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Abstract: Wave energy is nowadays one of the most promising renewable energy sources; however,
wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve
this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC),
in order to extract the maximum energy from the waves, while respecting the physical constraints of
the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally,
MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position,
speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique
requires bidirectional power flow between the PTO system and the grid, it has similar characteristics
as reactive control. This means that, under some operating conditions, the energy losses may be
equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow
unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization
problem significantly more expensive in terms of computational time. This work proposes two MPC
control strategies applied to a two-body point absorber that address this issue from two different
perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear
constraints in the MPC in order to only allow an unidirectional power flow. The results show that the
two alternative proposals have similar performance in terms of computational time compared to the
regular MPC and obtain considerably more power than the linear passive control, thus proving to be
a good option for unidirectional PTO systems.

Keywords: wave energy converter; model predictive control; passive control; two-body point
absorber

1. Introduction

Ocean energy and particularly wave energy is nowadays one of the most promising,
but still underutilized, renewable energy sources that can be commercially exploited to
provide power to the electrical grid [1]. One key aspect to achieve this goal is an efficient
control strategy which absorbs maximum energy from the waves, while respecting the
physical constraints of each WEC.

Linear control strategies are still the most used for WECs. They have been deeply
studied in the WEC literature and provide a reliable, robust and efficient control in most
cases. Among them, in reactive control the force applied by the PTO system is the sum
of multiple components, proportional to the position, velocity, and acceleration of the
WEC, respectively [2]. This strategy typically requires the PTO to be oversized and work
both as generator and motor, which can have a negative impact on its efficiency [3]. In
reactive control, the optimal velocity profile is a function of the future wave excitation force;
thus, this velocity cannot be determined optimally in practice. For this reason, suboptimal
control strategies based on causal functions are used [4]. Moreover, reactive control presents
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drawbacks from the energy perspective, requiring large bidirectional power flows between
the WEC and the PTO [5]. In addition, displacements and velocities may be too high and
would have to be considered in the mechanical design and managed in the WEC operation.

Passive control is another strategy where the force applied by the PTO is just pro-
portional to the WEC velocity, which allows a unidirectional power exchange, from the
WEC to the PTO. Compared to reactive control, passive control presents the following
advantages: (a) unidirectional instead of bidirectional power flow means moderate losses;
and (b) the power peaks and the amplitude of the oscillations are lower, so the installation
becomes cheaper and less critical. The main passive control drawback is the limited power
capture compared to reactive, especially for wave profiles far from the natural response of
the WEC.

The Model Predictive Control (MPC) is being used with certain success on Wave
Energy Converters, because its formulation is optimal in terms of energy extraction and
is able to inherently manage physical constraints [6,7]. This technique requires a WEC
model and an excitation force prediction within a predefined time interval in order to
predict the next control action on the PTO force [8]. This action is obtained optimizing an
objective function over the prediction horizon. Generally, MPC on WEC applications is
formulated as a quadratic programming (QP) problem with linear constraints, where the
objective function is the extracted energy and the constraints are the position, speed and
PTO force [9,10]. Since in the most general case this control technique requires bidirectional
power flow between the PTO system and the grid, it has similar disadvantages as reactive
control: (a) PTO working as generator and motor; (b) increase of PTO losses; and (c)
reduction of efficiency.

Few MPC applications to WECs have addressed the problem of restricting the power
flow direction from the WEC to the PTO, thus allowing its application to a broader range of
existing WECs. The reason for this gap is that allowing this unidirectional energy flow using
QP in MPC requires setting nonlinear constraints. This turns the QP optimization with
linear constraints into a Nonlinear Programming (NLP) problem with nonlinear constraints,
making the computational effort significantly higher [6]. Among the few contributions
addressing the problem in the available literature, O’Sullivan and Lightbody [11] restricted
the power flow direction by means of a nonlinear constraint function that depends on the
speed, flux, resistance and current of an electrical PTO. To allow just unidirectional power
flow, Paparella and Ringwood [12,13] proposed a MPC-like strategy using pseudo-spectral
control with truncated Fourier series as orthogonal base to handle the nonlinear power
constraints in a more efficient way. Both proposals have, however, the same drawback:
nonlinear constraints imply higher processing time to solve the optimization problem. Tom
and Yeung [14] studied a permanent magnet generator as PTO with a passive non-linear
MPC control strategy. They defined the PTO force as a linear function of the velocity
(Fpto = bgv(t)) and integrated the dynamic of the WEC inside the objective function from
a numerical perspective using the Berkeley Library for Optimization Modeling software
(BLOM) on a Matlab/Simulink (version 2012, Berkeley, CA, USA) model. This work
proposes two independent MPC control strategies applied to a two-body self-reference
point absorber that address this issue from two different perspectives: (a) adapting the
MPC formulation to achieve passive loading strategy similar to the work by Tom and
Yeung [14], but integrating analytically the dynamic of the WEC inside the objective
function; and (b) re-formulating the linear constraints in the MPC in order to only allow
an unidirectional energy flow. The results show that the proposed control strategies have
similar performance compared to the regular MPC in terms of computational time, and
they extract considerably more power than the classical passive control.

This rest of the paper is divided into six sections. Section 2 presents the model of the
two-body self-reference point absorber. Section 3 shows the traditional MPC approach
considering linear and nonlinear constraints. The two MPC proposals based on passivity
(to prevent bidirectional energy flow) are formulated in Sections 4 and 5, respectively.
Section 6 presents the analysis of the results. Section 7 draws the conclusions.
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2. Model of the Two-Body Self-Reference Point Absorber WEC

The WEC model used in this work, as shown in Figure 1, was developed within the
IMAGINE project [15] funded by the European Union’s Horizon 2020 programme. This
WEC is a two-body self-referenced point absorber formed by an external floater ring that
moves with respect to an internal cylindrical spar attached to the seabed by means of a
mooring. This relative movement is exploited by the PTO to extract power from the WEC.
The PTO system is a direct-drive device in which a recirculating ball screw is coupled
with a three-phase Permanent Magnet Generator (PMG), as shown in Figure 2 [16] and
described in [17]. The linear motion of the ball screw is converted into the nut rotary
motion. Being the ball nut connected to the rotor of the permanent magnet generator, its
mechanical rotational energy is directly converted in electricity.

