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LMT: Accurate and Resource-Scalable
Slowdown Prediction

Peter Salvesen and Magnus Jahre

Abstract—Multi-core processors suffer from inter-application interference which makes the performance of an application depend on
the behavior of the applications it happens to be co-scheduled with. This results in performance variability, which is undesirable, and
researchers have hence proposed numerous schemes for predicting the performance slowdown caused by inter-application
interference. While a slowdown predictor’s primary objective is to achieve high accuracy, it must typically also respect resource
constraints. It is hence beneficial to be able to scale the resource consumption of the predictor, but state-of-the-art slowdown predictors
are not resource-scalable. We hence propose to construct predictors using Linear Model Trees (LMTs) which we show to be accurate
and resource-scalable. More specifically, our 40-leaf-node LMT-40 predictor yields a 6.6% prediction error compared the 8.4% error of
state-of-the-art GDP at similar storage overhead. In contrast, our LMT-10 predictor reduces storage overhead by 34.6% compared to
GDP while only increasing prediction error to 9.4%.

Index Terms—Multi-core processors, slowdown prediction, memory system resource management, cloud computing.
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1 INTRODUCTION

Multi-core processors typically share memory system compo-
nents, such as the Last Level Cache (LLC) and memory con-
trollers, to improve utilization. Unfortunately, resource sharing
also creates the possibility for requests from co-executing ap-
plications to interfere with each other in the shared memory
system. This is undesirable because interference causes perfor-
mance variability which in turn can result in problems such as
missed deadlines, priority inversion, and unpredictable inter-
active performance [1]. This problem is particularly important
in cloud infrastructures where interference can lead to users
being billed for resources they could not use effectively as well
as Quality of Service (QoS) and Service-Level Agreement (SLA)
violations [2].

Broadly speaking, the performance variability caused by
memory system interference can be mitigated by system soft-
ware — e.g., by allocating more time to co-runners that are
slowed down by interference [1] — or by architectural schemes
— e.g., by allocating LLC capacity or memory bandwidth such
that slowdowns are reduced [3], [4]. In both approaches, the
fundamental problem is to predict the slowdown incurred by
each co-running application, or in other words, predicting each
application’s normalized progress. Normalized progress is the
ratio of the performance of the application during multi-tasking
(i.e., the shared mode) over its performance with exclusive access
to all shared resources (i.e., the private mode) [2], [4]. While
shared-mode performance can be straightforwardly measured
during multi-tasking with Performance Monitoring Counters
(PMCs), private-mode performance must be predicted as it is
impractical, or even impossible, to run all possible applications
with all possible input sets in isolation to measure their actual
private mode performance.

Many slowdown predictors have been proposed (e.g.,
GDP [4], PTCA [1], and ASM [3]), and they either (i) detect in-
terference in hardware and thereby predict slowdowns without
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affecting performance, or (ii) let each application run with high
priority in a round-robin fashion in the shared mode, thereby
predicting slowdown by minimizing interference. These pre-
dictors occupy single points in the accuracy versus overhead
design space which is undesirable because they might require
more resources than can be devoted to slowdown prediction
in a particular architecture. Since predictor accuracy typically
increases with resource consumption, it is more desirable to
integrate a (slightly) less accurate predictor than none at all —
creating a need for accurate and resource-scalable slowdown
predictors.

We hence propose to design slowdown predictors using
Linear Model Trees (LMTs) which are decision trees that use
linear regression rather than constants in leaf nodes. LMT-based
predictors can be straightforwardly implemented in hardware
to predict slowdowns at runtime and are accurate, e.g., LMT-40,
which has 40 leaf nodes, yields an average Root Mean Squared
(RMS) prediction error of 6.6%, compared to 8.4% error for
state-of-the-art GDP [4], at 4.4% higher storage overhead. LMT
predictors are resource-scalable because their accuracy typically
decreases (improves) when reducing (increasing) node count,
e.g., our 10-leaf-node LMT-10 predictor yields an RMS error of
9.4% while reducing storage overhead by 34.6% compared to
GDP.

2 SLOWDOWN PREDICTION

Slowdowns are caused by memory requests of co-runners
interfering with each other in the shared memory system,
thereby increasing memory latencies. Requests may (i) need to
wait for requests from other applications in the interconnect
or memory bus, (ii) the applications may evict each others
data in the LLC, and (iii) applications can destroy each others
DRAM page locality. Slowdowns can hence vary significantly
since applications have different memory intensity and varying
ability to hide memory latencies.

Interference-aware performance metrics, such as System
Throughput (STP) and Average Normalized Turn-around Time
(ANTT), first compute normalized progress for each co-
runner [5]. Normalized progress is a number between 0 (no
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Fig. 1: Partial GDP data-flow graph for Lucas.

