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Abstract: One of the main challenges in motor design is the winding layout, including winding distributions and magnetomotive
force (MMF) harmonic analysis. Considering some shortcomings in the existing theories for winding distributions and difficulties
in dealing with unconventional fractional-slot windings, a unified theory of symmetric winding distributions is proposed. First, this
study gives the sufficient and necessary conditions for a m-phase symmetric winding and the novel winding distribution formula.
Subsequently, a general method for MMF harmonic analysis including the amplitude of MMF harmonics and harmonic orders
are proposed. Finally, the analysis results show that this unified theory is an efficient and compact method to deal with the
winding layout to analyse all kinds of winding MMF harmonics.

1 Introduction
Winding design plays an important role in the whole process of
motor design. There are a lot of classification standards for all
types of windings [1]. According to the slot per-pole per-phase
being an integer or not, windings can be divided into integer-slot
and fractional-slot windings. The integer-slot distributed windings
(ISDWs) have been widely used in most categories of AC
machines such as the regular induction and synchronous machines,
as well as many special-structure machines, e.g. the vernier
machines, flux reversal machines etc. In general, the ISDWs have
the merits of low space magnetomotive force (MMF) harmonics
and simple structure, though sometimes they are designed to be
rather complex so as to achieve better motor performance, such as
lower space harmonics or torque ripple. On the other hand, the
fractional-slot concentrated windings (FSCWs) have shorter end-
windings [2, 3] than the ISDWs, resulting in less copper material
usage and less ohmic loss. Furthermore, the FSCWs structure often
enhances the winding fault tolerance [4, 5] and reduces the cogging
torque in permanent magnet machines [6], but usually causes high
space MMF harmonics [7, 8].

After the selection of the number of phases as m, the number of
slots as Q, and the number of pole pairs as p, the subsequent work
is normally to finish the winding layout. The classical theory of the
star of slots [9] can handle many complicated windings and the
whole process of distributing the winding is a graphical display.
However, for an arbitrary winding with m-phase, the number of
slots is Q and pole pairs is p, this theory cannot qualify the
feasibility of winding distributions directly. Moreover, for some
windings with large number of slots or multiphase windings, it is a
labourious and time-consuming process. Thus, this classical theory
is not satisfactory for automatic winding procedures implemented
in a computer program. An improved fractional-slot theory has
been proposed in [10, 11]. This theory can handle two such types
of windings well:

• Double-layer windings with an odd-phase number and a
constant coil pitch.

• Single-layer windings with an odd-phase number and a constant
odd coil pitch.

However, for windings with the even phases, single-layer windings
with a non-constant coil pitch, and some asymmetrical multiphase
windings, this feasibility theory is not suitable anymore.

In this paper, a unified theory for symmetric winding
distributions is proposed. First, the sufficient and necessary
conditions of m-phase symmetric winding distributions are
presented. Then, a novel winding distribution formula, which can
provide a fast automatic winding distributions algorithm is
established. It is noteworthy that some asymmetrical windings such
as a dual three-phase asymmetrical winding with 12-slot/10-pole
combination [12] and a dual five-phase asymmetrical winding with
20-slot/18-pole combination [13], can be converted to symmetric
windings by the procedure described in this paper. These windings
can then be handled well by the theory of symmetric winding
distributions.

After finishing the winding distribution, it is necessary to
calculate the winding MMF. It is well known that the winding
MMF has a great influence on torque ripple [14, 15], rotor eddy-
current losses [16–18] and undesirable noise sometimes
accompanied by vibrations [19, 20]. MMF calculations have been
presented many times in the literatures. For example, in [10, 11],
the star of slots is used to determine the order of MMF harmonics
qualitatively and to calculate the winding factors for some winding
types. In [21], parameters of four, five, and six-phase FSCWs,
including the winding factors and MMF harmonics for each slot/
pole combinations are calculated. In [22], a new non-overlapping
winding topology is proposed, which can reduce the MMF
harmonics more effectively than the FSCWs. However, these
works are mainly researched on some specific winding types or to
obtain some qualitative conclusions. Thus, in this paper, a general
MMF calculation method for all windings will be presented and the
MMF calculation results can be used generally for electrical
machine design.

2 Theory of symmetric winding distributions
First, the symmetry of winding is given by the following:

• Q slots uniformly distributed on the stator.
• p pole pairs permanent magnets uniformly distributed on the

rotor.
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Subsequently, it is necessary to define phase bands, the number of
phases as m, winding types, the coil pitch as yq, and the symmetric
winding feasibility.

Regarding phase bands and the number of phases as m, each
phase of a certain symmetric winding consists of two phase bands,
the positive phase band being θ0, θ0 + (π /m)  and the negative
phase band being θ0 + π, θ0 + (π /m) + π . Then, the number of
phases of this winding is m.

Regarding winding types, there are many different classification
standards. In this paper, windings will be divided into the single-
layer and double-layer windings based on the number of coil sides
per slot. For a coil, one coil side is called as the upper side, and the
other is called as the lower side in the following sections.

The coil pitch yq can be defined by:

yq
j = L

j − U
j + kQ, 1 ≤ yq

j < Q (1)

where yq
j is the jth coil pitch and the value of yq

j can be generally
selected as an integral part of Q/2p, then L j is the lower-side slot
serial number of the jth coil, U j is the upper-side slot serial number
of the jth coil, Q is the number of slots, and k is an integer.

