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Abstract

360-degree images, a.k.a. omnidirectional images, are in the center of immersive me-
dia. With the increase in demands of the latter, mainly thanks to the offered inter-
active and immersive experience, it is paramount to provide good quality of experi-
ence (QoE). This QoE is significantly impacted by the quality of the content. Like any
type of visual signal, 360-degree images go through a sequence of processes includ-
ing encoding, transmission, decoding, and rendering. Each of these processes has the
potential to introduce distortions to the content. To improve the QoE, image quality
assessment (IQA) is one of the strategies to be followed. This thesis addresses the
quality evaluation of 360-degree images from the objective and subjective perspect-
ives. By focusing on the influence of Head Mounted Displays (HMDs) on the perceived
quality of 360-degree images, a psycho-visual study is designed and carried out us-
ing four different devices. For this purpose, a 360-degree image datasets is created
and a panel of observers is involved. The impact of HMDs on the quality ratings is
identified and highlighted as an important factor to consider when conducting sub-
jective experiments for 360-degree images. From the objective perspective, we first
comprehensively benchmarked several convolutional neural network (CNN) models
under various configurations. Then, the processing chain of CNN-based 360-IQA is
improved at different scales, from input sampling and representation to aggregating
quality scores. Based on the observations of the above studies as well as the bench-
mark, two 360-IQA models based on CNNs are proposed to accurately predict the
quality of 360-degree images. The obtained observations and conclusions from the
various contributions shall bring insights for assessing the quality of 360-degree im-
ages.

Keywords: 360-degree images, Image quality assessment, Visual perception, Con-
volutional Neural Networks, objective and subjective quality.

Résumé

Les images à 360 degrés, aussi appelées images omnidirectionnelles, sont au cœur
des contenus immersifs. Avec l’augmentation de leur utilisation, notamment grâce à
l’expérience interactive et immersive qu’ils offrent, il est primordial de garantir une
bonne qualité d’expérience (QoE). Cette dernière est considérablement impactée par
la qualité du contenu lui-même. En l’occurrence, les images à 360 degrés, comme tout
type de signal visuel, passent par une séquence de processus comprenant l’encodage,
la transmission, le décodage et le rendu. Chacun de ces processus est susceptible
d’introduire des distorsions dans le contenu. Pour améliorer la qualité d’expérience,
toutes ces dégradations potentielles doivent être soigneusement prises en compte et
réduites à un niveau imperceptible. Pour atteindre cet objectif, l’évaluation de la
qualité de l’image est l’une des stratégies devant être utilisée. Cette thèse aborde
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l’évaluation de la qualité des images à 360 degrés des points de vue objectifs et subjec-
tif. Ainsi, en s’intéressant à l’effet des visiocasques sur la qualité perçue des images 360
degrés, une étude psycho-visuelle est conçue et réalisée en utilisant quatre dispositifs
différents. À cette fin, une base de données a été créé et un panel d’observateurs a été
impliqué. L’impact des visiocasques sur la qualité a été identifié et mis en évidence
comme un facteur important à prendre en compte lors de la réalisation d’expériences
subjectives pour des images à 360 degrés. D’un point de vue objectif, nous avons
d’abord procédé à une étude comparative extensive de plusieurs modèles de réseaux
de neurones convolutifs (CNN) sous diverses configurations. Ensuite, nous avons
amélioré la chaîne de traitement de l’évaluation de la qualité basée sur les CNN à
différentes échelles, de l’échantillonnage et de la représentation des entrées à l’agrégat-
ion des scores de qualité. En se basant sur les résultats de ces études, et de l’analyse
comparative, deux modèles de qualité basés sur les CNN sont proposés pour prédire
avec précision la qualité des images à 360 degrés. Les observations et les conclusions
obtenues à partir des différentes contributions de cette thèse apporteront un éclairage
sur l’évaluation de la qualité des images à 360 degrés.

Mot-clé: Images 360 degrés, évaluation de la qualité d’image, perception visuelle,
réseaux de neurones convolutifs, qualité subjective et objective.

Abstrakt

360-graders bilder, også kjent som rundstrålende bilder, er i sentrum av oppslukende
medier. Med økningen i forventninger til sistnevnte, hovedsakelig takket være den akt-
iverte interaktive og oppslukende opplevelse, er det avgjørende å gi god kvaliteten på
opplevelsen (QoE). Denne QoE er betydelig påvirket av kvaliteten på innholdet. Som
alle typer visuelle signaler går 360-graders bilder gjennom en sekvens av prosesser,
inkludert koding, overføring, dekoding og gjengivelse. Hver av disse prosessene har
potensial til å introdusere forvrengninger til innholdet. For å forbedre QoE er vur-
dering av bildekvalitet (IQA) en av strategiene å følge. Denne oppgaven tar for seg
kvalitetsevaluering av 360-graders bilder fra objektive og subjektive perspektiver. Ved
å fokusere på påvirkningen av Head Mounted Displays (HMD-er) på den oppfattede
kvaliteten til 360-graders bilder, er en psyko-visuell studie designet og utført ved hjelp
av fire forskjellige enheter. For dette formålet opprettes et 360-graders bildedatasett
og et panel av observatører er involvert. Virkningen av HMD-er på kvalitetsvurderin-
gene identifiseres og fremheves som en viktig faktor når du utfører subjektive eksper-
imenter for 360-graders bilder. Fra det objektive perspektivet benchmarket vi først
flere konvolusjonelle nevrale nettverk (CNN) under forskjellige konfigurasjoner. Der-
etter forbedres prosesseringskjeden til CNN-baserte 360-IQA i forskjellige skalaer, fra
input-sampling og representasjon til aggregering av kvalitetspoeng. Basert på obser-
vasjonene av de ovenfornevnte studiene så vel som benchmark, foreslås to 360-IQA-
modeller basert på CNN-er for å nøyaktig forutsi kvaliteten på 360-graders bilder. De
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innhentede observasjonene og konklusjonene fra de ulike bidragene skal gi innsikt
for å vurdere kvaliteten på 360-graders bilder.

Nøkkelord: 360-graders bilder, vurdering av bildekvalitet, visuell persepsjon,
konvolusjonelle nevrale nettverk, objektiv og subjektiv kvalitet.
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General Introduction

Context of the thesis

During the last decade, immersive applications have known an impressive growth due
to the offered immersive and interactive visual experience. At the center of the used
media, one can find 360-degree images, a.k.a. omnidirectional images. The latter offer
captivating visual experience of real world scenes and virtual environments as in the
case of virtual reality (VR). Foreseeing the massive opportunities in this field, many
well-known companies such as Facebook and YouTube started offering 360-degree
content and tools. As a result, more than 70 million of 360-degree images have been
uploaded to Facebook [1] just in a year and YouTube brought 360-degree videos to
live-streaming [2]. As demands grow and consumers’ expectation rises, it is of para-
mount importance to guarantee the quality of experience (QoE) of users. However, the
specific characteristics of 360-degree images make it particularly challenging to deal
with such a content. Before being displayed to end users, 360-degree images, like any
type of visual signal, go through a sequence of steps including encoding, transmission,
decoding, and rendering. Each of these processes has the potential to introduce dis-
tortions to the content. Moreover, additional processes specific for 360-degree images
are required, such as stitching and sphere-to-plane projection introduce geometric
distortions. Besides, the used devices, i.e. head-mounted displays (HMDs), is prone
to the screen door effect (SDE). All the highlighted issues alter the visual experience.
To improve the users’ QoE, 360-degree characteristics must be carefully taken into
account as well as the various processing steps involved in the pipeline. Image quality
assessment (IQA) is one strategy among many that might be used to accomplish this
goal.

IQA is considered as one of the most difficult image processing tasks [3, 4]. Ob-
viously, the human eye is the ultimate receiver of visual signals, requiring an IQA
model that agrees with the way the human visual system (HVS) processes and per-
ceives visual signals. A considerable effort has been made to accurately predict the
perceptual quality of images according to the understanding of the HVS for traditional
content, such as 2D images, where the viewing conditions are quite simple. Still, many
challenges arise when dealing with immersive content in general, and 360-degree in
particular. The nature of such a content and the used devices, i.e. VR headsets, re-
quire a deeper understanding, especially by means of psycho-visual experiments. In
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addition, the HVS perception for VR environment is still in its infancy and not fully
studied. Many factors influence 360-degree QoE assessment related to the (i) users:
cyber-sickness, immersion and presence, and (ii) device: limited field of view (FoV)
and resolution [5]. Understanding all these factors and their influence on visual per-
ception is paramount for developing accurate and generalized IQA methods.

The goal of this thesis is to identify the factors that affect 360-IQA and investigate
their impact in order to propose robust and accurate 360-IQA models. The present
work comprises three complementary parts that contribute toward this aim. The first
one focuses on the exploration of the influence of HMDs on subjective quality ratings
of 360-degree images. The second part tackles the investigation of the use of convolu-
tional neural networks (CNNs) for 360-IQA at various levels of the processing chain,
including pre-processing, model architecture, and quality aggregations. Finally, the
third part aims at building 360-IQA models based on CNN by taking advantage of
conclusions drawn from the previous parts. The findings throughout the thesis shall
pave the way toward more reliable, accurate, and robust 360-IQA tools.

Contributions

In this thesis, quality assessment of 360-degree images in deeply investigated from
several perspectives. The following contributions are presented in this dissertation:

• Psycho-visual evaluation of 360-IQA with a focus on the influence of HMDs on
the subjective ratings.

• The use of transfer-learning from well-known and widely adopted CNNs under
various configurations for 360-IQA.

• With a focus on pre- and post-processing steps for CNN-based 360-IQA models
to optimize the processing chain at different levels, the following are present:

◦ A specifically designed data-augmentation for training patch-based CNN
models.

◦ An adaptive, lightweight, and consistent patch sampling strategy by incor-
porating the exploration behavior of users and the content importance.

◦ A comprehensive performance evaluation of input data representation prior
to training CNNs.

• Two 360-IQA models :

◦ A multichannel CNN with visual scanpath and just-noticeable difference
(JND). The information about visual trajectories and JND are used to ac-
count for the HVS properties and make the network closer to human judg-
ment.

◦ An attention aware patch-based CNN model, incorporating spatial atten-
tion to help the model focus on spatially meaningful features. In addi-
tion, skip-connections within the spatial attention module are integrated
to align the preserved features via spatial attention.
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Organization of the manuscript

This dissertation is organized in six chapters and presents the assessment of 360-
degree image quality from several points of view.

• The first chapter begins with an introduction to immersive media, with a fo-
cus on 360-degree images. The major elements of 360-degree images are then
discussed, as well as the most significant challenges facing the processing of
this emerging type of content, specifically 360-IQA. Finally, a brief literature re-
view related subjective and objective quality assessment of 360-degree content
is presented. A series of 360-IQA models are summarized so as to provide the
reader with an overview about 360-IQA models.

• The second chapter reports and discusses the influence of HMDs on quality
ratings of 360-degree images. It describes the psych-visual study designed for
this purpose, and the constructed database. Then, it introduces the conducted
experiments and the applied statistical analysis.

• The third chapter presents an extensive investigation of the use of CNNs for 360-
IQA. It describes the design of the benchmark with its different configurations.
Then, an extensive discussion is provided with some recommendations.

• The fourth chapter presents several studies on the pre- and post-processing for
CNN-based 360-IQA, including data-augmentation and labelling, adaptive in-
puts sampling, and data representation.

• The fifth chapter introduces a 360-IQA model based on multichannel CNNs,
designed to incorporate several HVS properties, including visual scanpaths and
JND probability maps.

• The sixth chapter is dedicated to the description of a patch-based CNN 360-IQA
model with spatial attention and hierarchically features reuse. Based on the ob-
servations from chapter III and IV, an adaptive 360-IQA framework is designed,
starting from input selection and data representation to the architecture of the
model and aggregation of patch quality.

This dissertation finishes with general conclusions about the conducted work and
provides openings and perspectives for future work.





Chapter I

Background and State-of-the-art

I.1 Background and overview

I.1.1 Immersive media

According to the Cambridge dictionary, immersion can be described as the fact of
becoming completely involved in something. Therefore, Biocca et al. [6] identified
immersion as a system property and defined it as:

The term "immersion" refers to the degree to which immersive media envir-
onments submerges the perceptual system of the user in computer-generated
stimuli. The more the system blocks out stimuli from the physical world, the
more the system is considered to be immersive.

According to Gisbergen et al. [7], immersion is created through six dimensions,
including presence, perspective, proximity, point of view, participation, and place. This
viewpoint can be traced back to initial research on telepresence equates immersion
to the system’s ability to provide user’s senses with surrogate stimuli replacing or
complementing real-life signal input [8].

Thanks to the aforementioned qualities and characteristics of immersion, immers-
ive media have drawn considerable interdisciplinary interest over the past decades,
which successfully delivered various frameworks for immersive media. The latter in-
volves multi-modal human-computer interaction, where the user immersion inside
a virtual space feels as a part of the physical world. Therefore, immersive media is
known to invoke a user’s sense of being there with respect to the degree of immers-
iveness. From an experiential perspective, this combines the physical and psycholo-
gical concepts of immersion [8, 9]. Immersive systems make use of technology such
as displays in order to provide the users with immersive experiences, including virtual
reality (VR), augmented reality (AR), high dynamic range (HDR), etc.

Following Schuemie et al. [10], immersive media can be characterized by :

Immersivity: can be measured by the combination of sensory cues with content cues
essential for user emplacement and engagement.

1
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Interactivity: refers to the interaction of the users with the virtual environment through
a digital interface.

Explorability: can be described as the possibility for users to explore and move freely.

Believability: relates to the fidelity and validity of sensory features within the gen-
erated environments.

Plausibility: concerns the coherence and consistency of the content features for the
user to form mental concepts.

In the Qualinet white paper on definitions of immersive media experience (IMEx) [8],
immersive media is summarized as:

A high-fidelity simulation provided and communicated to the user through
multiple sensory and semiotic modalities. Users are emplaced in a technology-
driven environment with the possibility to actively partake and participate
in the information and experiences dispensed by the generated world.

Immersive media are known to stimulate physical senses to the point where we
experience psychological immersion [11, 12]. It has the ability to make users involved
in the simulated virtual environment, giving the impression that it is real and that
they are present in it. The most known immersive media technologies that provide
impassiveness and engagements are:

Virtual Reality (VR): occludes physical space to provide interactive and non-interactive
experiences of a fully computer-simulated “virtual” world or a photographic-
ally “captured” real world [8, 13]. A virtual reality system should have three
characteristics: response to user actions, real-time 3D graphics and a sense of
immersion [14].

Augmented Reality (AR): it is defined as a real-time direct or indirect view of a phys-
ical real-world environment that has been enhanced/augmented by adding vir-
tual computer-generated information to it [15]. Therefore, it can be considered
as a digital content overlays a real-world environment. It enhances reality rather
than replacing it. Milgram et al. [16] defined AR as the "middle ground" between
virtual environment (synthetic) and telepresence (real).

Mixed Reality (MR): combines real and virtual content that allows real-time inter-
action and aims at blending real and virtual environments [17]. Milgram et al.
described MR as a “stronger” version of AR. It is potentially bound to specific
hardware or devices.

VR is one of the most popular immersive media technologies. As of today, there are
an estimated of 171 million VR users worldwide. At the heart of VR applications, 360-
degree visual images. The latter are also known as panoramic, omnidirectional, and



Chapter I: Background and State-of-the-art 3

spherical images, as they cover a 360-degree range. The viewer may enjoy an immers-
ive experience by viewing 360-degree content of real-world or computer-generated
ones using head-mounted displays (HMDs).

Several challenges with regard to the processing of 360-degree images arise as it
gaining more popularity. In particular, the assessment of quality of experience (QoE).
The latter is strongly related to:

• The viewer presence (i.e. the degree of immersion).
• The viewer’s behavior (Head rotation represented by the Roll-Pitch-Yaw move-

ment).
• The cyber-physical system (Device).
• Simulator sickness.
• The quality of the media itself (Content).
• Physiological state of the viewers.

The elements that influence QoE for VR services, according to the international
telecommunication union ITU-T G.1035 [5] recommendation, might be connected
to the users and / or the used system. With a focus on 360-degree QoE, Table I.1
summarizes the most significant factors. It is of paramount importance to understand
the extent to which these factors impact QoE. The improvement of the QoE relies
on the fact that each component contributing to the final QoE is studied and then
modeled. This helps to design and develop accurate and consistent quality assessment
models.

I.1.2 360-degree images

In this part, we describe the typical 360-degree content communication pipeline.
Fig. I.1 depicts the key processes involved in the generation of this type of content,
from acquisition to display and visualization.

Capturing

Stitching

Projection

Enc. / Trans.  
/ Dec.

Rendering

Mapping Visualization

Figure I.1: Generic scheme of a 360-degree image generation chain.
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Table I.1: QoE influencing factors for 360-degree viewing experience.

Category Factors Brief description

Human

Vision Visual abnormalities such as astigmatism and chro-
matic aberration may occur in the human eye. Such
vision problems may negatively affect the user ex-
perience. When vision problems can be corrected
by lenses, having the user wear their normal glasses
may be a solution, although this may be uncomfort-
able.

Simulator
sickness

Cybersickness or visually induced motion sick-
ness triggered by visual stimuli is undesirable
phenomenon. It is caused by the sensory con-
flict arising between the visual and vestibular sys-
tem [18]. While viewing 360-degree content in an
HMD, a user may experience symptoms of simu-
lator sickness such as fatigue, sweating, vertigo or
nausea [19, 20]. Simulator sickness is an important
factor that affects QoE. Different factors exist such
as resolution, FoV, the orientation of users, HMD,
player, etc, by which simulator sickness can be af-
fected [21, 22].

Immersion The tendency to experience immersion and the
level of presence in VR environment, including 360-
degree ones, vary individually according to each
users.

System

Content The quality of 360-degree content is crucial for the
user’s experience. As it has additional requirements
when compared with traditional multimedia con-
tent, such as high resolutions and stitching, it is im-
portant that it is generated at a good quality.

Device Unlike traditional viewing devices, HMD wearing
comfort may greatly impact the final QoE. Besides,
the FoV and resolution of the HMD are very import-
ant features impacting the viewing experience. With
a wider FoV, a user is more likely to feel present
in the scene. A wide FoV can increase immersion,
however it can also cause simulator sickness. This is
mainly because the large visual input brought from
large FoV may cause conflicts with the vestibular
and proprioceptive systems [23]. Regrading the res-
olution of the HMD, an appropriate screen resolu-
tion, relative to the resolution of human eye, would
provide the best and most comfortable experience.
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• Capturing: it is typically performed using multiple cameras, that are time syn-
chronized and uniformly placed on a rig. The end result is a set of images which
encompasses the entire field of view which is 360 degrees.

• Stitching: after the acquisition, the 2D images captured by all cameras are com-
bined to create a 360-degree image resulting in a spherical representation. This
process is called stitching. The latter must be performed in such a way to avoid
visual distortions, particularly the scene motions and exposure differences. In a
real world scenario, the intensity varies spatially, and so does the contrast across
the spatial dimensions of visual scenes. For panoramic stitching, the ideal set of
images will have a reasonable amount of overlap to overcome lens distortion
and have enough detectable features. The set of images will have consistent
exposure between frames to minimize the probability of seams occurring.

• Projection: in order to process, store or transmit the spherical 360-degree im-
age, it is mapped into a planar representation. This process is called sphere-to-
2D plane projection. The most widely used planar projection is the equirectan-
gular projection (ERP) and Cube-map projection (CMP) [24]. The main issue
with these projections is the variation in pixel density due to non-uniform and
oversampling as illustrated in Fig. I.2. Other projections have been investigated
in order to solve the shortcomings of ERP and CMP. Each projection has different
characteristics. Fig. I.3 presents examples of several projection format.

• Encoding: after obtaining a planar representation of the 360-degree image, 2D
standard codec can be used in order to decrease its spatial redundancy. Before
encoding, an additional step called tilling can be applied, which divides the 360-
degree image into several tiles that are independently encoded. This is useful to
control which quality each tile will receive, e.g. tiles not perceptually relevant
can be encoded with lower quality.

• Transmission: the bitstream generated by the encoding step is then stored or
sent to the client over a fixed or wireless communication channel.

• Decoding: this step performs the inverse operation of the encoder in order to
reconstruct the 360-degree image.

• Inverse Mapping: in order to render the 360-degree image, a spherical rep-
resentation is usually used. Therefore, the transmitted planar image has to be
mapped back into a sphere, by applying the corresponding inverse mapping
transformation.