Fig. 2: Linear Model Tree (LMT) example.

progress) and 1 (no interference) because private-mode perfor-
mance is always greater than or equal to shared-mode perfor-
mance; recall that each application runs alone with exclusive
access to all shared resources in the private mode. While
shared-mode performance can be straightforwardly measured
at runtime with PMCs, measuring private-mode performance
requires running the each application in isolation. This is im-
practical or even impossible in practice and researchers have
hence proposed schemes that predict private-mode performance
from information that is available in the shared mode [1], [3],
[4], [6].

Existing slowdown predictors rely on heuristics to identify
when interference results in performance loss. GDP [4] for
instance assumes that the application’s data-flow graph is
very similar in the shared and private modes, but Figure 1
shows that the shared and private-mode data-flow graphs of
the Lucas benchmark are clearly different. More specifically,
interference delayed a memory request in the shared mode
which resulted in its latency being hidden (see the red ring
in Figure 1) whereas the latency of this request was exposed
in the private mode. PTCA [1] on the other hand assumes that
interference affects performance whenever a load stalls at the
head of the reorder buffer, yet some requests that are delayed
by interference in the shared mode will also stall the core in the
private mode. Predicting private mode performance is hence
challenging because slowdown predictors must appropriately
account for all important shared-mode interference-related be-
haviors and their impact on private-mode performance. Our
LMT-based predictors learn this relation whereas prior work
rely on heuristics.

3 LMT-BASED SLOWDOWN PREDICTION

Capturing data sets. Training LMT predictors require capturing
a data set which maps the shared-mode PMC values of an ap-
plication to its private-mode performance, i.e., Instructions Per
Cycle (IPC). Memory system resource management schemes
are typically epoch-based which means that the predictor must
capture PMC values across a fixed clock-cycle epoch. We hence
retrieve shared-mode PMCs for all applications in a workload
once every 5 million clock cycles (which is in line with prior
work [4], [7]). Relating shared-mode PMCs to private-mode
performance is challenging because interference affects the per-
formance of a single application differently across workloads,
but PMCs and private-mode IPC must be taken from the exact
same instruction window for the LMTs to yield good predic-
tions. We address this challenge by recording the dynamic
instruction window alongside PMC values in the shared mode

and then capture private-mode performance traces for these
instruction windows for each application in the workload. Since
we focus on a 4-core architecture, this results in one shared-
mode experiment and four private-mode experiments for each
workload. Note however that each workload runs for between
90 million and 7 billion clock cycles and hence yield from 18 to
1,400 data points.

Training and prediction. As mentioned before, an LMT com-
bines a decision tree with linear regression (see Figure 2). We
start out with a single node representing the total training
data. The root node is split recursively to form a tree, where
every data point belongs to one leaf node, following a line of
binary splits from the root node. Using the average private-
mode IPC of the training data points within a leaf node as
their prediction, each split minimizes the RMS error of the
prediction. The split compares a shared-mode PMC (feature)
with a constant and determines whether to go left or right
in the tree. We split recursively until we reach the desired
number of nodes. At that point, an ordinary least squared
linear regression model is trained in every leaf node based on
the observed training data belonging to that node. Training is
performed at design-time and is hence a one-time cost for each
architecture. To predict private-mode performance at runtime,
PMCs are retrieved at the end of an epoch and used to follow a
path through the tree to a leaf node in which the the predicted
private-mode performance (target) is the output of that node’s
linear regression.

For the LMT predictor to generalize beyond the applications
and workloads of the training set, i.e., provide accurate predic-
tions for unseen applications and workloads, it is necessary
to create a training set that exposes all important behaviors.
We hence use 51 SPEC CPU benchmarks from various suites
and randomly generate 90 workloads for our training set and
25 workloads for our validation set yielding in total 15,284
(3,347) training (validation) data points. While this is sufficient
for the architecture we consider in this work, architects must
be careful to select a comprehensive and unbiased data set
for each LMT deployment — an ubiquitous challenge within
supervised machine learning. The main overhead of training
an LMT-predictor is capturing the data set, but, once the data
set has been created, training is practically instantaneous.

Feature selection. The features are the PMCs available in the
architecture which record interference-relevant information. We
identified 26 such counters which include the cycles the core
was committing instructions and stalled for various reasons
(e.g., on a shared memory system load) and cache misses and
cache writebacks at different levels. (The details are available
in [8].) We found that accounting for interference in the LLC
requires (sampled) Auxiliary Tag Directories (ATDs) [7], and
we hence include the predicted private mode LLC counters
(e.g., hits and accesses) as possible features. Many of the
selected PMCs are available in contemporary multi-cores; the
key exception is the ATD-related counters. Once the PMCs are
in place, there is however no significant overhead associated
with making them available to the LMT predictor, i.e., their
value must simply be routed to the predictor. Since training
is performed at design-time, it is only necessary to route the
PMCs selected during training to the hardware predictor.