Symmetric winding feasibility is fully based on the basic
principle of winding distribution [10], which obtains the following
conditions:

• Maximise fundamental electromotive force (EMF).
• The EMF waveform of each phase is equal.
• The electrical angle between fundamental EMF phasors of the

jth phase and the ( j + 1)th phase is constant. Here 1 ≤ j < m.

Here the fundamental EMF in the coils is induced by the sinusoidal
rotating magnetic field with 2π / p wavelength on the rotor.

The first point is satisfied by using positive and negative phase
bands. To satisfy the second and last points, the number of coils
Q/m in each phase must be the same.

Before obtaining the sufficient and necessary conditions of the
symmetric winding feasibility, it is necessary to investigate the
distribution law of the fundamental coil voltage phasors.

2.1 Uniformity and periodicity in the distribution of
fundamental upper-side voltage phasors

First, a double-layer winding is investigated with the number of
slots Q, pole pairs p and a constant coil pitch yq. The distribution of

upper-side voltage phasors is the same as that of coil voltage
phasors, which are due to the constant coil pitch yq.

For this double-layer winding, there are Q upper sides in total.
Phase angles of fundamental upper-side voltage phasors can be
included in the following set U:

{0, αe, 2αe, . . . , (Q − 1)αe}

where αe is electrical slot angle, αe = 2πp/Q, and each subscript of
elements in U is the corresponding slot serial number.

Then, map the set U to the set V, U ⟶
e j( ⋅ )

V:

{1, ejαe
, ej2αe

, . . . , ej(Q − 1)αe
}

It is noted that there might be duplicate elements in the set V. It can
be strictly proven that the number of independent elements is Q/t,
where t is the number of basic windings [10], t = GCD(Q, p).

According to the following equation:

ejkαe
= ej(k + n(Q/t))αe

where k and n are integers.
Therefore, the set V is fully equivalent to the set V′

{1, ejαe
, ej2αe

, . . . , ej((Q/t) − 1)αe
}

Then, a new set W can be constructed:

{1, ejαt
, ej2αt

, . . . , ej((Q/t) − 1)αt
}

where αt = 2πt /Q.
It can be seen that the number of elements in both V′ and W is

Q/t. The jth element in V′ can be represented by the i′th element in
W, which is shown as

j = i′ − 1 + k
Q

t

t

p
+ 1 (2)

where 1 ≤ i′ ≤ Q/t, 1 ≤ j ≤ Q/t, and k is an integer.
It should be noted that the number j represents the slot serial

number and the number i′ is called as the sequence code in this
paper. Thus, the winding distribution formula (2) establishes the
relationship between the sequence code and the slot serial number.

According to (2), it can be seen that elements in V′ and
elements in W are corresponding one by one and there are Q/t
independent elements in both sets. Therefore, two important
conclusions can be drawn as follows:

• Uniformity: The first Q/t upper-side voltage phasors are
uniformly distributed and the angle between two adjacent
voltage phasors is αt.

• Periodicity: The voltage phasor of the jth upper side is exactly
the same as that of the ( j + k(Q/t))th one, here k is an integer.

For a more intuitive comparison of electrical angle αe and the angle
αt between two adjacent voltage phasors, an example with Q = 18,
2p = 20, and t = 2 is shown in Fig. 1. 

2.2 Sufficient and necessary conditions of m-phase
symmetric winding distributions

According to Section 2.1, upper-side voltage phasors of a double-
layer winding are periodically distributed. Therefore, only the first
cycle of upper-side voltage phasors need to be concerned. Thanks
to the winding distribution formula (2), only the sequence code
needs to be concerned in this subsection.

2.2.1 m-phase double-layer windings with the number of
slots Q, pole-pairs p, and a constant coil pitch: According to
the symmetric winding feasibility, the number of coils Q/m in each

Fig. 1  Distribution of upper-side voltage phasors for the double-layer
winding with Q = 18, 2p = 20 and t = 2
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phase must be the same and an integer. Considering the periodicity
in the distribution of voltage phasors Q/mt must be an integer as a
basic necessary condition.

Then, the relative positional relationship between phase bands
and voltage phasors needs to be investigated. The position of the
kth phase band (k − 1)π /m, kπ /m  can be expressed as:

(k − 1)π

mαt
=

Q

mt
⋅

(k − 1)
2

,
kπ

mαt
=

Q

mt
⋅

k

2 (3)

where 1 ≤ k ≤ 2m.
According to (3), both the front and back edges of the kth phase

band overlap voltage phasors when Q/mt is even, which is shown
in Fig. 2a. When Q/mt is odd, one edge overlaps one voltage
phasor, and the other edge locates at the middle of two voltage
phasors, which is shown in Fig. 2b.

For the distribution of phase bands, there are two types:

(a) The distribution of phase bands is positive and negative
alternatively.
(b) The first half are all positive phase bands and the latter half are
all negative phase bands.

When the number of phases m is odd, take the (a) type, which is
shown in Figs. 2a and b. Then, assume that there are a voltage
phasors in a certain positive phase band and b in the negative one
per cycle. The simple relationship among a, b, and Q/mt can be
drawn as:

a + b =
2π

mαt
=

Q

mt

a = b
Q

mt
= even

a = b + 1
Q

mt
= odd

(4)

In this case, when Q/mt is an integer, the distribution of voltage
phasors of each phase is exactly the same. Thus, this double-layer

winding satisfies the requirement of symmetric winding feasibility
and the electrical angle between fundamental EMF phasors of two
adjacent phases is 2π /m.

