
https://doi.org/10.1007/s00145-022-09438-y
J Cryptol (2022) 35:26

Research Article

Signed (Group) Diffie–Hellman Key Exchange with Tight
Security

Jiaxin Pan · Chen Qian · Magnus Ringerud
Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology,

Trondheim, Norway
jiaxin.pan@ntnu.no
chen.qian@ntnu.no

magnus.ringerud@ntnu.no

Communicated by Marc Fischlin

Received 4 November 2021 / Revised 9 August 2022 / Accepted 10 August 2022

Abstract. We propose thefirst tight security proof for the ordinary two-message signed
Diffie–Hellman key exchange protocol in the random oracle model. Our proof is based
on the strong computational Diffie–Hellman assumption and the multiuser security of
a digital signature scheme. With our security proof, the signed DH protocol can be
deployed with optimal parameters, independent of the number of users or sessions,
without the need to compensate any security loss. We abstract our approach with a new
notion called verifiable key exchange. In contrast to a known tight three-message variant
of the signed Diffie–Hellman protocol (Gjøsteen and Jager, in: Shacham, Boldyreva
(eds) CRYPTO 2018, Part II. LNCS, Springer, Heidelberg, 2018), we do not require any
modification to the original protocol, and our tightness result is proven in the “Single-Bit-
Guess” model which we know can be tightly composed with symmetric cryptographic
primitives to establish a secure channel. Finally, we extend our approach to the group
setting and construct the first tightly secure group authenticated key exchange protocol.

Keywords. Authenticated key exchange, Group key exchange, Signed Diffie–Hellman,
Tight security.

1. Introduction

Authenticated key exchange (AKE) protocols are protocols where two users can securely
share a session key in the presence of active adversaries. Beyond passively observing,
adversaries against an AKE protocol can modify messages and adaptively corrupt users’
long-term keys or the established session key between users. Hence, it is very challenging
to construct a secure AKE protocol.

The signed Diffie–Hellman (DH) key exchange protocol is a classical AKE protocol.
It is a two-message (namely, two message-moves or one-round) protocol and can be
viewed as a generic method to transform a passively secure Diffie–Hellman key exchange
© The Author(s) 2022

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-022-09438-y&domain=pdf
http://orcid.org/0000-0002-7459-6850
http://orcid.org/0000-0003-4429-7267
http://orcid.org/0000-0002-1276-3350

 26 Page 2 of 42 J. Pan et al.

Fig. 1. Our signed Diffie–Hellman key exchange protocol and the tight variant of Gjøsteen and Jager [24].
The functions H and H are hash functions. Operations marked with a gray box are for our signed DH

protocol, and dashed boxes are for Gjøsteen and Jager’s. Operations without a box are performed by both
protocols. All signatures are verified upon arrival with the corresponding messages, and the protocol aborts if
any verification fails .

protocol [19] into a secure AKE protocol using digital signatures. Figure 1 visualizes
the protocol. The origin of signed DH is unclear to us, but its idea has been used in
and serves as a solid foundation for many well-known AKE protocols, including the
Station-to-Station protocol [20], IKE protocol [26], the one in TLS 1.3 [42] and many
others [7,24,29,30,33].

Tight Security. Security of a cryptographic scheme is usually proven by constructing
a reduction. Asymptotically, a reduction reduces any efficient adversary A against the
scheme into an adversary R against the underlying computational problem. Concretely,
a reduction provides a security bound for the scheme, εA ≤ � · εR, where εA is the
success probability of A and εR is that of R. We say a reduction is tight if � is a small
constant and the running time of A is approximately the same as that of R. For the same
scheme, it is more desirable to have a tight security proof than a non-tight one, since a
tight security proof enables implementations without the need to compensate a security
loss with increased parameters.

Multi-Challenge Security for AKE. An adversary against an AKE protocol has
full control of the communication channel and, additionally, it can adaptively corrupt
users’ long-term keys and reveal session keys. The goal of an adversary is to distinguish
between a (non-revealed) session key and a random bit-string of the same length, which

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 3 of 42 26

is captured by theTest query. We follow the Bellare-Rogaway (BR) model [5] to capture
these capabilities, but formalize it with the game-based style of [28]. Instead of weak
perfect forward secrecy, our model captures the (full) perfect forward secrecy.

Unlike the BR model, our model captures multi-challenge security, where an adversary
can make T many Test queries which are answered with a single random bit. This is
a standard and well-established multi-challenge notion, and [28] called it “Single-Bit-
Guess” (SBG) security. Another multi-challenge notion is the “Multi-Bit-Guess” (MBG)
security where eachTest query is answered with a different random bit. Although several
tightly secure AKE protocols [2,24,36,46] are proven in the MBG model, we stress
that the SBG model is well-established and allows tight composition of the AKE with
symmetric cryptographic primitives, which is not the case for the nonstandard MBG
model. Thus, the SBG multi-challenge model is more desirable than the MBG model.
More details about this have been provided by Jager et al.[28, Introduction] and Cohn-
Gordon et al.[14, Section 3].
The Non-Tight Security of Signed DH. Many existing security proofs of signed
DH-like protocols [7,29,30] lose a quadratic factor, O(μ2S2), where μ and S are the
maximum numbers of users and sessions. In the SBG model with T many Test queries,
these proofs also lose an additional multiplicative factor T .

At CRYPTO 2018, Gjøsteen and Jager [24] proposed a tightly secure variant of it by
introducing an additional message move into the ordinary signed DH protocol. They
showed that if the signature scheme is tightly secure in the multiuser setting then their
protocol is tightly secure. They required the underlying signature scheme to be strongly
unforgeable against adaptive Corruption and Chosen-Message Attacks (StCorrCMA)
which is a notion in the multiuser setting and an adversary can adaptively corrupt some
of the honest users to see their secret keys. Moreover, they constructed a tightly multiuser
secure signature scheme based on the decisional Diffie–Hellman (DDH) assumption in
the random oracle model [4]. Combining these two results, they gave a practical three
message fully tight AKE. We note that their tight security is proven in the less desirable
MBG model, and, to the best of our knowledge, the MBG security can only non-tightly
imply the SBG security [28]. Due to the “commitment problem”, the additional message
is crucial for the tightness of their protocol. In particular, the “commitment problem”
seems to be the reason why most security proofs for AKEs are non-tight.

1.1. Our Contribution

In this paper, we propose a new tight security proof of the ordinary two-message signed
Diffie–Hellman key exchange protocol in the random oracle model. More precisely, we
prove the security of the signed DH protocol tightly based on the multiuser security of the
underlying signature scheme in the random oracle model. Our proof improves upon the
work of Gjøsteen and Jager [24] in the sense that we do not require any modification to
the signed DH protocol and our tight multi-challenge security is in the SBG model. This
implies that our analysis supports the optimal implementation of the ordinary signed
DH protocol with theoretically sound security in a meaningful model.

Our technique is a new approach to resolve the “commitment problem”. At the core
of it is a new notion called verifiable key exchange protocols. We first briefly recall the
“commitment problem” and give an overview of our approach.

 26 Page 4 of 42 J. Pan et al.

Technical Difficulty: The “commitment problem”.As explained in [24], this prob-
lem is the reason why almost all proofs of classical AKE protocols are non-tight. In a
security proof of an AKE protocol, the reduction needs to embed a hard problem instance
into the protocol messages of Test sessions so that in the end the reduction can extract
a solution to the hard problem from the adversary A. After the instance is embedded, A
has not committed itself to which sessions it will query to Test yet, and, for instance, A
can ask the reduction for Reveal queries on sessions with a problem instance embed-
ded to get the corresponding session keys. At this point, the reduction cannot respond to
these Reveal queries. A natural way to resolve this is to guess which sessions A will
query Test on, and to embed a hard problem instance in those sessions only. However,
this introduces an extremely large security loss. To resolve this “commitment problem”,
a tight reduction should be able to answer both Test and Reveal for every session
without any guessing. Gjøsteen and Jager achieved this for the signed DH by adding an
additional message.

In this paper, we show that this additional message is not necessary for tight security.
Our Approach: Verifiable Key Exchange. In this work, we, for simplicity, use
the signed Diffie–Hellman protocol based on the plain Diffie–Hellman protocol [19]
(as described in Fig. 1) to explain our approach. In the technical part, we abstract and
present our idea with a new notion called verifiable key exchange protocols.

Let G := 〈g〉 be a cyclic group of prime-order p where the computational Diffie–
Hellman (CDH) problem is hard. Let (gα, gβ) (where α, β ←$ Zp) be an instance of
the CDH problem. By its random self-reducibility, we can efficiently randomize it to
multiple independently distributed instances (gαi , gβi), and given some gαiβi , we can
extract the solution gαβ .

For preparation, we assume that a Test session does not contain any valid forgeries.
This can be tightly justified by the StCorrCMA security of the underlying signature
scheme, which can be instantiated with the recent scheme in [17].

After that, an adversary can only observe the protocol transcripts or forward the hon-
estly generated transcripts in arbitrary orders. This is the most important step for bound-
ing such an adversary tightly without involving the “commitment problem”. Our reduc-
tion embeds the randomized instance (gαi , gβi) into each session. Now it seems we can
answer neither Test nor Reveal queries: The answer has the form K := H(ctxt, gxy),
but the term gxy cannot be computed by the reduction, since gx and gy are from the
CDH challenge and the reduction knows neither x nor y. However, our reduction can
answer this by carefully simulating the random oracle H and keeping the adversary’s
view consistent. More precisely, we answer Test and Reveal queries with a random K ,
and we carefully program the random oracle H so that adversary A cannot detect this
change. To achieve this, when we receive a random oracle query H(ctxt, Z), we answer
it consistently if the secret element Z corresponds to the context ctxt and ctxt belongs
to one of the Test or Reveal queries. This check can be efficiently done by using the
strong DH oracle [1]. Our approach is motivated by the two-message AKE in [14].

The approach described above can be abstracted by a notion called verifiable key
exchange (VKE) protocols. Roughly speaking, a VKE protocol is firstly passively secure,
namely a passive observer cannot compute the secret session key. Additionally, a VKE
provides an oracle to an adversary to check whether a session key belongs to some
honestly generated session, and to forward messages in a different order to create non-

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 5 of 42 26

matching sessions. This VKE notion gives rise to a tight security proof of the signed DH
protocol. We believe this is of independent interest.
OntheStrongCDHAssumption.Our techniques require the Strong CDH assumption
[1] for the security of our VKE protocol. We refer to [15, Appendix C] for a detailed
analysis of this assumption in the generic group model (GGM). Without using the GGM,
we can use the twinning technique [13] to remove this strong assumption and base the
VKE security tightly on the (standard) CDH assumption. This approach will double
the number of group elements. Alternatively, we can use the group of signed Quadratic
Residues (QR) [27] to instantiate our VKE protocol, and then the VKE security is tightly
based on the factoring assumption (by [27, Theorem 2]).
Real-World Impacts. As mentioned earlier, the signed DH protocol serves as a solid
foundation for many real-world protocols, including the one in TLS 1.3 [42], IKE [26],
and the Station-to-Station [20] protocols. We believe our approach can naturally be
extended to tighten the security proofs of these protocols. In particular, our notion of
VKE protocols can abstract some crucial steps in a recent tight proof of TLS 1.3 [15].

