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Abstract 

Background: Detection of copy number variation (CNV) in genes associated with disease is important in genetic 
diagnostics, and next generation sequencing (NGS) technology provides data that can be used for CNV detection. 
However, CNV detection based on NGS data is in general not often used in diagnostic labs as the data analysis is chal-
lenging, especially with data from targeted gene panels. Wet lab methods like MLPA (MRC Holland) are widely used, 
but are expensive, time consuming and have gene-specific limitations. Our aim has been to develop a bioinformatic 
tool for CNV detection from NGS data in medical genetic diagnostic samples.

Results: Our computational pipeline for detection of CNVs in NGS data from targeted gene panels utilizes cover-
age depth of the captured regions and calculates a copy number ratio score for each region. This is computed by 
comparing the mean coverage of the sample with the mean coverage of the same region in other samples, defined 
as a pool. The pipeline selects pools for comparison dynamically from previously sequenced samples, using the pool 
with an average coverage depth that is nearest to the one of the samples. A sliding window-based approach is used 
to analyze each region, where length of sliding window and sliding distance can be chosen dynamically to increase 
or decrease the resolution. This helps in detecting CNVs in small or partial exons. With this pipeline we have correctly 
identified the CNVs in 36 positive control samples, with sensitivity of 100% and specificity of 91%. We have detected 
whole gene level deletion/duplication, single/multi exonic level deletion/duplication, partial exonic deletion and 
mosaic deletion. Since its implementation in mid-2018 it has proven its diagnostic value with more than 45 CNV find-
ings in routine tests.

Conclusions: With this pipeline as part of our diagnostic practices it is now possible to detect partial, single or multi-
exonic, and intragenic CNVs in all genes in our target panel. This has helped our diagnostic lab to expand the portfolio 
of genes where we offer CNV detection, which previously was limited by the availability of MLPA kits.

Keywords: Next generation sequencing (NGS), Copy number variation (CNV), Structural variant, Multiplex ligation-
dependent probe amplification (MLPA), Sliding window
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Background
Potentially disease-causing DNA mutations include 
alterations of single nucleotides up to whole chromo-
somes. Small changes of 1 nucleotide (nt) are called 
single nucleotide variation and changes up to 50  nt at 
single locus are called short insertion-deletion variation 
(indel). Whereas alterations larger than 50  nt are called 
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structural variants (SVs) [1], which previously has been 
defined as alterations larger than 1000 nt [2, 3]. Such SVs 
include insertions, deletions, duplications, inversions, 
and translocations. Combinations of these SVs are also 
possible in a single genome [4]. Deletions and duplica-
tions, commonly called copy number variations (CNVs), 
contribute to a large fraction of all genetic alterations and 
are of diagnostic relevance as they can play important 
roles in causing genetic diseases [5].

Several laboratory-based approaches have been devel-
oped and can be used for detecting CNVs, including mul-
tiplex ligation-dependent probe amplification (MLPA) 
[6], microarray based comparative genomic hybridiza-
tion (aCGH) and SNP microarrays [7], RNA sequencing 
[8], fluorescence in situ hybridization (FISH) [9] and PCR 
based methods [10]. All these methods are laboratory 
intensive, have low throughput and are expensive. Among 
these, diagnostics labs most commonly use aCGH/SNP 
microarray and MLPA. The aCGH method is sensitive, 
but it is limited to detect only CNVs of sequences present 
in the reference assembly used to design the array probes 
[11]. Limitation in MLPA-based testing is the number of 
probes included in the kit. It is designed to multiplex up 
to approximately 50 probes, hence most suitable for one 
or a few smaller genes.

With the evolution of next generation sequencing 
(NGS) technologies, diagnostics laboratories are heav-
ily utilizing NGS data in detection of SNPs and indels. 
With the current quality of NGS data it is also possible 
to detect CNVs [12]. In addition, NGS provides the ben-
efit of detecting exact CNV breakpoint positions in the 
genome. Hence using NGS for CNV detection will help 
diagnostic labs in testing larger number of genes for 
CNVs. In traditional routine diagnostic practices, sam-
ples are analyzed by MLPA testing of genes according to 
requests. As CNVs do not occur that often, MLPA results 
are often negative. It has been shown that using NGS in 
diagnostics provides better throughput at a lower cost 
compared to using MLPA-based testing for CNVs [13], 
and this is also consistent with the experience of our in-
house diagnostic lab. MLPA is then used mainly for veri-
fication on those genes where analysis of the NGS data 
has indicated a CNV.

