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Abstract: Mueller matrix ellipsometry has been used to precisely characterize quartz waveplates
for demanding applications in the semiconductor industry and high precision polarimetry. We
have found this experimental technique to be beneficial to use because it enables us to obtain
absolute and precise measurement of retardation in a wide spectral range, waveplate orientation,
and compound waveplate adjustment. In this paper, the necessity of including the optical activity
in the Mueller matrix model and data treatment is demonstrated. Particularly, the optical activity
of the quartz influences the adjustment of misalignment between the perpendicularly oriented
waveplates of the compound biplate. We demonstrate that omitting the optical activity from the
model leads to inaccurate values of the misalignment. In addition, the depolarization effects
caused by a finite monochromator bandwidth is included in the model. Incorporation of the
optical activity to the Mueller matrix model has required a development of rigorous theory based
on appropriate constitutive equations. The generalized Yeh’s matrix algebra to bianisotropic
media has been used for the calculation of the eigenmodes propagation in chiral materials with
reduced symmetry. Based on the applied method, the authors have proposed approximated
analytical form of the Mueller matrix representing optically active waveplate and biplate and
provided discussion on the analytical and numerical limits of the method.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Waveplates are polarization optical components with a broad field of applicability across
the semiconductor industry [1,2], quality inspection in manufacturing processes [3,4], THz
spectroscopy [5,6], analytical chemistry [7–9] and polarimetry [10–13]. From a polarimetric
point of view, the waveplates are commonly used in optical spectrometers as compensators
[14]. It is no exception to use the waveplates during high-precision-demanding procedures
like calibration of various custom experimental setups [15–18]. Then, the quality of the used
waveplates directly affects the quality of acquired data [19–24] and above mentioned industrial
technological properties.

Typically, industrial inspection of manufactured waveplates is based on a configuration with
two crossed polarizers and the waveplate being placed between them [25]. The method determines
the orientation of the waveplate fast-axis and its single-wavelength relative retardation. The
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waveplate retardation is given as the difference between phases of two orthogonal linearly
polarized eigenmodes propagating through the plate [26,27]. Waveplates of higher order exhibit
high chromatic dispersion, however, broadly used zero-order waveplate would be undesirably
thin. To overcome this inconvenience, the waveplates are composed by two thicker higher
order plates with crossed optical axes [28], so called biplates. However, this method may
be insufficient nowadays, as the users demands on the waveplates precision fabrication raises
significantly. Therefore, precise characterization of the composed waveplates in order to obtain
the parameters of each of the constituting waveplate can be challenging, and proper treatment has
to be established as various non-trivial effects may come to raise.

In our previous paper [29] we have shown the advantage of complete Mueller matrix inspection
and we have demonstrated that spectral characterization and industrial inspection of waveplates
requires the inclusion of the depolarization effects [30–32]. The Mueller calculus and Mueller
matrix spectroscopic ellipsometry is a particularly advantageous [10] method for proper waveplate
analysis as it is spectroscopic, non-destructive, and capable of incorporating all the mentioned
phenomena due to high experimental precision [33,34]. In Ref. [29] we have also shown
the presence of the nonzero circular birefringence related to optical activity (OA) using the
Lu-Chipman decomposition [35] of the quartz waveplates experimental data.

In this article, the Mueller matrix spectroscopic ellipsometry in transmission configuration
is used for precise quartz single waveplate and quartz waveplate biplates characterization. We
exclusively measure the waveplates aligned with the optical axis perpendicular to the propagation
direction and we demonstrate, that the effect of the OA can not be neglected to process the
experimental data correctly. In studies [36,37], Mueller matrix ellipsometry was applied to
study waveplate multiplets. Its model simplicity has an advantage in the calibration procedures
involving the waveplates including their misalignment error. As long as the method doesn’t
account for the OA dispersion in the waveplates, the net elliptical properties of the waveplate
effectively project into other waveplate characteristics causing their quasi-oscillatory behaviour.
Therefore, we derived a rigorous model of the Mueller matrix including the gyration effects from
the theory based on Fedorov’s [38,39] and Yeh’s [40] work and the Condon-Fedorov’s constitution
relations [38,41]. The rigorous model including the OA is compared to the experimental data for
single waveplates and biplates. We further show, that the OA effect is separable and independent
of other waveplate (biplates) characteristics like plates misalignment. All those parameters are
obtained with very high numerical precision and great fit stability.

The paper is structured as follows: In Sec. 2, the rigorous Mueller matrix models for
optically active single waveplates and waveplate biplates are derived. Section 3 describes the
biplate samples and experimental configuration. Measurement analysis is divided into two
steps. First of all, we model the parameters of single waveplates to use them during the biplate
analysis afterwards in order to obtain precise biplate parameters including their misalignment. To
demonstrate the necessity of using a Mueller matrix model with OA, we compare the experimental
data with the models with and without OA. To understand the OA contribution in the Mueller
matrix, in Appendix A., we generalize the standard Yeh’s matrix algebra to bianisotropic and
optically active media using various constitutive relation formalism, and in particular, eigenmodes
for uniaxial chiral media are calculated in Appendix B.. Detailed derivation of the proposed
Mueller matrix form is given in Appendix C.. In Appendix D., we offer an algebraic analysis
on the manifestation difference between the misalignment and the OA in the proposed Mueller
matrices.