• Rendering: the images that are displayed to the user are a part of the entire
viewing sphere. Depending on the user viewing direction, a selected part of the
sphere is projected on a 2D plane, resulting in the so-called viewport. Viewers
can select the viewport to focus on the content using head movement (HM)
within a sphere, while eye movement (EM) determines which region can be
captured at high resolution within the viewport. This viewing mechanism is
quite specific to this type of application.

• Display: the output of the rendering step is a 2D image that can be projec-
ted on a display. The displays for 360-degree images can be categorized in two
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types: the first corresponds to a navigable image on a flat 2D display (e.g., a
smartphone screen), where the viewing direction can be controlled by moving
the display itself or swiping using hands. The second type corresponds to a vir-
tual reality headsets, a.k.a head-mounted displays (HMDs). The latter is used to
track the users’ head movements so as to compute the corresponding viewport,
on the one hand. On the other hand, HMDs enhance the immersiveness of the
users compared to using 2D flat screens.

Despite the utility of HMDs in offering an immersive experiences, still several is-
sues regarding the display must be considered:

Pupillary distance or interpupillary distance (IPD): is the distance measured in mil-
limeters between the centers of the pupils of the eyes. Everyone is different and
the value changes based on whether you’re looking at something close up or far
away. The optical center of the lenses must be positioned correctly in relation
to the center of the subject’s pupils or undesired results can ensue; such as eye
fatigue, headaches and even nausea.

Screen Door Effect (SDE): is a visual artifact caused by the display of the HMD,
which consist of the space between each pixel that been magnified. That space
results in the black visual grid that occur when watching through the HMD’s
lenses. This problem is less noticeable on higher-resolution displays, which have
higher pixels per square inch (PPI). This means the pixels are packed more
tightly together and there is less space between them. As the space between
pixels shrinks, the screen door effect becomes less noticeable.

Field of View (FoV): is one of the most important aspects of virtual reality. The wider
the field of view, the more present the user is likely to feel in the experience.
Monocular FOV describes the field of view for a single eye. The binocular FoV
is the combination of the two monocular FoV. When combined, a viewable area
of 200◦-220◦ can be provided. Where the two monocular fields of view overlap,
there is the stereoscopic binocular field of view, about 114◦, where we are able
to perceive things in 3D.

Despite the fact that ERP content is widely adopted as a standard de facto, it does
not represent the viewed content by the users through HMDs. In addition, due to
the non-uniform sampling, severe geometric distortion appears at the polar regions.
Several works tackled the projection problem in order to reduce the over-sampling
on the one hand, and improve the consistency with the actual viewed content on the
other. Table I.2, summarizes some of the most important works on 360-degree content
projections. Additionally, Fig. I.3 visually illustrates several projection format.

360-degree image projections can be categorized as map-based, patch-based, tile-
based, and rotation-based projection. The map-based projection are straightforward
and aim to simply project the spherical content to 2D plane. Patch-based projections
were introduced to solve the oversampling problem of the map-based ones. The use
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Table I.2: Summary of 360-degree content projections

Projection
type

Name Description

Map-based
Equirectangular
projection
(ERP) Fig. I.3
(a)

The ERP’s horizontal and vertical coordinates correlate to
the sphere’s longitude and latitude. As longitude ranges
from 0 to 2π and latitude ranges from −π/2 to π/2, ho-
rizontal and vertical coordinates in ERP correspond to lon-
gitude and latitude on the sphere.

Equal-area
projection
(EAP) [25]éFig. I.3
(b)

The EAP is proposed as a solution to the oversampling prob-
lem in ERP by adaptively decreasing the sampling rate in
vertical coordinate. It can prevent oversampling and ensure
that the area is equal to the original sphere while incurring
a more severe shape distortion.

Cube-map projec-
tion (CMP) Fig. I.3
(c)

The CMP implies a bounded cubic box surrounds the sphere;
the pixels on the sphere are first projected to the cube, which
is then unfolded into six surfaces and reorganized for com-
pact representation.

Patch-based

Dodecahedron-
projection [26]

With this projection, the sphere is projected to a rhombus
dodecahedron, then divided and reassembled to generate a
three by four rectangle. The rearrangement of the generated
portions is made in such a way to minimize discontinuity.

Octahedron-
projection
(OHP) [27] Fig. I.3
(e) and (g)

The OHP projects the spherical content onto the faces of
the octahedron. The rearrangement of the faces may differ
according to the task. For instance, JVET recommends com-
pacting the faces using different layout resulting in COHP.

Icosahedron
projection
(ISP) [28] Fig. I.3
(h)

The ISP is based on the OHP where the faces are rearranged
into a compact format too.

Adjusted Cube-
map projection
(ACP) [29] Fig. I.3
(d)

The ACP is an improved version of the CMP where the
oversampling caused by nonuniform projection at different
angles. A nonlinear modification is proposed with a sample
rate adjustment mechanism based on location.

Tile-based
Li et al. [30] The poles in the sphere are projected to circles instead of

tiles, to eliminate distortions
Yu et al. [31] The proposed projection divides the ERP into several tiles.

The idea is to prevent oversampling by decreasing the
sampling rate in the horizontal direction.

Segmented
sphere projection
(SSP) [32] Fig. I.3
(f)

The SSP is an extension of the projection proposed by Li et
al. [30]. The number of tiles is decreased to three so as to
generate less discontinuous boundaries.

Rotation-
based

Rotated Sphere
Projection
(RSP) [33] Fig. I.3
(i)

This projection unfolds the sphere at two separate rotation
angles and stitches it together like a baseball surface [34].
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(a) Equirectangular projection (ERP)

(b) Cube-map projection (CMP)

Figure I.2: Illustration of the non uniform and oversampling causing substantial vari-
ation in pixel density [25].

of polyhedron with numerous faces to approach the ideal sampling rate is the most
widely adopted strategy. It appears that as the number of faces increases, the over-
sampling rate decreases. However, this is accomplished at the cost of introducing con-
tent’s discontinuity. The same goes for the tile-based projections. The constant spacing
of latitudes and longitudes leads to a constant vertical sampling density. Since each
latitude is stretched horizontally to fit the desired rectangle, it leads to varying hori-
zontal sampling density [31]. The tile-based projection aims at changing the sampling
density while retaining the rectangular shape. Here, ERP representation is sliced into
multiple tiles. Regarding the rotation-based projection, rotating the original sphere
surface before projecting it into a 2D plane enhances the coding efficiency as demon-
strated by Zakharchenko et al. [35].
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Figure I.3: Examples of several types of projection for 360-degree images, from which
one can see that the content is deformed and discontinuous boundaries are introduced.
(a) ERP, (b) EAP, (c) CMP, (d) ACP, (e) COHP1, (f) vertical SSP, (g) COHP2, (h) CISP,
and (i) RSP [34].
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I.1.3 360-degree image quality assessment

Image quality assessment (IQA) is crucial for most image processing applications. IQA
can be used to monitor image quality for any imaging-based system. For instance,
visual content providers use IQA to examine the quality of the digital content trans-
mitted to the customers and garantee a better QoE. IQA can be employed to evaluate
and benchmark image compression systems and algorithms. In particular, IQA can
help to evaluate which compression algorithm provides the best perceptual quality
while requiring less bitrate.

360-IQA

No-ReferenceFull-Reference

Traditional

Deep-learning
based

ObjectiveSubjective

Figure I.4: Categorization of 360-IQA methods.

Despite the fact that 360-degree images gained an impressive popularity in a short
time, 360-IQA still in it infancy and not fully explored. Compared to 2D-IQA where a
significant progress has been achieved in terms of performance, accuracy, and robust-
ness, 360-IQA is yet to be broadly uncovered. 360-IQA comprises two classes as shown
in Fig. I.4. First, subjective quality assessment (SQA) involving human observation.
With SQA, the exploration behavior and visual perception of individuals in immersive
environments and for a set of images can be studied by following recommendations
and specific protocols. The collection of human opinion serves to build IQA databases.
Second, the objective quality assessment (OQA) focuses on developing computational
approaches that mimic how 360-degree images are viewed and perceived. According
to 360-IQA state-of-the-art, OQA for 360-degree images is divided into two categor-
ies, full-reference (FR) and no-reference (NR). Within each class traditional models
based on natural scene statistics (NSS) or pixel-to-pixel differences are proposed in
addition to deep-learning based ones.

SQA remains the most reliable way to evaluate image quality while being tedious
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Figure I.5: Subjective experiment environment using a HMDs for 360-degree images.
(a) compatible computer, (b) HMD tracking stations called lighthouse, (c) human ob-
server, and (d) HMD [36].

and money consuming. Therefore, objective quality evaluation ensures a trade-off by
providing a computational approach for predicting image quality. However, the reliab-
ility, predictability, and robustness of OQA models are dependent and conditioned on
the reliability of SQA. As the latter plays the ground truth on which OQA is evaluated
and ascertained, it must be carefully designed.

SQA are based on psycho-physics research, a field that studies the relationship
between physical stimulus and human perception. An SQA method consists on collect-
ing subjective opinions from human observers, where the latter judge and rate image
quality according to their perception and preference. The collected data is mapped to
a subjective score used as ground truth. SQA methods can be classified into:

Single-stimulus: observers only see the distorted images and are unaware of the
pristine ones.

Double-stimulus: both pristine and distorted images are available to observers.

SQA for 360-degree images uses single-stimulus methods, as the HMD has a single
screen. A typical experimental setup is shown in Fig. I.5. Usually, the observer sits on
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a swivel chair to reduce side effects, such as cyber-sickness, on the one hand. On
the other hand, the observer has the ability to turn around so as to explore the full
scene. However, it is still possible for the observers to stand during the experiment.
The HMD is connected to a compatible computer in order to render the received sig-
nal. According to the type of HMD, tracking stations may be required. These stations
power the presence and immersion by helping the HMD and controllers track their
exact locations. Basically, the stations facilitate the VR experience. They are the proxy
in between the computer, the peripherals, and the users. This is accomplished by con-
stantly flooding the room with a non-visible light [37].

Pristine

Distorted

Full-reference

No-reference

Quality  
score

Quality  
score

Figure I.6: Full- vs. no-reference 360-IQA.

Regarding OQA categories, the difference among them lies in the availability of
pristine images. In case of 360-IQA, only FR and NR models have been investigated.
The FR models make use of both pristine images and their distorted versions as illus-
trated in Fig. I.6 (a). By having access to the pristine images, FR models can measure
the (i) difference in the visual signal refereed to as fidelity, and (ii) the amount of
information loss. Image quality and fidelity are often used interchangeably. However,
they do not refer to the same aspect. Daly et al. [38] describe image fidelity as a subset
of overall image quality that specifically addresses the visual equivalence of two im-
ages. It is also referred to as the ability to discriminate between two images in terms
of how closely the image represents the real source distribution [10, 39]. It is known
that image fidelity and quality measures are not always positively correlated [39]. For
instance, an enhanced image considered as a distorted version may be preferred over
the pristine one.
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Image quality is described as the weighted combination of visually significant at-
tributes of an image [40]. Therefore, the assessment of image quality focuses on per-
ceptual assessments to determine if an image is pleasant for human viewers. In NR
cases, the model have only access to the distorted version, and therefore can not
compute the fidelity as there are no sources to compare with. The fact of missing the
pristine images makes determining the level of quality challenging. In particular, im-
ages with multiple distortions and captured in the wild. A quality of an image could
be affected by several attributes [4, 41–43], such as:

Blur: can affect the amount of detail in an image. It is mainly caused by imaging
systems used for capturing, in particulars the lens and sensors.

Noise: is a random variation in image density that appears as pixel level changes.

Dynamic range: is the range of light levels that a camera can record. It is connected
to noise, where excessive noise suggests a poor dynamic range.

Contrast: is the log-log slope of the tone reproduction curve. High contrast frequently
results in a loss of tones and, as a result, loss of details.

Artifacts: are visual representational abnormalities affecting the details within im-
ages. They may be induced by the capturing system, stitching, compression,
and transmission losses.

I.1.4 Evaluation of 360-IQA models

According to the the ITU and the video quality expert group (VQEG), the perform-
ances and reliability of objective models can be evaluated by their correlation with
subjective opinion scores, i.e. MOS or DMOS. This is achieved with respect to three
aspects: prediction accuracy, prediction monotonicity and prediction errors. There-
fore,VQEG recommends the use of the Pearson linear correlation coefficients (PLCC),
Spearman rank-order correlation coefficients (SRCC), the root mean square error
(RMSE), and the mean absolute error (MAE) as evaluation metrics. PLCC evaluates
the accuracy of the correlation, whereas the SRCC evaluates its monotonicity. A value
close to 1 relates to a better accuracy and monotonicity for PLCC and SRCC, respect-
ively. As for the RMSE and MAE, they evaluate the prediction errors where lower
values refers to a lower average error in the prediction.

Prior to calculating the PLCC, RMSE, RMSE, and MAE for different objective qual-
ity assessment models, a five-parameter logistic nonlinear fitting function is recom-
mended by the ITU-R recommendations [44]. It is used to map predicted quality
scores to a common scale. However, it is to be recalled that the use of the logistic
function cannot be done if the native correlation is below ±0.7. Otherwise the cor-
relation value cannot be considered as reliable because regression quality is very low.
The fitting function can be computed as follows:
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�
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where ŷ denotes the objective score and f ( ŷ) represents the corresponding mapped
score. βi(i = 1,2, 3, 4, 5) correspond to the logistic function parameters to be fitted.

The aforementioned performance metrics can be calculated as follows:

PLCC:
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N
∑

i=1
(yi −µyi
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where yi and f ( ŷi) denote the i − th subjective and mapped objective quality
values. µyi

and µ f ( ŷi) represent the corresponding mean values of yi and f ( ŷi),
respectively.

SRCC:

SRCC = 1−
6

N
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where N is the number of image samples, di indicates the rank difference between
the subjective and objective evaluations for the i − th image.

RMSE:
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. (I.4)

MAE:

MAE =

N
∑

i=1
|yi − f ( ŷi)|

2

N
. (I.5)

In addition to PLCC, SRCC, RMSE, and MAE, some evaluation metrics have been
proposed to extensively evaluate the performances of an objective IQA model. For in-
stance, the metric proposed by Krasula et al. [45] provides more insight on the beha-
vior and performances of an IQA model. It examines the statistical significance among
several models by comparing the area under the curve (AUC) values from receiver op-
erating characteristic (ROC) analysis [46, 47], mostly known for binary classification
tasks. Hence, the ability of an IQA model to classify images according to their per-
ceived quality can be highlighted. Basically, it compares the capacity to distinguish
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different/similar and better/worse among image pairs and provide a percentage of
correct classification denoted as C0.

The statistical significance of the Krasula et al. method is calculated according to
method proposed by Hanley et al. [48]. Hence, given two objective models a and b,
a critical ratio cab between the AUC for a and b is measured. This is accomplished as
follows:

cab =
AUCa − AUCb
q

SE2
a + SE2

b − 2rSEaSEa

, (I.6)

where SEa and SEb are the standard errors for AUCa and AUCb computed according
to Hanley et al. [49], respectively, and r is an estimated correlation between the two
areas. The standard error SE is obtained as:

SE =

√

√

√

AUC(1− AUC) + (ng1 − 1)(Q1 − AUC2) + (ng2 − 1)(Q2 − AUC2)

ng1ng2
(I.7)

where ng1 and ng2 are the numbers of elements in each group in the ROC analysis,
and Q1 and Q2 are:

Q1 =
AUC

(2− AUC)
(I.8)

Q2 =
2AUC2

(1+ AUC)
. (I.9)

In details, the Krasula et al. method provides:

• For the different vs. similar analysis:

◦ AUC values showing how well can a model distinguish between signific-
antly different and similar stimuli.

◦ Threshold for the model’s scores difference providing 95% probability that
the images are significantly different.

• From the better vs. worse analysis:

◦ Percentage of correct recognition of the qualitatively better stimulus from
the pairs.

◦ AUC values showing how well can the model recognize qualitatively better
stimulus from the pair.

Such a metric necessitates additional data to the MOS, such as the standard devi-
ations. Unfortunately, almost all available databases only provide the MOS. It becomes
paramount to share more subjective and statistical data within IQA databases. This
will help to understand objective models behavior towards specific content, condi-
tions, and even degradation.
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I.2 Related work

In this section, we review previous studies on subjective and objective quality assess-
ment for 360-degree content.

I.2.1 Subjective 360-IQA

SQA is the most reliable method for assessing QoE, particularly for applications inten-
ded to human users. However, it necessitates a significant number of human observers
as well as a substantial amount of money and resources. In case of immersive applica-
tions in general and 360-degree images in particular, a specific setup is required with
advanced technologies such as HMDs. SQA is typically used to create databases for
training and testing OQA methods. The subjective ratings could be used as a founda-
tion for developing new algorithms and paradigms. For instance, the user’s behavior
can be modeled by means of visual attention modeling. The latter can be exploited in
various applications, including image generation, object classification, target detec-
tion and tracking, etc.

Since SQA must be carefully performed in order to produce and collect accurate
results, the ITU and VQEG developed guidelines on how to perform such experiments.
For instance the ITU-Rec BT.500 [44] among other recommendations lists the protocol
to setup the experiment environment, test conditions, nature of content, category of
participants, data collection and analysis, etc. Following such guidelines ascertain the
reliability of the experiments, collected data, and most importantly the drawn conclu-
sions. Unfortunately, during the conduction of this thesis, there were no guidelines nor
recommendations on how to conduct reliable subjective experiments for immersive
applications in general, and 360-degree images in particular.

Because it is still in its early stages, existing SQA of 360-degree content studies em-
ploy 2D-related methods and standards [44]. Especially, the test method, collection of
opinion scores, and the data processing. Regarding the test methods, several factors
are considered, including (i) session setting, (ii) material arrangement, and (iii) rat-
ing scales. As 360-degree images are an emerging type of media on the one hand, and
uses specific devices, i.e. HMDs, on the other, a training session is required before the
subjective experiment. This helps the participants to familiarize with the 360-degree
content, virtual environment, and the HMDs. Many existing works applied directly test
methods designed for 2D-IQA such as the absolute category rating (ACR) and ACR
with hidden reference (ACR-HR) methods, recommended in the ITU-T P.910 [50].
This is motivated by the fact that these methods are single-stimulus (SS) [44] based
methods, which agree with 360-degree images viewing through HMDs. The latter can
only display one stimulus at a time. Therefore, the participants rate each stimulus in-
dependently and without comparison. There were a few attempts to fine-tune exist-
ing methods for 360-degree visual content. In particular, Singla et al. [51] proposed
a modified version of the ACR named M-ACR, where each stimulus is viewed twice
before the rating. Bo et al. [52] proposed the subjective assessment of multimedia



Chapter I: Background and State-of-the-art 17

panoramic video quality (SAMPVIQ), a modified version of the subjective assessment
of multimedia video quality (SAMVIQ) [53]. Technically, in SAMPVIQ, the test stim-
ulus is separated into different groups, where the reference stimulus is identified and
played to the observer first, followed by the distorted version. The observers are free
to view the stimuli in any order they want. When all the stimuli in a group have been
rated by the observers, the experiment goes on to the next group.

With regard to the rating scales and the data processing, the majority of works [21,
54–58] used either discrete or continuous rating scales. As for processing the opinion
scores, the recommendation listed in [44] are followed. Hence, the mean opinion
scores (MOS) or the differential MOS (DMOS) is generated. Yet, the work done by
Xu et al. [59] resulted in the overall DMOS (O-DMOS) where the head-movement
(HM) of observers are taken into account. Here, the HM accounts for the importance
of different regions in the 360-degree image.