Another practical benefit of our tight security proof is that, even if we implement
the underlying signature with a standardized, non-tight scheme (such as Ed25519 [8]
or RSA-PKCS #1 v1.5 [40]), our implementation does not need to lose the additional
factor that is linear in the number of sessions. In today’s Internet, there can be easily 230

sessions per year. For instance, Facebook has about 230 monthly active users1. Assuming
that each user only logs in once a month, this already leads to 230 sessions.

1.2. Protocol Comparison

We compare the instantiation of signed DH according to our tight proof with the existing
explicitly authenticated key exchange protocols in Fig. 2. For complete tightness, all
these protocols require tight multiuser security of their underlying signature scheme.
We implement the signature scheme in all protocols with the recent efficient scheme
from Diemert et al. [17] whose signatures contain 3 Zp elements, and whose security is
based on the DDH assumption. The implementation of TLS is according to the recent
tight proofs in [15,18], and we instantiate the underlying signature scheme with the same
DDH-based scheme from [17].

We note that the non-tight protocol from Cohn-Gorden et al. [14], whose security loss
is linear in the number of users, has better communication efficiency (2, 0, 0). However,
its security is weaker than all protocols listed in Fig. 2, since their protocol is only
implicitly authenticated and achieves weak perfect forward secrecy.

We detail the comparison with JKRS [28]. Using the DDH-based signature scheme
in [17], the communication complexity of our signed DH protocol is (2, 0, 6), while that
of JKRS is (5, 1, 3). We suppose the efficiency of our protocol is comparable to JKRS.

Our main weakness is that our security model is weaker than that of JKRS. Namely,
ours does not allow adversaries to corrupt any internal secret state. We highlight that our
proof does not inherently rely on any decisional assumption. In particular, if there is a
tightly multiuser secure signature scheme based on only search assumptions, our proof

1Cf. https://investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-Fourth-Quarter-
and-Full-Year-2021-Results/default.aspx

https://investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-Fourth-Quarter-and-Full-Year-2021-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2022/Meta-Reports-Fourth-Quarter-and-Full-Year-2021-Results/default.aspx

 26 Page 6 of 42 J. Pan et al.

Fig. 2. Comparison of AKE protocols. We denote Comm. as the communication complexity of the protocols
in terms of the number of group elements, hashes and Zp elements (which is due to the use of the signature
scheme in [17]). The columnModel lists theAKE security model and distinguishes between multi-bit guessing
(MBG) and the single-bit-guessing (SBG) security .

directly gives a tightly secure AKE based on search assumptions only, which is not the
case for [28].

1.3. An Extension and Open Problems

We extend our approach to group AKE (GAKE) protocols, where a group of users can
agree on a session key, and construct the first tightly secure GAKE protocol. Research
on GAKE has a long history and several GAKE protocols have been constructed in
the literature [9–11,25,31]. However, none of the existing GAKE protocols enjoy a
tight security proof. We suppose that tight security is more desirable for GAKE than
AKE, since many applications require GAKE protocols (such as online audio–video
conference systems and instant messaging [43]) are often in a truly large-scale setting.

Similar to the two-party setting, we propose the notion of verifiable group key ex-
change (VGKE) protocols and transform a VGKE to GAKE using a signature scheme.
Our transformation is tightness-preserving. As an instantiation of our approach, we prove
that under the strong CDH assumption the classical Burmester–Desmedt protocol is a
tightly secure VGKE protocol [12]. Combining with a tightly StCorrCMA-secure sig-
nature (for instance, [17]), it yields the first tightly secure GAKE protocol. Alternatively,
our transformation can be viewed as a tight improvement on the (non-tight) generic com-
piler of Katz and Yung [31] where we require the underlying non-authenticated group
key exchange protocol to be verifiable.

Open Problems. We do not know of any tightly multiuser secure signature schemes
with corruptions based on a search assumption, and the schemes in [39] based on search
assumptions do not allow any corruption. It is therefore insufficient for our purpose, and
we leave constructing a tightly secure AKE based purely on search assumptions as an
open problem.

1.4. History of This Paper

This is the full version of a paper published at CT-RSA 2021 [38]. The main change here
is to extend our approach in the group key exchange setting and propose the first tightly
secure GAKE protocol (cf. Sect. 6). Due to this main extension, we (slightly) change

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 7 of 42 26

the title to the current one. Moreover, we give a detailed proof for the multiuser security
of Schnorr’s signature scheme in the generic group model (cf. Appendix A).

2. Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote the sampling of a uniform
random element x by x ←$ S. By �B�, we denote the bit that is 1 if the evaluation of
the Boolean statement B is true and 0 otherwise.

Algorithms. For an algorithm A which takes x as input, we denote its computation by
y ← A(x) if A is deterministic, and y ←$ A(x) if A is probabilistic. We assume all
the algorithms (including adversaries) in this paper to be probabilistic unless we state it.
We denote an algorithm A with access to an oracle O by AO. In terms of running time,
if a reduction’s running time t ′ is dominated by that of an adversary t (more precisely,
t ′ = t + s where s � t), we write t ′ ≈ t .

Games.We use code-based games [6] to present our definitions and proofs. We implicitly
assume all Boolean flags to be initialized to 0 (false), numerical variables to 0, sets to
∅ and strings to ⊥. We make the convention that a procedure terminates once it has
returned an output. GA ⇒ b denotes the final (Boolean) output b of game G running
adversary A, and if b = 1 we say A wins G. The randomness in Pr[GA ⇒ 1] is over
all the random coins in game G. Within a procedure, “abort” means that we terminate
the run of an adversary A.

Digital signatures. We recall the syntax and security of a digital signature scheme.
Let par be some system parameters shared among all participants.

Definition 1. (Digital Signature) A digital signature scheme SIG := (Gen,Sign,

Ver) is defined as follows.

– The key generation algorithm Gen(par) returns a public key and a secret key
(pk, sk). We assume that pk implicitly defines a message space M and a signature
space �.

– The signing algorithm Sign(sk,m ∈ M) returns a signature σ ∈ � on m.
– The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0 (re-

ject).

SIG is perfectly correct, if for all (pk, sk) ∈ Gen(par) and all messages m ∈ M,
Ver(pk,m,Sign(sk,m)) = 1.

In addition, we say that SIG has α bits of (public) key min-entropy if an honestly
generated public key pk is chosen from a distribution with at least α bits min-entropy.
Formally, for all bit-strings pk′ we have Pr[pk = pk′ : (pk, sk) ←$ Gen(par)] ≤ 2−α.

We include the definition of entropy here because our proofs require an estimate on the
probability of a collision in the public keys.

Definition 2. (StCorrCMA Security [17,24]) A digital signature scheme
SIG is (t, ε, μ, Qs, QCor)-StCorrCMA secure (Strong unforgeability against Corruption

 26 Page 8 of 42 J. Pan et al.

Fig. 3. StCorrCMA security game for a signature schemeSIG.A has access to the oraclesO := {Sign,Corr}
.

and Chosen Message Attacks), if for all adversaries A running in time at most t , inter-
acting with μ users, making at most Qs queries to the signing oracle Sign, and at most
QCor (QCor < μ) queries to the corruption oracle Corr as in Fig. 3, we have

Pr[StCorrCMAA ⇒ 1] ≤ ε.

Security in the random oracle model. A common approach to analyze the security
of signature schemes that involve a hash function is to use the random oracle model [4]
where hash queries are answered by an oracle H, where H is defined as follows: On
input x , it first checks whether H(x) has previously been defined. If so, it returns H(x).
Otherwise, it sets H(x) to a uniformly random value in the range of H and then returns
H(x). We parameterize the maximum number of hash queries in our security notions.
For instance, we define (t, ε, μ, Qs, QCor, QH)-StCorrCMA as security against any
adversary that makes at most QH queries to H in the StCorrCMA game. Furthermore,
we make the standard convention that any random oracle query that is asked as a result
of a query to the signing oracle in the StCorrCMA game is also counted as a query to
the random oracle. This implies that Qs ≤ QH.

Signature schemes. The tight security of our authenticated key exchange (AKE) pro-
tocols is established based on the StCorrCMA security of the underlying signature
schemes. To obtain a completely tight AKE, we use the recent signature scheme from
[17] to implement our protocols.

By adapting the non-tight proof in [23], the standard unforgeability against chosen-
message attacks (UF-CMA) notion for signature schemes implies the StCorrCMA se-
curity of the same scheme non-tightly (with security loss μ). Thus, many widely used
signature schemes (such as the Schnorr [44], Ed25519 [8] and RSA-PKCS #1 v1.5 [40]
signature schemes) are non-tightly StCorrCMA secure. We do not know any better re-
ductions for these schemes. We leave proving theStCorrCMA security of these schemes
without losing a linear factor of μ as a future direction. However, our tight proof for
the signed DH protocol strongly indicates that the aforementioned non-tight reduction
is optimal for these practical schemes. This is because if we can prove these schemes
tightly secure, we can combine them with our tight proof to obtain a tightly secure AKE
with unique and verifiable private keys, which may contradict the impossibility result
from [14].

For the Schnorr signature, we analyze its StCorrCMA security in the generic group
model (GGM) [37,45]. We recall the Schnorr signature scheme below and show the
GGM bound of its StCorrCMA security in Theorem 1.

Let par = (p, g,G), where G = 〈g〉 is a cyclic group of prime order p with a
hard discrete logarithm problem. Let H : {0, 1}∗ → Zp be a hash function. Schnorr’s
signature scheme, Schnorr := (Gen,Sign,Ver), is defined as follows:

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 9 of 42 26

Gen(par):

01 x ←$ Zp
02 X := gx

03 pk := X
04 sk := x
05 return(pk, sk)

Sign(sk,m):

06 parsex =: sk
07 r ←$ Zp ; R := gr

08 h := H(R,m)

09 s := r + x · h
10 return(h, s)

Ver(pk,m, σ):

11 parse(h, s) =: σ

12 parseX =: pk
13 R = gs · X−h

14 return�H(R,m) = h�

Theorem 1. (StCorrCMA Security of Schnorr in the GGM) Schnorr’s signatureSIG
is (t, ε, μ, Qs, QCor, QH)-StCorrCMA-secure in the GGM and in the programmable
random oracle model, where

ε ≤ (QG + μ + 1)2

2p
+ (μ − QCor)

p
+ QHQs + 1

p
, and t ′ ≈ t.

Here, QG is the number of group operations queried by the adversary.

The proof of Theorem 1 is following the approach in [3,32]: We first define an algebraic
interactive assumption, CorrIDLOG, which is tightly equivalent to the StCorrCMA
security of Schnorr, and then we analyze the hardness of CorrIDLOG in the GGM.
CorrIDLOG stands for Interactive Discrete Logarithm with Corruption. It is motivated
by the IDLOG (Interactive Discrete Logarithm) assumption in [32]. CorrIDLOG is a
stronger assumption than IDLOG in the sense that it allows an adversary to corrupt the
secret exponents of some public keys. Details are given in Appendix A.