Figure 1. Two-body self-reference point absorber wave energy converter.

Figure 2. Electro-mechanical ball-screw PTO concept.

Linear wave theory was used to model the wave profile. According to the Cum-
ming’s formulation, the dynamic Equations (1) and (2) describe the two-body wave energy
converter motion in heave mode [18]:

(m1 + A∞
11)z̈1(t) + Fr1(t) + kh1z1(t) + (b f r + bv1)ż1(t)− b f r ż2(t) = Fe1(t) + Fpto(t) (1)

(m2 + A∞
22)z̈2(t) + Fr2(t) + (kh2 + km)z2(t) + (b f r + bv2)ż2(t)− b f r ż1(t) = Fe2(t)− Fpto(t) (2)
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where ρ is the water density, g is the gravity acceleration, km is the mooring stiffness, b f r
is the PTO friction coefficient and Fpto(t) is the PTO force. For body i, khi = ρgSi is the
hydrostatic coefficient, mi is the mass, Si is the body transversal area, bvi is the viscosity
coefficient, A∞

ii is the added mass at infinite frequency, Fri(t) is the radiation force, Fei(t) is
the excitation force and zi(t), żi(t) and z̈i(t) are the position, speed, and acceleration. In the
paragraph above, the subscript i is 1 when referred to Body 1 (floater) and 2 when referred
to Body 2 (spar). In addition, the PTO mass is considered negligible compared to m1 and
m2.

2.1. Space State Model in Continuous Time

Both radiation forces Fr1(t) and Fr2(t) above can be modeled by means of state space
equations based on the work of Falnes and Yu [19]. The space state models used for the
floater and the spar are the following third- and second-order systems, respectively:

U̇1(t) = Ar1U1(t) + Br1ż1(t) (3)

Fr1(t) = Cr1U1(t) (4)

where

Ar1 =

 ar1(1, 1) ar1(1, 2) ar1(1, 3)
ar1(2, 1) ar1(2, 2) ar1(2, 3)
ar1(3, 1) ar1(3, 2) ar1(3, 3)

 Br1 =

 br1(1)
br1(2)
br1(3)

 U1(t) =

 u11(t)
u21(t)
u31(t)

 (5)

Cr1(t) =
[

cr1(1) cr1(2) cr1(3)
]

(6)

and
U̇2(t) = Ar2U2(t) + Br2ż2(t) (7)

Fr2(t) = Cr2U2(t) (8)

where

Ar2 =

[
ar2(1, 1) ar2(1, 2)
ar2(2, 1) ar2(2, 2)

]
Br2 =

[
br2(1)
br2(2)

]
U2(t) =

[
u12(t)
u22(t)

]
(9)

Cr2 =
[

cr2(1) cr2(2)
]

(10)

The states of the radiation forces Fr1(t) and Fr2(t) are U1(t) = [ u11(t) u21(t) u31(t) ]T

and U2(t) = [ u12(t) u22(t) ]T , respectively. The dynamics described by the system of
differential equations from (1) to (10) can be modeled by means of the following state space
equations [18,19]:

Ẋ(t) = AX(t) + Be1Fe1(t) + Be2Fe2(t) + BptoFpto(t) (11)

Y(t) = CX(t) = [z1(t)− z2(t) ż1(t)− ż2(t)]T (12)

where

X(t) = [u11(t) u21(t) u31(t) z1(t) ż1(t) u12(t) u22(t) z2(t) ż2(t)]T (13)
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A =



ar1(1, 1) ar1(1, 2) ar1(1, 3) 0 br1(1) 0 0 0 0
ar1(2, 1) ar1(2, 2) ar1(2, 3) 0 br1(2) 0 0 0 0
ar1(3, 1) ar1(3, 2) ar1(3, 3) 0 br1(3) 0 0 0 0

0 0 0 0 1 0 0 0 0
cr1(1)

A1

cr1(2)
A1

cr1(3)
A1

kh1
A1

bv1+b f r
A1

0 0 0 − b f r
A1

0 0 0 0 0 ar2(1, 1) ar2(1, 2) 0 br2(1)
0 0 0 0 0 ar2(2, 1) ar2(2, 2) 0 br2(2)
0 0 0 0 0 0 0 0 1

0 0 0 0 − b f r
A2

cr2(1)
A2

cr2(2)
A2

kh2+km
A2

b f r+bv2
A2


(14)

Be1 =
[

0 0 0 0 − 1
A1

0 0 0 0
]T

(15)

Be2 =
[

0 0 0 0 0 0 0 0 − 1
A2

]T
(16)

Bpto =
[

0 0 0 0 − 1
A1

0 0 0 1
A2

]T
(17)

C =

[
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1

]
(18)

and A1 = −(m1 + A∞
11), A2 = −(m2 + A∞

22), z1(t) − z2(t) is the position of the PTO
and ż1(t)− ż2(t) is its velocity. Numerical values of the WEC parameters present from
Equation (3) to (18) can be found in Appendix A.

2.2. Space State Model in Discrete Time

To design an MPC strategy, the discretization of the space state model is necessary. In
this section, two space state models in discrete time are presented. The first one uses the
discretized PTO force, Fpto(k) (where k is the discretized time variable), as control signal
and the second uses the variation of the discretized PTO force between successive time
instants, ∆Fpto(k + 1) = Fpto(k + 1)− Fpto(k) including the PTO force, Fpto(k), as a system
state. Both approaches are equivalent and are used as needed by the proposals. The first
approach makes it easy to rewrite the control variable Fpto(k) by bpto(ż1(t)− ż2(t)) in order
to formulate a first passive MPC strategy as a function of the bpto parameter. The second
MPC approach allows constraining the variation of the PTO force between time steps and
at the same time assign the linear constraints on the state variables speed and PTO force.