2. Mueller matrices of waveplates including optical activity

Mueller matrix represents the complete polarimetric information, which can be acquired from
the interaction between the sample and the polarized light, including depolarizations.
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2.1. Mueller matrix of a standard linear retarder

The reduced 4× 4 Mueller matrix (all elements are divided by M11) describing a single waveplate
consisting of a uniaxial anisotropic material with the optical axis parallel to the waveplate surface
at the normal incidence (linear retarder) is given [14] as

MR,LIN (φ, Γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cos2 2φ + cos Γ sin2 2φ (1 − cos Γ) sin 2φ cos 2φ − sin 2φ sin Γ

0 (1 − cos Γ) sin 2φ cos 2φ sin2 2φ + cos Γ cos2 2φ cos 2φ sin Γ

0 sin 2φ sin Γ − cos 2φ sin Γ cos Γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(1)
where φ is the azimuthal angle between the waveplate fast-axis and the vertical laboratory
coordinate, and

Γ (λ) =
2π
λ

[nf (λ) − ns (λ)] d, (2)

is the retardation angle between the fast and slow eigenmodes propagating in the waveplate with
the refractive indices nf,s, which is dependent on the wavelength λ and the waveplate thickness d.
Normally, the fast and slow eigenmodes correspond to linearly polarized eigenmodes propagating
with ordinary and extraordinary refractive indices ne,o, respectively.

2.2. Mueller matrix of a single waveplate with optical activity

Natural or synthetic quartz monocrystal is very common material for the waveplate manufacturing.
It belongs to uniaxial trigonal crystal symmetry [42,43] (Hermann-Maugin 32 point group) and is
therefore optically active [44–46]. Across the literature, the effect of the OA in quartz (or quartz
waveplates) has been studied in the configuration with the quartz optical axis being parallel
(z-cut) to the direction of propagation [47] so far. Usually, the effect of the OA with optical axis
perpendicular to the propagation direction is said to be experimentally negligible [48], which is
inadequate for waveplate precise quality and properties control.

In our preceding work [29], the presence of non-zero circular birefringence was discovered
using Lu-Chipman decomposition of experimental Mueller matrix, which we interpreted as
the presence of the OA. Rigorous incorporation of the OA in waveplates requires (i) a solution
of Maxwell equations based on a proper set of material equations introducing the gyration
tensors α̂ and ĝ with respect to the 32 point group which leads to the wave equation of the
problem. Definition of the constitutive equations and a detailed discussion of suitability of
various approaches is given in Appendix A., (ii) calculation of generally elliptical eigenmodes
propagating in the waveplate based on the wave equation evaluation (see Appendix B.), (iii)
derivation of Mueller matrix including the OA as a function of the chirality parameter

κ =
1

2G

[︃(︂
n2

e − n2
o

)︂
−

√︂(︁
n2

e − n2
o
)︁2
+ 4G2

]︃
, (3)

where the spectrally dependent scalar gyration parameter G for our configuration is given by the
gyration tensor component g11 derived in [47],

G = g11 =
A1λ

3(︁
λ2 − B2

1
)︁2 . (4)

In this Section, we show the model of the Mueller matrix including the OA effect from the
Jones matrix of an elliptical retarder, see Appendix C., Eq. (33). Eigenmodes propagating through
a medium described by Eq. (33) are ellipticaly polarized and are propagating with corresponding
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refractive indices. Since the effect of the OA is very small, the elliptical eigenmodes can be
approximated as linear-like eigenmodes. Therefore, it is justifiable to linearly approximate κ,
as long as it is a function of eigenmodes ellipticity, see Appendix C., Eq. (34). Moreover, the
indices of refraction of the linear-like eigenmodes become equal with high precision to ordinary
and extraordinary indices of refraction, respectively, see Appendix C., Eq. (31). The Mueller
matrix of an elliptic retarder MR,EL (φ, Γ, κ) is in the linear approximation in the form

MR,EL (φ, Γ, κ) =MR,LIN (φ, Γ) + ∆MOA (φ, Γ, κ) , (5)

where

∆MOA (φ, Γ, κ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 2κ sin Γ 4κ cos 2φ sin2 Γ
2

0 −2κ sin Γ 0 4κ sin 2φ sin2 Γ
2

0 4κ cos 2φ sin2 Γ
2 4κ sin 2φ sin2 Γ

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

is the matrix describing the effect of the OA by introducing linearly approximated chirality
parameter κ.