The use of HMDs is unavoidable for quality ratings of immersive applications. Most
reported studies overlooked the distortion introduced by the HMDs, in particular SDE.
Besides, Therefore, ascertaining the reliability of the subjective experiments when us-
ing various commercial HMDs is of paramount importance. In the literature, one can
find some studies targeting several factors that may influence the perceived quality,
including the resolution of the content, the HMDs, test methods, viewing modes, etc.
In these studies, different devices from different manufacturers are used. In particu-
lar, Singla et al [21] considered studying the impact of the HTC Vive and the Oculus
Rift using different content in terms of resolution (4k, FHD). They also recorded head
movements of the viewers to determine their behaviors. Here the focus was rather on
the resolution and not the HMD itself. Similarly, the effect of different resolutions on
perceived quality is studied by Hofmeyer et al. [55] and Zou et al. [58], where the
HTC Vive and HTC Vive Pro quality ratings are compared. In addition, Zou et al. in-
cluded the impact of pixel density on the perceived quality. Hence, a high-resolution
monitor is used by adjusting the distance between the viewer and the screen to ob-
tain different densities. Here, they demonstrated that with a higher density, quality
improves until a saturation at values greater than 60 pixels per degree (PPD), which
corresponds to the retina resolvable resolution [60]. Rossi et al. [61] compared user
navigation trajectories with several platforms, including the Oculus Rift, a laptop, and
a tablet. The effect of device and content on navigation is highlighted by evaluating
user behavior when watching various types of material, ranging from movie to action
and documentary content. When watching content with a primary focus of attention,
the HMD was found to lead to similar navigation among users compared to the other
devices. A closely related work to Rossi et al., is the comparative study by Zhang et
al. [57]. Here, the authors analyzed the influence of viewing methods on subjective
evaluation, including free-viewing, fixed trajectory viewing, and content-dependent
viewing modes. The subjective evaluation was found to be significantly affected by
the viewing mode. Perez et al. [56] focused on assessing the cyber-sickness caused
by high motion 360-degree content. To do so, they proposed to isolate the camera
motion from other factors defining anchors to control the gaze of the viewers.



Chapter I: Background and State-of-the-art 18

Table I.3 summarizes several studies conducted on SQA for 360-degree visual con-
tent. All of them targeted 360-degree videos, as it is more challenging. However, the
conclusions drawn can be applied to 360-degree images as well. Most of these stud-
ied contributed to the ITU-T recommendation P.919 [62, 63]. The latter, performed
a cross-lab test within the immersive media Group (IMG) of the VQEG in order to
validate and recommend test methodologies to evaluate the audiovisual quality of
360-degree visual content.

I.2.2 Objective 360-IQA

In comparison with traditional IQA methods for 360-degree images, deep-learning
based ones gained a considerable attention. Such choices are mainly motivated by
the impressive performances brought by deep-learning techniques. However, as deep-
learning based models require large scale databases in order to achieve good results,
360-IQA databases are not of sufficient size to allow such an achievement. Existing
models adopted transfer learning (TL) and fine-tuning techniques to cop with these
limitations. In the following, we review existing 360-IQA models with respect to their
category illustrated by Fig. I.4.

I.2.2.1 Full-reference 360-IQA

As 360-degree content gained more popularity, a few 360-IQA models have been pro-
posed by extending traditional 2D models such as PSNR, SSIM or MSE. In particular,
Yu et al. [70] introduced the Spherical PSNR (S-PSNR) which computes the PSNR on
a spherical surface instead of the 2D representation. The weighted spherical PSNR
(WS-PSNR) [71] uses the scaling factor w(i, j) of the projection from a 2D plane to
the sphere as a weighting factor for PSNR estimation. For each pixel (i, j) in I and Î
the WS − PSNR is obtained as follows:

WS − PSNR= 10 log10(
MAX 2

W MSE
), (I.10)

where,

W MSE =

∑M−1
i=0

∑N−1
j=0 (I(i, j)− Î(i, j))2.w(i, j)
∑M−1

i=0

∑N−1
j=0 w(i, j)

, (I.11)

and,

w(i, j) = cos(
π

N
( j +

1
2
−

N
2
)). (I.12)

Similarly, Chen et al. extended the structural similarity index (SSIM) [72] to spher-
ical SSIM [73] by exploiting the relationship of structural similarity between the 2D
plane and the spherical domain. Hence, computing the luminance, contrast and struc-
tural similarities at each pixel in the spherical domain. The S-SSIM uses the same
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Table I.3: Summary of subjective studies for 360-degree content.

Study Year Description Res. HMD Observers Test
method

Tran et
al. [64]

2017 Assess the QoE with regard to
the perceived quality, presence,
screen, and cybersickness.

HD /
FHD /
2K / 4K

Samsung
Gear VR /
Google Card-
board

36 -

Singla et
al. [21]

2017 Study of the influence of con-
tent’s resolution, observers’ beha-
vior and gender in the final quality
rating and the simulator sickness.

FHD /
4K

HTC Vive /
Ocolus Rift

28 (M:13, F:15) ACR (5
scales)

Bo et
al. [52]

2017 Investigate the performances of
different SQA methods and pro-
posed a modified version of SAM-
VIQ [65] for 360-degree content.

4K HTC VIVE 23 (M:13, F:10) SSCQS
/ SAM-
VIQ /
SAMPVIQ

Singla et
al. [66]

2017 Study of quality evaluation under
different coding bitrates.

FHD /
4K

Ocolus Rift 30 (M:15, F:15) M-ACR

Perez et
al. [56]

2018 Assess the cybersickness caused by
high motion 360-degree content
by isolating the camera motion ef-
fect from other factors.

- Google Day-
dream

15 (M:5, F:10) -

Xu et
al. [67]

2018 Investigate the viewing directions
of observers and an adaptive
method for SQA.

3K / 8K HTC Vive 40 (M:29, F:11) SSCQS

Fremereya
et al. [68]

2019 Study of the impact of different
resolutions with two HMDs on the
perceived quality.

4K / 6K
/ 8K

HTC Vive /
Vive Pro

27 (M:13, F:14) /
28 (M:16, F:12) /
27 (M:14, F:13)

ACR (5
scales)

Hofmeyer
et al. [55]

2019 Explore the impact of frame-rate,
motion interpolation techniques,
and VR players on the quality rat-
ing.

3K HTC Vive Pro 12 (M:11, F:1) ACR

Singla et
al. [51]

2019 Comparative study on ACR/M-
ACR/DSIS under different resolu-
tions and bitrates.

4K / 6K
/ 8K

HTC Vive Pro 29 (M:18, F:11) /
30 (M:16, F:14) /
28 (M:19, F:9)

ACR /
M-ACR
/ DSIS

Zhang et
al. [57]

2019 Study the influence of the viewing
method including free-viewing,
fixed trajectory, and content-
dependent viewing modes.

3k HTC Vive 30 (M:17, F:13) ACR

Zou et
al. [58]

2020 Investigate the impact of screen
resolution.

4K / 8K HTC Vive /
ViVe Pro /
Pico G2

30 (M17: F:13) ACR (5
scales)

Rossi et
al. [61]

2020 Investigate the users behavior in
VR by analyzing navigation tra-
jectories under different viewing
platforms (HMD, laptop, and tab-
let).

2k Oculus Rift 94 (M:65, F:29) -

Chu et
al. [69]

2021 Study the rating duration with re-
spect to the ACR and M-ACR meth-
ods.

2K / 3K
/ 4K /
8K

HTC Vive pro 26 ACR
/ M-
ACR (5
scales)
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weights as WS-PSNR [71] computed as. Zakharchenko et al. proposed to compute
PSNR on the craster parabolic projection (CPP), CPP-PSNR [74], after re-mapping
pixels of both the pristine and distorted images from the spherical domain to CPP.
Differently, the works in [75–77] allocate weights in the computation of PSNR using
saliency. Following the path of extending 2D models, Croci et al. [78] proposed to
apply traditional 2D-IQA metric such as PSNR, SSIM, MS-SSIM[79], and VMAF [80]
on Voronoi patches. The spherical Voronoi diagram is utilized to sample patches on
the spherical content. The selected models are then applied to sampling patches, and
the overall quality score is calculated using a simple average of patch scores. The
same framework is extended in [81] by incorporating visual attention prior to sample
Voronoi patches.

As it can be seen from the abovementioned models, FR 360-IQA models focused
on extending 2D models. The majority of these models are based on signal fidelity
measurement, which does not consider characteristics of omnidirectional / VR per-
ception and by that, cannot sufficiently reflect the perceived visual quality. Another
deficiency of these models is that the fidelity difference is performed locally, pixel-by-
pixel differences, and do not consider global artifacts. Additionally, the computation
are performed on the projected content, which present various geometric distortions.

Figure I.7: (a) ERP image, (b) radial content of the blue rectangle with a 90◦ field of
view, and (c) blue rectangle extracted on the ERP image. (d) stretched content due to
ERP.

Following the strategy of using 2D models for 360-IQA, the framework proposed
by Sui et al. [82] maps 360-degree images to moving camera videos by extracting
sequences of viewports along visual scan-paths and then apply 2D-IQA models. The
scan-paths are used to represent possible visual trajectories and then used to generate
the set of viewports. The generated videos from the sampled viewports only contain
global motion, representing a capturing process by a moving camera, where the pat-
terns of movement are determined based on the users viewing behavior. Several 2D-
IQA models including the PSNR, SSIM [73], VIF [83], NLPD [84], and DISTS [85]
are then applied on the resulted videos with a temporal pooling across the set of
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Labels = {Animals, Instruments, Artifacts, ..., Etc} 

Classification database : ImageNet

Labels = {3.5, 5.0, 2.3, ..., Etc} 

IQA database : TID2013

Target Source

Plane to shpere mapping

Figure I.8: 2D plane to spherical surface mapping of 360-degree images [70].

viewports.
To the best of our knowledge, only a single work on FR 360-IQA models based on

deep learning has been proposed, the DeepVR-IQA model proposed by Kim et al. [86].
Here, the authors extracted 256px × 256px patches from the Equirectangular (ERP)
image, and then fed them to parallel pre-trained ResNet-50 [87]. The spherical posi-
tions of extracted patches are used along with their visual content. Thirty-two chan-
nels in total are used, each one is composed of a ResNet-50 and a self-defined multi-
layer perception (MLP). The resulted model is therefore highly complex. Furthermore,
predicting quality based on ERP content is inadequate since it is geometrically distor-
ted and does not represent the real perceived content as illustrated in Fig. I.7. First,
the polar regions are stretched due to sphere-to-plane projection. Second, the view-
port content extracted on the ERP differs from that on the sphere (radial), even if
both are on the same location and near the equator (the least geometrically impacted
region of the image). This is also supported by the changes of some regions according
to their location during the sampling from 2D plane to spherical surface as illustrated
in Fig. I.8.

I.2.2.2 No-reference 360-IQA

NR methods are the most challenging ones compared to FR models as they do not have
access to pristine images. Despite this, they are widely adopted since they reflect real-
world scenarios where pristine images are unlikely to be available, such as streaming
applications. With a focus on NR 360-IQA, we present a literature review of current
models in this section. These are mainly based on (i) natural scene statistics (NSS)
or (ii) deep learning. Deep-learning based models adopt in general the multichannel
paradigm. As IQA databases usually come with a ground truth label per image, a
multichannel CNN is optimized to the overall quality. Whereas a traditional patch-
based CNN will require a labeling step to label each patch individually.

MC360IQA proposed by Sun et al. [90] introduced the multichannel paradigm by
using six pre-trained ResNet-34 [87] with a hyper architecture, where earliest activ-
ations are hierarchically added to the last one. The six hyper ResNet-34 are used in
parallel and their outputs are concatenated and fused to a single quality score. By
doing so, the lack of ground truth labels, i.e. MOS, per individual viewport is some-
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Table I.4: Summary of traditional and deep learning-based no-reference 360-IQA
models.

Model Year Brief description Input’s type
Model’s type

Traditional Deep-learning

Omni-IQA [88] 2019 Simple CNN and equator-based
sampling of patches in addition to
a weighted average of the patches
quality.

Patches
(ERP)

ASY-PIQA [89] 2019 Filtered high-frequency and low-
frequency features of projected
360-degree images.

ERP

MC360IQA [90] 2019 Multichannel CNN using ResNet-
34 with cubmap faces, each goes
as input to a CNN channel.

cubmap faces

SSP-BOIQA [32] 2020 Features extracted from heatmap-
based weighted bipolar and equat-
orial regions and regressed using a
random forest.

Equatorial
and bipolar
regions

VGCN [91] 2020 Graph-CNN on encoded visual fea-
tures by a multichannel ResNet-18
to model the dependency among
selected viewports in addition to
a global quality estimator on ERP
images.

Viewports
(ERP) and
ERP

Zhou et al. [92] 2021 Multichannel Inception-V3 under
shared weights with quality re-
gression and distortion classifica-
tion.

Cubmap
faces

Ding et al. [93] 2021 Exploiting statistical characterist-
ics with means of adjacent pixels
correlation.

ERP

AHGCN [94] 2021 Modeling location and content
based hyperedges using a hyper-
graph CNN on visual features en-
coded by a multichannel ResNet-
18.

Viewports

SG360BIQA [95] 2021 Encoded visual and saliency fea-
tures from cubmap faces using two
CNNs.

Cubmap
faces

SAP-net [96] 2021 Spatial-attention augmented
ResNet-34 on wavelet-based
enhancement to estimate the
reference images.

Patches
(ERP)

Liu et al. [97] 2021 Utilizing NSS and structural fea-
tures.

ERP

MFILGN [98] 2021 Exploiting local-global natural-
ness and multi-frequency analysis.

Viewports
(ERP) and
ERP
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what solved as the six channels are trained to deliver a single predicted score per
360-degree image. However, it is achieved with an increasing complexity due to the
multi CNNs. Foreseeing it performances for 360-degree quality assessment, the mul-
tichannel paradigm has been adopted by various works. For instance, Zhou et al. [92]
proposed a very similar model using the same input type, i.e. the cubemap projec-
tion (CMP), with shared weights among the different CNN channels. By sharing the
weights over parallel channels, they are updated similarly according to all inputs.
However, by using a pre-trained model (Inception-V3 [99]), the authors made the
choice to not update the different weights. In the adopted strategy, the weight shar-
ing advantages are not exploited. Xu et al. [100] proposed the VGCN model, in which
the dependencies among possible viewports are exploited using a graph CNN. The
proposed model features twenty ResNet-18 [87] as channels for the sampled view-
ports, in addition to a global branch for ERPs that uses the deep bilinear CNN (DB-
CNN) [101]. The latter is composed of two different CNNs, including VGG-16 [102].
This makes the model significantly complex. Flowing the same work, Fu et al. [94]
proposed a similar architecture, where the interaction among viewports is modeled
using hyper-graph construction. Their model named AHGCN demonstrated a good
performance.

Differently to multichannel models, Truong et al. [88] proposed the Omni-IQA
model with a patch-based training scheme. The ERP content is used as input where
patches are sampled according to a latitude-based sampling strategy. Therefore, patches
of 64×64 are sampled from the ERP images and used with a simple CNN. During the
validation, an equator-bias average pooling of patches’ scores is applied to estimate
the overall quality. The same issue regarding the direct use of ERP holds for this work
as well. Similarly, Yang et al. [96] proposed a patch-based model named SAP-net us-
ing the ResNet-34 [87] model as a backbone. The input patches are enhanced using
a wavelet-based enhancement CNN, which are then used as references to compute
the error maps. Their selection is made randomly on ERP images, not taking into ac-
count the geometric distortion nor the relevance of the patch content. Furthermore,
a simple arithmetic mean pooling is performed on the obtained scores to compute
the final score of the 360-degree images, overlooking the non-uniformity distribution
of the quality. Miaomiao et al. [95] integrated saliency prediction within the CNN
model combining SP-NET [103] for saliency features extraction, and ResNet-50 [87]
for visual features extraction. The model is trained using CMP faces, then fine-tuned
directly on ERP images. Both CMP and ERP represent distortions related to the pro-
jection process, especially ERP as discussed previously, making the adopted training
strategy less consistent with the explored content.

The requirement for dedicated quality models for 360-IQA with traditional ap-
proaches, led to the design of few models based on NSS and structural character-
istics [32, 97, 98]. For instance, Zhou et al. [98] proposed the MFLGN model by
exploiting the naturalness features and multi-frequency analysis of ERP images in
addition to sampled viewports. By combining the features from the ERP (global) and
viewports (local) and regressing them via a support vector regression (SVR) [104]
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module, their model is able to provide good results. The main idea behind the adop-
tion of NSS-based 360-IQA models is to avoid the use of deep-learning, however the
generalization to other content and distortions of such an approach remains less com-
pared to deep-learning based models. As a results, others targeted specific distortions
related to 360-IQA, such as the stitching problem [105, 106]. However, this restricts
their capacity to generalize to other prevalent distortions and applications as well.

I.3 Conclusion

This chapter provides an overview of immersive media, with a focus on 360-degree
images. The fundamental characteristics of 360-degree images are highlighted, in ad-
dition to the most important issues facing the processing of this emerging type of con-
tent. Especially, perceptual quality assessment, where several aspect are implicated,
including the nature of content, used devices and technologies, exploration behavior,
and the psych-physical state of the user. Furthermore, a literature review of existing
studies with regard to SQA and OQA is provided by considering their advantages and
drawbacks.

Thereafter, this chapter highlights the usefulness of SQA studies and their import-
ance in designing and developing accurate, predictive, and consistent IQA tools. SQA
remains arduous and exceedingly difficult. This is more emphasised with immersive
media in general, and 360-degree in particular. As visual perception in virtual en-
vironment still relatively uninvestigated, especially when HMDs are involved, SQA
experiments may be subject to unreliableness. It becomes of paramount important to
study all factors impacting the collection of subjective data, which are the foundation
of OQA models development. The ascertainment of SQA experiments and the resul-
ted data for 360-degree images, in particular the used HMDs, is crucial for paving the
way toward consistent quality assessment methods.

Following that, OQA is investigated for 360-degree images and the major draw-
backs are highlighted. The lack of large perceptually annotated databases is a major
issue. It is acknowledged that reliable and representative databases would allow IQA
models in general, and deep-learning based ones in particular, to achieve significant
performances. With the impressive growth of deep-learning approaches, it has become
critical to build a large scale database as representative of the field, i.e. 360-IQA.

Considering that building such a database is arduous, improving the processing
chain of 360-IQa at all scales could be a solution to cope with such lack. In fact,
designing adaptive strategies, starting from inputs sampling and data representations
to model’s architecture and training strategies, is effective. With a proper training
strategy, deep-learning models may require less data to achieve robustness. In addi-
tion, making use of transfer-learning, fine-tuning, and domain adaptation techniques,
works fine in such cases. However, their usefulness for a challenging type of content
such as 360-degree necessitate extensive studies, as one can not rely on previous ob-
servations from other image processing tasks.
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Despite the effectiveness of deep-learning on extracting, encoding, and represent-
ation of visual features, their capability may be enhanced with IQA-specific features.
The latter can be used at different scales to assist the learning of the model. Among
such features, one can find visual attention, exploration behavior, JND, etc.





Chapter II

On the Influence of Head-Mounted
Displays On Quality Ratings

II.1 Introduction

The most effective and reliable method to assess the quality of 360-degree images
intended for human users, is to ask human subjects for their opinion, hence SQA.
Because of the human participation in the process, SQA is impracticable for most ap-
plications. However, it gives useful data for evaluating the performance of objective
quality models. Subjective studies offer a mechanism to evaluate the effectiveness of
IQA tools. Beside, it serves as the foundation of model design toward the ultimate ob-
jective of mimicking, reproducing, and matching the human visual perception [107],
and the exploration behavior in virtual environments.

In existing studies featuring subjective quality assessment of 360-degree images,
the impact of HMDs is usually overlooked. To the best of our knowledge, there has
been no extensive study on the impact of HMDs on the perceived quality of 360-degree
images in general, and the quality ratings in particular. Besides, IQA requires the use of
reliable and representative databases to accurately develop and evaluate OQA models.
Currently, the existing ones are lacking diversity in terms of content and cannot be
considered as representative of the field. In this chapter, we evaluate the impact of
various HMDs on perceived quality, from the technological and the rendered content
points of view. First, we explore whether the use of different HMDs results in different
quality ratings for the same content and conditions. For this, we build a database
and define a controlled paradigm to conduct the subjective experiment. Then, we
study the comfort of the viewers by means of the simulator sickness questionnaires. A
statistical study of the obtained results is performed so as to compare HMDs and draw
conclusions related to QoE. It is worth noting that this research was conducted during
the Covid-19, which made recruiting a large number of participants quite challenging.