When m is even, suppose the jth phase band belongs to one
positive phase, the ( j + m)th phase band must belong to its
negative one. If using the (a) type, all odd-numbered phase bands
are positive phase bands. Let j = 1, then 1 + m is odd and the
(1 + m)th phase band belongs to positive and negative phase bands
at the same time. In this case, the negative phase band of a certain
phase will overlap the positive phase band of another phase. Thus,
use the (b) type, which is shown in Fig. 2c, assuming that there are
a voltage phasors in one phase band and b in the adjacent one per
cycle. To satisfy the requirement of symmetric winding feasibility,
the simple relationship among a, b, and Q/mt can be drawn as:

a = b =
Q

2mt
(5)

In this case, the sufficient and necessary conditions of winding
feasibility for double-layer windings with a constant coil pitch are
that Q/2mt is an integer. Moreover, the electrical angle between
fundamental EMF phasors of the jth phase and the ( j + 1)th phase
is π /m. Here 1 ≤ j < m.

2.2.2 m-phase single-layer windings with the even number of
slots Q and pole-pairs p: For a single-layer winding, there are
Q/2 upper sides and Q must be even. There are two methods
dealing with single-layer winding distribution:

• Let the coil pitch be constant and odd. Then, remove all lower
sides. Finally, convert a single-layer winding to a double-layer
winding.

• According to the distribution law of voltage phasors, let all coil
sides be divided into upper and lower sides directly.

For the first one, when the coil pitch is odd, all lower sides are in
even-numbered slots and all upper sides are in odd-numbered slots.
Moreover, all upper sides are still uniformly distributed on the
stator. Thus, this single-layer winding can be converted to the
equivalent double-layer winding with m-phase, the number of slots
Q/2, pole pairs p, and a constant odd coil pitch yq. Then, the key
point is to calculate the number of basic windings t′.

When m is odd:

• Let Q/t be even and t = GCD(Q, p), the number of basic
windings t′ can be calculated by:

t′ = GCD
Q

2
, p = GCD

Q

2t
⋅ t,

p

t
⋅ t = t (6)

Thus, according to the previous analysis, the sufficient and
necessary conditions are that Q/2mt is an integer and Q is even.
Since Q/t is even and m is odd, Q/mt must be even as long as
Q/mt is an integer. Therefore, the sufficient and necessary
conditions can be concluded that Q/mt is an integer and Q is
even.

• Let Q/t be odd, then t must be even. The number of basic
windings t′ can be calculated by:

t′ = GCD
Q

2
, p = GCD

Q

t
⋅

t

2
,

2p

t
⋅

t

2
=

t

2
(7)

Thus, the sufficient and necessary conditions are that Q/mt is an
integer and Q is even.

In summary, when m is odd, the sufficient and necessary
conditions of winding feasibility for single-layer windings with a
constant odd coil pitch are that Q/mt is an integer and Q is even.

When m is even, assume that Q/t is odd, according to (7),
t′ = t /2. Thus, the sufficient and necessary conditions of winding
feasibility for this equivalent double-layer windings are that Q/2mt

is an integer, which apparently contradicts the hypothesis. In this
case, Q/t must be even. Then, according to (6), t′ = t. Thus, the

Fig. 2  Relative positional relationship between phase bands and voltage
phasors
(a) m = odd, Q/mt = even, (b) m = odd, Q/mt = odd, (c) m = even, Q/mt = even
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sufficient and necessary conditions of winding feasibility for
single-layer windings with a constant odd coil pitch are that Q/4mt

is an integer.
For the second one, first, it is assumed that the corresponding

double-layer winding with a constant coil pitch is feasible. For this
corresponding double-layer winding, there are a ⋅ t upper-side
voltage phasors in a certain positive phase and b ⋅ t upper-side
voltage phasors in the negative one when considering all t cycles.
Thus, the key task is to let these coil sides, which correspond to
these voltage phasors, be divided into upper sides and lower sides.
According to (4), there are only two cases, a = b or a = b + 1.

When a = b, using the phase A as an example, all coil sides in
A + are upper sides and all in A - are lower sides in every cycle.
These upper and lower sides can correspond one by one and these
coil sides belong to the phase A. It is worth pointing out that the
common integer-slot single-layer winding such as m = 3, Q = 24,
2p = 4, and yq = 6 belongs to this case.

When a = b + 1, m must be odd. According to (4), Q/mt is odd.
Since Q is even, t must be even. Then, this single-layer winding
distributions can be divided into two steps:

• Take the phase A as an example, let all coil sides in A + except
the first one be upper sides and all in A - be lower sides in every
cycle. Thus, these upper and lower sides can correspond one by
one and these coil sides belong to the phase A.

• Each positive phase has remaining t coil sides, which voltage
phasors are exactly the same. Let t /2 coil sides in A + be upper
sides and t /2 coil sides in B + be lower sides. These t /2 coil
sides belong to the phase A. Then, let t /2 remaining coil sides in
B + be upper sides and t /2 coil sides in C + be lower sides.
These t /2 coil sides belong to the phase B. Repeat the above
processes. Finally, let t /2 remaining coil sides in M + be upper
sides and t /2 remaining coil sides in A + be lower sides. These
t /2 coil sides belong to the phase M.

In summary, when the m-phase double-layer windings with a
constant coil pitch are feasible, the sufficient and necessary
conditions of winding feasibility for the corresponding single-layer
windings are that Q is even.

2.3 Summary and examples

According to the previous analysis, the sufficient and necessary
conditions of m-phase symmetric winding distributions are
included in Table 1. 

To get a more intuitive understanding of the theory of
symmetric winding distributions, four typical examples are shown
in Table 2. 