In our approximation, we treat the quantity κ as a real parameter. This is in a conformity with
the usual quartz waveplates application range over its transparent region. The Jones matrix (33)
is valid generally for any of the parameter being complex, in contrast with the Mueller matrix (5).
This is due to the form (Kronecker product) of the transformation Eq. (36). Therefore, in
the vicinity of absorption bands, the Eq. (5) must be calculated assuming complex κ. The
measurements over this spectral region is out of the scope of the paper and will not be further
elaborated.

The experimental validity condition of the linear approximation is obtained by analyzing the
quadratic (erroneous) terms in the Taylor series of ∆MOA focused on the maximal possible error.
The criterion is then set to 8κ2<σ, where σ stands for an error of the experimental Mueller
matrix elements. Note, that in our experimental configuration, σ = 0.001 implies the condition
for κ<0.0112. This criterion is fulfilled for the quartz waveplates [47] in the spectral range of
further shown experiments.

The non-approximated matrix MR,EL stands for an equivalent solution with Mueller matrices
of an elliptical retarder presented in [49] [Eq. (22)], in Ref. [50] [Eq. (14)] or on page 289 in
Ref. [51]. Our proposed solution applied to the subject discussed in this paper provides the
opportunity to have deeper physical insight into the problematic and to get more intuitive way of
the result interpretation and discussion, as we show later. Also, in contrast with Eq. (22) in Ref.
[49], we reduce the number of needed fitting parameters.

2.3. Mueller matrix of a biplate

The Mueller matrix for a biplate given by the product of Mueller matrices MR,EL1, MR,EL2 each
representing a standalone waveplate with its own retardation Γ1, Γ2, respectively, and azimuthal
angle φ1, φ2, respectively, is in the form

MR,WB =MR,EL2 (φ2, Γ2, κ)MR,EL1 (φ1, Γ1, κ) . (7)

Each waveplate is manufactured from the same material, therefore we assume the same optical
activity dispersion, κ1 = κ2 = κ.

Note, that from now on, we will focus on the 3 × 3 Mueller submatrix M22 . . .M44 only, due to
the structure of (1) and above discussed Mueller matrices.
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3. Measurements and data processing

We applied spectral ellipsometric measurements using the dual rotating compensator Mueller
matrix ellipsometer RC2-DI from Woollam company, which measures a full Mueller matrix
in the spectral range from 0.74 to 6.42 eV (wavelength ranging from 193 to 1700 nm). The
waveplates are measured in the normal-incidence transmission geometry.

We have investigated biplates consisting of a stack of two c-cut right-handed synthetic α-quartz
high-order waveplates belonging to the 32 point group. The biplate constituting waveplates are
attached to each other, having its fast axes mutually perpendicular, by perfectly polished surfaces,
and therefore hold together only by the presence of Van der Waals forces. This fact allows us to
split the biplate without causing damage, and measure each waveplate of the biplate separately to
obtain its accurate parameters (thicknesses, retardation angles).

3.1. Single waveplate measurements

The measurements of both single waveplates constituting the biplate were performed in the
normal incident transmission configuration for all azimuthal angles from 0◦ to 360◦ by the
angle step of 5◦. Figure 1 shows typical spectra (black curves) of the Mueller 3 × 3 submatrix
for the high-order single waveplate. The oscillations correspond to the spectrally dependent
wavelength retardation. The waveplate order m (e.g. m = 9 for λ = 500 nm) determines the
oscillations density, which gets denser with increasing photon energy, while the oscillations
amplitude decreases. The decreasing amplitude modulation for high photon energy is due to the
dense oscillations spectral averaging caused by a finite monochromator bandwidth [52,53]. In
our case, this corresponds to the spectral resolution of dispersion grating and finite pixel size
of the CCD detector. The attenuation compensation is based on the incoherent summation of
Mueller matrix model, which is commented in our preceding work (Eqs. (3) and (4) in [29]) in
the detail. The spectral step we use in the averaging function is δλ = 1.075 nm.

Fig. 1. Mueller 3 × 3 submatrix of the single waveplate of thickness d1 = 536.63 µm
at the azimuthal angle φ1 = 180.078◦. The data are compared to the model of standard
linear retarder (without the effect of OA) and to the model including the OA effect. Model
with the OA effect disregarded is not capable to properly describe both the dispersion and
the attenuation exhibiting in the first row and the first column of the Mueller submatrix
off-diagonal elements. Note, that the axes of those Mueller matrix elements are scaled by
the factor of 1/50.
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The data are compared to the model (1) including spectral averaging (blue curve) over
high energy spectral range and shows a relatively good fit of the Mueller matrix elements
M33, M34, M43, M44. For azimuthal rotations, for which the waveplate has its axes nearly
perfectly aligned with the laboratory coordinate system, the oscillation amplitude within the
measured elements M23, M24, M32, M42 decreases with decreasing photon energy over low
energy spectral ranges. Together with the modulation of the oscillations dispersion within these
elements, it corresponds to the effect of the optical activity dispersion in the quartz waveplate. To
properly fit all the elements of the Mueller submatrix, we model the influence of OA (red curve)
using (5) with the spectral averaging included. The parameters A1 = 0.0277 nm, B1 = 105.6 nm
of (4) are taken from Ref. [47]. The fitted thicknesses for each waveplate are d1 = 536.63 µm,
d2 = 549.03 µm, and absolute retardations were obtained. The dispersion of no, ne are taken
from Ref. [54,55]. Note, the OA effects are very small in comparison with the linear retardation,
therefore M23, M24, M32, M42 Mueller matrix elements are expanded 50 times. Despite the fine
effect of the OA, the response in the measured Mueller matrix is well detectable and shows high
sensitivity of the proposed method.