Four different approaches are currently used for detect-
ing CNVs from NGS data [14, 15]; paired-end mapping 
based detection (PE), split read based detection (SR), 
de novo assembly based detection (DA) and read depth 
based detection (RD). Additionally, mixed approaches 
are used. All these approaches use NGS generated reads 
to create consensus sequences by mapping to a reference 
genome or by de novo assembly and looking for anoma-
lies occurring due to SVs. Among these approaches, PE, 
SR and DA can be used to discover all types of SVs, but 

application of these approaches requires high data qual-
ity and data consistency across regions [14], which often 
limits their applicability to whole genome sequencing 
data. On the other hand, the RD approach can only detect 
CNVs (deletions and duplications), but it predicts exact 
copy numbers, including mosaicism [16, 17], and can also 
detect small or very large CNVs in all types of regions in 
a genome. Depending on data quality, coverage depth, 
read length, and captured regions, RD can also detect 
exact breakpoints with high accuracy. The best approach 
for CNV detection will depend upon the available 
sequencing data. Data from targeted gene panels repre-
sent selected genetic regions of the genome, like specific 
exons, which means that it does not represent continu-
ous regions of the genome. However, as the RD approach 
uses region-specific information (coverage depth) to 
detect CNVs, this is a good approach for targeted gene 
panels. Due to being deep-sequenced the panel data 
often have high coverage depth, which increases accuracy 
of CNV detection via the RD approach, although the fact 
that intronic regions are not included in the analysis may 
give a somewhat lower sensitivity to certain CNVs com-
pared to using whole genome data [18].

There are several bioinformatic tools that have been 
developed to detect CNVs in NGS data [13, 19]. The 
majority of these tools have been developed for detecting 
large CNVs (in the size of megabases) and hence suitable 
only for whole genome or whole exome sequencing data 
[13]. In diagnostics labs where sequencing of targeted 
gene panels is common practice, the main goal is often 
to detect small (intragenic) disease-associated CNVs in 
partial, single or a few small exons [20]. There are a few 
available tools that claim to be suitable for data from tar-
geted gene panels [21–25], but it is always challenging to 
detect smaller CNVs, especially partial or single exons or 
mosaic CNVs, with high sensitivity and specificity con-
sistent with diagnostic standards.

We have developed a computational pipeline to detect 
CNVs in NGS data from targeted gene panels, which ena-
bles us to detect small CNVs in all targets included in 
our panel. Since implementation of the pipeline for rou-
tine diagnostics in our lab in August 2018 it has proved 
its diagnostic value by detecting 45 CNVs in 16 different 
genes, which includes partial exonic, single exonic, multi 
exonic, whole gene and mosaic CNVs. By implementing 
this method in our routine, we have reduced cost and 
lab-work overhead and improved diagnostic throughput.

Implementation
Here we describe our CNV detection pipeline which has 
been developed to work on NGS data generated from tar-
geted gene panels. To identify potential CNVs the pipe-
line utilizes coverage depth information of reads in target 
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regions defined by the gene panel. If a target region has 
CNV, the coverage depth in this region will differ from 
the expected coverage depth. When duplicated, the tar-
get region will have 1.5 times more coverage depth than 
the expected coverage depth. On the other hand, in case 
of deletion the target region will have half the expected 
coverage depth. Figure 1 illustrates this approach of CNV 
detection.

To detect CNVs in a target region of a query sample, 
our pipeline (Fig. 2) utilized this principle by comparing 
coverage depth in this region of the query sample with 
average depth in same region for normal samples with 
similar coverage depth as the query sample. The normal 
samples are provided to the analysis, and the pipeline 
creates pools of normal samples, where each pool con-
tains normal samples with similar coverage depth. These 
pools are called static pools and can be repeatedly used 
for CNV detection of any query sample where the cover-
age depth is similar to the average coverage depth of the 
pool. The pipeline is illustrated in Fig. 2.