3. Security Model for Two-Message Authenticated Key Exchange

In this section, we use the security model in [28] to define the security of two-message
authenticated key exchange protocols. This section is almost verbatim to Section 4 of
[28]. We highlight the difference we make for our protocol: Since our protocols do
not have security against (ephemeral) state reveal attacks (as in the extended Canetti-
Krawczyk (eCK) model [34]), we do not consider state reveals in our model.

A two-message key exchange protocolAKE := (GenAKE, InitI,DerR,DerI) consists
of four algorithms which are executed interactively by two parties as shown in Fig. 4.
We denote the party which initiates the session by Pi and the party which responds to the
session by Pr . The key generation algorithm GenAKE outputs a key pair (pk, sk) for one
party. The initialization algorithm InitI inputs the initiator’s long-term secret key ski and
the responder’s long-term public key pkr , and outputs a message mi and a state st. The
responder’s derivation algorithm DerR takes as input the responder’s long-term secret
key, the initiator’s public key pki and a message mi . It computes a message mr and a
session key K . The initiator’s derivation algorithm DerI inputs the initiator’s long-term
key ski , the responder’s long-term public key pkr , the responder’s message mr and the
state st. Note that the responder is not required to save any internal state information
besides the session key K .

 26 Page 10 of 42 J. Pan et al.

Fig. 4. Running an authenticated key exchange protocol between two parties .

We give a security game written in pseudocode. We define a model for explicit au-
thenticated protocols achieving (full) forward secrecy instead of weak forward secrecy.
Namely, an adversary in our model can be active and corrupt the user who owns the Test
session sID∗, and the only restriction is that if there is no matching session to sID∗, then
the peer of sID∗ must not be corrupted before the session finishes.

Here, explicit authentication means entity authentication in the sense that a party can
explicitly confirm that he is talking to the actual owner of the recipient’s public key. The
key confirmation property is only implicit [21], where a party is assured that the other
identified party can compute the same session key. The game IND-FS is given in Figs. 5
and 6. We refer readers to [16] for more details on different types of authentication for
key exchange protocols.

Execution Environment. We consider μ parties P1, . . . ,Pμ with long-term key pairs
(pkn, skn), n ∈ [μ]. When two parties A and B want to communicate, the initiator, say,
A first creates a session. To identify this session, we increase the global identification
number sID and assign the current state of sID to identify this session owned by A. The
state of sID will increase after every assignment. Moreover, a message will be sent to
the responder. The responder then similarly creates a corresponding session which is
assigned the current state of sID. Hence, each conversation includes two sessions. We
then define variables in relation to the identifier sID:

– init[sID] ∈ [μ] denotes the initiator of the session.
– resp[sID] ∈ [μ] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator or

the responder computes the session key.
– MsgI[sID] denotes the message that was computed by the initiator.
– MsgR[sID] denotes the message that was computed by the responder.
– state[sID] denotes the (secret) state information, i. e. ephemeral secret keys.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles
SessionI and SessionR, where the first one starts a session of type “In” and the second
one of type “Re”. The SessionR oracle also runs the DerR algorithm to compute its
session key and complete the session, as it has access to all the required variables. In
order to complete the initiator’s session, the oracle DerI has to be queried.

Following [28], we do not allow the adversary to register adversarially controlled
parties by providing long-term public keys, as the registered keys would be treated no
differently than regular corrupted keys. If we would include the key registration oracle,

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 11 of 42 26

Fig. 5. Game IND-FS forAKE.Ahas access to oraclesO := {SessionI,SessionR,DerI,Reveal,Corr,Test}.
Helper procedures Fresh and Valid are defined in Fig. 6. If there exists any test session which is neither
fresh nor valid, the game will return b .

Fig. 6. Helper procedures Fresh andValid for game IND-FS defined in Fig. 5. Procedure Fresh checks if the
adversary performed some trivial attack. In procedure Valid, each attack is evaluated by the set of variables
shown in Table 2 and checks if an allowed attack was performed. If the values of the variables are set as in the
corresponding row, the attack was performed, i. e. attack = true, and thus the session is valid .

 26 Page 12 of 42 J. Pan et al.

then our proof requires a stronger notion of signature schemes in the sense that our
signature challenger can generate the system parameters with some trapdoor. With the
trapdoor, the challenger can simulate a valid signature under the adversarially registered
public keys. This is the case for the Schnorr signature and the tight scheme in [17],
since they are honest-verifier zero-knowledge and the aforementioned property can be
achieved by programming the random oracles.

Finally, the adversary has access to oracles Corr and Reveal to obtain secret in-
formation. We use the following Boolean values to keep track of which queries the
adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given to
the adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted and its

long-term key was given to the adversary at the time the owner’s session key was
computed, which is important for forward security.

The adversary can forward messages between sessions or modify them. By that, we can
define the relationship between two sessions:

– Matching Session: Two sessions sID and sID′ match if the same parties are in-
volved (init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent and
received are the same (MsgI[sID] = MsgI[sID′] and MsgR[sID] = MsgR[sID′])
and they are of different types (type[sID] �= type[sID′]).

Our protocols use signatures to preserve integrity so that any successful no-match attacks
described in [35] will lead to a signature forgery and thus can be excluded.

Finally, the adversary is given access to oracle Test, which can be queried multiple
times and which will return either the session key of the specified session or a uniformly
random key. We use one bit b for all test queries, and store test sessions in a set S. The
adversary can obtain information on the interactions between two parties by querying
the long-term secret keys and the session key. However, for each test session, we require
that the adversary does not issue queries such that the session key can be trivially com-
puted. We define the properties of freshness and validity which all test sessions have to
satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed.
Furthermore, if there exists a matching session, we require that this session’s key
is not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary performed
any attack which is defined in the security model. We capture this with attack
Table 2.

Attack Tables. We define validity of different attack strategies. All attacks are defined
using variables to indicate which queries the adversary may (not) make. We consider
three dimensions:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the responder’s
side (type[sID∗] =“Re”),

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 13 of 42 26

Table 1. Full table of attacks for adversaries against explicitly authenticated two-message protocols.

An attack is regarded as an AND conjunction of variables with specified values as shown in the each line,
where “–” means that this variable can take arbitrary value and F means “false.” The trivial attacks where the
session’s peer is corrupted when the key is derived, and the corresponding variables are set to T, are marked
with gray . The ⊥ symbol indicates that the adversary cannot query anything more from this party, as he
already possesses the long-term key

– all combinations of long-term secret key reveal, taking into account when a cor-
ruption happened (corrupted and peerCorrupted variables),

– the number of matching sessions, i.e., whether the adversary acted passively
(matching session) or actively (no matching session).

The purpose of these tables is to make our proofs precise by listing all the possible
attacks.

How to read the tables. Table 1 lists all possible attacks from an adversary. By
excluding trivial attacks and merging similar attacks, we obtain Table 2 from Table 1. If
the set of variables corresponding to a test session is set as in any row of Table 2, this
row will evaluate to true in line 10 in Fig. 6. We now describe the different attacks in
Table 1 in more detail:

Row 0. If the protocol does not use appropriate randomness, it should not be considered
secure. In this case, there can be multiple matching sessions to a test session,
which an adversary can take advantage of. For an honest run of the protocol, the
underlying min-entropy ensures that this attack will only happen with negligible
probability.

Row 1. Here, the tested session has one matching session, is of type “In”, and both
parties might be corrupted. Since there is a matching session, the adversary
has acted passively during the execution of the protocol. Thus, even if both
parties were corrupted during the execution, the adversary cannot break the
AKE security without breaking the passive security of the underlying protocol.
Hence, it should make no difference if the parties were corrupted before or after
the key was computed, and the corrupted and peerCorrupted columns can take
any value.

 26 Page 14 of 42 J. Pan et al.

Table 2. Distilled table of attacks for adversaries against explicitly authenticated two-message protocols
without ephemeral state reveals.

An attack is regarded as an AND conjunction of variables with specified values as shown in the each line,
where “–” means that this variable can take arbitrary value and F means “false”

Row 2. This attack is similar to the one above, the only difference is the session type.
Row 3. Here, the responder of the session was corrupted when the initiator computed

its key, and there is no matching session. This means that the adversary has
performed an active attack and changed or reordered the message being sent.
This can lead to a trivial attack, because the adversary can impersonate the
responder with the corrupted secret key. By knowing the underlying message,
he can compute the same session key as the initiator will compute, and test
the initiators session. Whether the adversary corrupts the initiator makes no
difference, and hence this column can take any value.

Row 4. Similar to the attack above, with the types switched, and hence the initiator was
corrupted by the time the responder computed the key. This leads to a trivial
attack in the same way.

Row 5. Here, there is no matching session, but we specify that the responder was not
corrupted when the initiator computed its key. The adversary can choose whether
or not to corrupt the initiator before the responder computes its key. The key
point is that whether he can impersonate the initiator or not, he does not know
the internal state of the initiator, and to break security he must either break the
underlying key exchange protocol, or impersonate the responder and break the
authentication directly. Hence, this column can take any value. After the initiators
key is computed, it should not matter whether the responder gets corrupted or
not, and hence, this column can also take any value.

Row 6. Similar to above, but with the types changed so that the initiator was not corrupted
when the responder computed its key.

From the 6 attacks in total presented in Table 1, rows (3.) and (4.) are trivial wins for the
adversary and can thus be excluded. Note that rows (1.) and (2.) denote similar attacks
against initiator and responder sessions. Since the session’s type does not change the
queries the adversary is allowed to make in this case, we can merge these rows. For the
same reason, we can also merge rows (5.) and (6.). The resulting table is given in Table 2.

Attacks covered in our model capture forward secrecy (FS) and key compromise
impersonation (KCI) attacks.

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 15 of 42 26

Note that we do not include reflection attacks, where the adversary makes a party run
the protocol with himself. For the KEDH protocol, we could include these and create
an additional reduction to the square Diffie–Hellman assumption (given gx , to compute
gx

2
), but for simplicity of our presentation we will not consider reflection attacks in this

paper.
For all test sessions, at least one attack has to evaluate to true. Then, the adversary

wins if he distinguishes the session keys from uniformly random keys which he obtains
through queries to the Test oracle.

Definition 3. (Key Indistinguishability of AKE) We define game IND-FS as in Figs. 5
and 6. A protocol AKE is (t, ε, μ, S, T, QCor)-IND-FS-secure if for all adversaries
A attacking the protocol in time t with μ users, S sessions, T test queries and QCor
corruptions, we have

∣
∣
∣
∣
Pr[IND-FSA ⇒ 1] − 1

2

∣
∣
∣
∣
≤ ε.

Note that if there exists a session which is neither fresh nor valid, the game outputs the
bit b, which implies that Pr[IND-FSA ⇒ 1] = 1/2, giving the adversary an advantage
equal to 0. This captures that an adversary will not gain any advantage by performing a
trivial attack.

4. Verifiable Key Exchange Protocols

A key exchange protocol KE := (InitI,DerR,DerI) can be run between two (unau-
thenticated) parties i and r , and can be visualized as in Fig. 4, but with differences
where (1): parties do not hold any public key or private key, and (2): public and private
keys in algorithms InitI,DerR,DerI are replaced with the corresponding users’ (public)
identities.