The trade-off is different for the linear regression component
in the leaf nodes of the LMT. In this case, all selected features
will be assigned a coefficient during training which we have
to allocate storage for in all leaf nodes to predict private-mode
IPC at runtime. It is hence beneficial to select a limited number
of features with high predictive power. To this end, we used
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Fig. 3: A generic LMT-predictor implementation.

the R2 metric to compute the linear variance of combinations
of features while iteratively adding features used for linear re-
gression, and we found that choosing 12 of the total 26 features
gave 98.3% of the maximum potential R2 score. We hence use
12 features for linear regression in all LMT configurations. For
the 10-leaf-node tree, the features used within the decision tree
are a subset of the features used for linear regression whereas
the larger trees use some additional features (see [8] for details).
Implementation. Figure 3 shows a generic hardware imple-
mentation of an LMT-based slowdown predictor. During each
epoch, the architecture counts performance events and stores
them in the n feature registers (i.e., F0, . . . , Fn−1). At the end
of the epoch, the Slowdown Prediction Engine (SPE) traverses
the tree. For each node i, SPE retrieves Fj , which is the value
of feature j, and compares it to the constant Ci. The table
that contains Ci also contains flags that identify the feature
to be used, j in this case, and if the node is a leaf node. In
the root node of Figure 2, the control unit would for example
retrieve shared-mode IPC (the feature) and use the comparator
to check if it is greater than 0.5 (the constant). The outcome of
the comparison determines which node SPE will fetch next by
accessing the Li or Ri pointers. When the evaluation reaches a
leaf node, SPE instructs the Regression Unit (RU) to compute
the linear regression using the weights of this particular leaf
node. These are stored in a table which RU iterates through.
Since linear regression is a sum of products, RU consists of a
multiplier, an adder, and simple control logic.

All the LMT-predictor hardware is off the critical path
and has no direct performance impact. We estimate prediction
latency by accounting for the cycles spent on feature retrieval,
tree traversal, and computing the linear regression, assuming
a one cycle latency for addition, three for multiplication, and
25 for division. This results in prediction latencies between
91 cycles (LMT-10) and 98 cycles (LMT-80). The key drivers
of storage overhead are the regression tables and the ATD.
The regression tables require one entry for each leaf node and
feature which yields storage overheads of 1.8 kB, 7.3 kB, and
14.3 kB for LMT-10, LMT-40, and LMT-80, respectively, when
assuming 24-bit values. The storage overhead of the ATD is
7.3 kB, yielding overall storage overheads of 9.1 kB, 14.6 KB,
and 21.6 KB, respectively. The main energy overhead of the
LMT predictors is the accesses to the ATD, but this is negligible
compared to the energy cost of an LLC access. In our setup, the
energy cost of an ATD access is 8.1 pJ compared to 430.6 pJ
for an LLC access according to CACTI [9] assuming 22 nm
technology.

4 EXPERIMENTAL SETUP

We implement our LMT-based predictors within the simulator
infrastructure that was used to evaluate GDP [4], and model
a 4-core system configured as shown in Table 1. We simulate
four-benchmark multi-programmed workloads in which each
benchmark is pinned to a physical core. We select a represen-
tative 100 million instruction sample for each benchmark using

TABLE 1: Simulator configuration.
Parameter Value
Clock frequency 4 GHz
Processor Cores 128 entry reorder buffer, 32 entry load/store queue,

64 entry instruction queue, 4 instructions/cycle,
4 integer ALUs, 2 integer multiply/divide, 4 FP
ALUs, 2 FP multiply/divide, 2048 entry hybrid
branch predictor, 2048 entry 4-way BTB

L1 Data Cache 2-way, 64KB, 3 cycles latency, 16 MSHRs
L1 Instr. Cache 2-way, 64KB, 3 cycles latency, 16 MSHRs
L2 Private Cache 4-way, 1MB, 9 cycles latency, 16 MSHRs
L3 Shared Cache 16-way, 8MB, 16 cycles latency, 256 MSHRs, 4 banks
Ring Interconnect 4 cycles per hop transfer latency, 32 entry request

queue, 1 request ring, 1 response ring
Main memory DDR4-2666, 18-18-18-43 timing, 64 entry read

queue, 64 entry write queue, 16 banks, 2 channels,
FR-FCFS scheduling, open page policy

SimPoint [10], and simulate the workload until all benchmarks
have committed 100 million instructions. We restart bench-
marks when they reach the end of their simulation sample.
For each workload, we run the private-mode simulations after
the shared-mode simulation and retrieve statistics that exactly
match the instructions that were executed by each benchmark
in each epoch in the shared mode.