For the 4p18s-DL, the number of basic windings t = 2 and the
number of coils in each phase per cycle Q/mt = 3. Thus, this
double-layer winding can be feasible according to Table 1. Then,
according to (4), there are two upper-side voltage phasors in each
positive band and one in each negative one per cycle. Then, the
phase-band order of m = 3 is A +, C -, B +, A -, C +, B -. Thus, the
sequence code i′ can be drawn as presented in Table 3. 

Then, the sequence code can be converted to the slot serial
number by (2). In this case:

j = i′

where t = p and k takes zero.
Thus, the slot serial number is exactly the same as the sequence

code when t = p. Then, the slot serial number in the second cycle
can be obtained by those in the first cycle plus Q/t. For other
cycles, repeat the above process.

Finally, according to the coil pitch yq = 4, the lower-side
position can be determined. Thus, the whole winding distribution is
complete and the diagram of this winding distribution is shown in
Fig. 3a. 

Table 1 Sufficient and necessary conditions of m-phase symmetric winding distributions
Winding typea Preconditions Sufficient and necessary conditions

m-phase Phase angleb Coil pitch yq

double layer odd 2π

m

constant Q

mt
= integer

even π

m

Q

2mt
= integer

single layer odd 2π

m

constant and odd Q

mt
= integer and Q = even

even π

m

Q

4mt
= integer

when the corresponding double-layer winding is feasible Q = even

aWinding type property: symmetry, m-phase, phase band width π /m, the number of slots Q, pole pairs p, and the number of basic windings t = GCD(Q, p).
bPhase angle refers to the electrical angle between fundamental EMF phasors of the jth phase and the ( j + 1)th phase. Here 1 ≤ j < m.
 

Table 2 Winding configurations of four models
Models 4p18s-DL 22p20s-DL 22p24s-SL 4p18s-SL
number of phases m 3 5 6 3
number of slots Q 18 20 24 18
number of poles 2p 4 22 22 4
number of basic windings t 2 1 1 1
coil pitch yq 4 1 1 3, 4
winding type double layer double layer single layer single layer

 

Table 3 Double-layer winding with m = 3, Q = 18, 2p = 4

Phase bands A + C - B + A - C + B -
sequence code (1′, 2′) (3′) (4′, 5′) (6′) (7′, 8′) (9′)

slot serial numbera (1, 2) (3) (4, 5) (6) (7, 8) (9)

— (10, 11) (12) (13, 14) (15) (16, 17) (18)
aSlot serial number represents the upper-side position.
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For the 22p20s-DL, the number of coils in each phase per cycle
Q/mt = 4. Thus, there are two upper-side voltage phasors in each
positive and negative phase bands per cycle. Then, the phase-band
order of m = 5 is A +, D -, B +, E -, C +, A -, D +, B -, E +, and C
-. According to (2), the sequence code i′ can be converted to the
slot serial number j

j =
i′ − 1 + 20k

11
+ 1

where k takes an integer that makes j be an integer, and 1 ≤ j ≤ 20.
Then, the sequence code and the slot serial number are shown

in Table 4. Moreover, the diagram of this winding distribution is
shown in Fig. 3b.

For the 22p24s-SL, this winding can be regarded as a
symmetric six-phase single-layer winding and satisfies the
sufficient and necessary conditions Q/4mt = 1. For the purpose of
a fast winding distribution, there are two main steps:

• Finish the whole process of the corresponding double-layer
winding distributions.

• Remove even-numbered slot serial number.

For this corresponding double-layer winding, the number of coils
in each phase per cycle Q/mt = 4. According to (5), there are two
upper-side voltage phasors in each positive and negative phase
bands per cycle. Then, the sequence code and the slot serial
number can be determined in Table 5. Moreover, the diagram of
this winding distribution is shown in Fig. 3c.

Finally, for this dual three-phase asymmetrical winding, select
phases A, C, and E as 1 three-phase winding, and phases B, D, and
F belong to the other.

For the 4p18s-SL, the distribution result of this corresponding
double-layer winding is shown in Table 3. Then, let these coil sides
in Table 3 be divided into upper and lower sides. This process has
been introduced in detail in the previous analysis (when a = b + 1)
and the result is shown in Table 6. It should be noted that there are
two different types of coil pitch yq = 3 and yq = 4. Finally, the
diagram of this winding distribution is shown in Fig. 3d.

2.4 Application: fast automatic winding distributions

Although conventional methods or some commercial software can
also deal with automatic winding distributions, this process is
tedious and time-consuming. The process of automatic winding
distributions proposed in this subsection is fully based on the
theory of symmetric winding distributions and has two obvious
advantages:

• Thanks to Table 1, it is easy to obtain the feasibility of windings.
• Thanks to the winding distribution formula (2), the process of

determining which phase each coil belongs to is much easier and
faster than conventional methods.

The specific implementation for automatic winding distributions is:

• First, the values of m, Q, p, yq, and winding type are given by
the designer. Then, the feasibility of the windings can be
obtained according to Table 1. If the winding is feasible, then go
to the next step. Otherwise, re-define the values of m, Q, p, yq,
and winding type.

• Then, the order of phase bands is determined automatically and
the number of upper sides q in each phase per cycle is
calculated.

• Subsequently, the sequence code i′ is obtained and the upper-
side slot serial number j is obtained by (2).