The standard signed Diffie–Hellman (DH) protocol can be viewed as a generic way
to transform a passively secure key exchange protocol to an actively secure AKE proto-
col using digital signatures. Our tight transformation does not modify the construction
of the signed DH protocol, but requires a security notion (i.e., One-Wayness against
Honest and key Verification attacks, or OW-HV) that is (slightly) stronger than passive
security: Namely, in addition to passive attacks, an adversary is allowed to check if a
key corresponds to some honestly generated transcripts and to forward transcripts in a
different order to create non-matching sessions. Here, we require that all the involved
transcripts must be honestly generated by the security game and not by the adversary.
This is formally defined by Definition 4 with security game OW-HV as in Fig. 7.

Definition 4. (One-Wayness against Honest and key Verification attacks (OW-HV))
A key exchange protocol KE is (t, ε, μ, S, QV)-OW-HV secure, where μ is the number
of users, S is the number of sessions and QV is the number of calls to KVer, if for all
adversaries A attacking the protocol in time at most t , we have

 26 Page 16 of 42 J. Pan et al.

Fig. 7. Game OW-HV for KE. A has access to oracles O := {SessionI,SessionR,DerI,KVer} .

Pr[OW-HVA ⇒ 1] ≤ ε.

We require that a key exchange protocol KE has α bits of min-entropy, i.e., that for
all messages m′ we have Pr[m = m′] ≤ 2−α, where m is output by either InitI or DerR.

4.1. Example: Plain Diffie–Hellman Protocol

We show that the plain Diffie–Hellman (DH) protocol over prime-order group [19] is a
OW-HV-secure key exchange under the strong computational DH (StCDH) assumption
[1]. We use our syntax to recall the original DH protocol KEDH in Fig. 8.

Let par = (p, g,G) be a set of system parameters, where G := 〈g〉 is a cyclic group
of prime order p.

Definition 5. (Strong CDHAssumption) The strong CDH (StCDH) assumption is said
to be (t, ε, QDh)-hard in par = (p, g,G), if for all adversaries A running in time at
most t and making at most QDh queries to the DH predicate oracle Dha , we have:

Pr

[

Z = Ba
∣
∣
∣
∣

a, b ←$ Zp; A := ga B := gb

Z ←$ ADha (A, B)

]

≤ ε,

where the DH predicate oracle Dha(C, D) outputs 1 if D = Ca and 0 otherwise.

Lemma 1. LetKEDH be theDHkey exchange protocol as inFig.8. ThenKEDH hasα =
log2 p bits of min-entropy, and for every adversary A that breaks the (t, ε, μ, S, QV)-
OW-HV-security ofKEDH, there is an adversaryB that breaks the (t ′, ε′, QDh)-StCDH

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 17 of 42 26

Fig. 8. The Diffie–Hellman key exchange protocol, KEDH, in our syntax definition .

Fig. 9. Reduction B that breaks the StCDH assumption and simulates the OW-HV game for A, when A = ga

and B = gb for some unknown a and b .

assumption with

ε′ = ε, t ′ ≈ t, and QDh = QV + 1. (1)

Proof. The min-entropy assertion is straightforward, as the DH protocol generates
messages by drawing exponents x, y ←$ Zp uniformly as random.

We prove the rest of the lemma by constructing a reduction B which inputs the
StCDH challenge (A, B) and is given access to the decisional oracle Dha . B simulates
the OW-HV security game for the adversary A, namely answers A’s oracle access as
in Fig. 9. More precisely, B uses the random self-reducibility of StCDH to simulate the
whole security game, instead of using the InitI and DerR algorithms. The most relevant
codes are highlighted with bold line numbers.

We show that B simulates the OW-HV game for A perfectly:

 26 Page 18 of 42 J. Pan et al.

– Since X generated in line 26 and Y generated in line 37 are uniformly random, the
outputs of SessionI and SessionR are distributed as in the real protocol. Note that
the output of DerI does not get modified.

– For KVer(sID, K), if K is a valid key that corresponds to session sID, then there
must exist sessions sID1 and sID2 such that type[sID1] = “In” (defined in line 24)
and type[sID2] = “Re” (defined in line 34) and

K = (B · gα[sID2])(a+α[sID1]) = Ya · Y α[sID1]. (2)

whereMsgI[sID] = MsgI[sID1] = A·gα[sID1] (defined in line 26) andMsgR[sID] =
MsgR[sID2] = Y := B · gα[sID2] (defined in line 37). Thus, the output of
KVer(sID, K) is the same as that of Dha(Y, K/Y α[sID1]).

Finally, A returns sID∗ ∈ [cntS] and a key K ∗. If A wins, then KVer(sID∗, K ∗) = 1
which means that there exists sessions sID1 and sID2 such that type[sID1] = “In”,
type[sID2] = “Re” and

K ∗ = g(a+α[sID1])(b+α[sID2]) = gab · Aα[sID2] · Bα[sID1]gα[sID1]α[sID2]

= gab · Aα[sID2] · Y α[sID1],

where Y = MsgR[sID2] = B · gα[sID2]. This means B breaks the StCDH with gab =
K ∗/(Y α[sID1] · Aα[sID2]) as in line 08, if A break the OW-HV of KEDH. Hence, ε = ε′.
The running time of B is the running time of A plus one exponentiation for every call
to SessionI and SessionR, so we get t ≈ t ′. The number of calls to Dha is the number
of calls to KVer, plus one additional call to verify the adversary’s forgery, and hence
QDh = QV + 1. �

Group of Signed Quadratic Residues Our construction of a key exchange protocol in
Fig. 8 is based on theStCDH assumption over a prime order group. Alternatively, we can
instantiate our VKE protocol in a group of signed quadratic residues QR

+
N [27]. As the

StCDH assumption in QR
+
N groups is tightly implied by the factoring assumption (by

[27, Theorem 2]), ourVKEprotocol is secure based on the classical factoring assumption.

5. Signed Diffie–Hellman, revisited

Following the definition in Sect. 3, we want to construct a IND-FS-secure authen-
ticated key exchange protocol AKE = (GenAKE, InitI,DerI,DerR) by combining a
StCorrCMA-secure signature scheme SIG = (Gen,Sign,Ver), a OW-HV-secure key
exchange protocol KE = (Init′I,Der′I,DerR′), and a random oracle H. The construction
is given in Fig. 10, and follow the execution order from Fig. 4.

We now prove that this construction is in fact a secure AKE protocol.

Theorem 2. For everyadversaryA that breaks the (t, ε, μ, S, T, QH, QCor)-IND-FS-
security of a protocol AKE constructed as in Fig. 10, we can construct an adversary B
against the (t ′, ε′, μ, Qs, Q′

Cor)-StCorrCMA-security of a signature scheme SIG with

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 19 of 42 26

Fig. 10. Generic construction of AKE from SIG, KE and a random oracle H .

α bits of key min-entropy, and an adversary C against the (t ′′, ε′′, μ, S′, QV)-OW-HV
security of a key exchange protocol KE with β bits of min-entropy, such that

ε ≤ 2ε′ + ε′′

2
+ μ2

2α+1 + S2

2β+1

t ′ ≈ t, Qs ≤ S, Q′
Cor = QCor

t ′′ ≈ t, S′ = S, QV ≤ QH.

(3)

Proof. We will prove this by using the following hybrid games, which are illustrated
in Fig. 11.

Game G0: This is the IND-FS security game for the protocol AKE. We assume that all
long-term keys, and all messages output by InitI and DerR are distinct. If a collision
happens, the game aborts. To bound the probability of this happening, we use that SIG
has α bits of key min-entropy, and KE has β bits of min-entropy. We can upper bound
the probability of a collision happening in the keys as μ2/2α+1 for μ parties, and the
probability of a collision happening in the messages as S2/2β+1 for S sessions, as each
session computes one message. Thus, we have

Pr[IND-FSA ⇒ 1] ≤ Pr[GA
0 ⇒ 1] + μ2

2α+1 + S2

2β+1 . (4)

Game G1: In this game, when the oracles DerI and SessionR try to derive a session key,
they will abort if the input message does not correspond to a previously sent message,
and the corresponding signature is validw.r.t. an uncorrupted party (namely, A generates
the message itself).

This step is to exclude the active attacks where an adversary creates its own messages.
An adversary cannot notice this change, since it requires the adversary to forge a signature
on the underlying St-UF-CMA secure signature scheme. Later on, we will formally
prove this. Moreover, this is the preparation step for reducing an IND-FS adversary
of AKE to an OW-HV adversary of KE. Note that in this game we do not exclude all
the non-matching Test sessions, but it is already enough for the “IND-FS-to-OW-HV”
reduction. For instance, A can still force some responder session to be non-matching by

 26 Page 20 of 42 J. Pan et al.

Fig. 11. Games G0-G2. A has access to oracles O := {SessionI, SessionR,DerI,Reveal,Corr,Test},
where Reveal and Corr are simulated as in the original IND-FS game in Fig. 5. Game G0 implicitly assumes
that there is no collision between long term keys or messages output by the experiment .

reusing some of the previous initiator messages to query SessionR, and then A uses the
non-matching responder session to query Test.

The only way to distinguish G0 and G1 is to trigger the new abort event in either
line 19 (i.e., AbortDerR) or line 39 (i.e., AbortDerI) of Fig. 11. We define the event
AbortDer := AbortDerI ∨ AbortDerR and have that

∣
∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣
∣ ≤ Pr[AbortDer].

To bound this probability, we construct an adversary B against the (t ′, ε′, μ, Qs, Q′
Cor)-

StCorrCMA-security of SIG in Fig. 12.
We note that AbortDer is true only if A performs attacks 5+6 in Table 2 which may

lead to a session without any matching session. If AbortDer = true then � is defined in
lines 26 and 42 of Fig. 12 and � is a valid StCorrCMA forge for SIG. We only show that
for the case whenAbortDerR = true here, and the argument is similar for the case when
AbortDerI = true. Given that AbortDerR happens, we have that Ver(pki , X, σi) = 1
and peerCorrupted[sID] = false. Due to the criteria in line 40, the pair (X, σi) has not
been output by SessionI on input (i, r) for any r , and hence (i, X) has never been queried
to the Sign′ oracle. Therefore, B aborts A in the IND-FS game and returns (i, X, σi) to

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 21 of 42 26

Fig. 12. Adversary B against the (t ′, ε′, μ, Qs , Q′
Cor)-StCorrCMA-security of SIG. The StCorrCMA game

provides oracles Sign′,Corr′. The adversary A has access to oracles O := {SessionI,SessionR,DerI,
Reveal,Corr,Test,H}, where Reveal and Test remain the same as in Fig. 4. We highlight the most
relevant codes with bold line numbers .

the StCorrCMA challenger to win the StCorrCMA game. Therefore, we have

Pr[AbortDerR] ≤ ε′, (5)

which implies that

∣
∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣
∣ ≤ Pr[AbortDerI] + Pr[AbortDerR] ≤ 2ε′. (6)

The running time of B is the same as that of A, plus the time used to run the key
exchange algorithms Init′I,DerR′,Der′I and the signature verification algorithm Ver.
This gives t ′ ≈ t . For the number of signature queries, we have Qs ≤ S, since SessionR
can abort before it queries the signature oracle, and the adversary can reuse messages
output by SessionI. For the number of corruptions, we have Q′

Cor = QCor.