3.2. Fine control of waveplate biplate misalignment

Biplate consists of two high-order waveplates with crossed optical axes to produce an effective
low-order waveplate. Possible imperfections during the biplates manufacturing can introduce a
misalignment between the waveplates, as they may not be aligned to each other with their optical
axes being perfectly perpendicular, see Fig. 2. The misalignment between the waveplates is then
defined as

Φ = φ1 − φ2 − 90◦. (8)

We have shown [29], that Mueller matrix approach is significantly sensitive to the waveplate
misalignment. In this Section, we propose a robust and sensitive inspection method for the
biplate misalignment determination based on a rigorous Mueller matrix model including OA.

Fig. 2. Schematic configuration of the waveplates constituting the biplate. Their optical
axes are ideally perpendicular, φ1 − φ2 = 90◦. The manufacture inaccuracy causes the
deviation from this perpendicularity, and introduces the missalignment Φ, as shows the inset
figure.

To simulate the misalignment between the waveplates of the biplate, one waveplate was placed
fixed to the ellipsometer sample holder, while the second waveplate was rotated around the
relative angle of 90◦ between the waveplates.
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Figure 3 shows the Mueller submatrix spectra of the biplate with controlled φ1 (and therefore
controlled Φ) ranging from 185.7◦ to 186.1◦ with step 0.1◦ (Φ is ranging from −0.2◦ to 0.2◦ with
step 0.1◦). The Mueller 3 × 3 submatrix (right part of the Fig. 3) shows the dominant effect
of the linear retardation dispersion without the dense spectral oscillations, which are typical
for high-order waveplates. The presence of minor oscillations corresponds to combination
of the misalignment between waveplates of the biplate and its optical activity. Left part
of Fig. 3 shows the detail of the Mueller submatrix first column. Each curve of the same
color corresponds to different φ1, and therefore to different misalignment. First, the data are
compared to the Mueller matrix model of the cascade of two standard linear retarders (7)
without including the OA (blue lines), κ = 0, which is insufficient for the proper analysis of
the misalignment between two waveplates. In contrast, the model (7) including the OA (red
lines), κ ≠ 0, shows very good fit of the measured data. The slight mismatch from the data
is just above experimental error of the Mueller matrix elements (0.001). At this scale, the
errors are inevitable. They could origin in the calibration quality, systematic errors, non-ideal
plates parallelity, waveplate miscut or precision of used material dispersion parameters. The
parameters A1 = 0.0277 nm, B1 = 105.6 nm of (4) are taken from Ref. [47], and the waveplate
thicknesses (d1 = 536.63 µm, d2 = 549.03 µm), and retardation dispersions were determined
from the measurements of each of the separated waveplates. The fitted parameters φ1 and φ2
were obtained from the fit of each biplate measurement independently. The Fig. 4 shows the
waveplate misalignment obtained for the data fitted to Eq. (8) point by point. The fitted values of
φ1, φ2 and Φ corresponding to each curve in Fig. 3 are shown in Table 1.

Fig. 3. Experimental Mueller submatrix for biplate. Each curve of the same color represents
different value of φ1 ranging from 185.7◦ to 186.1◦ with step 0.1◦. Comparison between
data and models with and without the effect of the OA shows the significance of the the
OA phenomenon in proper determination of the misalignment, which is exhibited by the
presence of the minor oscillation shown in the detail of the submatrix first column. Note,
that the energy range from 4.1 eV to 4.5 eV corresponds to the wavelength range from 302.4
nm to 275.5 nm.

Table 1. Fitted values of ϕ1, ϕ2 and Φ for representative Mueller submatrix spectra shown in Fig. 3.

ϕ1 (degree) 185.711 185.812 185.912 186.015 186.116

ϕ2 (degree) 95.930 95.931 95.932 95.934 95.936

Φ (degree) −0.218 −0.119 0.019 0.080 0.179

Figure 4(b) demonstrates the misalignment fit stability. Each point was calculated as a
subtraction of the misalignment from consequent values during one waveplate azimuthal rotation.
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Fig. 4. a) Fitted values of the misalignment for each measurement with various azimuthal
rotations of the waveplates. b) Fit stability of the misalignment determination is demonstrated
comparing the calculated angle steps to the nominal value of 0.05◦. Red points correspond
to selected measurements presented in Fig. 3.