• Finally, there are three different cases for winding distributions,
a double-layer winding, a single-layer winding with a constant
odd coil pitch and a single-layer winding with a non-odd coil
pitch. For the first case, the upper-side slot serial number j has
been obtained in the previous step. Then, the lower-side slot
serial number is determined by the coil pitch yq. For the second
case, finish the whole process of the corresponding double-layer
winding distributions and remove the even-numbered slot serial
number. For the third case, let all coil sides be divided into
upper and lower sides directly, which has been introduced in
detail in the previous analysis.

Fig. 3  Diagram of winding distributions
(a) 4p18s-DL, (b) 22p20s-DL, (c) 22p24s-SL, (d) 4p18s-SL

 
Table 4 Double-layer winding with m = 5, Q = 20, 2p = 22

Phase bands A + D - B + E -
sequence code (1′, 2′) (3′, 4′) (5′, 6′) (7′, 8′)

slot serial numbera (1, 12) (3, 14) (5, 16) (7, 18)

phase bands C + A - D + B -
sequence code (9′, 10′) (11′, 12′) (13′, 14′) (15′, 16′)

slot serial number (9, 20) (11, 2) (13, 4) (15, 6)
phase bands E + C -
sequence code (17′, 18′) (19′, 20′)

slot serial number (17, 8) (19, 10)
aSlot serial number represents the upper-side position.

 

Table 5 Single-layer winding with m = 6, Q = 24, 2p = 22

Phase bands A + B + C + D +

sequence code (1′, 2′) (3′, 4′) (5′, 6′) (7′, 8′)

slot serial numbera (1, 12) (23, 10) (21, 8) (19, 6)

phase bands E + F + A - B -
sequence code (9′, 10′) (11′, 12′) (13′, 14′) (15′, 16′)

slot serial number (17, 4) (15, 2) (13, 24) (11, 22)

phase bands C - D - E - F -
sequence code (17′, 18′) (19′, 20′) (21′, 22′) (23′, 24′)

slot serial number (9, 20) (7, 18) (5, 16) (3, 14)

aSlot serial number represents the upper-side position.
 

Table 6 Single-layer winding with m = 3, Q = 18, 2p = 4

Phase bands A B C
upper sides (2, 11, 1) (5, 14, 13) (8, 17, 7)
lower sides (6, 15, 4) (9, 18, 16) (12, 3, 10)
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Subsequently, the flowchart of fast automatic winding distributions
is shown in Fig. 4, which is also the algorithm for achieving
automatic winding distributions by the computer program. 

3 MMF calculation
In this section, a general MMF calculation method for double-layer
windings with a constant coil pitch and single-layer windings with
a constant odd coil pitch is proposed.

Before calculation, it is necessary to analyse the physical
meaning of the number of basic windings t. Intuitively, the number
of basic windings represents numbers for repetition of basic
windings on the stator. Thus, the wavelength of the lowest sub-
harmonic of the winding MMF waveform is 2π /t. Then, it is
necessary to define the magnetic angle xm, which is shown as

xm = xmec ⋅ t (8)

where xm is the magnetic angle, xmec is mechanical angle and
t = GCD(Q, p) for double-layer windings with a constant coil
pitch, t = GCD(Q/2, p) for single-layer windings with a constant
odd coil pitch.

Moreover, it should be noted that all angles in the MMF
calculation are magnetic angles.

Then, the entire calculation process includes:

• Calculate the amplitude ∥ f cv ∥ of the MMF phasor in the vth-
order harmonic for a single coil.

• Calculate the winding factor kwv of the vth MMF, including
pitch factor kpv and distribution factor kdv.

• Determine the phase angle θz of the synthetic fundamental MMF
phasor belonging to the jth phase.

• Calculate the spatial displacement ϕ between two adjacent
phases.

Then, set x = 0 at the axis position of the first coil belonging to the
jth phase, which is shown in Fig. 5. 

According to the coordinate system in Fig. 5, the jth-phase
MMF can be expressed as the following Fourier series expansion,
which is shown as:

F j = ∑
v = 1

∞

∥ f jv ∥ ⋅ kwv ⋅ cos(v(x + θz − ( j − 1) ⋅ ϕ)) (9)

where ∥ f jv ∥ = (∥ f cv ∥/kpv) ⋅ q, here q is the number of coils in
the jth phase per cycle, and 1 ≤ j ≤ m, here m is the number of
phases.

As mentioned in the previous section, since single-layer
windings with a constant odd coil pitch can be fully converted to
double-layer windings, the entire calculation process is almost the
same for double-layer and single-layer windings. Thus, only the
MMF calculation process for double-layer windings with a
constant coil pitch is given in detail.

3.1 MMF calculation process for double-layer windings with a
constant coil pitch

3.1.1 Calculate ∥ f jv ∥: For a single coil, its MMF waveform is a
square wave when neglecting the effect of stator slots and the
saturation of ferromagnetic material. Then, for a single coil, the
amplitude ∥ f cv ∥ of the MMF phasor and pitch factor kpv in the
vth-order harmonics can be obtained by calculating its Fourier
series, which are shown as

∥ f cv ∥ =
2Ncic ⋅ kpv

vπ
, kpv = sin

vθ

2
(10)

Fig. 4  Flowchart of fast automatic winding distributions
 

Fig. 5  Coordinate system of MMF calculation
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where θ is the coil span angle, which is shown in Fig. 5, ic is coil
current and Nc is coil turns.

Then, assume that I j, N, and ap are the jth-phase current, turns-
in-series per phase and parallel branches, respectively. Thus,
∥ f jv ∥ can be written as:

∥ f jv ∥ =
2NI j

vπt
, I j = icap, N =

qNc

ap
⋅ t (11)

where q is the number of coils in the jth phase per cycle and
q = Q/mt for double-layer windings with a constant coil pitch.