27
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II.2 360-IQA databases

The availability of reliable and representative databases is a critical factor in develop-
ing image quality models. It allows obtaining accurate and well-generalized IQA mod-
els. Particularly, deep-learning based models, where the performance is only as accur-
ate as the variety, reliability, and representativeness of the available training data.
Unfortunately, there is a significant lack of 360-degree perceptual annotated image
quality databases. It is mostly due to the complexity and difficulty of the construc-
tion task. Indeed, building an IQA database requires subjective experiments to gather
human opinions represented as MOS, in addition to an appropriate environment and
test conditions. For instance, for 360-IQA subjective experiments, observers view the
test images using HMDs. These devices are far from offering a perfect representation
of 360-degree content. They may introduce some impairments like the SDE with an
impact on the quality ratings. Neglecting such phenomena may result in an unreliable
evaluation. Another common issue with subjective scores in general is the non-linear
nature of the obtained scores requiring a non-linear regression using a five parameter
logistic function, as recommended in the ITU-R recommendations [44], prior to the
performance evaluation. However, it is to be recalled that such a regression cannot
be performed if the native correlation is below 0.7. Otherwise, the correlation value
cannot be considered as reliable because the quality of regression would be very low.

To date, a few databases for 360-IQA are proposed in the literature including
Huang et al. [36], CVIQ [90], OIQA [108], MVAQD [32], IQA-ODI [96], and Sui
et al. [82]. Unfortunately, only CVIQ, OIQA, and MVAQD are large enough, publicly
available, and widely adopted for 360-IQA models training. A previous comparative
study in [109] showed a very low correlation between IQA metrics and MOS provided
by Huang. et al. compared to CVIQ. This opens questions regarding the reliability of
existing databases. Questions are still under investigation, especially regarding the
use of HMDs for subjective experiments. It is a very delicate context as there are no
recommendations nor guidelines on how to perform such experiments for such ap-
plications.

Table. II.1 summarizes the characteristics of existing databases in the literature
in terms of number of reference/distorted images, number of subjects participating
to the subjective experiments, quality distortion types, and the used HMD. In the
following, we provide details on each database.

Huang et al. [36]: It contains 25 pristine 360-degree images used to create 12 ver-
sions for each one. Four distinct spatial resolutions and three JPEG quality factors
(QF), where QF ∈ {25, 60, 100} are used to create 300 distorted images at resolu-
tions of 4k, 2K, 1080p, and 720p. The MOS was obtained using ACR with 98 subjects
participating to the test (53 males and 45 females). The quality scale ranges from 0
(Bad) to 100 (Excellent). Each subject rated only three different image contents at
the four spatial resolution and three quality factors.

CVIQ [90]: This database is composed of 16 360-degree images and 528 compressed
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Table II.1: Summary of state-of-the-art 360-degree image databases.

Database Huang et
al. [36]

CVIQ [90] OIQA [108] MVAQD [32] IQA-ODI [96] Sui et al. [82]

Ref images 25 16 16 15 120 36

Distorted im-
ages

300 528 320 300 960 72

Distortion
type (Distor-
tion level)

JPEG (3)
/ Down-
sampling (4)

JPEG (11) /
AVC (11) /
HEVC (11)

JPEG (5) /
JPEG2000
(5) / BLUR
(5) / WGN
(5)

BLUR (4) /
HEVC (4) /
JPEG (4) /
JP2K (4) /
WGN (4)

JPEG (4) /
Projection
(4)

HEVC (3) /
Stiching (3)

Number of
subjects

98 (M: 53, F:
45)

20 (M: 14, F:
6)

20 (M: 15, F:
5)

26 (M:16 , F:
10)

200 (M: 138,
F: 62)

22

HMD HTC Vive HTC Vive HTC Vive HTC Vive Pro HTC Vive HTC Vive

versions. The compression artifacts are obtained using eleven levels of : 1) JPEG
compression with QF ranging from 50 to 0 with a step of 5, 2) H.264/AVC and
H.265/HEVC with quantization parameters (QP) from 30 to 50 with a step of 2. The
authors used the ACR method with a rating scale of 10-levels from the lowest to the
highest quality to gather the MOS. The ACR method was adopted with the participa-
tion of 20 subjects (14 males and 6 females).

OIQA [108]: It includes 320 distorted 360-degree images created from 16 reference
ones using four distortion types with five levels each. The used distortions include
JPEG, JPEG 2000 compression (JP2K), Gaussian blur (BLUR) and white Gaussian
noise (WGN). JPEG and JP2K are applied directly on ERPs, while GB and WGN are
applied individually on small blocks, and then stitched back to ERP. Subjective scores
are given in the range from 1 (bad) to 10 (excellent). 20 subjects were involved in
the test (15 males and 5 females).

MVAQD [32]: This database is composed of 300 distorted 360-degree images gen-
erated from 15 pristine ones. The 300 images are generated using five distortion
types, including BLUR with σ ∈ {0.5,1, 2,5}, HEVC with QP ∈ {27, 32,37, 42}, JPEG
with QF ∈ {70, 50,30, 10}, JP2K with Bpp ∈ {0.6, 0.3, 0.1,0.05}, and WGN with
σ2 ∈ {0.001, 0.005, 0.01, 0.02}. Each distortion is applied using four levels. The qual-
ity ratings are collected from 26 subjects (16 males and 10 females) using a five-grade
quality scale ranging from 1 (bad) to 5 (excellent).

IQA-ODI [96]: This database is to date the largest proposed one. It includes 1080
distorted 360-degree images, of which 120 are pristine. The distorted images are
generated by applying the JPEG compression with QF ∈ {60, 35, 15,5} on ERP im-
ages, and JPEG with QF = 15 on CMP, CPP, ISP, and OHP projections. The subjective
scores are obtained from 200 subjects (138 males and 62 females). All the subjects
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are divided into 10 groups to only rate 108 images. The scores are provided as the
differential MOS in the range of [0, 100].

Sui et al. [82]: This database was constructed to model the user’s exploration beha-
vior. It contains 36 pristine 360-degree images used to generate 72 distorted ones. The
used distortions are HEVC/H.265 with QP ∈ {38,44, 50} and the stitching distortion
with a parameter p ∈ {0.5,0.75, 1}, where higher p values imply severe distortions.
22 subjects participated to the subjective experiment to rate the quality using a five-
grade quality scale ranging from 1 (bad) to 5 (excellent).

In comparison to Huang et al., MVAQD, and IQA-ODI, only CVIQ and OIQA data-
bases have received attention in the literature. In addition, the study in [109] showed
a poor correlation between MOS provided with Huang et al. [36] and objective qual-
ity metrics. This obviously shows the ineffectiveness of certain databases in contrast
to others, which may raise questions about their representativeness as well as their
reliability. Besides, not all existing databases are made publicly available.

During the completion of this thesis, only CVIQ, OIQA, and MVAQD were publicly
available. Even though, their content may be subject to less diversity in terms of con-
tent and complexity of scenes. To verify this, we computed the spatial information
(SI) and colorfulness information (CFI) of the pristine images on the each database.
SI represents an indicator of edge energy, giving an idea about the spatial complexity
of an image, whereas CFI is a perceptual indicator of the variety and intensity of col-
ours. The SI and CFI are obtained according to ITU-T P.910 [110] recommendations
and the metric described in [111], respectively. The CFI versus SI plot is provided in
Fig. II.1 (Left). One can observe a lack of diversity on CVIQ as illustrated, whereas the
SI and CFI indicators are more spread out for OIQA and MVAQD, depicting a higher
diversity.

We further compare the histogram of the MOS values on CVIQ, OIQA, and MVAQD.
From Fig. II.1 (Right), one can observe that OIQA and MVAQD depict a distribution
that is not far from a uniform one. The histogram demonstrates that the MOS values
cover the quality range, and the number of observations is properly balanced, on
the one hand. CVIQ, on the other hand, presents a different distribution of subjective
ratings, with MOS values that are not distributed evenly over the quality range, which
tends to demonstrate problems of miss-conception.

II.3 Study Design

II.3.1 The proposed 360-IQAD database

Twenty pristine 360-degree images are selected to create our database, from which
240 distorted versions are created. First, we chose 360-degree images from the joint
video exploration team (JVET) test sequences [112] and the SUN360 database [113].
In addition, to account for the synthesized content related to VR, four scenes have
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Figure II.1: (Left) spatial information (SI) versus colourfulness index (CFI) plot of
CVIQ, OIQA, and MVAQD, and (right) histogram of their MOS values re-scaled to [0,
1].

been added to the database. The used images are given in Fig. II.2. As it can be seen,
the images represent a variety of content types, including indoor and outdoor natural
scenes, human scenes, landscapes, and nature as well as synthesized ones. Often,
databases are constructed without paying attention to the diversity of the content.
In our case, we account for two important characteristics, i.e. spatial complexity and
colourfulness, described in the previous section. The CFI versus SI plot of the pristine
images shown in Fig. II.3 aims at demonstrating the spatial and colour diversity of
the selected images. One can notice that the used images span over the range of CFI
and SI values.

Once selected, images are distorted using the JPEG compression with QF ∈ {80,60,
40,20}, BLUR withσ ∈ {0.5, 1, 1.5,2}, and WGN withσ2 ∈ {5, 50, 100,150}. For each
distortion type, four levels are applied to cover the perceived quality range from an-
noying to imperceptible. The levels are purposefully chosen in such a way that the
perceived difference between them is obvious for observers. From each pristine 360-
degree image, 12 distorted ones are generated.

II.3.2 Subjective assessment protocol

In order to construct a reliable database, the selection of subjective protocol is of para-
mount importance. Unfortunately, at the time of the study there were no guidelines
for conducting experiments for immersive applications. In our case, we built the test
by relying on the ITU recommendation ITU-BT.500 [114]. Hence, the adopted pro-
tocol is depicted in Fig. II.4. It is scrupulously followed by each observer. First, the
observer is screened for visual acuity and color blindness in order to collect reliable
scores. Then, he is asked to complete a simulator sickness questionnaire (SSQ) before
beginning the test. For this aim, we used the virtual reality sickness questionnaire
(VRSQ) proposed in [20]. The VRSQ consists of nine questions in which the observer
is asked to rate the severeness of nine symptoms on a four scale (None: 0, Slight:
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Figure II.2: Pristine images in the proposed database. 1-4 rows are images taken from
JVET and SUN360. Row 5 are created as synthesized images.
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Figure II.3: Spatial information (SI) versus colourfulness index (CFI) plot of the se-
lected pristine images used for the construction of the database.
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1, Moderate: 2, Severe: 3). Individual symptoms are classified into three categories:
oculomotor agitation (O), disorientation (D) and total score (TS). The use of SSQ
prior to beginning the test serves as the observer’s initial state and is used to compare
the progression of the symptoms described in the VRSQ. It is known that conducting
a subjective test in the morning or the afternoon may lead to a different assessment
because of the psycho-visual state of the observer. The observer is then trained on a
few samples of 360-degree images with perceptual qualities corresponding to those
used in the test. The training is designed to familiarize the observer with the task at
hand, and get familiar with VR environment, since not all observers are VR or HMD
users. Samples used in this session are for training purposes only and are discarded
from the experiment results.

. . .
 

First Session

 

Figure II.4: Illustration of the adopted subjective assessment protocol.

After the training session, the first session starts by asking the observer to rate
the quality of the impaired 360-degree images using a five-point quality scale ranging
from 5 (excellent) to 1 (bad), following the ACR method. This quality scale should
be sufficient to cover the quality levels used in the constructed database and where
the maximum quality corresponds to the pristine images. In the first session, the ob-
server rates a hundred and thirty images, corresponding to a duration of 32.5 min
(130 samples ×15s). This duration is reasonable as the test deals with images only
(i.e. there are no motions as in the case of videos). In addition, the observer can stop
the test any time based on his psychophysical state. After the first session, the observer
fill out another SSQ so to record his state after experiencing omnidirectional images
for approximately half an hour. After a sufficient break, the second session takes place
with the remaining images from the database. Finally, at the end of the second ses-
sion, another SSQ is filled out. In order to collect reliable results, we ensured that
all observers followed the exact same protocol. The images playlists are randomly
constructed, and each observer watches a random one in order to avoid rating biases.

The HMDs considered in this study are from different manufacturers, and have
specific characteristics each. Table II.2 summarizes the ones that may contribute to
the quality assessment task, and Fig. II.5 shows them.

The observers were recruited from our university, and they are all naive. Due to the
sanitary situation during this study (Covid-19 pandemic), running subjective experi-
ments become very challenging. In our case, the experiment with four HMDs lasts for
about six hours for a single observer. This is why, the results exposed here are based
on eight valid observers per HMD.
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Table II.2: Characteristics of the considered HMDs.

HMD Resolution per eye FoV PPD

Varjo Vr-2 1920× 1080 87◦ 60
HTC Vive Pro 1440× 1600 110◦ 13.09
HP Reverb VR 2160× 2160 114◦ 18.94
Oculus Quest 1600× 1440 100◦ 14.4

Varjo Vr-2 HTC VIVE Pro HP Reverb VR Oculus Quest

Figure II.5: HMDs used in the subjective study.

II.4 Results and discussion

In the following, we provide and analyse the subjective quality evaluation results.
First, we investigate whether there is a substantial difference in terms of quality rat-
ings between HMDs on the one hand and particular distortions on the other hand.
The last part of this section will concentrate on analysing the simulator sickness ques-
tionnaire results.

II.4.1 Effects of HMD on subjective ratings

It is known that, the use of different devices for SQA may result in different outcomes
since each device has unique properties. In the case of 360-IQA, the device is the
HMD. It is critical to establish whether such a difference is substantial, especially if
it impacts the overall QoE. To that purpose, various questions are framed in order to
determine the impact of using HMDs for 360-degree image SQA. In this study, these
questions are roughly summarized as follows:

• Would the use of various HMDs result in different ratings?
• What is the inter-observer difference?
• Is the impact of a single distortion the same regardless of the used HMD?
• Which HMD offers the best quality?
• What about comfort and cyber-sickness?

Thanks to a statistical analysis of the obtained scores, we aim to find answers
to the above questions. The histograms of the gathered rating scores of all HMDs
are shown in Fig. II.6. We can clearly observe that the ratings span across the five
perceptual quality scales with a Gaussian shape regardless of the used HMD, on the



Chapter II: 360-SQA 35

one hand. On the other hand, the MOS versus its 95% confidence interval (CI) in
Fig. II.7 shows bigger CIs for MOS values when 2 < MOS < 4, whereas smaller
CIs with 2> MOS > 4 . It is acknowledged that bad or excellent qualities are easy to
distinguish for the users compared to medium qualities where observers may disagree.
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Figure II.6: Histograms of the rating scores obtained by the used HMDs.

Prior to investigating the effect of HMDs on ratings, we calculated the standard
deviation of opinion scores (SOS) using the SOS hypothesis described in [115], which
is defined by Eq. II.1 as follows:

SOS(x)2 = −ax2 + 6ax − 5a (II.1)

The SOS parameter a quantifies the uncertainty ratio among observers on a scale
of 0 to 1. It reflects the inter-observer reliability, where a value of 0 denotes a full
agreement among all observers, and 1 indicates a maximum variance. Table. II.3
provides the a values of the obtained scores by the four HMDs. As it can be seen, the
SOS parameter for all HMDs is in the range 0.03< a < 0.06. Based on the description
given above, this interval of values demonstrates an inter-observer agreement and re-
liability of approximately 90%. This observation substantiates the overall efficacy of
the constructed experiments and the adopted procedure.

Table II.3: SOS parameter a of all HMDs’ rating scores.

Varjo Vr-2 HTC Vive Pro HP Reverb VR Oculus Quest

0.0361 0.0414 0.0338 0.0504

In order to statistically assess the impact of HMDs on the quality rating, we analyse
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Figure II.7: Confidence interval of the MOS generated by the used HMDs.

the variance between the obtained MOSs. The following are the null hypothesis H0

and the alternative one H1:

H0: There is no significant difference between the four HMDs.

H1: At least one HMD is significantly different from the others.

To analyse the variance, the use of ANOVA [116] is a good choice. However, the
ANOVA assumes that the sample data is normality distributed. Therefore, a normality
check is performed, and the probability distribution for each HMD is illustrated in Fig.
II.8. The formula used for the theoretical quantiles (horizontal axis of the probability
plot) is the Filliben’s estimate [117]. Looking at the plots, we see an upward slop-
ing linear relationship. Deviations by the dots from the line can be observed around
both extremities. The sample data (i.e. MOS) partially fits the diagonal line, which
shows a deviation from the expected normal distribution. This demonstrates that the
distribution of the gathered MOSs is not perfectly normal but very close. Based on
this observation and in order to reliably analyse the variance, a non-parametric test
is applied in addition to ANOVA. Here, the Kruskal-Wallis H-test [118] is used.

The ANOVA showed a p−value of 0.035 while Kruskal a p−value of 0.038, leading
to the rejection of H0, implying that the HMD has a statistically significant influence
on the quality ratings. One possible explanation could be the screen door effect ex-
plained previously. This observation contrasts with the results reported in [21], which
found that the effect of HMDs is not significant compared to other factors. Since a stat-
istical difference is found, we further analyse specific differences between HMDs. A
post hoc test [119] is performed in this case, and a significance plot is provided in Fig.
II.9 (a). It appears that, the source of the identified differences is significant between
HP Reverb VR and HTC Vive Pro, and more emphasized with Varjo Vr-2. This demon-
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Figure II.8: Probability plot of MOS against the normal distribution quantiles.

strates that the variance occurs from multiple HMDs, suggesting that the collected
subjective scores are most likely to be significantly different with respect to the used
HMD. Regardubg the Oculus Quest, it seems there is no significant difference when
compared any of the selected HMDs.

In addition to the analysis of variance on the overall scores, we performed an
analysis of variance using the Kruskal-Wallis H-test between HMDs per individual
distortions, with the aim of evaluating the effect of a single distortion independently
of the used HMD. A p − value of 0.023, 0.274, and 1 are obtained for JPEG, GB,
and GN, respectively. In this case, observers noticed a difference between HMDs for
JPEG but not for the remaining distortions. One may question the link between JPEG
artefacts and the SDE, presenting some similarities in terms of distortion type (i.e.
blocking artefacts). This observation backs up the previous one about the differences
on the overall ratings. Additionally, we looked into the differences regarding the JPEG
distortion, the significance difference is depicted in Fig. II.9 (b). One can notice that
the difference here is between Varjo Vr-2 and Oculus Quest, as well as with HP Reverb
VR.

When comparing among the statistical difference on the overall MOS and JPEG
one, Varjo Vr-2 is identified as statistically different in both cases. The significant
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Figure II.9: Pairwise multiple significance plot between HMDs. "NS" stands for no
significance.

difference in PPD (see table II.2) between this HMD and the others, which greatly
contributes to visual quality, may explain such a result.

We examined the MOS obtained for all HMDs to determine which one provides the
best quality, and how the MOS per individual distortions is distributed. A box plot of
MOSs from all images per single distortion is depicted in Figure II.10. Overall, we can
notice that the MOSs for a certain distortion level are mostly within a limited range.
This confirms the findings of the SOS parameter, which was previously discussed.
One can also notice that, compared to JPEG and GN, GB was frequently rated as bad
(1) and poor (2). Especially, levels 3 and 4 where the means fall in the same range.
This clearly shows that the observers were annoyed by such a distortion regardless
of the used HMD. For GN, the MOS mostly falls in the same range for level 2, 3 and
4, as if the observers did not perceive much difference between these levels. This is
particularly true with HTC Vive Pro and Varjo Vr-2. In terms of which HMDs provides
a better quality, we can observe that with Varjo VR-2 and HP Reverb VR more MOS
greater than 3.5 were given. This suggests that these two offer better quality, and can
be related to their resolution and PPD (see Table. II.2).

II.4.2 Simulator Sickness Assessment

We computed the simulator-sickness scores, as mentioned previously, to measure the
sickness level caused by each of the used HMDs. The scores are grouped by total scores
(TS), oculomotor (O), and disorientation (D) as described in the VRSQ [20]. The
VRSQ is derived from well-known SSQ [19] where 9 symptoms are selected among
16. Table II.4 summarizes these symptoms and classifies them into the oculomotor
and disorientation categories. The scores of TS, O and D are computed as follow:
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Figure II.10: Box plot of MOS per level of distortion, where J-*, GB-* and GN-* stand
for JPEG, Gaussian Blur and Gaussian Noise with 4 different levels.

Table II.4: Virtual reality sickness questionnaire [20].

Symptoms Oculomotor (O) Disorientation (D)

General discomfort ✗

Fatigue ✗

Eyestrain ✗

Difficulty focusing ✗

Headache ✗

Fullness of head ✗

Blurred visio ✗

Dizzy (eyes closed) ✗

Vertigo ✗

Total TO TD



Chapter II: 360-SQA 40

O =
TO

12
× 100, (II.2)

D =
TD

15
× 100, (II.3)

TS =
(O+ D)

2
, (II.4)

where TO and TD stand for the sum of the O and D symptoms for each participant.
Then, the average of all participant per HMD is taken. Here, a score around 40 is
considered as severe. Fig. II.11 shows the histograms of the simulator-sickness scores
obtained for the selected HMDs.
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Figure II.11: Simulator-sickness scores for the considered HMDs in terms of total
scores (TS), oculomotor (O), and disorientation (D).