2.2.1. First Approach: PTO Force Fpto(k) as Control Signal

Using the discrete solution of the state space in Equation (11) described by Chen [20]
and considering the variables constant between samples, in the zero-order hold approxi-
mation, the following discrete state space equation is obtained:

X(k + 1) = AdX(k) + Bde1Fe1(k) + Bde2Fe2(k) + BdptoFpto(k) (19)

Y(k) = CdX(k) = [z1(k)− z2(k) ż1(k)− ż2(k)]T (20)

where Ad = eAT , Bde1 = A−1(eAT − I)Be1, Bde2 = A−1(eAT − I)Be2, Bdpto = A−1(eAT −
I)Bpto, Cd = C, Fpto(k) is the discretized PTO force, Fe1(k) and Fe2(k) are the discretized
excitation forces on both floater and spar and X(k) is the discretized state vector:

X(k) = [y11(k) y21(k) y31(k) z1(k) ż1(k) y12(k) y22(k) z2(k) ż2(k)]T (21)

2.2.2. Second Approach: Variation of the PTO Force ∆Fpto(k) as Control Signal

Cretel et al. [21] rewrote the discrete state space formulation of Equation (19) including
the excitation forces and the PTO force as states. In addition, incremental values of the
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excitation forces ∆Fe1(k + 1), ∆Fe2(k + 1) and PTO force ∆Fpto(k + 1) are the new inputs
(Equations (22)–(24)).

Fe1(k + 1) = Fe1(k) + ∆Fe1(k + 1) (22)

Fe2(k + 1) = Fe2(k) + ∆Fe2(k + 1) (23)

Fpto(k + 1) = Fpto(k) + ∆Fpto(k + 1) (24)

The state space equations in terms of the new augmented state vector are:

W(k + 1) = Aw.W(k) + Bw1.∆Fe1(k + 1) + Bw2.∆Fe2(k + 1) + Bwpto.∆Fpto(k + 1) (25)

V(k) = Cw.W(k) (26)

where

W(k) =


X(k)

Fe1(k)
Fe2(k)
Fpto(k)

, V(k) =

 z1(k)− z2(k)
ż1(k)− ż2(k)

Fpto(k)



Aw =


Ad Bde1 Bde2 Bdpto
01,9 1 0 0
01,9 0 1 0
01,9 0 0 1

, Bw1 =


09,1
1
0
0

, Bw2 =


09,1
0
1
0



Bwpto =


09,1
0
0
1

, Cw =

[
Cd 02,1 02,1 02,1
01,9 0 0 1

]

and 0x,y is a null elements matrix with x rows and y columns.
Setting the incremental values of the PTO force ∆Fpto(k + 1) as a control signal allows

avoiding abrupt changes in the PTO force between consecutive control actions using an
additional linear constraint in the MPC optimization problem. This new constraint is
explained in Section 3.3.

3. Traditional Model Predictive Control

MPC gets an optimal control for optimizing an objective function (minimization or
maximization) over a finite future time horizon. To implement an MPC strategy successfully,
the following are necessary [22]: (a) a mathematical model of the system to predict the
output on the future horizon; (b) an objective function to obtain an optimal control series
over the future horizon using an optimization procedure with constraints; and (c) a receding
strategy where, at each instant, the first sample of the optimal control series calculated by
the optimization is applied.

3.1. Prediction Equations of the Traditional MPC

To get the prediction equations, the methodology shown by Rossiter [23] is used. This
methodology is based on the discrete state space in Equation (25) obtained by assuming the
variation of the PTO force ∆Fpto(k) between two consecutive time instants as the control
signal (second approach in Section 2.2):

V−→(k) = PW(k) + He1∆Fe1−−→(k) + He2∆Fe2−−→(k) + Hpto∆Fpto−−−→
(k) (27)

where
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∆Fe1−−→(k) =


∆Fe1(k + 1)
∆Fe1(k + 2)
∆Fe1(k + 3)

...
∆Fe1(k + nh)

, ∆Fe2−−→(k) =


∆Fe2(k + 1)
∆Fe2(k + 2)
∆Fe2(k + 3)

...
∆Fe2(k + nh)

, ∆Fpto−−−→
(k) =


∆Fpto(k + 1)
∆Fpto(k + 2)
∆Fpto(k + 3)

...
∆Fpto(k + nh)

 (28)

V−→(k) =


V(k + 1)
V(k + 2)
V(k + 3)

...
V(k + nh)

 =


( z1(k + 1)− z2(k + 1), ż1(k + 1)− ż2(k + 1), Fpto(k + 1) )T

( z1(k + 2)− z2(k + 2), ż1(k + 2)− ż2(k + 2), Fpto(k + 2) )T

( z1(k + 3)− z2(k + 3), ż1(k + 3)− ż2(k + 3), Fpto(k + 3) )T

...
( z1(k + nh)− z2(k + nh), ż1(k + nh)− ż2(k + nh), Fpto(k + nh) )

T

 (29)

P =


CwAw
CwAw

2

CwAw
3

...
CwAw

nh

 (30)

He1 =


CwBw1 03,1 03,1 · · · 03,1

CwAwBw1 CwBw1 03,1 · · · 03,1
CwA2

wBw1 CwAwBw1 CwBw1 · · · 03,1
...

...
...

...
...

CwAnh−1
w Bw1 CwAnh−2

w Bw1 CwAnh−3
w Bw1 · · · CwBw1

 (31)

He2 =


CwBw2 03,1 03,1 · · · 03,1

CwAwBw2 CwBw2 03,1 · · · 03,1
CwA2

wBw2 CwAwBw2 CwBw2 · · · 03,1
...

...
...

...
...

CwAnh−1
w Bw2 CwAnh−2

w Bw2 CwAnh−3
w Bw2 · · · CwBw2

 (32)

Hpto =


CwBwpto 03,1 03,1 · · · 03,1

CwAwBwpto CwBwpto 03,1 · · · 03,1
CwA2

wBwpto CwAwBwpto CwBwpto · · · 03,1
...

...
...

...
...

CwAnh−1
w Bwpto CwAnh−2

w Bwpto CwAnh−3
w Bwpto · · · CwBwpto

 (33)

and nh is the sample number of the prediction horizon.

3.2. Objective Function of the Traditional MPC Control

The objective function J(k) to be minimized at each time instant, k, is the opposite of
the average power absorbed by the PTO over the prediction horizon.

J(k) = − 1
nh

nh

∑
i=1

Fpto(k + i)(ż1(k + i)− ż2(k + i)) (34)

The objective function above can be rewritten in terms of the future output V−→(k) of
Equation (27).

J(k) = −1
2

V−→(k)TQ1 V−→(k) (35)
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where Q1 is the following square matrix with order 3nh.