 26 Page 22 of 42 J. Pan et al.

Game G2: Intuitively, since in G1 an adversary A is not allowed to create its own
message to attack the protocol, A can only use the honestly generated messages, but it
may forward these messages in an different order. TheOW-HV security of the underlying
KE allows us to tightly prove that such an A cannot distinguish a real session key from a
random one, which conclude our security proof. To formally prove it, in G2, Test oracle
always returns a uniformly random key, independent on the bit b (Fig. 13).

Since we have excluded collisions in the messages output by the experiment, it is
impossible to create two sessions of the same type that compute the same session key.
Hence, an adversary must query the random oracleH on the correct input of a test session
to detect the change between G1 and G2 (which is only in case b = 0). More precisely,
we have Pr[GA

2 ⇒ 1 | b = 1] = Pr[GA
1 ⇒ 1 | b = 1] and

∣
∣
∣Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣
∣ = 1

2

∣
∣
∣Pr[GA

2 ⇒ 1 | b = 0] + Pr[GA
2 ⇒ 1 | b = 1]

− Pr[GA
1 ⇒ 1 | b = 0] − Pr[GA

1 ⇒ 1 | b = 1]
∣
∣
∣

= 1

2

∣
∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣
∣ . (7)

To bound Eq. (7), we construct an adversaryC to (t ′′, ε′′, μ, S′, QV)-break theOW-HV
security of KE. The input to C is the number of parties μ, and system parameters par.
In addition, C has access to oracles Session′

I,Session
′
R,Der′

I and KVer.
We firstly show that the outputs of SessionI, SessionR and DerI (simulated by C)

are distributed the same as in G1. Due to the abort conditions introduced in G1, for
all sessions that has finished computing a key without making the game abort, their
messages are honestly generated, although they may be in a different order and there are
non-matching sessions. Hence, SessionI, SessionR andDerI can be perfectly simulated
using Session′

I, Session
′
R and Der′

I of the OW-HV game and the signing key.
It is also easy to see that the random oracle H simulated by C has the same output

distribution as in G1. We stress that if line 66 is executed then adversary A may use
the sID to distinguish G2 and G1 for b = 0, which is the only case for A to see the
difference. At the same time, we obtain a valid attack � := (sID, K ∗) for the OW-HV
security. Thus, we have

∣
∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣
∣ ≤ ε′′.

As before, the running time of C is that of A, plus generating and verifying signatures,
and we have t ′′ ≈ t . Furthermore, S′ = S, as the counter for the OW-HV game increases
once for every call to SessionI and SessionR.

At last, for game G2 we have Pr[GA
2 ⇒ 1] = 1

2 , as the response from the Test oracle
is independent of the bit b. Summing up all the equations, we obtain

ε ≤
∣
∣
∣
∣
Pr[IND-FSA ⇒ 1] − 1

2

∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
Pr[GA

0 ⇒ 1] + μ2

2α+1 + S2

2β+1 − Pr[GA
2 ⇒ 1]

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1] + Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1] + μ2

2α+1 + S2

2β+1

∣
∣
∣
∣
∣

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 23 of 42 26

Fig. 13. Reduction C against the (t ′′, ε′′, μ, S′, QV)-OW-HV-security of KE. The OW-HV game provides
oracles O′ := {Session′

I, Session
′
R,Der′

I,KVer}. The adversary A has access to oracles O := {SessionI,

SessionR,DerI,Reveal,Corr,Test,H}, where Reveal,Corr and Test are defined as in G2 of Fig. 11.
We highlight the most relevant codes with bold line numbers. The center dot ‘·’ in this figure means arbitrary
value .

≤
∣
∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣
∣ +

∣
∣
∣Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]

∣
∣
∣ + μ2

2α+1 + S2

2β+1

≤ 2ε′ + ε′′
2

+ μ2

2α+1 + S2

2β+1 ,

and t ′ ≈ t, Qs ≤ S, Q′
Cor = QCor, t ′′ ≈ t, S′ = S, QV ≤ QH.

�

 26 Page 24 of 42 J. Pan et al.

Fig. 14. Illustration of running a group authenticated key exchange from partyPi ’s point of view. All messages
are broadcast to all parties, and every party runs all the algorithms .

6. An Extension: Tightly Secure Group Authenticated Key Exchange

6.1. Security Model for Group Authenticated Key Exchange

We consider two-round broadcast group authenticated key exchange protocols that are
executed interactively between μ > 2 parties. Each round corresponds to a messages
broadcast. Formally, it is defined as GAKE = (GenGAKE, Init,Res,Der) consisting of
four algorithms. It is visualized as in Fig. 14. We denote the set of potential participants
by P = (P1, . . . ,Pμ). Before the protocol is executed for the first time, each party
Pi ∈ P runs the algorithm GenGAKE(par) to generate his own long-term public and
private keys (pki , ski).

Our two-round GAKE protocol allows all parties in a group Q ⊆ P to establish a
common secret key. For a party Pi , we say that Pi is the rest of the group from Pi ’s
view, and we can write Q = {Pi }∪Pi . By a slight abuse of notation, we will often write
j ∈ Pi instead of P j ∈ Pi .

In the first round, each party Pi ∈ Q starts the session sID by executing the initial-
ization algorithm Init(ski , {pk j } j∈Pi) which outputs a message mi and a state st. The
party Pi broadcasts (i,mi) and keeps the internal state st.

In the second round, letMi denote the set of all pairs (j,m j) received byPi in the first
round. Then, each party Pi ∈ Q executes the response algorithm
Res(ski , {pk j } j∈Pi , st,Mi) to compute a message m̂i and an updated state st. As in
the first round, Pi broadcasts (i, m̂i) and keeps the state st.

In the final phase, let M̂i denote the set of all pairs (j, m̂ j) received by party Pi in
the second round. To obtain the common group session key, each party Pi can execute
Der(ski , {pk j } j∈Pi , st,Mi ,M̂i) which outputs the key K. An illustration is given in
Fig. 14.

Similar to our two-party key exchange protocol, our security game is written in pseudo-
code. In our model, GAKE achieves forward secrecy and has both the explicit authen-
tication and implicit key confirmation properties. In the group key exchange setting,
explicit authentication means entity authentication for every message transmitted in the
sense that each party can explicitly confirm that the initial message is issued by the
actual owner of the associated public key. Moreover, the key confirmation property is
also implicit for our GAKE, where every party in a group Q is assured implicitly that

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 25 of 42 26

Fig. 15. Game IND-G-FS for GAKE. The number of messages in the set Mi is denoted by |Mi |, and |Pi |
denotes the number of parties in Pi .

all members of the group will have the same session key. The security game is given
in Figs. 15 and 16. Our model can be viewed as a careful extension of our two-party
model to μ parties. Moreover, we note that Poettering et al. [41] proposed a general
framework for defining security of GAKE protocols. To the best of our knowledge, our
model can be viewed as a specified use case of their framework. For instance, we do not
consider Expose queries to reveal the local session-state.
Execution environment. We consider μ parties P = (P1, . . . ,Pμ) with long-term
key pairs (pki , ski), i ∈ [μ]. For each group key exchange, each party in a group Q
has their own session with a unique identification number sID, and variables which are
defined relative to sID:

– owner[sID] ∈ [μ] denotes the owner of the session.
– peer[sID] ⊆ [μ] denotes the peers of the session.
– Q[sID] denotes all the participants of the session.
– MsgI[sID] denotes the message sent by the owner during the first round.
– M[sID] denotes the messages received by the owner during the first round.
– MsgR[sID] denotes the message sent by the owner during the second round.
– M̂[sID] denotes the messages received by the owner during the second round.
– state[sID] denotes the (secret) state information i.e. ephemeral secret keys.

 26 Page 26 of 42 J. Pan et al.

– sKey[sID] denotes the session key.

Adversary model. Similar to the AKE security notion, we do not allow the adversary
to register adversarially controlled parties by providing long-term public keys, and the
adversary has access to oracles Corr and Reveal as described in Fig. 15. We use the
following Boolean values to store which queries the adversary made:

– corrupted[i] denotes whether the long-term secret key of party Pi was given to the
adversary.

– revealed[sID] denotes whether the group session key was given to the adversary.
– peerCorrupted[sID] denotes whether one of the peers in the group was corrupted

and its long-term key was given to the adversary at the time when the session key
was derived.

Matching sessions. Extending the definition of matching sessions from the two-party
case, we define matching sessions in the GAKE setting as follows.

– Matching Sessions: Two sessions sIDi , sID j are matching if:

owner[sIDi] �= owner[sID j] (Different owners)

Q[sIDi] = Q[sID j] (Identical participants)

{MsgI[sIDi]} ∪ M[sIDi]
= {MsgI[sID j]} ∪ M[sID j] (Identical messages in the first round)

{MsgR[sIDi]} ∪ M̂[sIDi]
= {MsgR[sID j]} ∪ M̂[sID j] (Identical messages in the second round)

As in the AKE setting, our protocols in the full GAKE model will use signatures, and
hence any successful no-match attack as described in [35] will lead to a signature forgery.

Test session. The adversary is given access to the test oracle Test. This oracle can be
queried multiple times and depending on a randomly chosen bit b ←$ {0, 1} (which is
shared between all test queries), it outputs either a uniformly random key, or the specified
session key.

6.2. Verifiable Group Key Exchange

To achieve tight security, we extend the verifiable key exchange from the two-party
setting to μ-parties. As for the regular two party AKE, we construct our tightly secure
group authenticated key exchange based on a verifiable (non-authenticated) group key
exchange (GKE) that has One-Wayness against Honest and key Verification attacks
(aka. OW-G-HV security). As in the two-party case, the adversary can perform passive
attacks, or forward messages in a different order to create non-matching sessions, and
check if a key corresponds to some honestly generated transcripts. We require that all
the involved messages must be honestly generated by the security game and not by the
adversary. A (non-authenticated) group key exchange (GKE) protocol consists of a tuple
of algorithms GKE := (Init,Res,Der), where parties do not hold any public or private
key and Init algorithms now take users’ identities (i,Pi) as input.

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 27 of 42 26

Fig. 16. Helper procedures Fresh and Valid for game IND-G-FS defined in Fig. 15. Procedure Fresh
checks if the adversary performed some trivial attack. In procedure Valid, each attack is evaluated by the set
of variables shown in Table 3 and checks if an allowed attack was performed. If the values of the variables are
set as in the corresponding row, the attack was performed, i. e. attack = true, and thus the session is valid .

Table 3. Table of attacks for adversaries against explicitly authenticated group key exchange protocols without
ephemeral state reveals.

An attack is regarded as an AND conjunction of variables with specified values as shown in the each line,
where “–” means that this variable can take arbitrary value and F means “false”

The OW-G-HV security is formally defined by Definition 6 with the security game
OW-G-HV as in Fig. 17.

Definition 6. (Group One-Wayness against Honest and Key Verification Attacks
(OW-G-HV)) A group key exchange protocol GKE is (t, ε, μ, S, QV)-OW-G-HV-
secure where μ is the number of users, S is the number of sessions and QV is the
number of call to KVer, if for all adversaries A attacking the protocol in time at most t ,

 26 Page 28 of 42 J. Pan et al.

Fig. 17. Game OW-G-HV for GKE. A has access to oracles O := {SessionI, SessionR,Der,KVer} .

we have:

Pr[OW-G-HVA ⇒ 1] ≤ ε.