For this experiments, we focused on analysing which HMD causes higher sickness
in terms of TS, O and D. In comparison to the others, the Varjo VR-2 received the
highest overall scores, while, the Oculus Quests received the lowest. Two explanations
could convey these results. First, the weight of Varjo VR-2, reported by the observers
as being high. Then, the double displays composing this HMD with two different
resolutions, often requiring an adapted content. One can also see that the observers
are more prone to oculomotor symptoms compared to those for disorientation and
even the TS. The length of the sessions where the observers are subject to very close
displays may be a reason for this. As the oculomotor involves eye strain, difficulty
focusing, and fatigue, which can be increased with more exposition to omnidirectional
images.
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II.5 Conclusion

In this chapter, we present a detailed evaluation of the impact of HMDs on the quality
rating of 360-degree images. The provided analysis revealed a statistically significant
difference between the used HMDs. This difference is mostly related to the distinct
characteristics of each HMD. Especially the SDE, which can be confused with the
distortions on the viewed scenes, and may lead to an unreliable assessment. This con-
trasts with previous observations in the literature. Furthermore, a significant differ-
ence on specific distortions was also observed with JPEG compared to GN and GB. The
source of such difference was found between multiple HMDs supporting the obser-
vations regarding the device induced influence. Additionally, the simulator-sickness
assessment revealed that the use of some HMDs lead to a higher simulator sickness
scores compared to others, and oculomotor related symptoms induce significantly
higher scores when compared to disorientation.

Despite the fact of conducting the presented study during the COVID-19 pandemic,
we were able to draw interesting conclusions. A further analysis including additional
factors and more participant would allow to verify and validate to what extent the
HMDs influence the subjective quality ratings for 360-IQA. To this end, a holistic as-
sessment is planned for future studies.





Chapter III

Convolutional Neural Networks for
360-IQA: A Benchmark

III.1 Introduction

The absence of large, accurate, and representative perceptually annotated databases is
a major issue when dealing with 360-IQA. The construction of such databases require
arduous efforts in terms of scenes acquisition, device calibration, paradigm definition,
subjective testing and data analysis [36, 90, 109]. As a consequences, the progress
of 360-IQA is held back. As an alternative, well-known pre-trained models such as
ResNet-18/34/50 [87], Vgg-16 [102] and DenseNet-121 [120] may cope with the
lack of training data. It can be performed by the mean of transfer-learning (TL) and
domain adaptation. The latter insure a transfer from a source domain to a target one.
In the case of the aforementioned pre-trained models, the source domain is image
classification. As mentioned in Sec. I.2.2.2, existing 360-IQA models have fine-tuned
a well-known pre-trained model for a different task within the IQA framework. The
main reason behind such choices lies in the fact that the used models are trained on
very large databases, allowing them to reach a significant learning level. For instance,
the ImageNet [121] database used to train existing pre-trained models contains over
14 millions images.

The use of pre-trained models for 360-IQA is becoming more current, owing to
their popularity from other image processing tasks, several important questions are
raised. In particular, questions related to the use of pre-trained models for 360-IQA
and the exploitation of the rich state-of-the-art work dedicated to 2D content, such
as:

• Prediction accuracy of pre-trained models for 360-degree images quality? And
which model is performing the best?

• Radial vs. projected content-based training?
• Performance of projected format: CMP versus ERP?
• Performance of Patch-based training schemes?

43
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• Would 2D quality databases improve the performance of CNN models?

In this chapter, an empirical and extensive analysis is conducted using different
and widely used CNN models to answer the above-mentioned questions. Several mod-
els are considered, including ResNet-18/34/50 [87], Vgg-16/19 [102], DenseNet-121
[120] and Inception-V3 [99]. These models are compared under different configur-
ations related to omnidirectional and spherical characteristics. The novelty of this
work lies in the fact of providing answers to the above questions, for a very challen-
ging type of content i.e. 360-degree images, as one cannot rely on conclusions drawn
from standard 2D benchmarks [122, 123], not taking into account the targeted char-
acteristics.

III.2 The proposed benchmark: design and architec-
ture

With the intent to provide a holistic study as well as recommendations on the use
of CNNs for 360-IQA and to answer the questions raised in Sec. III.1, we designed
a benchmark taking multiple considerations into account, related to the use of: 1)
Content based splitting criteria for selecting training and validation sets, 2) Projected
images as ERPs and CMPs, 3) Radial content rather than projected one, 4) multichan-
nel CNN architecture, 5) Patch-based learning scheme, and 6) 2D benchmark IQA
databases to train the selected models.

III.2.1 Pre-trained CNN models

In this study, seven among the widely used models are exploited and compared. A
brief description of their architecture is provided below in addition to Table III.1
giving their number of parameters and output size. All used models are fine-tuned
by replacing the original top layers used for classification, with a quality regressor
block (see Fig. III.1). The latter first performs a dimentionality reduction by applying
a global average pooling (GAP) [124] on the extracted feature maps F ∈ RD×H×W

by the pre-trained models, where D, H, and W stand for the dimension, height and
width, respectively. This operation produces a feature vector VF ∈ RD×1×1, and can be
formally expressed as :

y c =
1
N

∑

i, j

FD
i, j, (III.1)

where y c is the output value of feature map F at channel d .(i, j) is the pixel in-
dex in the feature map Fd . The GAP is useful to minimize overfitting. The generated
VF ∈ RD×1×1 goes then to a fully connected (FC) layer followed by a rectified linear
unit (ReLU) [125] activation function and a dropout layer. The latter is an effective
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regularization method to reduce overfitting and improve generalization error in deep
neural networks [126]. Finally, a FC layer with a single node and a linear activation
function is used to deliver the quality score. The weights of the quality regressor are
initialized according to [127]. During training, all layers of the pre-trained models are
freezed to rely on the weights from ImageNet [121], and only the quality regressor
block is trained for the IQA task.

Quality score

FC (256) + Relu +  
DropOut(0.5)

FC (1) +  
Linear

GAP

Pre-trained Model
New input 

 shape

Quality regressor

Figure III.1: Architecture of the CNN models: Top layers replaced by a regression
block composed of a global average pooling (GAP) layer, a fully connected layer (FC),
a dropout layer and a final FC layer to output the predicted score S. VF ∈ RD×1×1

represents the extracted features vector.

In the following, we describe the used CNN models by giving the most important
characteristics, leaving the readers to refer to the original cited works.

ResNet : residual networks are artificial neural networks introduced in 2015 [87].
The ResNet utilizes skip connections to jump over some layers. This helps training
deeper networks without falling into the problem of vanishing gradients. ResNet em-
ploys residual learning to further deepen the CNN network, which can be interpreted
by a number of deeper bottleneck architectures. Each bottleneck has three convolu-
tional layers with kernel dimensions of 1×1, 3×3 and, 1×1 respectively. A shortcut
connection is then added from the input of the bottleneck to its output. Several ver-
sions of this model were developed with the main difference lying in the number of
layers. We use ResNet-18/34/50 in this study.

VGG : it is a convolutional neural network architecture proposed in [102]. This net-
work is characterized by its simplicity and use only 3×3 convolutional layers stacked
on top of each other in an increasing depth. It also includes 1× 1 convolution filters
acting as a linear transformation of the input, followed by ReLU [125] activation. The
convolution stride is fixed to 1 pixel, so to preserve the spatial resolutions. Differ-
ent versions of this network exists, but we only focus on the widely used ones i.e.
Vgg-16/19 [91, 101, 122, 123].
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DenseNet : it is a neural network composed of dense blocks introduced in [120].
In each block, the layers are densely connected, with L(L + 1)/2 direct connections,
where L is the number of layers. Each layer in DenseNet receives additional input from
all preceding layers and concatenates them with its own feature-maps before feeding
them to the subsequent layers. This allows the model to reuse low-level features. The
DenseNet-121 is considered in this study with the configuration used in [128].

Inception : this network architecture introduced in [99] is composed of convolu-
tional blocks known as Inception modules. The latter contains 1× 1, 3× 3 and 5× 5
convolutions as well as a pooling layer. The introduction of such module aims to allow
for more efficient computation and deeper networks through a dimensionality reduc-
tion as well as the use of various convolutional filter sizes instead of using a single
one. Several versions of this network also exist. The Inception-V3 model introduced
factorized and smaller convolutions, helping to reduce the computational cost by de-
creasing the number of parameters involved in the network. This version of Inception
is used in our comparative study.

Table III.1: Number of parameters (in million) in each selected model without their
top layers, and the dimension of the output vector for feature representation (fv).

Model #Params (M)≈ Size of VF

ResNet-50 23 2048
ResNet-34 21 512
ResNet-18 11 512
Vgg-16 14 512
Vgg-19 20 512
DenseNet-121 7 1024
Inception-V3 21 2048

Source
dataset

Target
dataset

KnowledgeModel 1 Model 2

Training Fine-tuning

Figure III.2: Process of transfer learning from a source to a target domain.

To effectively conduct transfer learning from another domain, for instance image
classification, using the abovementioned pre-trained models, fine-tuning is required.
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Labels = {Animals, Instruments, Artifacts, ..., Etc} 

Classification database : ImageNet

Labels = {3.5, 5.0, 2.3, ..., Etc} 

IQA database : TID2013

Target Source

Figure III.3: Illustration of the source-to-target domain transfer. The labels of the
classification database (ImageNet [121]) are classes, whereas the IQA database
(TID2013 [130]) are the MOSs (continuous values).

To be more explicit, the knowledge acquired by the model after training for a specific
task, may be exploited by a new target task. This is possible by means of knowledge
transfer and fine-tuning as depicted on Fig. III.2. The latter allows removing the con-
straints on the label spaces of the source and target domains, i.e. from object classes
to MOSs. An illustration of the source-to-target domain transfer between Imagenet
and an IQA database (TID2013) is provided in Fig. III.3. Following the formulation
suggested in [129], transfer learning can be expressed as follows:

f ∗s = argmin
fs∈H

1
Ns

Ns
∑

i=1

ls( fs(xs, i, qs, i)) +αR(Ds, fs), (III.2)

where (xs, i, qs, i) is the i-th tuple of the data sample and label of the source domain,
Ns represents the number of samples in the source domain, R(.) is a regularization
term controlled by the weight α, and fs is a function that lies in a Hilbert space H. fs

is optimized by means of the loss function ls using the data from the source domain
Ds.

The presented benchmark is carried out using the CVIQ [90] and OIQA [108]
databases described in Sec.II.2. Samples from each one are provided in Fig. III.4

III.2.2 Content-based splitting strategy

Machine learning-based IQA tasks are typically learning a predictive model from qual-
ity assessment databases. When training data-driven models, one must ensure the
accuracy, representativity, and reliability of the databases. Data biases are a major
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Figure III.4: Samples from the used databases: (top) CVIQ and (bottom) OIQA.

issue for learning-based IQA that is often overlooked. The consequences of such an
issue are significant. It implies that, regardless of the used model, any computational
prediction would have the same biases as the training data. Furthermore, the per-
formance of a trained model is reported only on the testing set in which the selection
may induce biases related to the content. A popular and straightforward approach is
to split the training and testing sets based on pristine images. This means that the
model is evaluated on unseen content independently of the existing distortions in the
database. However, the obtained sets may lack diversity in terms of spatial complexity
and colourfulness and may induce representativity biases, resulting in a test set that
is not illustrative of the used database. Biases are mostly present, whether the data is
split arbitrarily or based on more qualified criteria. However, minimizing those biases
guarantees a validation on representative sets of the trained model.

For this benchmark, we first tackle the issue of content induced bias. To minim-
ize such a bias, we use spatial information (SI) and colorfulness information (CFI),
described in the Chapter II, as criteria for the splitting strategy to make sure that,
the performance of the models are reported on a limited-bias set of images. Fig. III.5
shows SI versus CFI plots of pristine images on CVIQ and OIQA databases. As it can
be seen, the variability of SI is higher in OIQA than in CVIQ, indicating that the latter
database lacks diversity of content in terms of spatial complexity in comparison to
OIQA. A similar conclusion holds in the case of CFI.

To select the training/testing sets, we used the Euclidean distance. For a couple of
pristine images I1 and I2 characterized by (C F II1

, SII1
) and (C F II2

, SII2
) respectively,

the distance D (I1, I2) is expressed as follows:

D (I1, I2) =
q

(C F II1
− C F II2

)2 + (SII1
− SII2

)2 (III.3)

Based on the previous observation, we intend to demonstrate the existence of data
biases when testing the effectiveness of a trained deep learning model on a given set
from a database. The selection of the testing set influences the prediction correlation
independently of the used database. Three splitting strategy are compared in this
work. The first one is a random splitting by taking 20% on each iteration. The second
one splits the databases in such a way that the images in the testing set are clustered
in terms of SI/CFI (will be referred to as SI/CFI (a)). The third strategy takes the
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Figure III.5: Spatial information (SI) / colorfulness information (CFI) plot of pristine
images in CVIQ and OIQA databases.

images that are the most spread-out in terms of SI/CFI (will be referred to as SI/CFI
(b)). For all strategies, we ensure a complete separation of the training and testing
sets, i.e., the distorted images linked to the same pristine image are allocated to the
same set.

III.2.3 Projection-based training

Within this configuration, we first investigate the use of ERP images as inputs to the
selected models. It is rather straightforward and aims at evaluating CNN models on
high-resolution ERP images. The input ERP are down-sampled into a resolution of
1024 × 512. This implies an adaptation of the model in order to match the shape
of the input images. The output feature maps are provided to the quality regression
block described in Sec. III.2.1. The use of ERPs as direct input may be thought of as es-
timating global quality rather than local to specific regions on the scene [91]. Despite
the geometric distortions occurring on this type of projection, investigating the effect
of using high resolution content with CNN models seems appropriate. Also, the mod-
els will learn from additionally distorted content (i.e. distortion from the databases
as well as the projection-induced ones). Providing an analysis regarding the impact
of the latter is within the scope of this benchmark. We will refer to this configuration
as CERP .

In addition to the use of ERPs, we intend to provide a performance analysis on the
use of cube-map projection (CMP). The CMP introduces less distortions compared to
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ERP. However, it provides separate content in form of cube faces. In fact, this projection
requires a re-projection from ERP to CMP. It uses the six faces of a cube as the pro-
jection shape. The CMP is generated by first rendering the scene six times from a view-
point. So, from each ERP image I , six faces are obtained {Le f t I , F ront I , Right I , BackI ,
TopI , Bot tomI}. An illustration of the re-projection is provided in Fig. III.6.

ERP

Re-projection to
CMP

Left

Bottom

Top

Right Back

Front

Figure III.6: ERP to CMP re-projection resulting in six faces: left, front, right, back,
top and bottom.

One way to deal with the CMP as input to CNN models is to build a multichannel
CNN as introduced in [90]. This way implies multiple CNNs in parallel where each
is fed with one of the six obtained faces {Le f t, F ront, Right, Back, Top, Bot tom}.
The output feature maps from these channels are concatenated, regressed and used
to derive a quality score. The optimization of the model as well as the prediction is
made on the six channels simultaneously and not individually. The use of CMP under
a multichannel paradigm will be referred to as CC M P and the adopted architecture is
depicted in Fig. III.8. A different way consists of taking each face as a separate content
which involves a patch-based training scheme. Details on this approach are provided
in Sec. III.2.5.

III.2.4 Radial-based training

As mentioned previously, the viewing experience of 360-degree images is quite dif-
ferent from traditional ones. A user can only see the actual rendered FoV from the
spherical representation. The next rendered FoV (viewport) is determined by his head
movement around the x, y, and z axes. A slight head rotation will change the rendered
viewport. The most important part of the actual viewed viewport is the content sur-
rounding its center. Therefore, we only consider this latter to predict the quality on.
To avoid any confusions, we will not call it viewport as it only represents a portion
of it and, most of the time, this region is extracted as a square shape as in [90, 91,
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131]. Indeed, a viewport is not square and using this term to describe square patches
or regions could be misleading. As a result, we will refer to it as region.

By focusing on possible regions to predict the quality of 360-degree images, we
seek an agreement with the viewing experience of this kind of images. Also, in this
case, geometric distortions created by the previously described sphere to plane pro-
jection, will be avoided. Another avoided type of distortion, is content discontinuity,
artificial borders and oversampling created by the CMP projection [132]. This can
lead to a loss of the semantic content. One solution to avoid such unwanted results, is
the use of the radial content rather than the projected one. It can be done by mapping
the ERP content to the sphere (i.e. from plane to 3D space). Then projecting back the
viewed content, which consists of important regions from possible viewports, to 2D
representation (see Fig. III.7).
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ERP to sphere
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Figure III.7: Viewport selection for the spherical content configuration. Blue areas
represent the selected viewports. In total, 24 regions surrounding the equatorial line
(From 18◦ to 162◦) are extracted from the spherical content.

In addition to the used exploration behavior described above, it is now admitted
that the human gaze is biased towards the equatorial line when viewing 360-degree
images [133]. Inspired by this and the fact that more than 30% of the content is often
not viewed [134], we generate viewports surrounding the equatorial line represent-
ing more than 60% of the input content. Each center of a possible viewport Ri from
the possible candidates k (up to k = 24) is extracted and projected from the spher-
ical representation to the 2D plane. Then, the extracted contents are used as an input
of a pre-trained model (among the seven selected networks). Similarly to CC M P , this
configuration implies a multichannel paradigm. The number of parallel channels de-
pends on the number of extracted content. Accordingly, the complexity at this stage
is proportionally increased. The output feature maps generated by the different chan-
nels are concatenated before feeding them to the quality regression block described
in Sec. III.2.1. The training and prediction flow is depicted in Fig. III.8. We will refer
to this as CRadial in the remaining of the paper.

For this configuration, we first train the models with eights inputs before increas-
ing their number by 8 until 24. This involves expanding the architecture of the models
by adding more channels to fit the additional inputs. Such a strategy is motivated by
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the intent to analyze the impact of increasing inputs for a multichannel paradigm by
finding the trade-off between accuracy of the models and the induced complexity.
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Figure III.8: Architecture of the multichannel CNN. Ri with i ∈ {1, 2, .., n} stand for the
extracted regions. Architecture adopted for CC M P (n= 6) and CRadial (n ∈ {8,16, 24}).

III.2.5 Patch-based training

Differently from CC M P and CRadial , this configuration adopts a patch-based learning
scheme. This means all considered regions from the 360-degree images are seen as
individual content, necessitating distinct labelling. Unfortunately, ground truth label
(MOS) for individual patches are unavailable, since only the 360-degree image-level
ground truth MOS is provided. This heavily increases the challenge of IQA when ad-
opting a patch-based training. A straightforward solution is to assign the same MOS
of the 360-degree image to the derived patches. This was first introduced in [135]
and adopted by other researchers in [136, 137].

Within this configuration, two different approaches to extract patches from 360-
degree images are used. First, the regions extracted for CRadial are considered as indi-
vidual patches, 24 from each image. Second, the six faces from CC M P where each face
is taken as a separate patch. This configuration involves the use of a single channel
CNN rather than a multichannel one. An overview of this configuration is provided
in Fig. III.9. By using different approaches to extract patches, we aim to provide a
better understanding on how the extraction method can influence the training and
the prediction accuracy of the selected models. The quality score of the entire 360-
degree images is obtained by an average pooling of patches scores belonging to the
same image. We will refer to this configuration as CPatches.

III.2.6 Training on 2D IQA databases

The lack of databases for IQA of 360-degree images hinders the promotion and de-
velopment of CNN-based IQA models. In fact, designing a deep neural network and
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Figure III.9: Architecture of the CPatches. PI .i with i ∈ {1, 2,3, ..., n}, n = 24 for the
radial sampling and n= 6 for the CMP sampling. SPI .i

represents the predicted quality
score of patch i from the 360-degree image I .

training it requires large-scale and representative databases. This is the main reason
for adopting fine-tuning pre-trained models. Yet, pre-trained models have their lim-
its, specially when used for a different task that may require specific type of ground
truth. IQA is one of the most sensitive image processing tasks. The state-of-the-art
for 2D IQA is well-developed compared to the 360-degree one. Exploiting what ex-
ists may benefit to 360-IQA. One of the aspects that we can exploit is 2D benchmark
databases to train CNN models for IQA. Hence, the models weights will be optimized
according to this specific task, from earlier layers to the top layers. A similar approach
was used in [91] where they trained ResNet-18 [87] on the LIVE [138] database to
further improve its accuracy. Other databases can be exploited to compensate for the
lack of available data, such as the categorical image quality (CSIQ) database [139]
and Tampere Image Database (TID2013) [130]. Other databases may also be useful.