3.1.2 Calculate the distribution factor kd: The key point when
calculating the distribution factor kd is to determine the spatial
position of each coil, which is belonging to the jth phase.

Then, according to (2), the difference δ0 between slot serial
number of two adjacent upper sides, belonging to the positive
phase J + can be written as

δ0 = 1 + k0

Q

t

t

p
(12)

where δ0 and k0 are integers.
Thus, the position angle α1 between two adjacent coils in J + or

J - can be expressed as δ0α
t. For the vth MMF, this angle is vα1.

Then, calculate the difference δ1 between the slot serial number of
the first upper side in J + and the first one in J -. The sequence
code of the first upper side in J - depends on the parity of Q/mt.

When Q/mt is odd, the sequence code of the first upper side in
J - is ((Q + t)/2t) + 1. Then, δ1 can be written as

δ1 =
Q + t

2t
+ k1

Q

t

t

p
(13)

where δ1 and k1 are integers.
It can be proven that there must be an odd k0 that lets δ0 be even.

Let k1 = (k0 − 1)/2, then δ1 = δ0/2. Thus, for the vth MMF, the
position angle between the first upper sides in J + and J - is vα1/2.
Since the current for coils in J + and J - has the same amplitude
and opposite direction, the angle between the vth MMF phasors of
the first coils in J + and J - is (vα1/2) + π.

When Q/mt is even, the sequence code of the first upper side in
J - is (Q/2t) + 1. Then, δ1 can be written as

δ1 =
Q

2t
+ k1

Q

t

t

p
(14)

where δ1 and k1 are integers.
It is obvious that p/t must be odd. Let k1 = (p/2t) − (1/2), then

δ1 = Q/2t. Thus, the angle between the vth MMF phasors of the
first coils in J + and J - is vπ + π.

Moreover, the distribution of the vth MMF phasors for each coil
in the jth phase is shown in Fig. 6. 

According to Fig. 6, the distribution factor kd can be obtained:

kd =
cos((q/4) ⋅ vα1)
q ⋅ cos(vα1/4)

, in Fig . 6a

kd = 0, inFig . 6b

kd =
sin((q/4) ⋅ vα1)

(q/2) ⋅ cos(vα1/2)
, in Fig . 6c

3.1.3 Calculate the phase angle θz and the spatial
displacement ϕ: For the vth MMF, the equivalent MMF phasor f˙

of all coils in J can be written as

f˙ = ∥ f jv ∥ ⋅ kwv ⋅ ej(vα1(a − 1)/2) (15)

where a is the number of coils in J + per cycle.

Thus, according to (15), the phase angle θz of the synthetic
fundamental MMF phasor belonging to the jth phase is α1(a − 1)/2.
It is worth pointing out that the relationship between the equivalent
axis position θzc of the phase J shown in Fig. 5 and θz is that:

θz = θzc + kπ

where k might be zero or one for double-layer windings with a
constant coil pitch.

For the spatial displacement ϕ between two adjacent phases,
calculate the difference Δϕ of the slot serial number of the first
upper sides in two adjacent phases, first. The sequence code of the
first upper side in the phase (J + 1) + depends on the parity of m.

When m is odd, the sequence code of the first upper side in the
phase (J + 1) + is (Q/mt) + 1. Then, Δϕ can be written as

Δϕ =
Q

mt
+ kz

Q

t

t

p

=
Q

mt
⋅ (mkz + 1)

t

p
=

Q

mt
⋅ n

(16)

where Δϕ, kz, and n are integers. Thus, the spatial displacement ϕ is
(2πn/m)(Δϕαt).

When m is even, the sequence code of the first upper side in the
phase (J + 1) + is (Q/2mt) + 1. Then, Δϕ can be written as

Δϕ =
Q

2mt
+ kz

Q

t

t

p
=

Q

2mt
⋅ n (17)

where Δϕ, kz, and n are integers. Thus, the spatial displacement ϕ is
πn/m.

3.2 Summary

The calculation results of ∥ f jv ∥, kpv, kdv, θz, and ϕ for both
double-layer windings with a constant coil pitch and single-layer
windings with a constant odd coil pitch are all shown in Tables 9
and 10. It should be noted that the main harmonic order of MMF is
v = p/t, which interacts with permanent-magnet flux linkage to
product average torque.

Moreover, when t = p, this winding type is very common in
motor design. Thus, the simplified calculation results of this
winding type are also shown in Tables 11 and 12.

3.3 Validation of MMF calculation results

Table 7 shows the geometric parameters and excitation of the four
models. Fig. 7 shows the geometric model of 4p18s-DL used in
finite element analysis (FEA) calculation. It is noteworthy that the

Fig. 6  Distribution of the vth MMF phasors
(a) Q/mt is odd, (b) Q/mt and v are even, (c) Q/mt is even and v is odd
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four models have the same geometric models except the winding
configuration, therefore in Fig. 7 only the 4p18s-DL is given as an
example.

Then, the calculated pitch, distribution and winding factors for
the four models from the proposed theory are shown in Table 8. 

Moreover, for the winding factors of various harmonics, an
open-source program Koil [23] is used to validate the analytical
calculation, their comparisons are shown in Fig. 8, where the
analytical calculation results are denoted as AM. Note that the Koil
program cannot deal with the 4p18s-SL winding structure. Further,
the main harmonic order of MMF is v = p/t. Thus, the first order is
main harmonic in the 4p18s-DL. The second order is the main
harmonic in the 4p18s-SL. The 11th order is the main harmonic in

the 22p20s-DL and the 22p24s-SL. Clearly, the calculation results
based on the proposed theory are exactly the same as the results
from Koil.