The mean value of the angle step corresponds well with the actual experimental angle step of
0.05◦, which shows high stability of the misalignment determination without any correlation to
the optical activity. Red points demonstrate selected measurements presented in Fig. 3.

Ultimately, it is important to mention, that excluding the presence of the OA from the model is
leading to the misinterpretation of the OA with incorrect misalignment values. We show the
linear expansion of the Mueller matrix of biplate (7) for both the misalignment (Φ) and the OA
(κ) in Appendix D. to understand the significant difference between oscillations induced by κ
and Φ. Both misalignment (45) and OA (46) dispersions have similar behavior in the form of
minor oscillations shown in Fig. 3. These oscillations origin in the high-density trigonometric
terms including only the retardation Γ1 or Γ2. If one tries to fit the data using the model without
the OA (demonstrated for our case), the misalignment of around 0.5◦ will tend to compensate
the OA with its amplitude. Nonetheless, such model does not match the data over the whole
spectral range, because κ has spectral dependence given by Eq. (4), and thus, the amplitude
of the oscillations changes. Such model without the OA also results in erroneous waveplate
thicknesses, because the terms of mκ and mΦ matrices are defined by terms in cosines or sines of
the waveplates retardation. It is curious, that sine terms of one matrix correspond to appropriate
cosine terms of second matrix and vice versa. Therefore, the fit without the OA will result in
thicknesses imperfections for both waveplates by 6.4 µm to compensate the phase shift. However,
their thickness difference remains the same due to the major influence of the linear retarder (1). It
results in the fact, that low-density trigonometric terms of the retardation difference Γ1 − Γ2 are
not able to be compensated and thus make significant difference in the spectrum. Nevertheless,
the sine and cosine terms are not only shifted one from another, but they also represent different
functions which do not match the data, especially if both misalignment and the OA influence are
present.

4. Conclusion

In this article, biplates represented by a couple of high-order waveplates with crossed optical
axes have been measured by means of Mueller matrix ellipsometry in the spectral range from
193 to 1700 nm. In order to obtain accurate values of biplate parameters including the biplate
misalignment, we theoretically revealed and experimentally confirmed, that it is necessary to
include the effects of the optical activity into the derived model of Mueller matrix. To obtain the
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exact solution of the Mueller matrix, it is needed to find the eigenmodes and propagation constants
of the optically active medium represented by the quartz waveplate in this case. We emphasize,
that omitting the optical activity from the model would lead to the incorrect interpretation of the
optical activity phenomenon with the inaccurate values of the waveplate misalignment.

We believe, that the proposed method, which has an advantage in its great experimental
sensitivity, fit stability and repeatability, could stand as a fast non-destructive industrial analysis
for the accurate in-situ control of the biplates misalignment during the manufacturing process.
Moreover, the concept based on the rigorous model can be extended for the analysis of the
waveplate multiplets. In addition, waveplates parameters obtained from precise Mueller matrix
characterization can be further used for the accuracy improvement of calibration procedures
of various experimental setups involving waveplates and Mueller calculus based calibration
procedures.

A. Wave equation in chiral media

A.1. Covariant form of Maxwell equations

In the following, the plane monochromatic wave is described by the electric field in the form

E = E0 e i(ωt−k·r), (9)

where ω is the angular frequency and k is the wave vector related to the refraction vector N using
the wave number in a vacuum k0 = ω/c, where c is the light speed in a vacuum, as

k = k0N. (10)

The curl Maxwell equations for the monochromatic plane waves (9) relating the electric and
magnetic fields E0, H0 to its displacements D0, B0, respectively, can be written in the covariant
form

N×E0 = cB0, (11a)

N×H0 = −cD0, (11b)

c =
1

√
ε0µ0

, (11c)

where ε0 and µ0 are the permittivity and permeability in a vacuum, respectively, and

N× =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Nx

Ny

Nz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −Nz Ny

Nz 0 −Nx

−Ny Nx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1
k0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −kz ky

kz 0 −kx

−ky kx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

The direction of wave propagation is given by the wave vector k = k0
[︁
Nx Ny Nz

]︁T, and a set
of constitutive relations must be chosen.