Q1 =


M 03,3 · · · 03,3

03,3 M · · · 03,3
...

...
. . .

...
03,3 03,3 · · · M

 (36)

with

M1 =

 0 0 0
0 0 1
0 1 0

 (37)

Finally, substituting Equation (27) into Equation (35), the following MPC objective
function of a typical quadratic programming problem is obtained:

J =
1
2

∆Fpto−−−→
(k)THpto

TQ1Hpto∆Fpto−−−→
(k) + (PW(k) + He1∆Fe1−−→(k) + He2∆Fe2−−→(k))TQ1Hpto∆Fpto−−−→

(k)) (38)

3.3. Constraints on the Objective Function for the Traditional MPC

To set maximum and minimum values to the force, velocity, position and force in-
crement of the PTO, linear constraints on the MPC objective function can be added to
the optimization problem [7]. Restrictions on the PTO force increments can be simply
formulated as:

∆Fpto−−−→
min < ∆Fpto−−−→

(k) < ∆Fpto−−−→
max (39)

On the other hand, constraints on the position, speed and PTO force can be set in the
prediction vector V(k) (Equation (29)) and expressed by means of Equation (27) as a linear
matrix relationship as a function of the control variable ∆Fpto(k):

V−→(k)min − PW(k)−He1∆Fe1−−→(k)−He2∆Fe2−−→(k) < Hpto∆Fpto−−−→
(k) < ...

... V−→(k)max − PW(k)−He1∆Fe1−−→(k)−He2∆Fe2−−→(k) (40)

Regarding the restrictions defined in Equations (39) and (40), the optimization problem
of Equation (38) becomes a quadratic programming problem with linear constraints.

3.4. Non-Linear Constraints on the Objective Function for the Traditional MPC to Get Passivity

A direct way to get unidirectional power flow in the MPC optimization problem of
the Equation (38) is constraining the PTO power at each instant by means of the product
between PTO force and velocity [11]. However, as mentioned in Section 1, this approach
is expensive in terms of computational time, hence it provides a solution to the passivity
problem that is not viable for real-time applications, thus limiting its practical usability. In
the following, the PTO power constraint is enforced at each time instant, k, by means of the
product between PTO force and velocity:

Ppto(k + i) = Fpto(k + i)(ż1(k + i)− ż2(k + i)) > 0 f or i = 1, 2, ...nh (41)

The MPC objective function of Equation (38) and the non-linear constraint of
Equation (41) define a nonlinear programming problem (NLP) with nonlinear constraints.
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4. Passive MPC Proposal 1: Adapting MPC Formulation to Passive Loading Strategy

One of the passive control strategies is the resistive load control where the PTO force
just depends on the PTO velocity in the following linear way:

Fpto(t) = bpto(ż1(t)− ż2(t)) (42)

To constraint the PTO force to take values such that the control is passive,
Equation (42) is discretized and substituted in the discrete model of Equation (19), which
was obtained by using the PTO force Fpto(k) as the control signal (first approach in
Section 2.2):

X(k + 1) = AdX(k) + Bde1Fe1(k) + Bde2Fe2(k) + Bdptobpto(ż1(k)− ż2(k)) (43)

The last term in Equation (43) can be expressed using the state space vector X(k). From
Equation (21):

ż1(k)− ż2(k) = B f X(k) (44)

where
B f =

[
0 0 0 0 1 0 0 0 −1

]
(45)

Finally, the discrete space state model can be formulated as:

X(k + 1) = Ad2X(k) + Bde1Fe1(k) + Bde2Fe2(k) (46)

Y(k) = CdX(k) = [z1(k)− z2(k) ż1(k)− ż2(k)]T (47)

where
Ad2 = Ad + BdptobptoB f (48)

Notice that matrix Ad2 is function of bpto. Equations (46) and (47) model a two-body
point absorber with passive control in discrete time, where the PTO damping is defined by
bpto.

4.1. Prediction Equations of the Passive MPC Proposal 1

The main idea of this passive MPC proposal is to determine the PTO damping at each
time instant, k, for the WEC modeled by Equations (46) and (47). This means that:

bpto = bpto(k) (49)

To do so, an optimization problem is formulated using the discrete system model of
Equations (46) and (47) and prediction of the excitation forces on a future horizon. Based
on the discrete state space in Equations (46) and (47) and using the methodology shown by
Rossiter [23], the following prediction equations for the passive MPC formulation can be
obtained:

Y−→(k) = PX(k) + He1Fe1−→(k) + He2Fe2−→(k) (50)

where

Fe1−→(k) =


Fe1(k + 1)
Fe1(k + 2)
Fe1(k + 3)

...
Fe1(k + nh)

, Fe2−→(k) =


Fe2(k + 1)
Fe2(k + 2)
Fe2(k + 3)

...
Fe2(k + nh)

, Y−→(k) =


Y(k + 1)
Y(k + 2)
Y(k + 3)

...
Y(k + nh)

, P =


CdAd2
CdAd2

2

CdAd2
3

...
CdAd2

nh

 (51)
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He1 =


CdBde1 03,1 03,1 · · · 03,1

CdAd2Bde1 CdBde1 03,1 · · · 03,1
CdA2

d2Bde1 CdAd2Bde1 CdBde1 · · · 03,1
...

...
...

...
...

CdAnh−1
d2 Bde1 CdAnh−2

d2 Bde1 CdAnh−3
d2 Bde1 · · · CdBde1

 (52)

He2 =


CdBde2 03,1 03,1 · · · 03,1

CdAd2Bde2 CdBde2 03,1 · · · 03,1
CdA2

d2Bde2 CdAd2Bde2 CdBde2 · · · 03,1
...

...
...

...
...

CdAnh−1
d2 Bde2 CdAnh−2

d2 Bde2 CdAnh−3
d2 Bde2 · · · CdBde2

 (53)

Notice that the matrices P, He1 and He2 in Equations (50)–(53) depend on Ad2, which
is function of bpto(k) (Equations (48)–(49)). It means that these matrices change in each time
instant, k, as bpto(k) changes.