We require that a group key exchange protocolGKE has α-bits of min-entropy, namely
if for all messages m′ we have Pr[m = m′] ≤ 2−α , where m is output by either Init or
Res.

6.3. Instantiation of OW-G-HV with Burmester–Desmedt

We show that the Burmester–Desmedt group key exchange protocol [12] is OW-G-HV
secure. We begin by describing the protocol in our framework, and then prove its security
based on the strong computational Diffie–Hellman assumption.

Let par = (p, g,G) define a prime-order cyclic group G := 〈g〉. We choose a group
of users Q with |Q| = n, and order the participants as P1 to Pn in a cycle. Messages mi

and m̂i are sent by Pi . We then have Pn+1 = P1, and for the messages mn+1 and m̂n+1
we have mn+1 = m1 and m̂n+1 = m̂1.

The Burmester–Desmedt protocol is described in Fig. 18, and for correctness we show
that all parties compute the key

K = gr1r2+r2r3+···rn−1rn+rnr1 . (8)

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 29 of 42 26

Fig. 18. The Burmester–Desmedt protocol, GKEBD .

Recall that for user i , we have st := ri . We define the following values:

Ai−1 := mst
i−1 = gri−1ri

Ai := mst
i−1 · m̂i = gri ri+1

Ai+1 := mst
i−1 · m̂i · m̂i+1 = gri+1ri+2

...
...

Ai−2 := mst
i−1 · m̂i · m̂i+1 · · · m̂i−2 = gri−2ri−1 .

It then follows that for the key computed in line 06 of Fig. 18, we have

K = mn·st
i−1 · m̂n−1

i · m̂n−2
i+1 · · · m̂i−2 = Ai−1Ai Ai+1 · · · Ai−2 = gr1r2+r2r3+···rn−1rn+rnr1 .

Lemma 2. LetGKEBD be the Burmester–Desmedt group key exchange protocol as in
Fig. 18. Then, GKEBD has α = log2 p bits of min-entropy, and for every adversary A
that breaks the (t, ε, μ, S, QV)-security of GKEBD, there exists an adversary B which
breaks the (t ′, ε′, Q′

V)-security of StCDH with

ε ≤ ε′, t ≈ t ′, Q′
V = QV + 1. (9)

Proof. The entropy statement is again straightforward, since ri being drawn uniformly
at random implies that both mi and m̂i are uniformly random as well.

We now construct a simulator B, which on input (gx , gy) breaks the CDH assumption
by simulating the OW-G-HV game to A.

To simulate SessionI(i ∈ [μ],Pi ⊆ [μ]), B proceeds as in Fig. 17, but instead of
running the Init algorithm in line 10, it does the following:

– if i is odd, B draws an element ai ←$ Zp and sets and returns mi := gxgai

– if i is even, B draws an element ai ←$ Zp and sets and returns mi := gygai .

All mi ’s are uniformly distributed, exactly as in the original protocol.
To simulate SessionR, note that B does not know the discrete logarithm of mi ’s, but it

can compute m̂i in the following way: If i is even, B computes m̂i := mai+1−ai−1
i , since

we have

m̂i := (mi+1/mi−1)
y+ai = (gx+ai+1/gx+ai−1)y+ai = (gai+1−ai−1)y+ai

= (gy+ai)ai+1−ai−1 = mai+1−ai−1
i . (10)

 26 Page 30 of 42 J. Pan et al.

Simulation of m̂i for odd i is similar. Equation (10) shows that the simulated m̂i are
distributed the same as in the real distribution.

To simulate Der, B follows the steps in Fig. 17, but skips the key derivation in line 34
and leaves the corresponding session key empty. Since there are no session-key-reveal
oracles in this game, A will not notice this and the simulation is perfect from A’s
viewpoint.

To simulate the KVer oracle on input (sID, K), for readability, we label ri := x + ai
for odd i and ri := y + ai for even i and mi = gri for all i . Recall that the derived
session key in GKEBD is K = gr1r2+r2r3+···rn−1rn+rnr1 . We then write

gri ri+1 = g(x+ai)(y+ai+1) = g(xy+xai+1+ai (y+ai+1)) = gxy(gx)ai+1(gy)ai gai ai+1

for odd i , and

gri ri+1 = g(y+ai)(x+ai+1) = g(xy+xai+ai+1(y+ai)) = gxy(gx)ai (gy)ai+1gai ai+1

for even i . Note that all ai ’s are known. If K is valid for an sID, we have

K = gr1r2+r2r3+···rn−1rn+rnr1

=
n

∏

i=1

gri ri+1

=
∏

1≤i≤n
i≡1 mod 2

gri ri+1
∏

1≤i≤n
i≡0 mod 2

gri ri+1

=
∏

1≤i≤n
i≡1 mod 2

gxy(gx)ai+1(gy)ai gai ai+1
∏

1≤i≤n
i≡0 mod 2

gxy(gx)ai (gy)ai+1gai ai+1

= gnxyg
∑n

i=1 ai ai+1
∏

1≤i≤n
i≡1 mod 2

(gx)ai+1(gy)ai
∏

1≤i≤n
i≡0 mod 2

(gx)ai (gy)ai+1 .

This implies that we can compute

K̃ :=
⎛

⎜
⎝K/

⎛

⎜
⎝g

∑n
i=1 ai ai+1

∏

1≤i≤n
i≡1 mod 2

(gx)ai+1(gy)ai
∏

1≤i≤n
i≡0 mod 2

(gx)ai (gy)ai+1

⎞

⎟
⎠

⎞

⎟
⎠

n−1

.(11)

If K is valid for an sID, we have K̃ = gxy . Hence, B queries Dhx
(

gy, K̃
)

to verify the
key, and returns the answer. This completes the simulation.

If A is able to compute a valid session key, then B wins the StCDH game, and hence
ε ≤ ε′. The running time of B is that of A plus one exponentiation for each SessionI and
SessionR call, and 6 exponentiations and one inversion (disregarding the inversion of n,
which is essentially free) for each call to KVer, since we can sum the various exponents
together before we perform the exponentiations in the denominator. The total number

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 31 of 42 26

Fig. 19. Generic construction of GAKE from SIG, GKE and a random oracle H .

of queries Q′
V to Dhx is Q′

V = QV + 1, as we get one additional call to KVer when
we verify the adversaries forgery. This completes the lemma. �

6.4. Our Generic Transformation for GAKE

Following the construction from Sect. 5, we construct an IND-G-FS-secure authenti-
cated group key exchange protocol GAKE = (GenGAKE, Init,Res,Der) by combin-
ing a StCorrCMA-secure signature scheme SIG = (Gen,Sign,Ver), an OW-G-HV-
secure group key exchange protocol GKE = (Init′,Res′,Der′), and a random oracle
H. The construction is given in Fig. 19

Theorem 3. For every adversaryA that breaks the (t, ε, μ, S, QH, QCor)-IND-G-FS
security of a protocol GAKE constructed as in Fig. 19, we can construct an adversary
B that breaks the (t ′, ε′, μ, Qs, QH, Q′

Cor)-StCorrCMA security of the underlying sig-
nature scheme SIG with α bits of key min-entropy, or breaks the (t ′′, ε′′, μ, S′, QV)-
OW-G-HV security of the underlying key exchangeprotocol�withβ bits ofmin-entropy,
such that

ε ≤ 2ε′ + ε′′ + μ2

2α+1 + S2

2β+1 ,

t ′ ≈ t, Qs ≤ S, Q′
Cor = QCor,

t ′′ ≈ t, S = S′, QV ≤ QH.

Proof. We will prove this by using the following hybrid games, which are illustrated
in Fig. 20.

Game G0: This is the original IND-G-FS for the protocol GAKE. We assume that all
long-term keys, and all messages generated by Init and Res are distinct. The security
game aborts if a collision happens. Using the fact that SIG has α-bits of key min-entropy
and GKE has β-bits of message min-entropy, a collision in the keys happens with

 26 Page 32 of 42 J. Pan et al.

Fig. 20. Games G0-G2 .

probability at most μ2/2α+1, and a collision in the messages happens with probability
at most S2/2β+1. Here, μ is the number of users and S is the number of sessions. Thus,
we have:

Pr[IND-G-FSA ⇒ 1] = Pr[GA
0 ⇒ 1] − μ2

2α+1 − S2

2β+1 . (12)

Game G1: In this game, SessionR and Der abort upon input a session id and a message
set which do not correspond to a previously broadcast message set (i.e. all messages are
honestly generated by using the given oracles; however, there may still be non-matching
sessions), and all signatures with respect to each non-corrupted party in the group are
valid. This step is to exclude the active attacks where an adversary creates its own
message. This change is unnoticed by the adversary, since it requires him to forge at least
one valid signature for the underlyingStCorrCMA secure signature scheme. We will give
a formal proof of the indistinguishability of G0 and G1 in Lemma 3. We denote the abort
event asAbortGAKE := AbortSessR∪AbortDer, whereAbortSessR andAbortDer
correspond to the aborting event in line line 29 and line 47 of Fig. 20, respectively.

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 33 of 42 26

Since the only difference between G0 and G1 is the aborting events AbortGAKE, using
Lemma 3 we have

Pr[GA
1 ⇒ 1] ≥ Pr[GA

0 ⇒ 1] − Pr[AbortSessR]
−Pr[AbortDer] = Pr[GA

0 ⇒ 1] − 2ε′. (13)

GameG2: Intuitively, since inG1 an adversaryA is not allowed to create its own message
for active attacks against the protocol, A can either observe the protocol execution or
forward the honestly generated messages in a different order. We will use theOW-G-HV
security to tightly argue the indistinguishability of a real session key and a uniformly
random one. Formally in G2, the Test oracle always returns a uniformly random key,
independent on the bit b. Since we already in G0 assume that all messages generated by
Init and Res are distinct, and we are in the random oracle model, the only way for A to
compute a valid session key K is to query the correct input. Therefore, by Lemma 4 we
can reduce the difference between G2 and G1 to the OW-G-HV security of GKE, and
we have

Pr[GA
1 ⇒ 1] ≥ Pr[GA

1 ⇒ 1] − ε′′. (14)

In summary, we have

ε ≤ 2ε′ + ε′′ + μ2

2α+1 + S2

2β+1 ,

t ′ ≈ t, Qs ≤ S, Q′
Cor = QCor, t

′′ ≈ t, S = S′, QV ≤ QH.

�

Lemma 3. For every adversary A running in time t0,1 that distinguishes G0 from G1
with probability ε0,1, we can construct an adversaryB against the (t ′, ε′, μ, QH, Q′

Cor)-
StCorrCMA security of the underlying signature scheme SIG, where

t0,1 ≈ t ′, ε0,1 ≤ 2ε′, Q′
Cor = QCor.

Proof. The only difference between G0 and G1 is the aborting events AbortSessR
and AbortDer. To bound the probability of these, we build an adversary B against the
StCorrCMA of the underlying signature scheme SIG as in Fig. 21. The adversary will
successfully generate a valid forgery if and only if AbortSessR or AbortDer happens.