For a general anisotropic gyrotropic (bianisotropic) and magnetic media, various forms of
constitutive equations have been developed [56] and compared to each other [57,58]. Nowdays,
Tellegen [59] and Condon-Fedorov [38,41] material equations seem to be the most convenient
and acceptable form of constitutive relations.
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A.2. Tellegen constitutive relations

Tellegen relations take the form
D0 = ε̂E0 + ξ̂H0, (13a)
B0 = µ̂H0 + ζ̂E0 . (13b)

The material tensors are in the form

ε̂ = ε0ε̂r, (14a)

µ̂ = µ0 µ̂r, (14b)
where ε̂r, µ̂r are the relative permittivity and the relative permeability tensors, respectively, and
ξ̂, ζ̂ are general second-rank coupling tensors, where we use the convention [60]

ξ̂ = (ν̂ + iη̂)
√
ε0µ0, (15a)

ζ̂ =
(︂
ν̂ − iη̂T

)︂
√
ε0µ0. (15b)

Parameter ν̂ is related with the reciprocity of the medium, while η̂ describes the optical activity.
Substituting (13) into (11) and eliminating H0, the wave equation for E0 in the most general form
is obtained: [︂

c2ε̂ + N× µ̂−1 N× + c
(︂
ξ̂ µ̂−1N× − N× µ̂−1 ζ̂

)︂
− c2ξ̂ µ−1 ζ̂

]︂
E0 = 0, (16)

which represents a matrix form of the wave equation and can be implemented in the standard
Yeh’s matrix formalism to calculate reflection, transmission and wave-guided phenomena of
multilayered structure.

A.3. Condon-Fedorov constitutive relations

For reciprocal chiral media (ν̂ = 0, η̂ ≠ 0) a set of Condon-Fedorov constitutive relations is
commonly used:

D0 = ε̂E0 +
1
c

iα̂H0, (17a)

B0 = µ̂H0 +
1
c

iβ̂E0, (17b)

where the tensors α̂ and β̂ are the second-rank tensors describing the effect of optical activity.
Applying the Onsager-Casimir principle [61–63] on Eq. (17) [64], the Condon-Fedorov equations
can be rewritten [65] in the commonly used form as

D0 = ε̂E0 +
1
c

iα̂H0, (18a)

B0 = µ̂H0 −
1
c

iα̂TE0, (18b)

where α̂ is the optical activity pseudotensor [48,57]. Using the same procedure as previously and
using (11c), the equivalent wave equation is derived [48,66]:[︂

ε̂r + N× µ̂−1
r N× + i

(︂
α̂ µ̂−1

r N× + N× µ̂−1
r α̂

T
)︂
− α̂ µ̂−1

r α̂
T
]︂

E0 = 0, (19)

and following tensor identity is valid [38]:

α̂ µ̂−1
r N× + N× µ̂−1

r α̂
T ≡ (ĝ N)× . (20)

The wave equation is then in the form[︁
ε̂r + N× µ̂−1

r N× + i (ĝ N)×
]︁

E0 = 0. (21)

Special case for bi-gyrotropic media was described in Ref. [67].
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A.4. Born-Landau constitutive equations

Equation (20) stands for a definition of the gyration tensor ĝ = gij, which describes the optical
activity effect in Born-Landau [68] constitutive relations

D0 = ε̂E0 + iε0G × E0 =
(︁
ε̂ + iε0G×

)︁
E0, (22a)

B0 = µ̂H0 , (22b)

where G = ĝN is the gyration vector related with scalar gyration parameters

G = gijlilj = g11l21 + g22l22 + g33l23 + (g12 + g21) l1l2 + (g13 + g31) l1l3 + (g23 + g32) l2l3, (23)

and li, lj are directional cosines of the wave normal with respect to the coordinate system given
by a triad of unit vectors ci,

li ≡ cos (∡Ni ci) . (24)

A.5. Relation between the constitutive equations for optically active media

By the comparison of (15) with (18) we can see, that Condon-Fedorov equations are a special
case of Tellegen material relations for reciprocal chiral media:

ξ̂ =
1
c

iη̂↔
1
c

iα̂, (25a)

ζ̂ = −
1
c

iη̂T ↔ −
1
c

iα̂T. (25b)

Here, we justly state, that Condon-Fedorov and Born-Landau approaches are not fully
equivalent. We strongly recommend the kind reader to see the detailed discussion in Ref. [69].
However, for our particular case of transparent waveplates, both constitutive equations can be
applied. Moreover, within our (and generally achievable) experimental precision, the difference
is negligible and these two approaches can be used in the equivalent way providing the same
results for any, even absorbing material [69].

B. Eigenmodes propagating in chiral uniaxial media of point group 32

The manifestation of the OA for light propagation along the optical axis of nonmagnetic uniaxial
gyrotropic media of 32 point group (i.e. quartz) is well-known fact. We emphasize, that the
OA effect in quartz is given intrinsically because of its non-centrosymmetricity. Also, the
OA has similar size along the principal axes of α̂ (or ĝ) [47], and is therefore non-negligible
within the precision of contemporary Mueller matrix ellipsometry. Concluding, the OA is
present in all possible experimental configurations (or cuts) of the quartz plate including light
propagation perpendicular to the optical axis. In the following, we will discuss two important
special orientations of the crystal optical axis.