4.2. Objective Function of the Passive MPC Proposal 1

In passive control, the opposite of the average power absorbed at each time instant, k,
by the PTO over the prediction horizon can be formulated as:

J(k) = − 1
nh

nh

∑
i=1

bpto(k + i)(ż1(k + i)− ż2(k + i))2 (54)

Equation (54) can be rewritten in term of the future output Y−→(k) from Equation (50).

J(k) = −
bpto(k)

nh
Y−→(k)TQ2 Y−→(k) (55)

where Q2 is the following square matrix with order 2nh.

Q2 =


M 02,2 · · · 02,2

02,2 M · · · 02,2
...

...
. . .

...
02,2 02,2 · · · M

 (56)

with

M2 =

[
0 0
0 1

]
(57)

Substituting Equation (50) into Equation (55) and considering the dependence of P,
He1 and He2 on bpto(k), the objective function of Equation (54) can be expressed as:

J(k) = −bpto(k)
[
P[bpto(k)]X(k) + He1[bpto(k)]Fe1−→(k) + He2[bpto(k)]Fe2−→(k)

]T
.Q...

...
[
P[bpto(k)]X(k) + He1[bpto(k)]Fe1−→(k) + He2[bpto(k)]Fe2−→(k)

]
(58)

where at each time instant, k, the only unknown variable to be determined is the PTO
damping bpto(k). The optimization problem of the Equation (58) is a one-variable NLP
without constraint.

4.3. Constraints on the Objective Function of the Passive MPC Proposal 1

Although there is no constraint in the optimization of the objective function given in
Equation (58), the positive sign of bpto(k) at each time instant k should be verified.



Energies 2021, 14, 1731 11 of 21

5. Passive MPC Proposal 2: Adapting Linear Constraints in the MPC to Get Passivity

This passive MPC proposal uses the same objective function as the traditional MPC
(Equation (38)). Unlike the first proposal in Section 4, which determines PTO damping
bpto(k) at each time instant, this MPC optimization problem leads to estimate a PTO force
series over the prediction horizon at each time instant. Passive control is imposed by
properly managing the linear constraints defined in Equations (39) and (40). The idea is to
define speed and PTO force constraints at each time instant over the prediction horizon in
such way that the product between speed and PTO force is positive.

5.1. Prediction Equations of the Passive MPC Proposal 2

This proposal uses the same prediction Equation (27) as the traditional MPC.

5.2. Objective Function of the Passive MPC Proposal 2

This proposal uses the same objective function Equation (38) as the traditional MPC.

5.3. Constraints on the Objective Function of the Passive MPC Proposal 2

Linear constraints in the traditional MPC (Equation (40)) allow estimating PTO force
increments ∆Fpto−−−→

(k) over the prediction horizon, limiting the variation range of the position

(xmin
pto , xmax

pto ) , velocity (vmin
pto , vmax

pto ) and force of the PTO (Fmin
pto , Fmax

pto ) by setting maximum and
minimum values in the vector V−→(k) (Equation (29)). Generally, these limits are constants
over the prediction horizon and for all time instants k, hence, the elements of the vectors
V−→(k)min and V−→(k)max defined in Equation (40) are:

V−→(k)max =



( xmax
pto , vmax

pto , Fmax
pto )T

( xmax
pto , vmax

pto , Fmax
pto )T

( xmax
pto , vmax

pto , Fmax
pto )T

...
( xmax

pto , vmax
pto , Fmax

pto )T

, V−→(k)min =



( xmin
pto , vmin

pto , Fmin
pto )T

( xmin
pto , vmin

pto , Fmin
pto )T

( xmin
pto , vmin

pto , Fmin
pto )T

...
( xmin

pto , vmin
pto , Fmin

pto )T

 (59)

To set a passive MPC strategy that handles the linear constraints, maximum and
minimum values of Equation (59) must be considered as variants over the prediction
horizon and for every time instant k:

V−→(k)max =



( xmax
pto (k + 1), vmax

pto (k + 1), Fmax
pto (k + 1) )T

( xmax
pto (k + 2), vmax

pto (k + 2), Fmax
pto (k + 2) )T

( xmax
pto (k + 3), vmax

pto (k + 3), Fmax
pto (k + 3) )T

...
( xmax

pto (k + nh), vmax
pto (k + nh), Fmax

pto (k + nh) )
T

 (60)

V−→(k)min =



( xmin
pto (k + 1), vmin

pto (k + 1), Fmin
pto (k + 1) )T

( xmin
pto (k + 2), vmin

pto (k + 2), Fmin
pto (k + 2) )T

( xmin
pto (k + 3), vmin

pto (k + 3), Fmin
pto (k + 3) )T

...
( xmin

pto (k + nh), vmin
pto (k + nh), Fmin

pto (k + nh) )
T

 (61)

The idea is to find values to the elements of the matrices in Equations (60) and (61)
that impose unidirectional power flow on the PTO. Traditional passive control can provide
these values in a fast way. Following, a generic set of PTO velocities vre f

pto
−→

(k) and PTO forces
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Fre f
pto
−→

(k) obtained by applying passive control (Fre f
pto
−→

(k) = bptovre f
pto
−→

(k)) over the prediction

horizon at time instant k is presented:

vre f
pto
−→

(k) =
[

vre f
pto(k + 1) vre f

pto(k + 2) vre f
pto(k + 3) ... vre f

pto(k + nh)
]T

(62)

Fre f
pto
−→

(k) = bpto

[
vre f

pto(k + 1) vre f
pto(k + 2) vre f

pto(k + 3) ... vre f
pto(k + nh)

]T
(63)

or
vre f

pto
−→

(k) =
[

vre f
pto(k + i)

]
f or i = 1, 2, 3...nh (64)

Fre f
pto
−→

(k) =
[

Fre f
pto (k + i)

]
= bpto

[
vre f

pto(k + i)
]

f or i = 1, 2, 3...nh (65)

This passive MPC proposal, by adapting linear constraints to the traditional MPC to
get passivity, is based on setting PTO velocity and force constraints, according to the signs
of the same signals found applying passive control.

