

References
	1.	 Vaccarella S, Franceschi S, Engholm G, Lönnberg S, Khan S, Bray F. 50 years of screening in the Nordic countries: 

quantifying the effects on cervical cancer incidence. British J Cancer. 2014;111(5):965–9.
	2.	 Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169–82. https://​doi.​org/​10.​1016/​

S0140-​6736(18)​32470-X.
	3.	 WHO: Cervical Cancer. https://​www.​who.​int/​health-​topics/​cervi​cal-​cancer
	4.	 Schiffman M, Wentzensen N. Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. 

Cancer Epidemiol Prevent Biomark. 2013;22(4):553–60.
	5.	 Laurent JS, Luckett R, Feldman S. Hpv vaccination and the effects on rates of hpv-related cancers. Current Probl 

Cancer. 2018;42(5):493–506.
	6.	 Pedersen K, Burger EA, Nygård M, Kristiansen IS, Kim JJ. Adapting cervical cancer screening for women vaccinated 

against human papillomavirus infections: the value of stratifying guidelines. European J Cancer. 2018;91:68–75.
	7.	 Soper BC, Nygård M, Abdulla G, Meng R, Nygård JF. A hidden Markov model for population-level cervical cancer 

screening data. Stat Med. 2020. https://​doi.​org/​10.​1002/​sim.​8681.
	8.	 Nygård JF, Thoresen SO, Skare GB. The cervical cancer screening program in Norway, 1992–2000 Changes in pap-

smear coverage and cervical cancer incidence. Int J Cancer. 2002. https://​doi.​org/​10.​1136/​jms.9.​2.​86.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-23-supplement-12
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-23-supplement-12
https://doi.org/10.1016/S0140-6736(18)32470-X
https://doi.org/10.1016/S0140-6736(18)32470-X
https://www.who.int/health-topics/cervical-cancer
https://doi.org/10.1002/sim.8681
https://doi.org/10.1136/jms.9.2.86


Page 14 of 14Langberg et al. BMC Bioinformatics          (2022) 23:484 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	9.	 Yu H-F, Rao N, Dhillon IS. Temporal regularized matrix factorization for high-dimensional time series prediction. In: 
Advances in Neural Information Processing Systems, 2016;847–855.

	10.	 Monti F, Bronstein MM, Bresson X. Geometric matrix completion with recurrent multi-graph neural networks. arXiv 
preprint. 2017. arXiv:​1704.​06803.

	11.	 Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. Geometric deep learning: going beyond Euclidean data. 
IEEE Signal Process Mag. 2017;34(4):18–42.

	12.	 Zhou J, Wang F, Hu J, Ye J. From micro to macro: data driven phenotyping by densification of longitudinal electronic 
medical records. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and 
data mining. 2014;135–144.

	13.	 Stevens NT, Lu L. Comparing kaplan-meier curves with the probability of agreement. Stat Med. 2020;39(30):4621–35.
	14.	 Schnabel T, Swaminathan A, Singh A, Chandak N, Joachims T. Recommendations as treatments: debiasing learning 

and evaluation. In: International conference on machine learning. 2016;1670–1679. PMLR.
	15.	 Ma W, Chen GH. Missing not at random in matrix completion: The effectiveness of estimating missingness prob-

abilities under a low nuclear norm assumption. arXiv preprint. 2019. arXiv:​1910.​12774.
	16.	 Soper BC, Nygård M, Abdulla G, Meng R, Nygård JF. A hidden Markov model for population-level cervical cancer 

screening data. Stat Med. 2020. https://​doi.​org/​10.​1002/​sim.​8681.
	17.	 Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous 

spaces. J Global Optim. 1997;11(4):341–59.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1704.06803
http://arxiv.org/abs/1910.12774
https://doi.org/10.1002/sim.8681

	Matrix factorization for the reconstruction of cervical cancer screening histories and prediction of future screening results
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Synthetic data experiments
	Screening data experiments

	Discussion and conclusions
	Methods
	A latent state model for cervical cancer screening data
	Predicting the next screening result
	Model performance evaluation

	Acknowledgements
	References