In this study, two strategies of training on 2D-IQA databases are investigated. The
first consists of training the selected models separately on each database. Each model
is then trained from scratch using the ground truth provided by LIVE, CSIQ, and
TID2013. The obtained knowledge is then transfered to 360-IQA by fine-tuning the
obtained weights on CVIQ and OIQA. This way, all models are trained and fine-tuned
for the same exact task. The second strategy consists of combining 2D-IQA databases
in a large training dataset. This strategy is inspired by the work proposed in [140].
As combining IQA databases is rather difficult, requiring additional subjective experi-
ments to ascertain the homogeneity of ratings according to the levels of degradation,
the authors proposed a smart approach by using image pairing based on the Thur-
stone model. The ground truth labels are computed as the probability P(x ,y) of the
quality of x being higher than y , i.e. quality ranking task rather than visual quality
prediction. By doing so, a large scale training dataset can be obtained. However, it
requires a Siamese network with x and y as inputs and P(x ,y) as outputs. The reader
should refer to the original paper [140] for more details. After training the model on
the combined dataset, the weights are saved and used to perform transfer learning
on CVIQ/OIQA.

For training on 2D databases, we unfreeze the trainable layers of the used models.
The new weights are optimized according to the regression of extracted features to
visual quality scores for the first strategy, and quality rankings for the second one.
The CPatches under C M P is used to perform the fine-tuning. For LIVE and TID2013,
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Table III.2: Characteristics of the used 2D IQA databases.

Databases LIVE [138] CSIQ [139] TID2013
[130]

# of pristine images 29 30 25
# of distorted images 779 866 3000
Distortion types JP2K, JPEG,

WN, GB, FF.
JP2K, JPEG,
WN, GB, FF,
Contrast.

JP2K, JPEG,
WN, GB and
others.

Levels of distortions 5 6 5

we cropped the regions surrounding the center with a resolution of 256× 256 for all
images, as they contain heterogeneous resolutions or rectangular shapes. This way,
we avoid altering the content due to inappropriate resampling. Additionally, the input
images are not normalized, which enables the proposed method to also cope with
distortions introduced by luminance and contrast changes [136]. For both training
starategies, all models are trained for 300 epochs and early stopping by monitoring
the validation loss. We will refer to this configuration as C2D in the following.

For the end-to-end training and transfer learning of all configurations, the error
between predicted and target scores is computed using the L2 loss function between
the ground truth label y and the predicted one ŷ over the batch of size N .

L2 =
1
N

N
∑

i=1

(y − ŷ)2 (III.4)

III.3 Results and discussion

III.3.1 Experimental setup

The proposed benchmark is implemented using TensorFlow [141]. The training of
the considered configurations is performed on a server equipped with an Intel Xeon
Silver 4208 2.1GHz CPU, 192GB of RAM, and an Nvidia Telsa V100S 32GB GPU. We
use the RMSProp [142] optimizer for training the models. The learning rate is set to
0.001 with exponential decay. All models are trained with a batch size of 8 according
to [143] for 25 epochs. We set the input dimension of all models to (256, 256,3) for
the CC M P , CRadial , CPatches and C2D. As for the CERP , we set it to (1024, 512, 3).

The databases are split using the well-known Pareto principle and the criterion
discussed in Sec. III.2.2, 80% is dedicated for training, and the remaining 20% for
testing. For the sake of a fair comparison, all configurations are trained/tested using
the same splitting scheme. Five-fold cross-validation is used for a complete evaluation
within the selected database.
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III.3.2 Data biases evaluation

To analyze the performance of splitting strategies and demonstrate the influence of
content-induced biases, we compared three schemes as discussed in Sec. III.2.2. We
trained the selected CNN models on ERP images for this assessment, since both data-
bases come with this format. The performance results in terms of correlation accuracy
(PLCC) and monotonicity (SRCC) are summarized in Table III.3 for both databases.
The mean values of five-folds are given to provide a complete and fair assessment.

As can be observed, each splitting scheme resulted in a different performance,
regardless of the database. This actively demonstrates the existence of biases when
splitting databases for training and testing. Besides, it shows the impact of the used
strategy on the reported validation performances. Since we are dealing with IQA
which is a delicate task compared to classification or object detection for instance,
one should consider the selection of a representative set of data for testing the ef-
ficiency of CNN models. Content representativeness for IQA may be expressed by a
variety of attributes such as those we used, i.e. spatial complexity and colorfulness.

Table III.3: Performance evaluation of the splitting strategies on CVIQ/OIQA data-
bases. The best performing models are highlighted in bold for rows and underlined
for columns. (a) and (b) stands for the SI/CFI-based schemes

CVIQ

Splitting Metric ResNet-50 ResNet-34 RNet-18 Vgg-16 Vgg-19 DeneNet-121 Inception-V3

Rand
PLCC 0.900 0.733 0.799 0.813 0.772 0.903 0.809
SRCC 0.831 0.672 0.729 0.734 0.667 0.832 0.740

SI/CFI (a)
PLCC 0.844 0.727 0.787 0.789 0.791 0.862 0.810
SRCC 0.770 0.639 0.728 0.734 0.696 0.782 0.707

SI/CFI (b)
PLCC 0.837 0.725 0.800 0.803 0.735 0.858 0.719
SRCC 0.774 0.634 0.705 0.691 0.639 0.767 0.622

OIQA

Rand
PLCC 0.749 0.590 0.565 0.586 0.534 0.725 0.732
SRCC 0.710 0.512 0.505 0.568 0.505 0.686 0.696

SI/CFI (a)
PLCC 0.837 0.641 0.803 0.662 0.608 0.818 0.803
SRCC 0.826 0.624 0.771 0.610 0.592 0.783 0.775

SI/CFI (b)
PLCC 0.899 0.695 0.779 0.613 0.694 0.860 0.790
SRCC 0.877 0.666 0.762 0.576 0.665 0.829 0.764

From Table III.3, the random splitting scheme resulted in the best performance in
terms of PLCC and SRCC for CVIQ. However, the observation is different for OIQA
where the random splitting performance is outperformed by both SI/CFI based split-
ting schemes for all models. A possible reason could be related to the content compos-
ing each database, i.e. diversity of the images in terms of visual content and spatial
complexity of the scenes. Based on this assumption and the previously discussed ob-
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servation about the distribution of the characteristics regarding CVIQ images (see Fig.
III.5), one can conclude that OIQA is more diverse than CVIQ. For the SI/CFI based
splitting strategies, the (b) resulted in a more representative set since it selects di-
verse content and, intuitively represents approximately the used database in terms of
content. In addition, it allows a more reliable evaluation of the performance accuracy
within databases.

As observed for CVIQ, the random splitting scheme resulted in the best perform-
ance overall, except for ResNet-18 and Vgg-19. We believe that it is strongly related to
the nature and diversity of the content. Additionally, between SI/CFI-based strategies,
a very slight difference can be observed for CVIQ as they appear to be competing with
each other. The opposite is observed on OIQA, where a noticeable difference can be
reported in terms of correlation and monotonicity. On the same database, the SI/CFI
(b) resulted in a better performance compared to the (a) strategy. Based on the above
observations, we adopt the SI/CFI (b) strategy to train/test the considered configura-
tions. By doing so, the performances will be reported on the most representative sets
of the selected databases.

III.3.3 Projection-based evaluation

III.3.3.1 CERP

To assess the performances of selected pre-trained models on high-resolution ERP
images, we provide in Table III.3 (SI/CF based splitting (b)) the PLCC and SRCC
scores obtained for both databases. Knowing that no omnidirectional peculiarities
have been considered with this configuration, its performances are still satisfactory
for almost all models. On average, the best performing model within this strategy
is ResNet-50 followed by DenseNet-121, while the least performing one is Vgg-19.
This is valid for both accuracy (PLCC) and monotonicity (SRCC) of the predictions.
In fact, ResNet-50 obtained a PLCC (resp. SRCC) value of 0.844 (resp. 0.770) on
CVIQ and 0.899 (resp. 0.877) on OIQA. DenseNet-121 achieved 0.862 (resp. 0.782)
on CVIQ and 0.860 (resp. 0.829) on OIQA. These two models outperformed the other
CNN models, regardless the used database. ResNet-50 is more popular compared to
DenseNet-121, especially within the IQA community. DenseNet-121 model is under-
represented for IQA tasks, and most of the recent works adopted either ResNet or
Vgg [101, 122, 144] as backbones. These choices are often made based on previous
conclusions derived from other image processing tasks.

Comparing the results on CVIQ and OIQA, one can notice better correlations on
OIQA, supporting the previous assumption on the nature of content in this database.
The diversity of content helps models to better train and generalize. However, with
the CERP , only 422 images are used for fine-tuning on CVIQ and 256 on OIQA. The
more diverse the training data, the more examples to train on are required. Therefore,
one can conclude that achieving a siginificant generalization ability on diversified
databases requires larger training sets.
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Table III.4: Performance evaluation of cross-database validation under the CERP . Best
performing models in bold.

Train/Test Dist. Metric ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseN-121 Inception-V3

OIQA
/
CVIQ

Overall
PLCC 0.820 0.403 0.410 0.309 0.485 0.750 0.687
SRCC 0.751 0.305 0.437 0.254 0.485 0.716 0.651

JPEG
PLCC 0.903 0.339 0.360 0.436 0.556 0.813 0.761
SRCC 0.751 0.250 0.325 0.331 0.540 0.717 0.644

AVC
PLCC 0.811 0.434 0.447 0.320 0.521 0.695 0.681
SRCC 0.769 0.396 0.423 0.314 0.497 0.672 0.653

HEVC
PLCC 0.741 0.432 0.604 0.215 0.385 0.731 0.633
SRCC 0.700 0.401 0.588 0.200 0.374 0.713 0.618

CVIQ
/
OIQA

Overall
PLCC 0.476 0.256 0.268 0.295 0.320 0.472 0.474
SRCC 0.433 0.279 0.256 0.304 0.302 0.386 0.431

JPEG
PLCC 0.768 0.264 0.404 0.324 0.281 0.754 0.285
SRCC 0.762 0.326 0.351 0.345 0.178 0.732 0.278

We conducted a cross-database validation to provide a better understanding of
the use of ERP images with CNN models. We first trained the models on OIQA before
testing their performance on CVIQ and vice versa. The performance results are sum-
marized in Table III.4 in terms of PLCC and SRCC. We provide results for both the
overall databases and on individual distortions. For training on CVIQ and testing on
OIQA, we only provide results on the JPEG distortion according to [90].

Despite the satisfactory results obtained by the selected models on each database
separately, one can observe very low performances on the cross-database validation.
This depicts the limitation of CERP when used with different CNN architectures, ex-
cept for ResNet-50 and DenseNet-121. The latter models achieved good results in both
cases. Training on OIQA and testing on CVIQ gave better results compared to the re-
verse case. One can observe a PLCC (resp. SRCC) value of 0.820 (resp. 0.751) on the
overall database obtained by ResNet-50 when trained/tested on OIQA/CVIQ com-
pared to 0.476 (resp. 0.433) when trained/tested on CVIQ/OIQA. A similar behavior
is noticed with DenseNet-121 and the other models. This could be explained by the
heterogeneousness of the distortions in OIQA, combining compression artifacts with
Gaussian blur and white noise. Testing the performances of fine-tuned CNN models,
primarily trained for classification on unseen distortions, resulted in poor perform-
ances. Among the models, the performances of ResNet-50 show a significant differ-
ence compared to ResNet-18/34 and Vgg-16-19. A possible explanation could be in
the fine-tuning strategy [145]. It is known that the hyperparameters are key factors in
achieving the best performance. These parameters are usually tuned according to the
model, its architecture and depth, and the training datasets. However, as the focus
of the study is rather benchmarking omnidirectional related configurations, the used
hyperparameters are fixed for all models.
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When comparing the performance on individual distortions, it can be seen that
training on OIQA yields better results. Even though JPEG is present in both data-
bases, training on OIQA resulted in significantly higher PLCC and SRCC scores. This
finding holds for all seven models. A possible explanation is that the levels of JPEG
distortion applied in both databases are different (five in OIQA and eleven in CVIQ).
Still, the same class of artifacts should not result in such a significant difference. Per-
haps compressing with eleven levels is not the best option because it results in less
discernible differences between some stimulus (impaired images). When tested on
CVIQ, Resnet-50 and DenseNet-121 also performed well regarding AVC and HEVC.
These distortions are not available in OIQA, demonstrating the efficacy of these mod-
els in generalizing to comparable distortions.

III.3.3.2 CC M P

With the intent to provide a comparison of pre-trained models’ performances when
used on CMP projection format and assess the influence of this type of projection,
we provide in Table III.5 results in terms of PLCC and SRCC. Overall, the prediction
performances are more correlated on CVIQ compared to OIQA. This is because CVIQ
contains only compression artifacts, while OIQA contains various ones. The diversity
of distortions may lead to a less generalized correlation across the entire database.
This observation is applicable irrespective of the architecture of the model.

Table III.5: Performance evaluation in terms of PLCC and SRCC of pre-trained models
using CC M P . Best performances are highlighted in bold for each database.

Database Metric ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3

CVIQ
PLCC 0.835 0.751 0.786 0.743 0.776 0.825 0.739
SRCC 0.814 0.657 0.760 0.726 0.714 0.730 0.653

OIQA
PLCC 0.775 0.562 0.583 0.493 0.493 0.673 0.607
SRCC 0.722 0.532 0.561 0.498 0.498 0.596 0.548

From Table III.5, it can be noticed that ResNet-50 outperforms the other models
in terms of prediction accuracy and monotonicity on both databases. DenseNet-121
ranked second, but as it has fewer parameters compared to ResNet-50 (see Table III.1).
Its performance can be considered as a trade-off between accuracy and complexity.
One can also observe that Vgg-16 and Vgg-19 performed the worst among the seven
models on OIQA. It is also the case of Inception-V3 on CVIQ.

A cross-database assessment was performed using CVIQ and OIQA to demonstrate
the generalization ability of selected pre-trained models under the CMP configura-
tion. Firstly, we trained the models on OIQA and tested them on CVIQ. The perform-
ance results on the overall database as well as per distortion types are provided in
Table III.6. As it can be seen, the performances on the overall database are below
0.7, except for ResNet-50 and DenseNet-121 when tested on JPEG, achieving second-
best performance. Is it worth mentioning that, none of the models were dedicated
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Table III.6: Performance evaluation of cross database validation under the CC M P . Best
performing models in bold.

Train/Test Dist. Metric ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3

OIQA
/
CVIQ

All
PLCC 0.804 0.429 0.598 0.400 0.106 0.697 0.374
SRCC 0.738 0.308 0.566 0.389 0.080 0.625 0.394

JPEG
PLCC 0.914 0.525 0.649 0.381 0.206 0.867 0.617
SRCC 0.819 0.318 0.469 0.283 0.208 0.752 0.472

AVC
PLCC 0.743 0.464 0.680 0.552 0.188 0.598 0.349
SRCC 0.705 0.371 0.641 0.539 0.127 0.551 0.407

HEVC
PLCC 0.703 0.382 0.690 0.442 0.314 0.506 0.385
SRCC 0.647 0.247 0.673 0.448 0.256 0.498 0.376

CVIQ
/
OIQA

All
PLCC 0.304 0.252 0.308 0.211 0.172 0.487 0.227
SRCC 0.287 0.261 0.306 0.149 0.158 0.431 0.228

JPEG
PLCC 0.506 0.227 0.405 0.409 0.254 0.687 0.484
SRCC 0.470 0.233 0.346 0.407 0.250 0.649 0.388

to quality assessment as they were trained on ImageNet. Only the regression block
is trained for the IQA task. Besides, the only common distortion between OIQA and
CVIQ is JPEG. This is reflected in the same table, where an improvement of PLCC
and SRCC for JPEG could be observed compared to the overall performance. The
correlation performances shifted from 0.80 to 0.91 for ResNet-50, and from 0.69 to
0.86 for DenseNet-121. The performances of the other models improved as well, but
remains below the 0.7 threshold. Regarding AVC and HEVC distortions, the perform-
ances dropped compared to JPEG and even to the overall scores, yet still acceptable.

Then, we trained on CVIQ and tested on OIQA. The correlation results are sum-
marized in the lower part of Table III.6. One can observe low performances compared
to previous results. The training on CVIQ seems to lead to less generalize models. The
overall performances are very low as the models are trying to predict on unlearned
distortions (i.e. WGN and GB). Besides, the performances on JPEG are low too com-
pared to those obtained when trained on OIQA. Despite the low performances, the
contrast to training on OIQA regarding the best-performing model can be noticed.
The DenseNet-121 outperformed the other models, even ResNet-50.

III.3.4 Radial-based evaluation

In this section, we discuss the performance evaluation of the radial content-based
configuration CRadial . Table. III.7 gathers the scores for CVIQ and OIQA. The previous
observation regarding the best-performing models is still valid for this configuration.
Overall, ResNet-50 and DenseNet-121 performed the best, with DenseNet-121 rank-
ing first on CVIQ and ResNet-50 on OIQA.

Overall, one can notice that the performances obtained on CVIQ are mostly better
compared to OIQA. A minimum PLCC (resp. SRCC) value of 0.72 (resp. 0.69) is ob-
tained on CVIQ, while 0.39 (resp. 0.36) on OIQA. The reason might be the distortions
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Table III.7: Performance evaluation of pre-trained models with the CRadial on
CVIQ/OIQA databases in terms of PLCC/SRCC. Best performing model is highlighted
in bold for CVIQ and underlined for OIQA.

# inputs Metric
ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3

CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA

R = 8
PLCC 0.788 0.795 0.720 0.606 0.829 0.688 0.801 0.387 0.801 0.567 0.841 0.772 0.757 0.704
SRCC 0.713 0.758 0.698 0.559 0.794 0.661 0.707 0.361 0.707 0.517 0.747 0.727 0.740 0.644

R = 16
PLCC 0.807 0.842 0.770 0.544 0.751 0.725 0.772 0.482 0.809 0.482 0.857 0.822 0.793 0.791
SRCC 0.747 0.816 0.689 0.530 0.722 0.705 0.700 0.508 0.716 0.508 0.769 0.780 0.755 0.752

R = 24
PLCC 0.830 0.851 0.726 0.663 0.764 0.769 0.802 0.394 0.821 0.608 0.859 0.890 0.775 0.749
SRCC 0.781 0.809 0.687 0.629 0.740 0.740 0.747 0.389 0.743 0.623 0.782 0.876 0.722 0.723

contained in OIQA. With this configuration, additional distortions due to projection
can be avoided. Therefore, the reported results are more representative as they were
obtained based on the actual viewed content.

The fact of increasing the number of inputs improved the performances of the
selected models. One can notice that, in average, the performance increases with
increased inputs for all models, and declines with R= 24 for Resnet-34 and Inception-
V3. This behavior does not apply to ResNet-18, as we notice (the best score with R= 8)
and then a decrease with additional inputs. This actively demonstrates an overfitting
behavior. A similar behavior is shown by Vgg-16. Increasing the number of inputs leads
to a higher number of channels where CNN models become more prone to overfitting.
It is worth mentioning that the variation of the number of regions results in a variation
of the quality prediction accuracy as well as the prediction monotonicity.

III.3.5 Patch-based evaluation

To compare the performance of the multichannel paradigm versus the patch-wise
training scheme, we trained the selected models using the output of the CMP as
patches in addition to the regions generated for CRadial (see Sec. III.2.5). Table III.8
summarizes the obtained results.

In average, the radial-based method performed better. A PLCC (resp. SRCC) value
of 0.821 (resp. 0.760) on CVIQ and 0.778 (resp. 0.756) on OIQA compared to 0.800
(resp. 0.751) and 0.708 (resp. 0.668) with CMP on CVIQ and OIQA respectively. A
PLCC difference of approximately 2.6% on CVIQ and 9.4% on OIQA is observed when
using patches obtained on the sphere. This illustrates the usefulness of using radial
content against the projected one. Another possible reason is the number of extrac-
ted patches, providing the models with more training examples. Looking into indi-
vidual performances, DenseNet-121 ranked the best for radial patches and ResNet-50
for CMP patches. Despite the heterogeneity of the distortions on OIQA compared to
CVIQ, training the DenseNet-121 using a patch-wise lead to a better accuracy. Another
noteworthy observation is related to the Vgg-16/19 performances. They achieve com-
parable performance to ResNet-50 for radial configuration on CVIQ. Knowing that the
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pre-trained version of Vgg-16/19 scored among the worst in the previous configura-
tions, their performances under CPatches prove to be satisfactory.