Figs. 9 and 10 show the winding MMF waveform and the
harmonics spectrum of the four models from analytical calculation
results and Koil results. It can be seen that the calculation results
from the proposed theory agree well with the Koil results.

In the Section 3.1, the expression of the jth-phase MMF has
been obtained. Thus, the whole MMF of the m-phase winding can
be expressed as

Table 7 Geometric parameters and excitation of four models
Models 4p18s-DL 22p20s-DL 22p24s-SL 4p18s-SL
outer diameter of the stator 100 mm
inner diameter of the stator 50 mm
air-gap length 0.8 mm
lamination length 100 mm
slot type closed slot
number of turns per coil 10
number of parallel branches 1
current (DC), A Ia = 10 Ia = 10 Ia = 10 Ia = 10

Ib = − 5 Ib = − 2.5 Ib = − 5 Ib = − 5

Ic = − 5 Ic = − 2.5 Ic = − 5 Ic = − 5

Id = − 2.5 Id = 10

Ie = − 2.5 Ie = − 5

I f = − 5

 

Fig. 7  Geometric model of 4p18s-DL used in FEA calculation
 

Table 8 Pitch, distribution, and winding factors of four models
Models 4p18s-DL 22p20s-DL 22p24s-SL 4p18s-SL
v kpv kdv kwv kpv kdv kwv kpv kdv kwv kpv1

kpv2
kwv

1 0.985 −0.960 −0.945 0.156 −0.156 −0.024 0.131 1.000 0.131 0.500 0.643 0.167
2 0.342 0.177 0.061 0.309 0.000 0.000 0.259 0.000 0.000 0.866 0.985 0.897
3 −0.866 −0.667 0.577 0.454 0.454 0.206 0.383 1.000 0.383 1.000 0.866 0.333
4 −0.643 −0.218 0.140 0.588 0.000 0.000 0.500 0.000 0.000 0.866 0.342 0.398
5 0.643 −0.218 −0.140 0.707 −0.707 −0.500 0.609 1.000 0.609 0.500 −0.342 0.167
6 0.866 −0.667 −0.577 0.809 0.000 0.000 0.707 0.000 0.000 0.000 −0.866 0.577
7 −0.342 0.177 −0.061 0.891 0.891 0.794 0.793 1.000 0.793 −0.500 −0.985 0.167
8 −0.985 −0.960 0.945 0.951 0.000 0.000 0.866 0.000 0.000 −0.866 −0.643 0.186
9 −0.000 0.333 −0.000 0.988 −0.988 −0.976 0.924 1.000 0.924 −1.000 −0.000 0.333
10 0.985 −0.960 −0.945 1.000 0.000 0.000 0.966 0.000 0.000 −0.866 0.643 0.707
11 0.342 0.177 0.061 0.988 0.988 0.976 0.991 1.000 0.991 −0.500 0.985 0.167
Bold values indicate main harmonic in four models.
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F = ∑
j = 1

m

∑
v = 1

∞

∥ f jv ∥ ⋅ kwv ⋅ cos(v(x + θz − ( j − 1) ⋅ ϕ))

= ∑
j = 1

m

F j

(18)

The air-gap flux density Bg can be calculated by using FEM and
can be compared with the analytical result by

Bg
AM =

−μ0∑ j = 1
m

F j

g
(19)

where the air-gap length g is constant and μ0 is the air permeability.
To verify the accuracy of the air-gap flux density Bg

AM from
(19), Figs. 11 and 12 show the air-gap flux density waveform and
harmonics spectrum of the four models from the analytical
calculation results and FEA results. From Figs. 11 and 12, it can be
seen that air-gap flux density Bg

AM from (19) is accurate when
neglecting the effect of stator slots and the saturation of
ferromagnetic material. From Figs. 11a and d, it can also be seen
that the amplitude of positive and negative half-wave is
asymmetrical in the air-gap density waveform, which is caused by
the even-numbered harmonics existing in the winding MMF.

Fig. 8  Validation of winding factors
(a) 4p18s-DL, (b) 22p20s-DL, (c) 22p24s-SL, (d) 4p18s-SL

 

Fig. 9  Validation of winding MMF waveform
(a) 4p18s-DL, (b) 22p20s-DL, (c) 22p24s-SL, (d) 4p18s-SL

 

Fig. 10  Validation of winding MMF harmonics spectrum
(a) 4p18s-DL, (b) 22p20s-DL, (c) 22p24s-SL, (d) 4p18s-SL

 

Fig. 11  Validation of air-gap flux density waveform
(a) 4p18s-DL, (b) 22p20s-DL, (c) 22p24s-SL, (d) 4p18s-SL

 

Fig. 12  Validation of air-gap flux density harmonics spectrum
(a) 4p18s-DL, (b) 22p20s-DL, (c) 22p24s-SL, (d) 4p18s-SL
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4 Conclusion
This paper presents a unified theory of the symmetric winding
distributions and a general method for symmetric winding MMF
harmonic analysis. This theory can be used in general winding
design and some important conclusions are shown as follows.

• Table 1 gives criteria for the feasible arbitrary winding with m-
phase, the number of slots Q and pole pairs p directly.

• A novel winding distribution formula (2) establishes the
relationship between the sequence code and the slot serial
number, which is applied in automatic winding distributions.