Target region based sliding windows
To increase resolution each target region is divided into 
overlapping sub-regions in a sliding window approach as 
shown in Fig. 3, forming the template for a window-based 
representation of each target region. This approach is 
called the Target Region based Sliding Windows (TRSW) 
approach, or just sliding windows. This also helps in detect-
ing CNVs occurring in smaller sub-regions, e.g., part of 
an exon. Selection of window size is based on length of 
sequencing reads and the required resolution of CNV pre-
dictions. Sliding length for two adjacent overlapping slid-
ing windows remains the same across all regions and is 
kept relatively small compared to window size. This helps 
in detecting the start- and end-points of CNVs more accu-
rately, up to the resolution of the sliding length. At our 
diagnostic lab standard sequencing read length is 150  nt 
(X2 paired-end reads). Hence a window size of 75 nt, i.e., 
half of the read length, along with a sliding length of 10 nt 
has been chosen for validation samples and for standard 
routine CNV detection in NGS runs. This gives an overlap 

Fig. 1 The principle of CNV detection using coverage depth information. The figure depicts the change in coverage depth of different target 
regions in a sample in the case of CNV events. The normal coverage depth may vary between regions, as shown for target regions A and C. It is 
therefore important to have access to data on normal coverage depth for each region. Deletion of allele 1 in target region B reduces the coverage 
in that region by 50% (i.e., to 1/2), compared to the normal or expected coverage depth for the region. Duplication of allele 1 in target region D 
increases the coverage in that region by 50% (i.e., to 3/2), again compared to the normal coverage depth for the region
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of 65 nt between two consecutive windows. This selection 
of window size and sliding length gives a good tradeoff 
between computational complexity and resolution.

Equation 1a is used for calculating  NSW, the number of 
sliding windows for a target region of length  LTR, where 
sliding window length is  LSW and sliding length is  LSL.

(1a)NSW =
LTR − LSW

LSL
+ 1

Window traversal for a region starts by aligning the 
first window at start of the region and sliding forward 
(with sliding length) until end of region. If for the last 
slide the remaining length of the region is less than slid-
ing length, then the remaining length is added as an addi-
tional length to the last window. Hence the size of the last 
window in a region can be bigger than the chosen win-
dow size. Equations 1b and 1c are used for calculation of 
this additional length  LADD and length of the last sliding 
window  LLAST.SW, respectively.

Fig. 2 The general workflow for CNV detection. In “static pool generation” a series pools or collections of normal samples are defined to be used 
as reference data during CNV detection, representing the expected coverage depth of each region. In “CNV result generation” the coverage depth 
of the query sample is used to select a suitable pool, and a region-wise comparison between the query sample and the selected pool is used to 
identify regions with potential CNVs. The resolution of the comparison is improved by using a template of overlapping windows across each region 
of the target panel, defined as target region-based sliding windows (TRSW), see the main text for details

Fig. 3 Defining the sliding window template for a target region. The selected region is divided into smaller sub-regions by a sliding window 
approach where each window is of a fixed size and slides forward with a fixed sliding length. The last window can be larger than the chosen 
window size if the length of the remaining region is smaller than sliding length. Then the remaining region is just added to the last sliding window
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Once window traversal ends for a target region, the 
next window starts at the beginning of the next target 
region. If the length of a target region is smaller than the 
chosen window size, then there will not be any splitting 
of that region into windows and there will only be one 
window for that region, of the same size as the region.

Static pools from normal samples
In first part of the pipeline static pools are created from 
normal samples with no CNVs, sorted according to 

(1b)LADD = (LTR − LSW )%LSL

(1c)LLAST .SW = LSW + LADD

coverage depth. The pipeline can then select a pool of 
samples that matches the coverage depth of the query 
sample and use this to estimate expected coverage 
depth (without any CNVs) for a region of interest. Fig-
ure 4 shows the workflow of static pool creation.

Targeted capturing kits always have batch effects in 
capturing quality due to differences in batches or lots 
of kits as provided from vendor [26]. This is a common 
issue with sequencing of targeted panels. Using samples 
from the same sequencing batch or lot reduces the level 
of noise by reducing batch effects in the CNV analysis. 
Therefore, normal samples used in creation of static 
pools for a CNV analysis should be sequenced using 

Fig. 4 Creating static pools from normal samples. In step 1 normal samples are selected from available NGS runs and get listed in order of 
increasing coverage depth. In step 2 the coverage depth is calculated for each window across each sample. In step 3 the list of selected normal 
samples is divided into different pools of size K, where Pool-1 consists of the first K samples, followed by the next pool consisting of the next K 
samples after skipping the first sample of the previous pool. In step 4 the mean TRSW of each pool is calculated
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the same batch of target capturing kit as was used for 
the query samples.

Results from several NGS runs are used as input data 
in pool creation. The pipeline extracts normal samples 
(with depth of coverage higher than the assigned cut-
off ) from the provided runs and lists them in increasing 
order of coverage depth (Step 1 in Fig. 4).

To increase the resolution of CNV results the slid-
ing windows approach (TRSWs, see above) is used. For 
each normal sample, coverage for all sliding windows is 
calculated (Step 2 in Fig. 4).