More precisely, if AbortGAKE is true, then the signatures in line 31 and in line 54
of Fig. 21 are valid forgeries against the CorrCMA security of SIG. Here, we only
prove the case where AbortSessR = true. The other case where AbortDer = true
follows the same idea. Given the fact that AbortSessR happens, we have that for all
j ∈ P , Ver(pk j ,m j , σ j) = 1 and peerCorrupted[sID] = false. Moreover, due to the
criteria of line 30, there exists j∗ ∈ P such that (j∗, (m j∗ , σ j∗)) has never been output
by SessionI. Therefore, (m j∗ , σ j∗) is a valid forgery against the CorrCMA security of

 26 Page 34 of 42 J. Pan et al.

Fig. 21. Adversary B against the (t ′, ε′, μ, Qs , QCor)-StCorrCMA of SIG. The StCorrCMA
game provides oracles Sign′,Corr′. The adversary A has access to oracles o :=
{SessionI, SessionR,Der,Reveal,Corr,Test,H}, where Reveal and Test remain the same as in Fig. 15.
We highlight the most relevant codes with bold line numbers .

SIG, and we have

Pr[AbortSessR] ≤ ε′.

Similarly, we also have Pr[AbortDer] ≤ ε′. Overall, we have

t0,1 ≈ t ′, ε0,1 ≤ 2ε′, Q′
Cor = QCor.

�

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 35 of 42 26

Fig. 22. Adversary B against the (t ′′, ε′′, μ, S′, QV)-OW-G-HV of GKE. The OW-G-HV game pro-
vides oracles o′ := {Session′

I, Session
′
R,Der′,KVer}. The adversary C has access to oracles o :=

{SessionI, SessionR,Der,Reveal,Corr,Test,H}, where Reveal,Corr,Test are defined as in the origi-
nal IND-G-FS security game .

Lemma 4. For everyPPT adversaryA running in time t1,2 that distinguishes G1 from
G2 with probability ε1,2, we can construct an adversary B against (t ′′, ε′′, μ, S′, QV)-
OW-G-HV security of the underlying group key exchange protocol, where

t1,2 ≈ t ′′ ε1,2 ≤ ε′′ S = S′.

Proof. Notice that when b = 1, the Test oracle always returns a uniformly random
key in both G2 and G1; therefore, the only difference between G2 and G1 occurs when

 26 Page 36 of 42 J. Pan et al.

b = 0. Hence, we have Pr[GA
2 ⇒ 1 | b = 1] = Pr[GA

1 ⇒ 1 | b = 1], and

∣
∣
∣Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣
∣ = 1

2

∣
∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣
∣ .

(15)

To bound Equation (15), we construct an adversaryB that breaks the (t ′′, ε′′, μ, S′, QV)

-OW-G-HV security of the underlying GKE as in Fig. 22.
Firstly, we remark that the output of Session′

I, Session
′
R and Der′ is distributed iden-

tically as in G1. For all sessions that have finished computing a key without making the
game abort, all messages must be honestly generated due to the abort conditions intro-
duced in G1, although they may be in a different order and there may be non-matching
sessions. Hence, SessionI, SessionR and Der are perfectly simulated by Session′

I,
Session′

R and Der′ of the OW-G-HV game and the signing key.
We note that the random oracle H simulated by B has the same output distribution as

in G1. When b = 0 and line 72 is executed, we obtain a valid attack (sID,K∗) against
the OW-G-HV security. In summary, we have

Pr[GA
2 ⇒ 1 | b = 0] − Pr[GA

1 ⇒ 1 | b = 0] ≤ ε′′.

�Acknowledgements

We thank the anonymous reviewers of CT-RSA 2021 for their many insightful sugges-
tions to improve our paper. We are also grateful to the anonymous reviewers of Journal of
Cryptology for their valuable comments to clarify our security model and make our secu-
rity proofs more understandable. Parts of Pan’s work were done, while he was supported
by the Research Council of Norway under Project No. 324235.

Funding Open access funding provided by NTNU Norwegian University of Science and Technology (incl
St. Olavs Hospital - Trondheim University Hospital).

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 37 of 42 26

Appendices

A Security of Schnorr in the Generic Group Model

We show the StCorrCMA security of Schnorr’s signature scheme in the generic group model (GGM) which
has been formally stated in Theorem 1. This section also gives a proof of the theorem.

We proceed as follows: Firstly, we propose a variant of the IDLOG assumption [32], CorrIDLOG, by
introducing an additional corruption oracle. Secondly, by using a slightly different version of [32, Lemma
5.8], we prove that Schnorr’s signature is tightly StCorrCMA-secure based on the CorrIDLOG assumption.
Finally, we prove the hardness of CorrIDLOG.

Note that in [32] it has been proven that IDLOG tightly implies the multiuser security of Schnorr without
corruptions, which does not necessary give us tight multiuser security with corruptions. However, our new
CorrIDLOG assumption tightly implies the multiuser security of Schnorr with corruptions. We believe that
our CorrIDLOG assumption is of independent interest.

Let par = (p, g,G) be a set of system parameters. The CorrIDLOG assumption is defined as follow:

Definition 7. (CorrIDLOG) The CorrIDLOG problem is (t, ε, μ, QCh, QDl)-hard in par, if for all adver-
saries A interacting with μ users, running in time at most t and making at most QCh queries to the challenge
oracle Ch and QDl queries to the corruption oracle Dl, we have:

Pr

⎡

⎣gs ∈ {Xh j
i · R j |i �∈ LC ∧ j ∈ [QCh]}

∣
∣
∣
∣

for i ∈ [μ]
xi ←$ Zp; Xi := gxi

s ←$ ACh(·),Dl(·)({Xi }i∈[μ])

⎤

⎦ ≤ ε,

where on the j-th challenge query Ch(R j ∈ G) (j ∈ [QCh])Ch returns h j ←$ Zp to A, and on a corruption
query Dl(i) for i ∈ [μ], Dl returns xi to A and adds i into the corruption list LC (namely, LC := LC ∪ {i}).

Before proving the hardness ofCorrIDLOG in the GGM, Lemma 5 shows thatCorrIDLOG tightly implies the
StCorrCMA security of Schnorr in the random oracle model (without using the GGM). Note that this lemma
does not contradict the impossibility result of [22], since our assumption is interactive. In fact, following the
framework in [32, Section 3], one can easily prove that the standard DLOG assumption non-tightly implies
the CorrIDLOG assumption in the standard model.

Lemma 5. (CorrIDLOG
tight−−−→ StCorrCMA) If CorrIDLOG is (t, ε, μ, QCh, QDl)-hard in par, then

Schnorr’s signature Schnorr is (t ′, ε′, μ, Qs , QDl, QH)-StCorrCMA in the programmable random oracle
model, where

t ′ ≈ t, ε′ ≤ ε + QHQs + 1

p
, QCh = QH.

Proof. This proof is straightforward by [32], but for completeness we prove it in details here. Let A be an
adversary against StCorrCMA security. We construct B against CorrIDLOG (Fig. 23).

Firstly, we argue that B perfectly simulates the experiment StCorrCMA unless B aborts in line 14, namely
(R,m) collides with a previous hash query. Since R is distributed uniformly at random, by the union bound
the probability that B aborts in line 14 is bounded by QHQs/p.
Secondly, we show that B’s forgery s∗ is a valid CorrIDLOG forgery. Given the (h∗, s∗) from A, we have

R∗ = gs
∗ · X−h∗

i∗ and Hash(R∗,m∗) = h∗. We make our argument in the following steps:

1. With high probability, there exists ((R∗,m∗), h∗) ∈ LH. Otherwise, it means A was able to guess the
hash value of (R∗,m∗) without querying Hash. This event is bounded by 1/p.

2. If ((R∗,m∗), h∗) was added to LH by the signing oracle Sign, then Sign must have chosen an s′ such

that gs
′ · X−h∗

i∗ = R∗ = gs
∗ · X−h∗

i∗ , which means s′ = s∗. However, if (h∗, s∗) from A is a valid
StCorrCMA forgery, then s′ = s∗ cannot happen.

 26 Page 38 of 42 J. Pan et al.

Fig. 23. Adversary B against the CorrIDLOG assumption .

3. Now ((R∗,m∗), h∗) can only be added to LH by the hashing oracle Hash. This is equivalent to

R∗ = R j and h∗ = h j for some j ∈ [QG]. Thus gs
∗ = R∗ · Xh∗

i∗ = R j · Xh j
i∗ , and s∗ is a valid attack

in the CorrIDLOG security game.

This concludes the proof of Lemma 5. �

Combining Lemma 5 and Lemma 6 (namely, the generic hardness of CorrIDLOG), we can conclude the
StCorrCMA security of Schnorr’s signature in Theorem 1.

A.1 Generic Hardness of CorrIDLOG

Generic Group Model. In the GGM for prime-order groups G [37,45], operations in G can only be carried
out via black-box access to the group oracle OG(·, ·), and adversaries only get non-random handles of the
group elements. Since groups (G, ·) and (Zp, +) are isomorphic, every element in G is internally identified
as a Zp element. To consistently simulate the group operations, the simulator maintains a list LG internally
and a counter cnt that keeps track of the number of entries in LG. LG contains entries of the form (z(x),Cz),
where z(x) ∈ Zp[x] represents a group element and the positive integer Cz is its counter.
We assume A can make at most QG queries to OG.

Lemma 6. For any adversary A that (t, ε, μ, QCh, QDl)-breaks the CorrIDLOG assumption, we have

ε ≤ (QG + μ + 1)2

2p
+ (μ − QDl)

p
.

We recall the Schwartz–Zippel Lemma that is useful for proving Lemma 6.

Lemma 7. (Schwartz–Zippel Lemma) Let f (x1, . . . , xn)beanonzeromultivariant polynomial ofmaximum
degree d ≥ 0 over a field F. Let S be a finite subset of F and a1, . . . , an be chosen uniformly at random from
S. Then, we have

Pr[f (a1, . . . , an) = 0] ≤ d

|S| .

Proof of Lemma 6. A is an adversary against the CorrIDLOG assumption. B is simulator that simulates the
CorrIDLOG security game in the GGM and interacts with A. The simulation is described in Fig. 24

B simulates the CorrIDLOG game in a symbolic way using degree-1 polynomials. The internal list LG

stores the entries of the form (f (x),C f (x)), where f (x) ∈ Zp[x1, . . . , xμ] is a degree-1 polynomial and
C f (x) ∈ N identifies which entry it is. B also keeps track of the size of LG by cnt. After A outputs an attack,

all the variables (x1 . . . xμ) will be assigned a value (a1, . . . , aμ) ←$ Z
μ
p chosen uniformly at random.

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 39 of 42 26

Fig. 24. B simulates the CorrIDLOG security game in the GGM and interacts with A. The adversary A has
access to the oracles O := (OG,Chall,Dl) .

We remark that B perfectly simulates the CorrIDLOG security game in the GGM if none of the distinct
polynomials zi and z j stored in LG collide when evaluating on the random vector a over Zp . Applying the
union bound over all pairs of distinct polynomials in LG, we have:

Pr[BadG] := Pr
a←$Z

μ
p

[∃(i, j) ∈ [cnt]2 : zi (x) �= z j (x) ∧ zi (a) = z j (a)]

≤
(
QG + μ + 1

2

)

· 1

p
≤ (QG + μ + 1)2

2p
,

where the factor 1
p comes from Lemma 7 and the fact that LG contains only degree-1 polynomials and

(a1, . . . , aμ) is chosen uniformly at random from Z
μ
p .