For the propagation along the optical axis, the material tensors in (19) reduce to ε̂r =
diag [ε11 ε11 ε33], µ̂r = diag [1 1 1], and α̂ = diag [α11 α11 α33]. Assuming normal incidence
only, N = [0 0 Nz]

T. The refractive indices of corresponding circularly polarized eigenmodes
Nz,α, k={1,2,3,4}, ∥ have been published several times [48,57,66], and take the form

Nz,α, k, ∥ = ±
√
ε11 ± α11 . (26)

Propagation perpendicular to the optical axis is carried out introducing the rotation tensor of
the Cartesian coordinate system R, which is defined by a triad of Euler angles defined same as in
[70]. In Eq. (19), any material tensor a is replaced by tensor

(︁
R a RT)︁ then. In particular, for



Research Article Vol. 29, No. 7 / 29 March 2021 / Optics Express 10445

normal incidence and propagation perpendicular to optical axis, material tensors are transformed
to ε̂r = diag [ε11 ε33 ε11], α̂ = diag [α11 α33 α11], and N = [0 0 Nz]

T.
Substituting the particular forms of material tensors into (19), a following set of equations is

obtained: ⎡⎢⎢⎢⎢⎢⎢⎢⎣
ε11 − N2

z − α2
11 −i (α11 + α33)Nz 0

i (α11 + α33)Nz ε33 − N2
z − α2

33 0

0 0 ε11 − α
2
11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex

Ey

Ez

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (27)

Because the effect of α̂ is small [48,66], it is justifiable to set the term (α̂α̂T) in (19) to zero.
Using (20), following set of equations is derived:⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε11 − N2
z −ig11Nz 0

ig11Nz ε33 − N2
z 0

0 0 ε11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex

Ey

Ez

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (28)

By solving the equations that the determinants of (27) and (28) are equal to zero, normal
eigenmodes Nz, k={1,2,3,4} propagating in bianisotropic nonmagnetic media of 32 point group
perpendicular to optical axis are calculated, respectively, as follows:

N2
z,α, k =

ε11 + ε33
2

+ α11α33 ±

√︃(︂ ε11 − ε33
2

)︂2
+ (α11 + α33) (ε33α11 + ε11α33), (29)

and

N2
z, g, k =

ε11 + ε33 + g2
11

2
±

√︂
g4

11 + 2g2
11 + (ε11 + ε33) + (ε11 − ε33)

2

2
. (30)

Both of the solutions stand for an elliptically polarized eigenmodes. For the case of small
effect of the optical activity with respect to birefrigence, the eigenmodes with propagation
constants (29) and (30) become linearly-like polarized and represent ordinary and extraordinary
refractive indices of linear retarder no, e,

Nz,α, (1,3) ≈ Nz, g, (1,3) ≈ no, (31a)

Nz,α, (2,4) ≈ Nz, g, (2,4) ≈ ne, (31b)
and the optical activity influence comes from the ellipticity of the eigenmodes as the result of the
intrinsicality of the OA. Moreover, by comparison of the wave Eq. (27) with (28) we find the
symmetry between the formalism for this case [47,48],

g11 = α11 + α33. (32)

C. Mueller matrix of the chiral waveplate

Jones matrix describing a general elliptical retarder in the transmission configuration with
retardation angle Γ is given as [26,71]

T = 1
1 + χχ∗

⎡⎢⎢⎢⎢⎣
ei Γ2 + χχ∗e−i Γ2 2iχ∗ sin Γ2

2iχ sin Γ2 χχ∗ei Γ2 + e−i Γ2

⎤⎥⎥⎥⎥⎦ , (33)

where the complex ellipsometric parameter χ is related to the ellipticity ϵ of the polarization
ellipse with its principal axes parallel to Cartesian coordinate system by

χ = i tan ϵ ≡ iκ. (34)
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With this setting, Eq. (33) becomes [48,72]

TR,EL =
1

1 + κ2

⎡⎢⎢⎢⎢⎣
ei Γ2 + κ2e−i Γ2 2κ sin Γ2
−2κ sin Γ2 κ2ei Γ2 + e−i Γ2

⎤⎥⎥⎥⎥⎦ . (35)

Corresponding transmission Mueller matrix of the elliptic retarder in a general azimuthal
rotation φ is derived using

MR,EL (φ, Γ, κ) =MT
ϕ A

(︂
TR,EL ⊗ T∗

R,EL

)︂
AT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

MR,EL(ϕ=0, Γ, κ)

Mϕ , (36)

where Mϕ is the Mueller matrix of azimuthal rotation about the angle φ, the matrix A is the matrix
relating the statistical properties of incident electric field to corresponding Stokes parameters
[14], and the symbol ⊗ stands for the Kronecker product. Because the effect of the real parameter
κ is small [48,66], it is justifiable to use Mueller matrix (36) linearly approximated in κ.