This list of samples is used for creating the static 
pools. Equation  2 is used for calculating M, the total 
number of pools generated from these samples given N, 
the number of normal samples, and K, the pool size.

Provided the size for each pool is K, the first K sam-
ples of the list are used to create the 1st static pool of 
normal samples, the 2nd pool skips first sample and 
uses the next K samples (2nd till K + 1th sample), and 
the same follows for next remaining pools. The Mth 
(last) pool uses last K samples (N − K + 1th till Nth 
sample) from the list (Step 3 in Fig. 4).

For each sliding window in the panel the mean cov-
erage depth over all samples in each pool is calculated 
(Step 4 in Fig.  4). This list of mean coverage depth of 
each sliding window (mean_TRSW) of a pool is stored 
and used for CNV score calculations.

CNV calculation
As all regions in the target panel are split into smaller 
sliding windows (TRSWs) to increase the resolution of 
results, CNV score is calculated for each window. Fig-
ure 2 illustrates the CNV calculation workflow.

For a given query sample the coverage depth is first 
calculated for each sliding window. A static pool is 
then chosen from the set of static pools where mean 
coverage depth of the selected pool is closest to cover-
age depth of the sample. The coverage depth for each 
window of the query sample is compared against mean 
coverage depth of each corresponding window of the 
selected pool. This ratio is converted to  log2 scale to 
calculate the final CNV score, i.e., log copy number 
ratio score (logCNR score) for that window. Equation 3 
is used for calculating the  logCNRscore for a window, 
where  LSW is sliding window length,  NDi is nucleotide 
depth at ith position of query sample,  NDij is nucleotide 
depth at ith position of jth sample in the static pool, 
and n is the number of samples in the selected static 
pool.

(2)M = N − K + 1

Theoretical values of  logCNRscore are 0.0 for 2 alleles 
(normal), − 1.0 for 1 allele (deletion), and + 0.58 for 3 
alleles (duplication). The  logCNRscore for each sliding 
window is stored as CNV results of the query sample.

Quality control
The quality of the pools relatively to the query sample 
is important for the performance of our approach, and 
quality control of query and pools is therefore an impor-
tant step for reducing noise in the analysis. Three qual-
ity checks are used. First, comparing the coverage depth 
of the query sample to average depth of the selected 
pool. Second, checking the uniformity in coverage depth 
among samples in the selected static pool. And third, 
comparing CNV results generated using static pools to 
results generated with run-wise pools (see below).

Query sample versus pool quality
Quality of CNV results depends on a similar coverage 
depth of query sample and selected static pool. Hence for 
all query samples, percentage deviation of mean depth of 
the query sample relative to mean depth of the selected 
pool is checked. If this percentage deviation is larger 
than a cutoff (set by lab, for example 5%), then the query 
sample is re-analyzed with a larger (updated) list of static 
pools. If the deviation is still too large, then re-sequenc-
ing or a MLPA test is used, depending on the number of 
genes requested for analysis.

Static pool quality
The quality of the selected static pool can also affect the 
CNV results. Even when the percentage deviation of the 
coverage depth of the query sample compared to mean 
depth of the selected pool is lower than cutoff, differences 
in depth of normal samples used in making of selected 
pools can introduce noise. Hence only good quality pools 
(i.e., samples with uniform coverage depth) should be 
used for CNV detection. Additionally, run-wise pools 
(created by using all samples from the same NGS run of 
the query sample) can also be used to check quality of the 
static pool in case of noisy results.

Interpretation of output
For each gene in the target panel, logCNR score of win-
dows belonging to that gene are plotted. These plots are 
checked for initial assessment. Once potential signals are 
identified, gene specific regions are looked up in the table 
of logCNR scores. As example of a deletion event, Fig. 5 
shows plots of logCNR score of all sliding windows of 

(3)

logCNRscore = log2
1/LSW

∑i+LSW−1

i NDi

1/n
∑n

j=1

(

1/LSW
∑i+LSW−1

i NDij

)
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BRCA2 gene in a control sample (CS_12) depicting sig-
nals of deletion of exon3, and the table in Fig.  5 enlists 
the logCNR scores of all sliding windows of same exon3 
and its adjacent exon2 and exon4. In some cases, to get 
the best possible resolution (i.e., to locate exact break 
point) nucleotide-level coverage files are also checked. In 
our lab’s diagnostic practices, we also generate merged 
plots for the same gene across all the samples sequenced 
in same run (without naming the samples to avoid inci-
dental findings), which helps in detecting or rectifying 
any noise or signal. We also generate merged plots for 
run-wise versus static pooling results for all genes over all 
samples, which helps us in predicting or identifying any 
noise associated with static pools (see Quality control).