We give an upper bound of the success probability of A as follows:

ε ≤ Pr[BadG] + Pr
a←$Z

μ
p

[∃i∗ ∈ [μ] \ LC : s∗ = ai∗h∗ + r∗(a)]

≤ (QG + μ + 1)2

2p
+ (μ − QDl)

p
.

The second term (μ−QDl)
p comes from the fact that for each i∗ ∈ [μ] \ LC A has no information about xi∗ .

Thus for a fixed i∗ ∈ [μ] \ LC , we get that xi∗h∗ + r∗(x) − s∗ is a degree-1 polynomial, and by Lemma 7

Pr
a←$Z

μ
p

[s∗ = ai∗h∗ + r∗(a)] ≤ 1

p
.

By the union bound, we have

Pr
a←$Z

μ
p

[∃i∗ ∈ [μ] \ LC : s∗ = ai∗h∗ + r∗(a)] ≤ μ − QDl

p
.

�

 26 Page 40 of 42 J. Pan et al.

References

[1] M. Abdalla, M. Bellare, P. Rogaway, The oracle Diffie-Hellman assumptions and an analysis of DHIES,
in Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020 (Springer, Heidelberg, 2001), pp. 143–158

[2] C. Bader, D. Hofheinz, T. Jager, E. Kiltz, Y. Li, Tightly-secure authenticated key exchange, in Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014 (Springer, Heidelberg, 2015), pp. 629–658

[3] M. Bellare, W. Dai, The multi-base discrete logarithm problem: Tight reductions and non-rewinding
proofs for Schnorr identification and signatures, in Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578 (Springer, Heidelberg, 2020), pp. 529–552

[4] M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, in
Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93 (ACM Press, 1993),
pp. 62–73

[5] M. Bellare, P. Rogaway, Entity authentication and key distribution, in Stinson, D.R. (ed.) CRYPTO’93.
LNCS, vol. 773 (Springer, Heidelberg, 1994), pp. 232–249

[6] M. Bellare, P. Rogaway, The security of triple encryption and a framework for code-based game-playing
proofs, in Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004 (Springer, Heidelberg, 2006), pp.
409–426

[7] F. Bergsma, T. Jager, J. Schwenk, One-round key exchange with strong security: An efficient and generic
construction in the standard model, in Katz, J. (ed.) PKC 2015. LNCS, vol. 9020 (Springer, Heidelberg,
2015), pp. 477–494

[8] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.Y. Yang, High-speed high-security signatures, in
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917 (Springer, Heidelberg, 2011), pp. 124–142

[9] E. Bresson, O. Chevassut, D. Pointcheval, Provably authenticated group Diffie-Hellman key exchange—
the dynamic case, in: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248 (Springer, Heidelberg, 2001),
pp. 290–309

[10] E. Bresson, O. Chevassut, D. Pointcheval, Dynamic group Diffie-Hellman key exchange under standard
assumptions, in Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332 (Springer, Heidelberg, 2002),
pp. 321–336

[11] E. Bresson, O. Chevassut, D. Pointcheval, J.J. Quisquater, Provably authenticated group Diffie-Hellman
key exchange, in Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001 (ACM Press, 2001), pp. 255–264

[12] M. Burmester, Y. Desmedt, A secure and efficient conference key distribution system (extended abstract),
in: Santis, A.D. (ed.) EUROCRYPT’94. LNCS, vol. 950 (Springer, Heidelberg, 1995), pp. 275–286

[13] D. Cash, E. Kiltz, V. Shoup, The twin Diffie-Hellman problem and applications, in Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965 (Springer, Heidelberg, 2008), pp. 127–145

[14] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, T. Jager, Highly efficient key exchange protocols
with optimal tightness, in Boldyreva, A., Micciancio, D. (eds.)CRYPTO2019, Part III. LNCS, vol. 11694
(Springer, Heidelberg, 2019), pp. 767–797

[15] H. Davis, F. Günther, Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols, in Sako, K.,
Tippenhauer, N.O. (eds.) ACNS 21, Part II. LNCS, vol. 12727 (Springer, Heidelberg, 2021), pp. 448–479

[16] C. de Saint Guilhem, M. Fischlin, B. Warinschi, Authentication in key-exchange: Definitions, relations
and composition, in: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Security Foundations Symposium
(IEEE Computer Society Press, 2020), pp. 288–303

[17] D. Diemert, K. Gellert, T. Jager, L. Lyu, More efficient digital signatures with tight multi-user security,
in Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711 (Springer, Heidelberg, 2021), pp. 1–31

[18] D. Diemert, T. Jager, On the tight security of TLS 1.3: Theoretically sound cryptographic parameters
for real-world deployments, J. Cryptol. 34(3), 30 (2021)

[19] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory 22(6), 644–654
(1976)

[20] W. Diffie, P.C. van Oorschot, M.J. Wiener, Authentication and authenticated key exchanges, Designs
Codes Cryptography 2(2), 107–125 (1992)

[21] M. Fischlin, F. Günther, B. Schmidt, B. Warinschi, Key confirmation in key exchange: A formal treatment
and implications for TLS 1.3, in 2016 IEEESymposiumon Security andPrivacy (IEEE Computer Society
Press, 2016), pp. 452–469

Signed (Group) Diffie–Hellman Key Exchange with Tight Security Page 41 of 42 26

[22] N. Fleischhacker, T. Jager, D. Schröder, On tight security proofs for Schnorr signatures, in P. Sarkar, T.
Iwata (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873 (Springer, Heidelberg, 2014), pp. 512–531

[23] S.D. Galbraith, J. Malone-Lee, N.P. Smart, Public key signatures in the multi-user setting, Inf. Process.
Lett. 83(5), 263–266 (2002). https://doi.org/10.1016/S0020-0190(01)00338-6

[24] K. Gjøsteen, T. Jager, Practical and tightly-secure digital signatures and authenticated key exchange,
in Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992 (Springer, Heidelberg,
2018), pp. 95–125

[25] M.C. Gorantla, C. Boyd, J.M. González Nieto, Modeling key compromise impersonation attacks on
group key exchange protocols, in Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443 (Springer,
Heidelberg, 2009), pp. 105–123

[26] D. Harkins, D. Carrel, The internet key exchange (IKE). RFC 2409 (1998). https://www.ietf.org/rfc/
rfc2409.txt

[27] D. Hofheinz, E. Kiltz, The group of signed quadratic residues and applications, in Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677 (Springer, Heidelberg, 2009), pp. 637–653

[28] T. Jager, E. Kiltz, D. Riepel, S. Schäge, Tightly-Secure Authenticated Key Exchange, Revisited. In:
Eurocrypt 2021 (2021). https://ia.cr/2020/1279

[29] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, On the security of TLS-DHE in the standard model, in
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp.
273–293

[30] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, Authenticated confidential channel establishment and the
security of TLS-DHE, J. Cryptol. 30(4), 1276–1324 (2017)

[31] J. Katz, M. Yung, Scalable protocols for authenticated group key exchange, in Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729 (Springer, Heidelberg, 2003), pp. 110–125

[32] E. Kiltz, D. Masny, J. Pan, Optimal security proofs for signatures from identification schemes, in Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815 (Springer, Heidelberg, 2016), pp.
33–61

[33] H. Krawczyk, SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in
the IKE protocols, in Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729 (Springer, Heidelberg, 2003), pp.
400–425

[34] B.A. LaMacchia, K. Lauter, A. Mityagin, Stronger security of authenticated key exchange, in Susilo,
W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784 (Springer, Heidelberg, 2007), pp. 1–16

[35] Y. Li, S. Schäge, No-match attacks and robust partnering definitions: Defining trivial attacks for security
protocols is not trivial, in Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017
(ACM Press, 2017), pp. 1343–1360

[36] X. Liu, S. Liu, D. Gu, J. Weng, Two-pass authenticated key exchange with explicit authentication and
tight security, in Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492 (Springer,
Heidelberg, 2020), pp. 785–814

[37] U.M. Maurer, Abstract models of computation in cryptography (invited paper), in Smart, N.P. (ed.) 10th
IMA International Conference on Cryptography and Coding. LNCS, vol. 3796 (Springer, Heidelberg,
2005), pp. 1–12

[38] J. Pan, C. Qian, M. Ringerud, Signed diffie-hellman key exchange with tight security, in Paterson, K.G.
(ed.) CT-RSA 2021. LNCS, vol. 12704 (Springer, Heidelberg, 2021), pp. 201–226

[39] J. Pan, M. Ringerud, Signatures with tight multi-user security from search assumptions, in L. Chen, N.
Li, K. Liang, S.A. Schneider (eds.) ESORICS 2020, Part II. LNCS, vol. 12309 (Springer, Heidelberg,
2020), pp. 485–504

[40] PKCS #1: RSA cryptography standard. RSA Data Security, Inc. (1991)
[41] B. Poettering, P. Rösler, J. Schwenk, D. Stebila, SoK: Game-based security models for group key

exchange, in Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704 (Springer, Heidelberg, 2021), pp.
148–176

[42] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard
(2018). https://tools.ietf.org/html/rfc8446

[43] P. Rösler, C. Mainka, J. Schwenk, More is less: On the end-to-end security of group chats in signal,
whatsapp, and threema, in 2018 IEEE European Symposium on Security and Privacy (EuroS P), pp.
415–429 (2018)

[44] C.P. Schnorr, Efficient signature generation by smart cards J. Cryptol. 4(3), 161–174 (1991)

https://doi.org/10.1016/S0020-0190(01)00338-6
https://www.ietf.org/rfc/rfc2409.txt
https://www.ietf.org/rfc/rfc2409.txt
https://ia.cr/2020/1279
https://tools.ietf.org/html/rfc8446

 26 Page 42 of 42 J. Pan et al.

[45] V. Shoup, Lower bounds for discrete logarithms and related problems, in Fumy, W. (ed.) EURO-
CRYPT’97. LNCS, vol. 1233 (Springer, Heidelberg, 1997), pp. 256–266

[46] Y. Xiao, R. Zhang, H. Ma, Tightly secure two-pass authenticated key exchange protocol in the CK model,
in Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006 (Springer, Heidelberg, 2020), pp. 171–198

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Signed (Group) Diffie–Hellman Key Exchange with Tight Security
	1. Introduction
	1.1. Our Contribution
	1.2. Protocol Comparison
	1.3. An Extension and Open Problems
	1.4. History of This Paper

	2. Preliminaries
	3. Security Model for Two-Message Authenticated Key Exchange
	4. Verifiable Key Exchange Protocols
	4.1. Example: Plain Diffie–Hellman Protocol

	5. Signed Diffie–Hellman, revisited
	6. An Extension: Tightly Secure Group Authenticated Key Exchange
	6.1. Security Model for Group Authenticated Key Exchange
	6.2. Verifiable Group Key Exchange
	6.3. Instantiation of OW-G-HV with Burmester–Desmedt
	6.4. Our Generic Transformation for GAKE

	Acknowledgements
	References