• The winding MMF harmonics including the amplitude of MMF
harmonics and harmonic orders are presented in Tables 9–12,
which are shown in Appendix.
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7 Appendix

The MMF calculation parameters for a general winding are
presented in Tables 9–12. 
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Table 9 MMF parameters for double-layer windings with a constant coil pitch

m,
Q

mt

∥ f jv ∥ kpv kdv θz ϕ

(odd, odd)a 2NI j

vπt
sin

vθ

2
cos((Q/4mt) ⋅ vα1)
(Q/mt) ⋅ cos(vα1/4)

α1(a − 1)
2

2πn

m

(odd, even)b 0 v = even

sin((Q/4mt) ⋅ vα1)
(Q/2mt) ⋅ sin(vα1/2)

v = odd(even, even)c πn

m

I j = icap, N = (Nc/ap) ⋅ (Q/m), here ic, ap, and Nc are coil current, coil turns and parallel branches, respectively; θ = yqα
t, αt = 2πt /Q, and t = GCD(Q, p).

a α1 = (αt + 2k0π) ⋅ (t / p), here k0 takes a positive odd integer that makes (1 + k0 ⋅ (Q/t)) ⋅ (t / p) be even; a = (Q/2mt) + (1/2); kz takes an integer that makes n = (mkz + 1)/(p/t) be an
integer.
b n is the same as 1; α1 = (αt + 2k0π) ⋅ (t / p), here k0 takes an integer that makes (1 + k0 ⋅ (Q/t)) ⋅ (t / p) be an integer; a = Q/2mt.
c α1 is the same as 2; kz takes an integer that makes n = (2mkz + 1)/(p/t) be an integer.
 

Table 10 MMF parameters for single-layer windings with a constant odd coil pitch

m,
Q

mt
,

Q

2mt

∥ f jv ∥ kpv kdv θz ϕ

(odd, odd,/)a 4NI j

vπt
sin

vθ

2
cos((Q/4mt) ⋅ vα1)
(Q/mt) ⋅ cos(vα1/4)

α1(a − 1)
2

2πn

m

(odd, even, odd)b 2NI j

vπt

cos((Q/8mt) ⋅ vα1)
(Q/2mt) ⋅ cos(vα1/4)

(odd, even, even)c 0 v = even

sin((Q/8mt) ⋅ vα1)
(Q/4mt) ⋅ sin(vα1/2)

v = odd(even, even, even)d πn

m

I j = icap, N = (Nc/ap) ⋅ (Q/2m), here ic, ap, and Nc are coil current, parallel branches, and coil turns, respectively; αt = 2πt /Q, t = GCD(Q, p).
a θ = yqα

t /2; α1 = (αt + 2k0π) ⋅ (t /2p), here k0 takes a positive odd integer that makes (1 + k0 ⋅ (Q/t)) ⋅ (t /2p) be even; a = (Q/2mt) + (1/2); kz takes an integer that makes
n = (mkz + 1)/(2p/t) be an integer.
b θ = yqα

t; α1 = (2αt + 2k0π) ⋅ (t / p), here k0 takes a positive odd integer that makes (1 + k0 ⋅ (Q/2t)) ⋅ (t / p) be even; a = (Q/4mt) + (1/2); kz takes an integer that makes
n = (mkz + 1)/(p/t) be an integer.
c θ and n are the same as b; α1 = (2αt + 2k0π) ⋅ (t / p), here k0 takes an integer that makes (1 + k0 ⋅ (Q/2t)) ⋅ (t / p) be an integer; a = Q/4mt.
d θ, α1, and a are the same as c; kz takes an integer that makes n = (2mkz + 1)/(p/t) be an integer.
 

Table 11 MMF parameters for double-layer windings with a constant coil pitch when t = p

m,
Q

mp

∥ f jv ∥ kpv kdv θz ϕ

(odd, odd) 2NI j

vπp sin
vyqα

e

2

cos((vπ /2m) + (Q/mp) ⋅ (vπ /2))

(Q/mp) ⋅ cos((vαe/4) + (vπ /2))
αe

2
+ π ⋅

Q

2mp
−

1
2

2π

m

(odd, even) 0 v = even

sin(vπ /2m)

(Q/2mp) ⋅ sin(vαe/2)
v = odd

αe

2
⋅

Q

2mp
− 1

(even, even) π

m

I j and N are the same as those in Table 9; αe = 2πp/Q.
 

Table 12 MMF parameters for single-layer windings with a constant odd coil pitch when t = p

m,
Q

mp
,

Q

2mp

∥ f jv ∥ kpv kdv θz ϕ

(odd, odd, /)a 4NI j

vπp sin
vyqα

e

4

cos((vπ /4m) + (Q/mp) ⋅ (kvπ /4))

(Q/mp) ⋅ cos((vαe/8) + (kvπ /4))
αe

4
+

kπ

2
⋅

Q

2mp
−

1
2

π

m
+ π

(odd, even, odd) 2NI j

vπp sin
vyqα

e

2

cos((vπ /2m) + (Q/2mp) ⋅ (vπ /2))

(Q/2mp) ⋅ cos((vαe/2) + (vπ /2))
(αe + π) ⋅

Q

4mp
−

1
2

2π

m

(odd, even, even) 0 v = even

sin(vπ /2m)

(Q/4mp) ⋅ sin(vαe)
v = odd

αe ⋅
Q

4mp
− 1

(even, even, even) π

m

a k = (Q/ p) + 2; I j and N are the same as those in Table 10; αe = 2πp/Q.
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