Once CNV signals have been confirmed in the logCNR 
score table, MLPA-based validation in performed on the 
sample. In cases of specific genes where MLPA test is not 
available, RNA sequencing or long-range PCR is per-
formed for CNV verification.

Control samples
Selection of control samples for validation has been 
based on availability of known CNV positive samples, 
previously detected through MLPA. These samples were 
collected from the genetic diagnostic laboratories at 
Haukeland University Hospital (Bergen, Norway), Uni-
versity Hospital of North Norway (Tromsø, Norway), and 

St. Olavs Hospital (Trondheim, Norway). In total 36 posi-
tive control samples were used for validation of the CNV 
detection pipeline, where only genes with known CNVs 
were checked to reduce the risk of incidental findings. 
Additionally, 11 routine samples were chosen for calcu-
lating the specificity of the pipeline, where all the genes 
in the panel were checked for CNVs. These samples were 
collected at Department of Medical Genetics, St. Olavs 
Hospital, Trondheim, Norway. Both the 36 positive con-
trol samples and the 11 routine samples were germline 
samples where DNA had been extracted from blood.

The target gene panel consisted of 126 genes. For all 
genes, only exons, UTR regions and approximately ± 25 
nucleotides in intronic regions were captured. These 126 
genes are mainly cancer associated genes. Additional 
file 1 lists target regions and capturing probes.

Illumina’s Nextera Rapid Capture Custom Enrichment 
kit was used for capturing the target sequences. Illumina 
MiSeq and Illumina NextSeq 500 sequencers were used 
for sequencing the samples.

Among 36 positive control samples, 22 samples 
were sequenced once (12 on MiSeq and 10 on NextSeq 
sequencer), 14 samples were sequenced twice (once on 
MiSeq and once on NextSeq sequencer). The 11 rou-
tine samples were sequenced on MiSeq. Repetition of 
sequencing was performed to replicate the results, and 
the use of different sequencers was done to test the 

Fig. 5 Example of output from the CNV tool. The example shows identification of a deletion of exon 3 in the BRCA2 gene in one of the control 
samples (CS_12). Part A shows a plot of the logCNR score for all sliding windows across the exons of the BRCA2 gene. The horizontal lines at − 1.00 
and + 0.58 represent expected score values for single-allele deletions and duplications, respectively. The score values in the region of exon 3 show 
clear signals of a deletion. Part B shows a zoomed in representation of the plot for exon 3 with the CNV deletion, whereas its neighbouring exons (2 
and 4) have normal coverage depth. Part C shows the logCNR table listing score values for selected sliding windows covering the exon2–exon3 and 
exon3–exon4 junctions



Page 8 of 12Singh et al. BMC Med Genomics          (2021) 14:214 

robustness of pipeline for differences in data quality due 
to different sequencing platforms.

Data pre‑processing
Sequencing data (as FASTQ files) was preprocessed 
to generate suitable input for the CNV pipeline, using 
human genome version GRCh37 [27] as the reference 
genome. GATK best practices guidelines [28] were used 
for the preprocessing, which included alignment of raw 
pair-end reads (FASTQ files) to the reference genome 
using the BWA tool [29], further sorting, marking of 
duplicates, INDEL realignment and base quality score 
recalibration steps using the GATK toolkit to generate 
analysis-ready aligned reads (BAM files). These aligned 
reads (BAM files) were used for calculating average cov-
erage and per-locus coverage (nucleotide level coverage) 
of samples by using the GATK toolkit tool DepthOfCov-
erage. Both average coverage and per-locus coverage of 
samples were used as input data to the CNV pipeline for 
both static pool creation and CNV calculation steps.

Results
Validation of the pipeline
The pipeline was validated with the 36 CNV positive 
control samples. Only the 12 genes with known CNVs 
detected with MLPA or RNA sequencing were looked 
at. All the previously detected CNV were found with the 
pipeline, and comprising 4 whole gene deletions, 6 single 
exon deletions, 17 multi-exon deletions, 2 single + par-
tial exon deletions (break point inside the second exon), 
3 single exon duplications and 4 multi-exon duplications. 
Table  1 lists these 12 genes and number of findings for 
each of them. Additional file  2 lists the CNV findings 
with genomic positions.

Sensitivity, specificity and accuracy
Calculation of sensitivity for this method was based 
on the 36 known CNVs in the 36 positive control sam-
ples. Since all the variants were detected by the pipeline, 
the measured sensitivity is 100%, at least for this set of 
samples.