In this sense, the procedure starts getting results applying passive control over a
prediction horizon and at a time instant k (Equations (64) and (65)) to ensure positive values
of the PTO power over such prediction horizon at time instant k in the MPC. Then, the
sign of the PTO velocity at each instant (k + i) is evaluated. If the PTO velocity vre f

pto(k + i)
is positive, the PTO velocity and the PTO force in the MPC at the time instant (k + i)
are constrained to take positive values between zero and the maximum positive values
αvre f

pto(k + i) and βFre f
pto (k + i), respectively, being α and β positive constants. On the other

hand, if the PTO velocity vre f
pto(k + i) is negative, then the PTO velocity and the PTO force

in the MPC at the time instant (k + i) are constrained to take negative values between zero
and the minimum negative values αvre f

pto(k + i) and βFre f
pto (k + i). Summarizing, maximum

and minimum values in Equations (60) and (61) is set according to the following procedure:

1. At the time instant k, the prediction horizon is the set H = {(k + i)/i = 1, 2, ...nh}.
2. Passive control with PTO damping bpto is executed over the prediction horizon H

obtaining the velocity series {vre f
pto(k + i)/i = 1, 2, ...nh}.

3. Linear constraints of the MPC are assigned at each time instant (k + i) over H:
For i = 1, 2, ...nh

• If vre f
pto(k + i) > 0

xmax
pto (k + i) = xmax

pto

vmax
pto (k + i) = αvre f

pto(k + i)

Fmax
pto (k + i) = βbptovre f

pto(k + i)
xmin

pto (k + i) = xmin
pto

vmin
pto (k + i) = 0

Fmin
pto (k + i) = 0

• If vre f
pto(k + i) < 0

xmax
pto (k + i) = xmax

pto
vmax

pto (k + i) = 0
Fmax

pto (k + i) = 0
xmin

pto (k + i) = xmin
pto

vmin
pto (k + i) = αvre f

pto(k + i)

Fmin
pto (k + i) = βbptovre f

pto(k + i)
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This way of constraining velocity and force of the PTO will guarantee unidirectional
power flow from the WEC to the PTO when MPC is applied.

6. Numerical Analysis

The WEC of Figure 1 is a the two-body self-referenced point absorber formed by an
external floater ring with a 19.2 m diameter and 4.8 m height that moves with respect
to an internal cylindrical spar with a 5.7 m diameter and 36.5 m height attached to the
seabed by means of a mooring. This WEC is inspired by the Ocean Power Technology
(OPT) PowerBuoyTM. Similar two-body WECs are researched in [24] as RM3 and in the
NumWEC project [25] as F-2HB. The two-body WEC model used in this work is described
in more detail in Appendix A.

The time-domain simulation model of the two-body WEC shown in Figure 1 was
implemented in Matlab/Simulink to test the proposed control strategies. The model is
formed by three main subsystems: the first subsystem generates the excitation force, the
second one models the WEC using a state space equations and the last one implements the
control strategy and sets the PTO force.

The Wamit program was used to calculate the hydrodynamic parameters as functions of
the frequency. The irregular wave profiles were generated randomly using the Bretschneider
spectrum. For each peak period considered, a 15 min simulation was executed. The time step
used in all MPC strategies is 0.05 s and the prediction horizon is 9 s. In addition, to focus
on the control strategy [11], it is assumed that the future excitation wave forces are perfectly
known (exact prediction of the excitation forces) over the prediction horizon.

The results applying the passive MPC Proposal 1 of Section 4 (P-MPC-1) and the
passive MPC Proposal 2 of Section 5 (P-MPC-2) were compared with those obtained
through the traditional MPC without constraints of Section 3.2 (MPC), passive MPC with
nonlinear constraint (P-MPC-NLC) of Section 3.4 (Equation (41)) and passive (i.e., resistive)
loading control (RL).

In addition, the MPC strategy with relaxed linear constraints of Section 3.3
(Equations (39) and (40)) was included to consider the computational effort when lin-
ear restrictions are added (MPC-LC). In this case, the relaxed constraints are: maximum
excursion of 5 m, maximum speed of 5 m/s and maximum PTO force of 10 MN. It is im-
portant to highlight that these relaxed constraints are not achieved during the simulations
and are only considered to estimate the processing time when linear constraints are added
to the MPC.

In addition, an optimal passive strategy (ORL) with PTO constant damping was
included as reference control where the best PTO damping in terms of power extracted is
obtained by means of an optimization process on the same wave profile. These strategies
are explained briefly in Appendix B.

Taking into account that P-MPC-1 had good performances compared to RL and ORL
strategies, it was used in Step 3 of the algorithm in Section 5.3 as starting point of P-MPC-2.
Further, the constants α and β in Step 4 of the same algorithm were set to 3 and 2.25,
respectively, and the excursion constraints were set to xmax

pto = 2.5 m and xmin
pto = −2.5 m.

The selection of α and β affects the processing time of P-MPC-2 and it was performed to
set constraints for the speed and the PTO force that are non achieved, but close to the
maximum obtained.

To conveniently compare the control strategies, the maximum number of iterations in
the optimization problem associated to the control P-MPC-2 and P-MPC-NLC was adjusted
to obtain processing times in the same range as the control MPC-LC (less than 1 s). In this
sense, the number of iterations in the control P-MPC-2 and P-MPC-NLC were 5 and 50,
respectively. Besides, for the other control strategies, the maximum number of iterations
used was the value set by default (250) in the Matlab function of the optimization problem.
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6.1. Relevant Average and Maximum Results

This section presents the relevant results considering irregular waves, varying the
peak period from 5 to 16 s and considering significant wave heights of 1.25, 3.25 and 5.25
m. The seed to create each wave profile was changed. This means that the wave profiles
are not the scaled version of each other.

Figure 3 shows the average PTO power for all considered wave profiles and for the
control strategies RL, ORL, MPC, P-MPC-1, P-MPC-2, P-MPC-NLC and MPC-LC described
above. It can be noted that the traditional MPC strategies (MPC and MPC-LC) allow higher
average power absorption due to their reactive nature. This means that the energy is
circulating in a bidirectional way between the PTO and the WEC.

On the other hand, the control strategy P-MPC-2 presents better performances than
P-MPC-1 in terms of extracted power. The reason is that P-MPC-1 is a simple and faster
strategy that keeps the same PTO damping over the entire prediction horizon, while P-
MPC-2 has to estimate the PTO force for each time instant over the prediction horizon
being more complex and slower.