The resulting expression of the approximated matrix MR,EL (φ, Γ, κ) can be separated into
two parts as

MR,EL (φ, Γ, κ) =MR,LIN (φ, Γ) + ∆MOA (φ, Γ, κ) , (37)

where

MR,LIN (φ, Γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cos2 2φ + cos Γ sin2 2φ (1 − cos Γ) sin 2φ cos 2φ − sin 2φ sin Γ

0 (1 − cos Γ) sin 2φ cos 2φ sin2 2φ + cos Γ cos2 2φ cos 2φ sin Γ

0 sin 2φ sin Γ − cos 2φ sin Γ cos Γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(38)

is the Mueller matrix for a non-gyrotropic linear retarder, and

∆MOA (φ, Γ, κ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 2κ sin Γ 4κ cos 2φ sin2 Γ
2

0 −2κ sin Γ 0 4κ sin 2φ sin2 Γ
2

0 4κ cos 2φ sin2 Γ
2 4κ sin 2φ sin2 Γ

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(39)

is the matrix (not a Mueller matrix [73]) describing the linear effect of the optical activity. Note,
that the limit case of κ = 0 will turn the matrix MR,EL (φ, Γ, κ = 0) into the limit of standard linear
retarder MR,LIN (φ, Γ). To show, that for κ = 1, Mueller matrix MR,EL (φ, Γ, κ = 1) corresponds
to the Mueller matrix of circular retarder, a non-approximated matrix MR,EL (φ, Γ, κ) in the form
of 36 regarding strong effects of κ must be used.

The gyration parameter κ is usually derived [45,47,48,57] from the eigenvalue problem of the
wave equation based on the Born-Landau constitution relations. The resultant expression with
respect to the linear approximation of κ is given as

κ =
1

2G

[︃(︂
n2

e − n2
o

)︂
−

√︂(︁
n2

e − n2
o
)︁2
+ 4G2

]︃
, (40)

where no =
√
ε11, ne =

√
ε33 are ordinary and extraordinary refractive indices (without the effect

of optical activity) of the uniaxial medium, respectively.
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For point group 32, scalar gyration parameter G [Eq. (23)] is given by the non-zero components
of ĝ and the angle θ given by (24),

G = g11 sin2 θ + g33 cos2 θ. (41)

The dispersion characteristics of the components of gyration tensor ĝ were derived in [47] and
are given by the dispersion equation

gii =
Aiλ

3(︁
λ2 − B2

i
)︁2 , i = {1, 3}, (42)

where λ is the wavelength and Ai, Bi are phenomenological constants. This dispersion model is
based on the sum rule consistent model of coupled anisotropic oscillators, and was originally
developed for the description of specific rotatory power dispersion [74].

D. Algebraic analysis of the optical activity and misalignment effects in the Mueller
matrix of biplates

Let us consider the Mueller matrix of biplate in the form of (7), which differs from an ideal biplate
by the presence of the waveplate misalignmentΦ = φ1−φ2−π/2 and the OA MR,EL (φ, Γ1 − Γ2, κ)
given by (5), introduced as follows:

MR,WB =MR,EL2

(︃
φ +
Φ

2
+
π

2
, Γ2, κ

)︃
MR,EL1

(︃
φ −
Φ

2
, Γ1, κ

)︃
. (43)

Considering only small effects in both misalignment and OA (κ, Φ ≪ 1), we express Mueller
matrix (43) as its first order Taylor expansions. The resulting form of the matrix MR,WB is then
represented as a sum of the Mueller matrix of an ideal biplate without the OA and perturbation
matrices, each representing separate contribution of the OA and the misalignment in the form of
fine spectral oscillations:

MR,WB ≈ MR,LIN (φ, ∆Γ) +
⎡⎢⎢⎢⎢⎣
1 0T

0 mκ

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
1 0T

0 mΦ

⎤⎥⎥⎥⎥⎦ , (44)

where

mΦ = Φ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−S4ϕ(CΓ1 − CΓ2 ) C4ϕ(CΓ1 − CΓ2 ) +W C2ϕ(2SΓ1 − S∆Γ)

C4ϕ(CΓ1 − CΓ2 ) − W S4ϕ(CΓ1 − CΓ2 ) S2ϕ(2SΓ1 − S∆Γ)

−C2ϕ(2SΓ2 + S∆Γ) −S2ϕ(2SΓ2 + S∆Γ) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (45)

mκ = κ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2S4ϕV 2SΓ1 + 2SΓ2 − 2C4ϕV 2C2ϕ(C∆Γ − 2CΓ1 + 1)

−2SΓ1 − 2SΓ2 − 2C4ϕV −2S4ϕV 2S2ϕ(C∆Γ − 2CΓ1 + 1)

−2C2ϕ(C∆Γ − 2CΓ2 + 1) −2S2ϕ(C∆Γ − 2CΓ2 + 1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (46)

and
∆Γ = Γ1 − Γ2, (47a)

Sarg = sin (arg) , Carg = cos (arg) , (47b)

V = SΓ2 − SΓ1 + S∆Γ, W = CΓ1 + CΓ2 − C∆Γ − 1. (47c)
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