Calculation of specificity was based on the results from 
11 diagnostic routine samples where all 126 genes in the 
target panel were checked for CNVs. In total we analyzed 
1386 (11 × 126) individual genetic regions for CNVs. Of 
these 1386 regions, we detected 126 false positive results. 
This provides specificity of 90.9% and total accuracy of 
91.14% for the pipeline. Additional file  3 shows details 
of the false positives and regions of systematic error and 
their respective genes in these samples.

Using the pipeline in routine diagnostics
Since implementation of the CNV detection pipeline in 
routine work of our diagnostic lab in August 2018, we 
have detected 45 germline samples with CNVs. These 
CNVs were found in 16 different genes and include 5 
whole gene deletions, 6 single exon deletions, 18 multi 
exon deletions, 1 multi + partial exon deletion, 1 multi-
exon mosaic deletion, 1 whole gene duplication and 13 
multi-exon duplications. Table 2 lists these 16 genes and 
the number of findings in each. Some of the diagnostic 
samples show similar CNV events, e.g., all 7 samples with 
CNVs in ATM genes, 4 out of 5 samples with CNVs in 
the PMS2 gene and 7 out of 8 samples with CNVs in the 
RAD51C gene show the same duplication events. Some 
of these samples are from related family members. Addi-
tional file 4 lists these CNV findings with genomic posi-
tions. All these findings were verified by MLPA and/or 
RNA sequencing.

Table 1 Genes with CNVs identified in positive control samples

* Here partial exon means that CNV breakpoint is inside exon

Gene name Type of CNV: number of findings

APC Whole gene deletion:1

BRCA1 Single exon deletion: 2; Multi exon deletion: 6; Single exon duplication: 1

BRCA2 Single exon deletion: 1; Multi exon deletion: 1; Single exon duplication: 
2; Whole gene deletion: 2

CDH1 Multi exon deletion: 1

CDKN2A Single +  partial* exon deletion: 2

MLH1 Multi exon deletion: 3

MSH2 Single exon deletion: 1; Multi exon deletion: 4; Multi exon duplication: 1

NF1 Multi exon deletion: 1; Multi exon duplication: 1; Whole gene deletion: 1

PMS2 Multi exon duplication: 2

PTEN Single exon deletion: 1

STK11 Single exon deletion: 1

VHL Multi exon deletion: 1
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Discussion
While keeping the needs of diagnostic labs as our central 
aim we have developed a CNV detection pipeline that 
works on NGS data from target panels. We have validated 
the pipeline and implemented it in routine diagnostics, 
and it has been used in diagnostic practices in our lab 
since mid-2018. Based on the experience from routine 
diagnostics of more than 3000 samples it has proven its 
diagnostic value. By using a sliding window approach to 
increase resolution and static pooling to reduce noise 
this pipeline generates high quality CNV results. With 
this pipeline we have detected different types of CNVs, 
including whole gene CNVs and CNVs occurring at 
exonic level, e.g., multi exonic (intra-genic), single exonic, 
partial exonic and mosaic CNVs. Detecting partial exonic 
CNVs with exact breakpoints as well as mosaic CNVs 
with relatively weak signals from target panel data can 
be challenging with available in silico methods. By being 
able to handle also such data this pipeline has shown its 
value in diagnostic use.

Validation of the pipeline was done using 36 CNV 
positive control samples consisting of different types of 
whole gene and intrageneric CNVs in 12 different genes 
(Table 1). The use of a larger number of positive control 
samples is often recommended for validation, but this 
was limited by the availability of known positive con-
trols. However, by detecting all control sample CNVs, 
and hence giving a measured sensitivity of 100%, this 
pipeline meets the diagnostics requirement of no false 

negative results during the validation. Although we have 
to consider the fact that sensitivity calculation on a cer-
tain number of already known CNV positive genes may 
not be entirely representative of the actual performance 
during normal use.