We consider 51 benchmarks from different SPEC CPU
suites, and classify them as as streaming (S), highly memory
sensitive (H), medium memory sensitive (M), and low mem-
ory sensitive (L) by comparing the slowdown incurred in the
private mode when we reduce LLC capacity and memory
bandwidth. We then randomly generated 90 workloads for our
training set out of which 25, 25, 10, and 10 workloads consist of
only S, H, M, and L benchmarks, respectively, and we refer to
these as S, H, M, and L-workloads. In addition, we generate
20 A-workloads where all benchmarks are eligible. For our
validation set, we randomly generate 25 workloads (5 in each
category). The workloads and more details regarding our setup
is available in [8].

5 RESULTS

Prediction error. Figure 4 compares RMS private-mode IPC
prediction error for LMT-10, LMT-40, and LMT-80 to GDP [4];
the storage overhead of LMT-40 and GDP are similar. A key
take-away is that accuracy improves with node count for the
LMT predictors, i.e., LMT-80 typically has lower error than
LMT-40 which in turn typically has lower error than LMT-
10. The exceptions are A3, in which LMT-40 has lower error
than LMT-80, and M0 where the error trend is reversed. In
these cases, the LMT predictors misclassify behavior because
the required PMC to private-mode IPC mapping is not well
represented in the training data. Our LMT predictors perform
favorably compared to GDP, in particular for the H- and S-
workloads where GDP has higher errors because more memory
congestion makes GDP’s data-flow graph prone to being differ-
ent in the shared and private modes (see Section 2). This leads
to LMT-40 providing 21.0% lower error than GDP on average
with similar storage overhead. LMT-10 reduces overhead by
34.6% compared to GDP, which results in 12.6% higher error
than GDP, whereas LMT-80 reduces error by 35.9% compared
to GDP at the cost of 55.3% larger overhead.

GDP performs well compared to our LMT-predictors in the
M-workloads. This is primarily caused by two factors. First,
the training data is skewed towards H- and S-workloads. The
relatively limited training data for M-workloads makes them
prone to larger prediction errors. Specially workload M0 points
to this, as prediction error grows with LMT size. Second,
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Fig. 4: Average private mode IPC RMS error for our LMT-predictors compared to GDP [4] for our test set workloads.
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Fig. 5: Interference-aware cloud-pricing case study for H0.

the interference characteristics of the benchmarks in the M-
workloads are less distinct than for other workload categories,
making accurate sub-population classification more difficult.
As M-workloads are somewhat in the midpoint of all the other
workload categories, it is more likely to have traits in the traced
features which overlap with those of other categories.
Slowdown-aware pricing in cloud systems. We now consider a
case study where we use private mode performance predictions
to provide interference-aware billing in cloud infrastructures,
i.e., billing customers according to private-mode performance
rather than shared-mode performance. We assume that the
cloud computing provider charges a fixed cost per compute
hour, and the cost of running each benchmark is therefore
proportional to its execution time. An interference-aware billing
scheme hence aims to predict private-mode execution time as
this is the execution time the benchmark would experience
without interference. We use our LMT-predictors and GDP
to predict private-mode execution time for each benchmark
and normalize to the actual private-mode execution time to
compute normalized cost (compute hour cost cancels during
normalization).

Figure 5 shows normalized cost for the H0 workload. In-
terference is severe for H0 which means that shared-mode cost
is 9.0× higher than private-mode cost for Sphinx3. In contrast,
the shared-mode cost for Ammp is only 25.7% higher than the
private-mode cost. Accounting for interference when billing
in the cloud can hence be critical because slowdowns vary
widely across benchmarks. Our LMT-predictors are accurate,
and the trend with LMT-80 being more accurate than LMT-40
which in turn is more accurate than LMT-10 still holds. GDP
underestimates cost by 29.3% for LBM due its data-flow graph
being different in the shared and private modes, resulting in all
our LMT-predictors being more accurate than GDP.

6 RELATED WORK

Existing slowdown predictors are either fully implemented in
hardware and hence non-invasive (e.g., GDP [4], PTCA [1], and
ITCA [6]) or rely on periodically running each benchmark with

high priority to approximate private mode performance (e.g.,
ASM [3]). Unlike these predictors, which all incur fixed over-
head, our LMT-based predictors are resource-scalable. More-
over, we showed in Section 5 that our LMT-40 predictor pro-
vides better accuracy than GDP at a similar storage overhead;
GDP has previously been shown to outperform PTCA, ITCA,
and ASM [4].

7 CONCLUSION

We have demonstrated that slowdown predictors based on
Linear Model Trees (LMTs) are accurate and resource-scalable.
Our LMT-40 predictor reduces prediction error by 21.0% com-
pared to GDP at a similar area overhead whereas our LMT-10
predictor incurs 12.6% higher error than GDP while reducing
storage overhead by 34.6%.
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