Taking into account the differences in processing time and the power extracted be-
tween both proposed control strategies P-MPC-1 and P-MPC-2, it is convenient to divide
the analysis in two groups. The first group is composed by faster control strategies with
lower extracted power (P-MPC-1, RL and ORL), and the second one is composed by slower
control strategies with higher extracted power (P-MPC-2 and P-MPC-NLC). A third group
formed by the reactive control strategies with the greatest extracted power (MPC and
MPC-LC) serves as reference for the first and second groups. The MPC strategy without
constraints is a convex quadratic programming problem whose solution is fast in terms of
processing time. For this reason, the first group is compared to the MPC strategy. Besides,
the MPC-LC strategy considers the computational effort when linear restrictions are added.
These linear constraints are relaxed, never achieved and added to estimate the processing
time in the quadratic programming problem with linear constraints (non-convex program-
ming problem). For this reason, the second group, formed by control strategies, for which
passivity is defined in their constraints, is compared to the MPC-LC strategy.

Based on Figure 3, it can be concluded that the proposal P-MPC-1 extracts 5% more
average power than the RL strategy and practically the same average power as the ORL
reference strategy. On the other hand, the proposal P-MPC-2 allows obtaining 4% more
power than the strategy P-MPC-NLC.

Figure 3. Average PTO power in irregular wave varying the peak period Tp from 4 to 16 s for significance high:
(a) Hs = 1.25 m; (b) Hs = 3.25 m; and (c) Hs = 5.25 m.

Concerning the average processing time to solve the associated optimization problem,
Figure 4 shows that the most time-consuming control strategy is P-MPC-NLC (0.973 s),
followed in descending order by MPC-LC (0.844 s), P-MPC-2 (0.661 s), P-MPC-1 (0.029 s)
and MPC (0.013 s). It can be highlighted that the processing time of P-MPC-1 is low and
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in the same order as MPC. On the other hand, the processing time of the control strategy
P-MPC-2 is 32% lower than P-MPC-NLC and 22% lower than MPC-LC. According to the
results reported in Figures 3 and 4, both proposals are competitive in terms of absorbed
power and processing time.

Figure 5 shows that the maximum speed takes high values for MPC and P-MPC-NLC,
low values for the control RL and ORL and intermediate values for both proposals P-MPC-1
and P-MPC-2.

Figure 6 presents the maximum PTO force values for all control strategies and wave
profiles. This figure shows that the maximum PTO force takes low values when applying
P-MPC-1 and intermediate values similar to the P-MPC-NLC case when applying P-MPC-2.

Figure 4. Average processing time in irregular wave varying the peak period Tp from 4 to 16 s for significance high:
(a) Hs = 1.25 m; (b) Hs = 3.25 m; and (c) Hs = 5.25 m.

Figure 5. Maximum speed in irregular wave varying the peak period Tp from 4 to 16 s for significance high:
(a) Hs = 1.25 m; (b) Hs = 3.25 m; and (c) Hs = 5.25 m.

Summarizing, the control strategy P-MPC-2 extracts more power than P-MPC-NLC
consuming less processing time, with intermediate values (between Groups 1 and 3) of the
maximum speed and PTO force. On the other hand, the control strategy P-MPC-1 extracts
similar power as the reference control strategy ORL, requiring processing time in the same
order as MPC.



Energies 2021, 14, 1731 16 of 21

Figure 6. Maximum PTO force in irregular wave varying the peak period Tp from 4 to 16 s for significance high: (a) Hs=1.25
m; (b) Hs = 3.25 m; and (c) Hs = 5.25 m.

6.2. Relevant Time Signals

This section presents the relevant waveforms (position, speed, PTO force and PTO
power) for the control strategies RL, ORL and both proposals P-MPC-1 and P-MPC-2
in irregular waves with peak period Tp = 12 s and significance wave height 3.25 m. To
highlight the difference between the waveforms obtained, they are shown in a 70 s time
window from the time instant 30 s to the time instant 100 s.

In Figure 7, higher position and speed values in the control strategies P-MPC-1 and
P-MPC-2 compared to RL and ORL can be noted. On the other hand, in Figure 8, lower
PTO force and higher PTO power can be observed in both proposals. The noise in the PTO
force and power waveforms in proposal P-MPC-2 is due to the values of the PTO damping
time series obtained during successive optimization results.

Figure 7. Position (a); and speed (b) of the PTO for the sea state Tp = 12 s and Hs = 3.25 m.

Figure 8. Force (a); and power (b) of the PTO for the sea state Tp = 12 s and Hs = 3.25 m.
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Figure 9 presents the values of the PTO damping as a function of time. It can be noted
that the values in both P-MPC-1 and P-MPC-2 vary over time while the PTO damping in the
RL and ORL strategies is constant. In addition, the PTO damping in P-MPC-1 presents less
abrupt changes and lower values compared to P-MPC-2. The reason for this is that P-MPC-1
is based on keeping the PTO damping constant over the prediction horizon, while P-MPC-2
estimates a different PTO damping for each time instant over the prediction horizon.

Figure 9. PTO damping for the sea state Tp = 12 s and Hs = 3.25 m.

6.3. Sensitivity Analysis

Figure 10 presents the performance of P-MPC-2 and P-MPC-NLP in terms of average
power extracted by the PTO as a function of the average time consumed to solve the
optimization problem in each time instant.

Figure 10. PTO damping for the sea state Tp = 12 s and Hs = 3.25 m.

To vary the processing time, the number of iterations was increased conveniently on
both strategies. The wave profile used in this analysis is the sea state with peak period
Tp = 12 s and significant wave height Hs = 3.25 m.

In Figure 10, it can be noted that a higher average power is obtained applying P-
MPC-2, when the average time spent in the optimization problem is less than 1.15 s., while
P-MPC-NLC extracted more power for a higher processing times (greater than 1.15 s).

Since real-time control requires fast response from the processors in order to get an
estimation of the control action, the control strategy P-MPC-NLC is not feasible from a tech-
nical point of view. On the other hand, as the proposal P-MPC-2 consumed less processing
time extracting more average power, it could be suitable for real time implementation.

7. Conclusions

This work proposes two passive MPC control strategies applied to a two-body self-
reference point absorber. The first proposal adapts the MPC formulation to a passive
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loading strategy (P-MPC-1) and the second one adapts the linear constraints in the MPC in
order to allow only unidirectional power flow between the wave energy converter and the
power take-off (P-MPC-2).