The high sensitivity, specificity and accuracy of the 
pipeline shows that it is well suited for clinical practice. 
All the 126 false positive CNV detected in the 11 valida-
tion samples are in regions with very low coverage depth, 
which occurs due to non-optimal capturing by the cap-
turing kit in these regions. We found 54 of these false 
positives to be systematic errors as these were observed 
consistently in the same regions in same genes across 
all samples. Most of these regions are homologous or 
repetitive regions and high GC content regions that are 
challenging to sequence and map. In routine practices 
some of these regions (often described as systematic gap 
regions) are tested by other methods, such as Sanger 
sequencing or long-range PCR. Updating the captur-
ing kit by adding more capturing probes and modifying 
the target panel by removing some of the most challeng-
ing genes has over time helped our lab to improve the 
sequencing quality of these regions. In addition, several 
of the areas with systematic errors are in UTRs that are 
outside of the relevant analysis area, and therefore not 
reported to requisitioners. The analysis is therefore in 
practice even more specific than shown here. The cal-
culation nevertheless provides a rough estimate of the 
specificity of the analysis. The 11 validation samples were 
chosen because no CNVs had been detected during pre-
vious analyses (MLPA) of these samples. However, not 
all the 126 genes were checked with MLPA in each case, 
which in principle can give some false negative tests, but 
we believe that the probability of this is very small. The 
number of false negatives would in any case be small, 
and therefore have only minor impact on the estimated 
specificity.

The level of systematic sequencing errors may also 
change when changing to a different lot of the captur-
ing kit [26]. This can change the capturing efficiency, and 
hence change the quality of sequencing data. That is, a 
region showing systematic errors in the analysis may not 
have the same systematic errors when moving to a new 
lot. Conversely, new regions with systematic errors may 
also arise with the introduction of a new lot, in genes that 
have not previously shown such errors. To avoid this kind 
of batch effects, the lot number of capturing kits should 
therefore be changed as infrequently as possible, and 
a verification must always be made when introducing a 
new lot.

The CNV analysis may also be affected by sam-
ple properties. In in some rare cases SNPs occur-
ring in the binding site of a probe may affect capturing 

Table 2 Genes with CNVs identified in routine diagnostic 
samples

* Here partial exon means that CNV breakpoint is inside exon

Gene name Type of CNV: number of findings

ATM Multi exon duplication: 7

BRCA1 Single exon deletion: 3; Multi exon deletion: 1; 
Multi +  partial* exon deletion: 1; Multi exon 
duplication: 1

BRCA2 Single exon deletion: 1; Multi exon deletion: 1

CDC73 Multi exon deletion: 1

CDKN2A Whole gene deletion (homozygote): 1

DICER1 Single exon deletion: 2

MLH1 Multi exon deletion: 1

MSH2 Multi exon deletion: 5; Whole gene deletion: 1

MSH6 Whole gene duplication: 1

NF1 Multi exon mosaic deletion: 1 (30% mosaicism)

NF2 Multi exon deletion: 1

PMS2 Multi exon duplication: 5

PTCH1 Whole gene deletion: 1

RAD51C Multi exon deletion: 8

RB1 Whole gene deletion: 1

PTKAR1A Whole gene deletion: 1
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of this region, and hence reduce depth. For example, 
in one of our routine diagnostic samples a mutation 
(Chr2(GRCh37):g.47643457G > A) in the middle of exon 
6 (of length 134 nt) in the MSH2 gene led to a false signal 
of deletion of this exon by the pipeline. This type of noise 
is hard to avoid but important to be aware of and con-
sider by checking for SNPs that can affect probe binding.

The CNV analysis may also be affected by various 
genomic properties. Genes with repeats or with almost 
identical pseudogenes are always challenging for short 
read alignment algorithms in assigning reads to their 
correct genomic position, due to the ambiguity in plac-
ing a read which matches two or more identical regions. 
Therefore, it is challenging to estimate the correct cover-
age depth for such genes or regions. For example, exon 
11–15 in the PMS2 gene have duplicated sequences in 
the PMS2CL pseudogene. This can interfere with correct 
identification of CNVs in these regions, in most cases 
affecting exons 13–15 of the gene. However, we have 
correctly detected CNVs for this gene in all our control 
samples, and also detected and verified it in 5 diagnostic 
samples. To avoid the risk of false negatives in this gene, 
it always goes through MLPA test (for the whole gene) 
and long-range PCR test (for only exons 11–15) for CNV 
detection. Similarly a SMAD4 processed pseudogene 
which consists of only the exonic regions of exons 2–12 
of the SMAD4 gene introduces false signals for CNVs 
in exons 2–12 for this gene, and not in the introns [30]. 
These false signals are found not only by the pipeline, but 
also by MLPA. However, as deletions and duplications 
are not restricted to exonic sequences, but should also be 
found in intronic regions, we can identify these CNVs as 
false signals introduced due to processed pseudogene.