Table III.8: Performance evaluation of pre-trained models with the CPatches on
CVIQ/OIQA database in terms of PLCC, SRCC. Best performances are highlighted in
bold for columns and underlined for rows.

Input type Radial CMP

Metric PLCC SRCC PLCC SRCC

ResNet-50
CVIQ 0.861 0.820 0.857 0.833
OIQA 0.836 0.810 0.867 0.848

ResNet-34
CVIQ 0.604 0.533 0.756 0.725
OIQA 0.671 0.626 0.678 0.667

ResNet-18
CVIQ 0.792 0.716 0.827 0.783
OIQA 0.787 0.774 0.755 0.713

Vgg-16
CVIQ 0.861 0.816 0.795 0.711
OIQA 0.816 0.787 0.557 0.465

Vgg-19
CVIQ 0.859 0.791 0.785 0.709
OIQA 0.771 0.734 0.552 0.518

DenseNet-121
CVIQ 0.907 0.851 0.807 0.768
OIQA 0.925 0.917 0.845 0.818

Inception-V3
CVIQ 0.864 0.792 0.772 0.726
OIQA 0.641 0.640 0.701 0.645

Average
CVIQ 0.821 0.760 0.800 0.751
OIQA 0.778 0.756 0.708 0.668

An in-depth analysis shows a significant difference in terms of performances among
different models. This could be related to the pre-trained version of the models. Per-
forming transfer learning with various amount of training examples is affecting the
deeper and shallower models in different ways. For instance, deeper models such as
DensNet-121 and Vgg-16/19 achieved good performances with radial compared to
CMP. Whereas, with ResNet-18/34/50 the reverse can be observed. The models are
fine-tuned using augmented databases of varying sizes. The radial configuration gen-
erates 10128 patches on CVIQ (resp. 6144 on OIQA) while the CMP configuration
generates 2532 (resp. 1536 patches). Four times less the amount of training data is
generated with CMP compared to the radial starategy with an impact on the model’s
achievable performances. This configuration and the training strategy appear to in-
fluence different backbones in different ways.

We performed a cross-database validation with the patch-wise configuration to
verify the generalization ability of the selected models when trained using a patch-
wise scheme. The performance results are gathered in Table III.9. The same obser-
vation regarding the best performing model still valid, ResNet-50 and DenseNet-121
achieved the best performance overall and per-distortion. Good results are obtained
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Table III.9: Performance evaluation of pre-trained models with the CPatches on
CVIQ/OIQA database in terms of PLCC, SRCC. Best performances are highlighted in
bold for rows and underlined for columns.
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on the JPEG distortion with a PLCC (resp. SRCC) values of 0.94 (resp. 0.86) using
radial patches, and 0.92 (resp. 0.83) using CMP patches by ResNet-50 when trained
on OIQA and tested on CVIQ. Parallelly, satisfying results are obtained on AVC and
HEVC distortions. Vgg-16/19 and Inception-V3 achieved satisfactory results with ra-
dial when trained on OIQA. PLCC/SRCC values above 0.90/0.80 on JPEG are ob-
tained. One can also observe that the models trained on OIQA demonstrate a stronger
generalization ability when tested on CVIQ compared to the opposite. This supports
the previous observation concerning the richness of OIQA versus CVIQ in terms of
content and distortions. Besides, the radial-based method resulted in the best per-
formance compared to CMP regardless of the used database. This depicts the import-
ance of using radial rather than projected content on the one hand. On the other
hand, generating more examples for the models to train on, improved the accuracy,
demonstrating the impact of having a large amount of data.

III.3.6 Training on 2D IQA databases evaluation

Table III.10: Performance evaluation of C2D in terms of PLCC, SRCC. The best per-
forming models are highlighted in bold for columns and underlined for rows on each
dataset. ’All’ stands for combined datasets.

2D database LIVE CSIQ TID2013 ALL

Metric PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

ResNet-50
CVIQ 0.915 0.852 0.912 0.849 0.909 0.847 0.938 0.895
OIQA 0.884 0.873 0.876 0.865 0.879 0.863 0.882 0.862

ResNet-34
CVIQ 0.910 0.847 0.934 0.887 0.918 0.859 0.728 0.669
OIQA 0.920 0.907 0.923 0.914 0.905 0.889 0.381 0.371

ResNet-18
CVIQ 0.898 0.836 0.903 0.839 0.898 0.829 0.821 0.774
OIQA 0.923 0.912 0.919 0.910 0.894 0.878 0.342 0.322

Vgg-16
CVIQ 0.877 0.804 0.873 0.810 0.849 0.768 0.889 0.832
OIQA 0.610 0.587 0.832 0.813 0.816 0.799 0.804 0.773

Vgg-19
CVIQ 0.861 0.791 0.892 0.823 0.813 0.737 0.886 0.841
OIQA 0.805 0.782 0.847 0.833 0.721 0.704 0.692 0.679

DenseNet-121
CVIQ 0.948 0.918 0.943 0.906 0.906 0.842 0.869 0.838
OIQA 0.837 0.827 0.931 0.921 0.880 0.858 0.908 0.917

Inception-V3
CVIQ 0.897 0.832 0.908 0.886 0.923 0.875 0.751 0.735
OIQA 0.905 0.893 0.911 0.898 0.853 0.833 0.696 0.834

With the intent to evaluate whether the use of 2D IQA databases improves the
performance of CNN models compared to performing transfer learning, we trained
all selected models on LIVE, CSIQ, TID2013, and combined databases (All). As it is
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Figure III.10: Contrast (val_loss− loss)/(val_loss+ loss) between training and val-
idation losses for all models trained on 2D-IQA databases (0 → equal loss between
training and validation losses). ’All’ stands for combined datasets.
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known, deep neural networks require large-scale databases in order to achieve better
accuracy as well as avoiding overfitting. To analyze the learning behavior, we provide
in Fig. III.10 the contrast (val_loss− loss/val_loss+ loss) between training and val-
idation losses for the five folds (F-1 to F-5). A contrast equal to 0 depicts an equal loss
between training and validation, whereas a contrast equal or close to 1 suggests an im-
portant gap between both losses, with val_loss being higher and the opposite if equal
or close to −1. We can see that training on LIVE is leading to a better generalization
to the prediction of MOS, but with a non-smooth behavior. Training on the combined
datasets (All) led to the best behavior of the training losses, as the contrast is stable
and close to 0. This is a generalization to predict the probability ranking, as discussed
in Sec. III.2.6, suggesting a robust performance during training. Training on TID2013
has a higher contrast, meaning that the models have difficulty to generalize. The gap
between training and validation losses is much higher than those of LIVE and CSIQ.
This is also demonstrated by the provided curves (see Fig. III.10). A possible reason is
that TID2013 contains many diverse distortions, a total of 24 types, and it may need
more examples to learn from in order to demonstrate a better generalization ability.
From the provided curve, we can notice that the progress of training/validation loss is
more stable on TID2013, despite the previous observation. This led to a quicker con-
vergence for all models. Indeed, training on TID2013 required fewer epochs when
compared to training on CSIQ, LIVE, and the combined datasets. Among the models,
ResNet-34 converges quicker on each database, followed by Vgg-16.

In addition to the training behavior shown above, we provide the performance
accuracy of the weights obtained from training on 2D databases, i.e. LIVE, CSIQ, and
TID2013 individually and combined together. Table III.10 gathers the performance
results on CVIQ/OIQA in terms of PLCC/SRCC. On average, the performances are
quite satisfactory on both databases. A maximum PLCC (resp. SRCC) value of 0.948
(resp. 0.921) is achieved by DenseNet-121. Overall, the latter scored the best among
the selected models when trained on each database separately and ResNet-50 when
trained on the combined datasets. Training the models on 2D IQA databases appears
to improve their performances in both correlation accuracy and monotonicity. The
achieved efficiency is competitive except for Vgg-16 on OIQA when trained on LIVE.
Despite the small size of IQA databases, the obtained performances actively demon-
strate the usefulness of training CNN models on them. Acquiring knowledge about
quality after being pre-trained to predict it is increasing the performances.

Among the selected 2D databases, training on TID2013 results in a poor perform-
ance compared to LIVE and CSIQ. It could be explained by the lack of generalization
due to the limited number of instances per distortion. Indeed, insufficient amount of
data may lead to overfitting, especially when training from scratch. When trained on
LIVE and TID2013, ResNet-50 is outperformed by its smaller variants, ResNet-18/34.
The difference is greater on OIQA than on CVIQ, which solely contains compression
artifacts. It is known that deeper models require large databases in order to reach
a generalization ability and sufficient accuracy, especially on databases with diverse
content.
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Regarding pre-training on the combined datasets, some improvement can be ob-
served when compared to the use of imageNet weights reported in Table III.8. For
example, ResNet-50 performances in terms of PLCC/SRCC shifted from 0.857/0.833
on CVIQ to 0.938/0.895, representing 9%/7.2% of improvement. On the same data-
base, similar improvements can be seen with other models such as Vgg-16/19, as well
as slight improvements with DenseNet-121, Inception-V3, and ResNet-18. Analyzing
the performance on OIQA, ResNet-18/34 performed poorly, with accuracy and mono-
tonicity scores below 0.5. As demonstrated by the lower performances, fine-tuning on
databases with diverse content and degradation is less efficient for different models
with varying depths. This indicates less generalization compared to training on indi-
vidual databases.

III.3.7 Computational complexity

With the aim to compare the computational complexity of the selected models under
different configurations, we measure the required prediction time per input image.
Since the inference analysis is independent from the training, we used a different
hardware configuration. A computer equipped with an Intel® Core™ i9-9880H @
2.30GHz, 32GB of RAM, and an Nvidia Quadro T2000 MAX-Q 4GB GPU is selected to
measure the computational complexity. Fig. III.11 represents the average of the com-
putational time required over ten images. Overall, DenseNet-121 requires the longest
time, followed by Vgg-16/19. Considering this, one can conclude that DenseNet-121
and the Vgg-based models are heavier in terms of computational complexity, followed
by Inception-V3, and finally ResNets. The training time is definitely not proportional
to the complexity of the used model in terms of number of parameters (see Table III.1).
DenseNets concatenations require high GPU memory and therefore more training
time [146], while ResNet models implement skip-connections, allowing to jump over
some layers and reducing the computational time [87, 147]. Despite the number of
parameters of ResNet-50, the latter spent less time than VGG-16/19. DenseNet-121
has fewer parameters among the selected models, and yet it requires more time than
ResNets.

Among the configurations, the multichannel appears to demand more compu-
tational time, except with Vgg-16/19. The computational time required by Vggs is
highly impacted by the input shape. As it can be seen, Vgg-16/19 required the longest
time when used with ERP images, suggesting that the architecture of the model plays
a major role in the computational complexity.

In addition to the computational time, we measured the number of floating-point
operations (FLOPs) with regard to the input shape. The latter determines the num-
ber of FLOPs providing insight on the computations required by the model. A large
FLOPs number implies a higher complexity, suggesting a longer calculation time. The
FLOPs are reported in Table III.11. One can observe that having an input shape of
1024*512*3 resulted in larger FLOPs. However, according to the computational time
associated with each configuration, the first observation that emerges is that the
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Figure III.11: Computational complexity in terms of required prediction time per im-
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Table III.11: The number of FLOPs with regard to the input shapes.

Input shape 256*256*3 1024*512*3 256*256*3*6

ResNet-50 5.04 40.35 30.27
ResNet-34 4.80 38.42 28.82
ResNet-18 2.39 19.09 14.32
Vgg-16 20.1 160.5 120.3
Vgg-19 25.5 203.9 152.9
DenseNet-121 3.70 29.61 22.21
Inception-V3 3.97 36.23 23.14

FLOPs is not proportional with the required computational time. This could be ex-
plained by the fact that other operations are involved, especially memory-based ones,
as discussed previously regarding DeseNet-121. In addition, some architectures im-
plement skip-connections such as ResNets, allowing a more optimized utilization of
the computational resources. Vgg-16/19 have the largest FLOPs independently of the
used configuration. In contrast to the other models, both Vggs required significantly
higher computational time. This confirms that the computational time is strongly af-
fected by the architecture.

III.3.8 Overall performance evaluation

The training and validation of a CNN model are often made on randomly selected sets.
The adopted splitting scheme may result in biased sets. Limiting these biases helps
to improve the reliability of the models as well as the reported performance. With
this idea in mind, we first conducted a comparison of three splitting strategies (see
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Sec. III.2.2). The results demonstrated the existence of content-induced biases, as the
performances were different for each splitting strategy. In addition, it showed the dif-
ference in terms of content diversity in the available omnidirectional IQA databases.
CVIQ appears to contain less diversity compared to OIQA. In our case, in order to
provide accurate and reliable results, we adopted for all configurations, the splitting
scheme that uses scene complexity and colorfulness as splitting criteria.

Predicting visual quality on projected content (i.e. ERP and CMP images) for omni-
directional IQA is straightforward and does not require an additional pre-processing
step for extracting viewports or patches. However, the achieved performances are
quite poor, except for ResNet-50 and DenseNet-121. This observation is confirmed
when conducting cross-database validation, in which the performances decreased
substantially. The limitations of using projected content, as well as the limitations
of CVIQ in offering enhanced generalization ability, were demonstrated. When we
trained the models on OIQA and tested on CVIQ, the results were better than when
the reverse was performed. Because OIQA comprises a variety of distortions, it be-
nefited the models in achieving higher correlation accuracy and monotonicity when
compared to CVIQ, which solely incorporates compression artifacts.

The use of radial-content (i.e. spherical content) helps to mimic the exploration
behavior of users, predicts visual quality on the actual viewed content, and avoids
geometric distortions due to projection. This approach results in a set of regions for
quality predictions. The challenge is to determine the number of these regions as well
as their locations. Regarding the latter, it is preferable to focus on the equator, as
demonstrated in [133]. We utilized 8, 16, and 24 extracted regions to investigate the
influence of their number on the performance of the selected models. An improve-
ment was observed with the increase of number of inputs, showing the importance of
feeding CNN models with more content to learn from. An overall improvement was
also observed regarding all models compared to the use of projected content. Except
for Vgg-16/19 on OIQA where a low performance is observed. The performance of
DenseNet-121 (resp. ResNet-50) stood out from the rest of the models on CVIQ (resp.
OIQA).

Training a CNN model on selected regions from an omnidirectional image either
implies the use of a multichannel CNN or a patch-wise training. The multichannel
CNN learns from multiple inputs that are linked to a single ground truth (i.e. MOS),
while patch-wise learning involves labeling each extracted patch independently. The
multichannel strategy is investigated with the CMP- and Radial content-based config-
uration. For the patch-wise, two techniques were evaluated, the use of radial content
and faces from the cube-map projection as patches. Overall, the superiority of us-
ing the radial content was observed. With this configuration, the DenseNet-121 and
ResNet-50 still outperform the other models. The cross-database evaluation supports
the idea of using radial content as well as generating larger training sets. Good per-
formances were obtained when we trained the models on OIQA and tested on CVIQ,
especially for JPEG distortion. Despite the difference in the used levels of JPEG, five
on OIQA and eleven on CVIQ, PLCC/SRCC values above 0.90/0.80 were achieved.
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Except for training on 2D databases, ResNet-50 and DenseNet-121 performed the
best across all tested configurations. This actively demonstrates the effectiveness of
these models for IQA tasks when used with the ImageNet weights. When trained on
2D databases, ResNet-18/34 and Inception-V3 achieved competitive performances no-
ticeably better compared to those obtained with their original weights. This shows that
deeper models need large databases, while less deep ones may achieve high accuracy
with fewer data. In addition, actual 2D IQA databases are limited in comparison to
ImageNet. Building IQA databases is time-consuming, which is why transfer learning
is usually adopted; tiny databases would not allow CNN models to reach a substan-
tial degree of accuracy. However, when we trained the selected models on LIVE, CSIQ,
and TID2013 databases, we could observe an improvement over the pre-trained ver-
sions. Overall, the best performances were achieved when trained on LIVE and CSIQ.
These databases share four distortion types with OIQA. In terms of loss contrast and
training convergence, we discovered that the broader the database (i.e. various dis-
tortion type), the faster the model trains and less contrast it obtains (see Fig. III.10).
This may be due to fewer examples to learn from when an important number of dis-
tortion is used. When we trained on the combined datasets, some improvement were
observed, especially with CVIQ, while less generalization is achieved when fine-tuned
on diverse database (OIQA).

III.4 Summary

The main takeaways of this benchmark are:

• When training CNNs models for IQA, a complete separation of the training and
testing sets should be performed. Otherwise, the validation would be biased as
the model will have already seen the content. In addition, to avoid the repres-
entativeness bias a content-oriented splitting strategy should be considered.

• IQA datasets for training CNN models may suffer from diversity, either in terms
of content or distortions. Consequently, the generalization ability and robust-
ness of the model may be highly affected.

• The use of projected contents limits the achievable performances, especially the
generalization ability. The fact that this content presents geometric distortions
and less fidelity with the viewed content resulted in limited performances. In
this case, the use of radial content could be more effective.

• Patch-based training is as efficient as multichannel models featuring several
CNNs in parallel. With proper patches sampling and training strategy, the patch-
based training should be considered since it drastically reduces the complexity.
By doing so, the inference time is improved while maintaining promising accur-
acy.

• The design of multichannel models should properly consider the number of
channels. The latter may influence the prediction performances in addition to
being highly complex, leading to training difficulties.
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• According to the experimental results, there is no linear relationship between
the accuracy nor the monotonicity of the model and its complexity.

• Pre-training on 2D-IQA is helpful for increasing backbone performance over Im-
ageNet weights. However, when databases are combined, some models perform
poorly in terms of generalization, failing to account for the difference between
pre-training and fine-tuning tasks.

III.5 Conclusion

In this chapter, we explored the usage of well-known CNN models for IQA of 360-
degree images. The reason for this choice is that these models were trained on large-
scale databases, and transfer learning techniques may benefit IQA. We conducted an
empirical and analytical evaluation by covering different CNN architectures, image
representations, and training strategies to provide recommendations on the use of
CNNs for 360-degree IQA. Seven pre-trained CNN models were fine-tuned and com-
pared based on various configurations, including the use of projected and radial con-
tent, multichannel paradigm and patch-wise training, and retraining on well-known
2D IQA databases.

The obtained results showed the superiority of retraining CNN models on IQA
databases over the use of ImageNet pre-trained versions. The use of radial content
led to better performance and generalization ability compared to projected content,
especially with the patch-wise training. Among the selected models, ResNet-50 and
DenseNet-121 performed the best. We believe that this work sheds light on the usage
of pre-trained CNN models for IQA and paves the way for further research. One critical
factor is the scarcity of large-scale, accurate, and reliable 360-IQA databases. It can
be viewed as the foundation of any quality assessment validation scenario, and such
databases are in urgent need in order to promote the development of IQA models for
such content.





Chapter IV

Pre- and Post-processing for
CNN-based 360-IQA

IV.1 Introduction

Pre-processing Model Post-processing
Quality score

Figure IV.1: Steps in a typical deep-learning based 360-IQA framework.

360-IQA frameworks comprise various steps and processes, particularly the pre-
processing, model’s architecture design and training, and post-processing, as illus-
trated in Fig. IV.1. Each step contributes to the efficacy, reliability, and robustness of
the IQA framework. Formally speaking, the inputs 360-degree image goes through a
set of processes before being fed to the model to train on. As explained in Chapter III,
the input image represented either in a projected format or as a set of viewports or
patches, corresponding to specific regions from the image. The selection and genera-
tion of the latter must follows adaptive strategies in order to be consistent with IQA
paradigms in general and 360-IQA in particular. Additionally, data representation and
normalization retains highly influential information and aid the model to train faster.
All these data preparation are paramount to achieve good and consistent results. Re-
garding the architecture design and training of the model, proper training strategies
also boost the accuracy and adaptability of IQA models to the 360-IQA task. At the
final stage, the post-processing focuses on deriving the final quality score from indi-
vidual scores. This helps to enhance the correlation with the ground truth, i.e. MOS,
and therefore improves the quality predictions.