The results show that the first proposal has a processing time in the same order (0.029
s) as the MPC without constraints (0.013 s), extracting 5% more power than the resistive
loading (RL) and 0.1% more power than the passive reference control strategy (ORL),
achieving intermediate values for PTO speed and low values for PTO force.

On the other hand, the second proposal obtains 4% more average power than the
passive MPC strategy with non-linear constraints, consuming 32% less processing time
than the passive MPC strategy with non-linear constraints and 22% less processing time
than MPC with linear constraints. In addition, this proposal presents intermediate values
to the maximum speed and the PTO force.

Due to its low processing time, the first proposal P-MPC-1 could be used to improve
the performance of the traditional passive control (RL) including constraint. In this sense,
in this article, the first proposal is used to initialize the second proposal. On the other hand,
the second proposal could be used to implement a technically feasible passive MPC.

As an MPC strategy, our proposals are very dependent on the model used in their
formulation as well as on the prediction of the excitation force. A non-representative model
of the WEC would lead to an inefficient MPC strategy.
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Appendix A

The WEC of Figure 1 is a two-body self-reference point absorber formed by an external
floater ring with a 19.2 m diameter and 4.8 m height that moves with respect to an internal
cylindrical spar with a 5.7 m diameter and 36.5 m height attached to the seabed by means
of a mooring. The drafts of the floater and spar are 2.8 and 28.8 m, respectively. The heave
plate in the submerged extreme of the spar has a diameter of 28.8 m and height of 0.1 m.

https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-energy/tidal-wave-hydropower/imagine
https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-energy/tidal-wave-hydropower/imagine
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The floater and the spar have the following values: masses 661 and 799.7 t, hydrostatic
coefficients 2640.9 and 260.3 kN/m, viscosity coefficients 104 m and 78 kN·s/m and infinity
masses 1101.7 and 7995.3 t. The value of the PTO friction coefficient is 82.4 kN·s/m and the
stiffness of the mooring is 10 kN/m. The PTO mass is negligible compared to the mass of
the floater and spar.

Both radiation forces Fr1(t) and Fr2(t) were modeled by means of state space equa-
tions using third- and second-degree systems:

U̇1(t) = Ar1U1(t) + Br1ż1(t) (A1)

Fr1(t) = Cr1U1(t) (A2)

where

Ar1 =

 −0.7418 −1.0937 0.8431
1.0937 −0.0070 0.0466
−0.8431 0.0466 −0.4280

 Br1 =

 −3.9929
0.3634
−1.6030

 (A3)

Cr1(t) =
[
−1.3642 −0.1241 0.5477

]
105 (A4)

and
U̇2(t) = Ar2U2(t) + Br2ż2(t) (A5)

Fr2(t) = Cr2U2(t) (A6)

where

Ar2 =

[
−0.4260 0.7843
−0.7843 −0.00004

]
Br2 =

[
−1.2278
−0.0121

]
(A7)

Cr2 =
[
−4.1950 0.0414

]
104 (A8)

The dynamics of the system was modeled by means of the following state space
equations:

Ẋ(t) = AX(t) + Be1Fe1(t) + Be2Fe2(t) + BptoFpto(t) (A9)

Y(t) = CX(t) = [z1(t)− z2(t) ż1(t)− ż2(t)]T (A10)

A =



−0.7418 −1.0937 0.8431 0 −3.9929 0 0 0 0
1.0937 −0.0070 0.0466 0 0.3634 0 0 0 0
−0.8431 0.0466 −0.4280 0 −1.6030 0 0 0 0

0 0 0 0 1 0 0 0 0
0.0774 0.0070 −0.0311 −1.4982 −0.1057 0 0 0 0.0468

0 0 0 0 0 −0.4260 0.7843 0 −1.2278
0 0 0 0 0 −0.7843 −0.00004 0 −0.0121
0 0 0 0 0 0 0 0 1
0 0 0 0 0.0094 0.0048 −0.00005 −0.0307 −0.0979


(11)

Be1 =
[

0 0 0 0 0.5673 0 0 0 0
]T10−6 (12)

Be2 =
[

0 0 0 0 0 0 0 0 0.1137
]T10−6 (13)

Bpto =
[

0 0 0 0 0.5673 0 0 0 −0.1137
]T10−6 (14)

C =

[
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1

]
(15)
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Appendix B

In the following, all control strategies used in this paper are explained briefly and
summarized in Table A1:

• The passive control strategy (RL) considers the PTO force proportional to the speed.

Fpto(t) = |Zth(ωp)|(ż1(t)− ż2(t)) (A16)

where Zth(ω) = Rth(ω) + jXth(ω) is the Thevenin impedance seen from the PTO in
the WEC electrical representation and ωp is the wave peak frequency.

• Optimal passive strategy (ORL) is included as reference control. This control estimates
the best PTO damping in terms of power extracted by means of an optimization
process on the same wave profile. The ORL requires knowing the entire time series of
the wave over the analysis interval. The ORL control strategy is applied only to get
a reference to the maximum power extracted by the constant PTO damping passive
control.

• Traditional MPC is included to compare PTO power and processing time results.
• Traditional MPC with relaxed linear constraints (MPC-LC) is included to estimate

how the processing time changes when linear constraints are included in traditional
MPC. “Relaxed linear constraints” means that such restrictions are not achieved.

• Including nonlinear constraints in the traditional MPC (P-MPC-NLC) is the most
common way to get passivity in MPC. The drawback is that it is expensive from a
computational point of view.

Table A1. Summary of the control strategies applied in the article.

Control Strategy Description Problem Matlab Solver Constraints Algorithm

MPC Traditional MPC QP quadprog No interior-point-convex

P-MPC-1 Passive MPC NLP fminsearch No Nelder-Mead simplex
proposal 1

P-MPC-2 Passive MPC QP quadprog Linear interior-point-convex
proposal 2

RL Traditional passive - - - -

ORL Reference - - - -
optimal passive

P-MPC-NLC Reference NLP fmincon NLC sequencial quadratic
passive MPC programming

MPC-LC Traditional MPC QP quadprog Linear interior-point-convex
with relaxed

linear constraints
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