This pipeline has now been used in our routine diag-
nostic practice for more than two years. Since its imple-
mentation in our diagnostics the pipeline has detected 
different types of challenging CNVs in 16 different 
genes in 45 diagnostic germline samples, as listed above 
(Table 2), and several of these genes were previously not 
tested for CNVs (with MLPA) in our diagnostic prac-
tice. This shows that the use of this pipeline has been an 
important expansion of our capacity for clinical diagno-
sis. Although most of our use so far has been on DNA 
extracted from blood, in a few cases the pipeline has 
also been used on sequencing data generated with DNA 
extracted from fresh frozen tissue samples. In principle 
the pipeline can also be used on somatic samples, and as 
part of our work towards future versions of the pipeline it 
will be tested and further developed also for the analysis 
of somatic samples.

Compared to some other tools our pipeline is spe-
cially designed to detect smaller CNVs in target panel-
based data, e.g., single exonic and partial exonic CNVs. 

Splitting of larger regions into overlapping sliding 
windows and the possibility to choose smaller sliding 
length with respect to window length provides high 
resolution of CNV results. This improves the detection 
of small CNV events and predicts the variant bounda-
ries (breakpoints) more accurately. Also, the availability 
of nucleotide level coverage information has facilitated 
prediction of exact breakpoints, especially for partial 
exonic CNVs. Some tools [22, 25] claim to detect CNVs 
at single exonic level, but it is still challenging to detect 
partial exonic and mosaic CNVs. Our pipeline has suc-
cessfully managed to detect such CNVs in routine diag-
nostics, in addition to exonic CNVs.

Presently the pipeline uses a fixed window size for 
sliding windows across all regions in the target panel 
(except for last window of a region and for regions 
smaller than window size). As a future improvement 
we are considering whether the sliding window size 
should be chosen based on the length of each region, 
and the pattern of sliding windows created accordingly. 
This will make it possible to use larger sliding windows 
for larger regions, but also smaller sliding windows for 
smaller regions. Sliding length may also be selected 
according to size of the window length. This more 
dynamic approach can speed up the computation for 
larger regions, while at the same time giving sufficient 
resolution of CNV scores for smaller regions.

The CNV score  (logCNRscore) in our approach has a 
theoretical value of + 0.58 for duplications and − 1.0 
for deletions. As the numeric value of the duplication 
score is less than the deletion score (|+ 0.58| < |− 1.0|), 
signals for duplications are weaker than for dele-
tions. Interpretation of the pipeline output is based 
on logCNR scores and their plots, rather than a list of 
CNV calls. This means that no strict numerical cutoff 
on logCNR scores is used by our diagnostic lab. This 
reduces the risk of false negatives due to weak or some-
what noisy signals, and any false positives from this 
approach will be found by the subsequent experimen-
tal verification by sequencing or MLPA. This manual 
approach to output analysis is doable because most 
often we are asked to analyze only some of the genes 
included in the panel (1–15 genes), hence interpre-
tation for this small numbers of genes can easily be 
managed without using strict cutoffs on CNV score. 
But for investigating larger sets of queries, like larger 
target panels with hundreds of genes, or exome pan-
els, certain cutoffs based on statistical analysis will be 
necessary in order to remove most of the false positive 
signals caused by noise, to reduce workload and to nar-
row down investigation towards the most reliable CNV 
signals. This will be considered for future versions of 
our pipeline, adapted to large query sets.
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To further improve the pipeline, we will in the future 
also update our approach to sample selection for pool 
creations. Presently this is based on similarity of cover-
age depth across samples for creating pools, for select-
ing pool size, and for selecting the optimal pool for a 
given query sample. The pattern of coverage depth in 
target regions remains the same across different samples 
sequenced from the same lot of a capturing kit. Normali-
zation of the coverage depth of normal samples in pools 
and of query samples will help in creating a single pool 
with all available normal samples, which can be used with 
all query samples. This will also reduce the overhead in 
the pipeline in creating different pools, and in pool selec-
tion for each query sample. However, this also requires a 
good understanding of optimal approaches for normali-
zation of samples and will therefore be considered mainly 
for future versions of our pipeline.

Conclusions
We have here described a pipeline for detection of CNVs 
in NGS sequencing data from targeted gene panels. This 
pipeline has high sensitivity, specificity, and accuracy, and 
has already proven its diagnostic value with more than 45 
CNV findings in routine diagnostics in our laboratory 
since August 2018. These findings include partial exonic, 
single exonic, multi exonic, whole gene and mosaic 
CNVs, often in genes that previously were not tested, for 
example because MLPA tests were not available. By using 
this pipeline our lab has expanded the portfolio of genes 
up to whole gene panels where we can offer CNV detec-
tion, which is important for the quality of our diagnostic 
work.
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