With a focus on the pre- and post-processing steps for deep-learning based 360-
IQA, the current chapter explores several contributions toward the design of predict-
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ive and reliable 360-IQA models. Fig. IV.2 depicts the overview of the addressed issues
in this chapter.

Processing

Pre

Post

Data-
augmentation

Patch selection
and sampling

Patch labeling

Data
representation

Patch quality
aggregation

Figure IV.2: Overview of the processes addressed in this chapter.

IV.2 Visual scanpath for patch-based 360-IQA

The multichannel paradigm is primarily used for 360-IQA based on deep learning as
discussed in Sec. I.2.2.2. In contrast to multichannel models (see. Fig. IV.3 top), the
patch-based ones take individual regions separately. Here, a single CNN is used (see.
Fig. IV.3 bottom) which implies less complexity and leads to a faster training. In the
literature, several works adopted the patch-based training for 2D IQA [136, 148–150],
and good performances have been reported. The interest of such an approach lies in
its proven performance in various image processing tasks, such image classification,
object detection and recognition, etc. Also, the quality prediction tends to agree with
the scene exploration by focusing on prominent parts of it that are translated into
patches. However, the unavailability of MOSs for individual patches is considered as
the main issue of this approach. Existing models label all patches extracted from the
same image with the same MOS.
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Figure IV.3: CNN models for IQA. (top) multichannel vs. (bottom) patch-based CNN.

In a patch-based IQA framework, two important aspects must be carefully con-
sidered. The first one corresponds to patches’ selection and extraction. This is usually
performed by using adaptive criteria such as visual saliency and scanpaths. In the
extraction of these patches, the use of radial content (i.e. from the sphere) is highly
recommended compared to the projected one [151, 152]. This way, the geometric
distortion induced by the sphere-to-plane projection can be avoided. Fig. IV.4 depicts
a 360-degree image viewing experience. We only consider chosen windows to pre-
dict the quality as it represents the way 360-degree images are generally viewed. The
assumption that a person can only see the actual FoV from the spherical representa-
tion justifies this procedure. The next window is determined by his head movement
around the x, y, and z axes. This way, the quality prediction scenario seeks to agree
with the viewing experience of 360-degree images, and geometric distortions created
by the previously described sphere to plane projection are avoided. The second aspect
focuses on the aggregation of local qualities to a global quality score that should ac-
count for (i) the non-uniformity distribution of quality, and (ii) the variation among
quality scores of individual patches.

The selection of prominent regions is performed using visual trajectory, i.e. scan-
paths. The latter is used at two different stages. The first one consists of patches
selection and data-augmentation. The second one consists of adaptive patch score
aggregation. In the following we describe both use cases.
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Figure IV.4: 360-degree images viewed using head-mounted displays. Blue area in the
ERP represents the window extracted from the sphere.

IV.2.1 Visual scanpath for data-augmentation

It is now widely admitted that when an image is viewed, the HVS gazes on sali-
ent details, which translates into eye fixations [153]. In our case, these regions are
considered as relevant viewports and are detected using visual scan-path predictions
model proposed in [154]. According to the use case and availability of the scanpath
model, one may use other such as ScanGAN360 [155] and VPT360 [156], The selec-
ted model predicts a visual trajectory including eight relevant fixation points. In our
model, ten trajectories are extracted representing ten virtual observers and used to
account for the diversity of human scan-paths. These scan-paths are then considered
for data augmentation, which results in a total of N = 8 × 10 extracted viewports.
This will help with the training of the model and avoid over-fitting caused by the lack
of data. In fact, the efficiency of deep neural networks often increases as more data is
available. Unfortunately, we still lack reliable and representative databases for 360-
degree IQA that would allow deep learning models to assert their full capabilities. As
stated in Chapter II, the construction of such databases requires important efforts in
terms of scenes acquisition, device calibration, paradigm definition, subjective test-
ing and data analysis [109]. Only two 360-degree image databases are being used to
train and validate IQA models, namely CVIQ [157] and OIQA [108]. Consequently,
the application of strategies to acquire more data with the existing one, is largely en-
couraged. The use of IQA-based data-augmentation is one option to accomplish this
task.

Data augmentation is a method of creating new training data from existing one.
This is accomplished by applying domain-specific (IQA in our case) strategies to ele-
ments from the training data in order to generate new and distinct training examples.
Since IQA is more sensitive than other image processing tasks such as object detection



Chapter IV: Pre- and Post-processing 76

and classification, conventional approaches including shifting, rotating, flipping and
brightness changing of an image, are counterproductive in our context. An illustration
of standard techniques used in various image processing tasks is provided in Fig. IV.5.
As it can be seen, the perceived content is altered and does not match the one viewed
by the observers, making such techniques unusable for IQA. The particular reason
for this, being that the images are labelled (rated) by human observers (MOS), and
altering any visual attribute will make the actual rating incompatible. As a result, the
use of data-augmentation techniques must be appropriate and concur with IQA. In
the following, the viewport is referred to as a patch.

Figure IV.5: Illustration of standard data-augmentation [158].

The selection of the relevant regions using fixations from the scanpaths and ex-
traction on the sphere is illustrated in Fig. IV.6. This way, we generate ten different
instances of the database. To begin, the scan-path model is used to predict the ten VO
potential trajectories and their gaze fixation positions. Then, rather than the projected
format, each fixation point is located on the sphere, and the surrounding content is ex-
tracted and projected to a 2D plane. Following that, since we are using a patch-based
learning scheme, each extracted region is fed to the model as a separate input. Pre-
viously mentioned, 360-degree images are rated based on multiply viewed regions.
Giving the extracted patches the same MOS as their 360-degree image as firstly intro-
duced in [135] for 2D content seems inefficient. Therefore, we applied well known
and widely used 2D NR quality metrics to predict the quality of extracted patches,
referred to in the following as the local quality. This is motivated by the fact that the
extracted patches have a 2D representation and the model will consider them as sep-
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Figure IV.6: Patch selection using fixations from the scanpaths and extraction on the
sphere.

arate images. Therefore, two labelling techniques are adopted including the MOS and
2D-IQA metrics namely BRISQUE [159] and NIQE [160]. This operation is described
in Algorithm 1.

Algorithm 1 Patches’ labeling.

1: procedure LABELPATCH(Pi, mode)
2: labeli = ; ▷ Label to assign to Pi

3: if mode = MOS then
4: labeli ← MOSI

5: else if mode = NIQE then
6: labeli ← N IQE(Pi)
7: else if mode = BRISQUE then
8: labeli ← BRISQU E(Pi)
9: end if

10: Return labeli

11: end procedure

IV.2.2 Visual scanpath for patch qualities aggregation

Pooling strategies have been extensively investigated for 2D images [161–165]. Sev-
eral strategies are considered, ranging from basic statistics and percentile pooling to
content-based and information weighted spatial pooling. In [166], temporal pooling
methods are compared for video quality assessment, where individual scores from dif-
ferent frames are pooled to a single quality score of the video. It is known that quality
scores pooling is paramount in IQA frameworks, especially for patch-based CNNs.

It is true that patch-based CNNs have the potential to achieve robustness compared
to multichannel ones. This is achievable with a proper data-augmentation technique
and an adaptive patch-score aggregation strategy. Basically, the model is trained on
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individual patches, meaning that the model only sees these patches, without having
access to the whole 360-degree images. Therefore, N scores associated to N patches
are predicted, and the mapping of these individual scores to a single quality score is
important. This operation must be performed by adaptive aggregation to improve the
correlation with the human judgment scores. Fig. IV.7 illustrates the mapping oper-
ation, where for each 360-degree image I , N predicted scores S = {Sp1

, Sp2
, ..., Spn

}
corresponding to N patches P = {P1, P2, ..., Pn} are aggregated together using the
Pooling(.) function.

. . .

Figure IV.7: Mapping of predicted local qualities SPi
(per patch) to global quality SI

(per 360-degree image).

For this specific task, one can find several methods used in the literature, mainly
based on basic statistics. Table IV.1 describes existing methods.

It is known that aggregation strategies based on basic statistics tend to have poor
correlations with subjective scores. It is especially the case of simple mean pooling that
enforces an equal contribution of all patches to the global quality scores. By doing so,
the non-uniformity distribution of quality is not taken into account. For this reason,
a weighted mean pooling can reproduce this behavior by weighting each local score
according to the importance of the patch’s content. The estimation of these weights
are usually based on perceptual properties such as visual attention [169], equator-
bias [133] to incorporate the way the human gaze is biased toward the equator, mak-
ing the computation of these weights handcrafted. Others opted for data-driven based
estimation of the weights by adding subnetworks within a CNN model [136, 170].

Differently, we investigate a weighting strategy based on visual exploration. This
is motivated by the fact that quality metrics are tuned and compared against the MOS
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Table IV.1: Summary of basic statistic based aggregation methods.

Method Equation Description

Arithmetic
Mean

SI =
1
N

N
∑

i=1

Spi

The arithmetic mean is a straightforward
method for pooling local qualities to a
global one. By simply averaging the qual-
ity scores, the local qualities will contribute
equally to the final score.

Harmonic
Mean

SI = (
1
N

N
∑

i=1

S−1
pi
)−1

The harmonic mean is one of the Py-
thagorean means. It is calculated by di-
viding the number of scores by the recip-
rocal of each score Spi

in S. Hence, the har-
monic mean is the reciprocal of the arith-
metic mean of the reciprocals. It is known to
emphasize the impact of small scores [167]
reflecting the fact that subjective ratings
are influenced by worst regions in terms of
visual quality.

Geometric
Mean

SI = (
N
∏

i=1

Spi
)

1
N

The geometric mean is the third Py-
thagorean mean. It signifies the central
tendency or typical values of S by taking the
root of the product of their values.

Five-
Number
Summary SI =

min+Q1+median+Q3+max
5

This method provides a description of S us-
ing various descriptive statistics [168]. The
five-number summary makes use of inform-
ation on (i) the location given by the me-
dian, (ii) the spread of the scores given by
the Q1 and Q3 quartiles representing the
25% and 75% percentile respectively, and
(iii) the range of values expressed by the
minimum and maximum of S.

Minkowski
Mean

SI = (
1
N

N
∑

i=1

Sp
pi
)

1
P

The Minkowski pooling has been widely
used for IQA [42, 161]. The P parameter
emphasizes the lowest scores among S, i.e.
the highly distorted patches. To understand
the influence of the latter, we set it values to
the most commonly used ones in the literat-
ure, including 1/4, 1/2, 2, 4, 8 and 16.

Percentile
Pooling SI =

1
| S ↓ k% |

∑

i∈S↓k%

Spi

The percentile pooling is considered as one
of the most effective pooling methods. It is
based on the fact that perceived quality is
strongly affected by the most distorted re-
gions [162]. This is accomplished by consid-
ering only the quality scores from S that are
lower than a k−th percentile. In order for
us to study the impact of this latter, five per-
centiles are used as threshold including 5%,
10%, 20%, 25%, and 50%.
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collected by psychophysical experiments. By incorporating the way observers explore
a scene before rating its quality could improve the pooling performance. Thus, an ob-
server explores a visual scene by focusing on certain regions and usually not all parts
of the scene. This behavior can be modeled using visual scanpaths, as explained pre-
viously. Ten scanpaths, composed of eights gaze fixations for each 360-degree image I
are all considered. Two important information associated with each fixation are con-
sidered as weights for each patch Pi extracted from I . The first is the order of fixations,
expressing the temporal progress of the visual trajectory. The second is the duration,
representing the amount of time a region is likely to be focused on. The longer the
gaze, the greater the influence on the observers’ judgment. Finally, the pooling is per-
formed as shown by Eq. IV.1, with Wi is either the fixation duration or fixation order
associated with patch Pi.

SI =

∑N
i=1 WiSpi
∑N

i=1 Wi

. (IV.1)

Furthermore, to account for previous observations about the impact of most dis-
torted regions on perceived quality, we combine the fixation-based pooling with the
percentile threshold as given in Eq. IV.2.

SI =

∑

i∈|S↓k%|WiSpi
∑

i∈|S↓k%|)Wi
. (IV.2)

To investigate the use of scanpath for 360-IQA, we used the ResNet-50 [87] as the
base model to extract visual features from selected patches. We replace the top layers
with a regression block in order to regress the learned features into a single quality
score. ResNet employs residual learning to further deepen the CNN network, which
can be interpreted by a number of deeper bottleneck architectures, as described in
Sec. III.2.1.

Patch score

FC (512) + Relu +  
DropOut(0.2)

FC (1) +  
Linear

ResNet-50

Figure IV.8: Architecture of the proposed model. Features are only extracted from in-
dividual patches Pi by ResNet-50. VF ∈ RD×1×1 represents the extracted feature vector.

The output of ResNet-50 is fed to a quality regressor which is composed of a global
average pooling so to reduce the spatial dimension of the extracted feature maps
and help to minimize overfitting. Finally, two FC layers are then used to calculate
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the quality score as depicted in Fig. IV.8. The weights for the quality regressor are
initialized according to the method provided in [127]. For the end-to-end training, we
used the L2 loss function to compute the error between predicted and target scores.

IV.3 Adaptive patch sampling

The use of visual trajectory as input sampling strategy is consistent with IQA paradigms.
However, it is accomplished with a burden of using an effective scanpath prediction
model. The latter are sometimes heavy in terms of computational time, on the one
hand. On the other hand, the sampling performance is strongly affected by the accur-
acy of the used scanpath model. Therefore, it becomes urgent to investigate an ad-
aptive and less complex sampling strategy. To do so, we propose an effective method
based on (i) the latitude and (ii) content importance.

Most 360-IQA models are viewport-based [90, 100, 151], where the quality pre-
diction is performed on specific regions. By doing so, an important part of the images
is neglected. In the proposed strategy, we consider all the possible content from the
sphere as important. However, the importance is varied according to the content’s
location on the sphere. The influence on the visual importance in implemented by
considering different sampling ratios along the latitude.

Figure IV.9: Latitude and content’s importance based patches sampling from the
sphere.

Let consider r the position of latitude and longitude equal to 0. The hemisphere
sampling starts by defining α0 the latitude of the initial square patch around the
equator:

∃ α0 > 0 :
360
α0
∈ N+and

360
α0.2N

∈ N+ (IV.3)
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Figure IV.10: Overview of the adaptive sampling process on the sphere and patches’
labelling.

where N is the last level of sampling before the polar region P. The patches of the
next level are of double size in latitude and longitude. The number of sampling levels
is defined so as:

∃ N ≥ 0 : (1+
N
∑

i=0

2i)α0 + LP = 90 and Lp < αN (IV.4)

where Lp is the latitude of the polar region. Fig. IV.9 illustrates such an adopted
sampling. All the extracted patches are re-sampled to the size of the equator patches
i.e. α0. The resolution corresponding to α0 is set to 128 pixels. This operation is de-
scribed by Algorithm 2.

Algorithm 2 Patches’ sampling.

1: procedure RESAMPLE(Pi, Lp)
2: sizeα0

= 128px × 128px ▷ Resolution corresponding to α0

3: Lα0
= r ▷ Latitude position of α0

4: if Lp ̸= Lα0
then

5: sizePi
← sizeα0

6: end if
7: Return Pi

8: end procedure

Therefore, Npatch = 2 × (4 +
∑N

i=0
360

2i .α0
) non-overlapping patches are extracted

from the sphere to avoid geometric distortions and provide the model with the actual
viewed content [151]. An overview of the sampling process is provided in Fig. IV.10.
Due to the unavailability of MOS per patches, the sampled ones from image I are
labelled using the MOS associated with I .

The efficiency of the proposed sampling strategy is verified under two configura-
tions. We select two pre-trained CNNs, including the ResNet-50 [87] and EfficientNet-
B3 [171] to this end. Both models are pre-trained on ImageNet. The choice of ResNet-
50 and EfficientNet-B3 is motivated by their success and popularity with transfer
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learning in various image processing tasks in general, and IQA in particular. We trans-
fer the acquired knowledge from both models according to the previously described
formulation in Sec. III.2.1

IV.4 Input representation (normalization)

In general, input images for CNN models are pre-processed to ensure a better rep-
resentation. The primary purpose of pre-processing is to improve image content by
increasing specific visual components which contribute to the learning of the specified
task [172]. Therefore, it is task-dependent, and it is usually referred to as normaliz-
ation. Input data normalization prior to CNN models’ training is greatly encouraged
to help the model learn the useful information. In the case of IQA, normalization
mainly consists of retaining high frequency information [169] over low frequencies,
as the latter are less affected by distortions and are less perceivable by the HVS. In the
literature, one can find several adopted normalization method for IQA frameworks.
In particular, Kang et al. [135] used a method based on divisive normalization that
was developed as a canonical computation implemented throughout the neocortex
[173], and used to explain the response of neurons in the primary visual cortex. This
method is called local contrast normalization and was adopted in several works af-
terward [174–176]. Kim et al. [169] used a simple low-frequency subtraction to only
retain high-frequency components. Although input normalization has significant be-
nefits, a part of the information is lost, especially luminance and contrast changes.
The use of unnormalized images allows the model to learn from such additional in-
formation, as stated by Bosse et al. [136].

The contrasting opinions about the use or not of normalization prior to CNN
training for IQA bring some confusion when developing a new framework based on
CNNs. In addition, the variety of normalization methods used for IQA as well as for
other image processing tasks, such as histogram equalization, zero component ana-
lysis whitening, difference of Gaussian, motivate the investigation of the usefulness of
normalization. To this end, we analyze the influence of existing normalization meth-
ods on the performances of patch-based CNN IQA model.

The normalization methods found in the literature can be categorized into five
categories: 1) basic scaling, 2) local normalization based methods, 3) difference based
methods, 4) histogram based methods, and 5) whitening based methods.

In the following, we describe some of the important normalization methods within
each category.

IV.4.1 Basic Scaling

Pixel Scaling is a fundamental pre-processing step for deep learning algorithms. It
consists of simply scale the pixel values of input images in a specific range, generally
between 0 and 1. By doing so, luminance and contrast are not altered.
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Mean-Centering consists of centering the distribution of pixel values on zero. This
is performed by calculating the mean pixel value across the entire training dataset,
then subtract it from each image. It is referred to as mean normalization where the
input patch P is converted to P ′ = P −µ where µ is the mean.

Standardization Standardization consists of mean centering patches followed by a
division by their standard deviation (SD), making the mean and variance normalized
and resulting in a zero-mean reduced Gaussian distribution of the training dataset.

IV.4.2 Local Normalization based methods

Local Contrast Normalization (LCN) is used as a nonlinear preprocessing step in
various image processing tasks [177], and to reduce statistical dependencies of visual
signals for IQA tasks.

For each value of pixel (i, j) from a patch P, the normalized value P ′(i, j) is com-
puted using Eq. IV.5 where µ andσ are respectively the mean and variance of intensity
values in the normalization window. This latter is set to 3× 3 according to [159] so
as to avoid decreasing the performances with larger window sizes. C ∈ N is a positive
constant used to avoid calculation instability.

P ′(i, j) =
P(i, j)−µ(i, j)
σ(i, j) + C

(IV.5)

µ(i, j) =
p=P
∑

p=−P

q=Q
∑

q=−Q

I(i + p, j + q) (IV.6)

σ(i, j) =

√

√

√

√

p=P
∑

p=−P

q=Q
∑

q=−Q

(I(i + p, j + q)−µ(i, j))2 (IV.7)

Local Response Normalization (LRN) is related to LCN, however it aims more
at normalizing the images in terms of brightness rather than contrast [178]. It was
initially designed to normalize feature maps. It is defined as follows:

P ′(i, j) =
P(i, j)

�

k+α
∑min(W,i+n/2)

x=max(0,i−n/2)

∑min(H, j+n/2)
y=max(0, j−n/2) P(x , y)2

�β
(IV.8)

where the constants (k,α,β , n) defined here as (1,1, 2, 2) are hyperparameters, k
being used to avoid instability.

IV.4.3 Difference based methods

Low-Frequency Subtraction (LFS) is a simple normalization [169], performed by
subtracting each patch P from it low-pass filtered version. The low-frequency patch
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is obtained by downscaling/upscaling P by four. LFS is based on the assumption that
HVS is less sensitive to changes in low-frequency bands.

Difference of Gaussian (DoG) [179] is obtained by the subtraction between two
Gaussian filtered images at different SDs. This technique highlights details lost between
the two Gaussian-blured versions of the image. This can be achieved as follows:

P ′ = (w1 · Gσ1 −w2 · Gσ2) ∗ P, (IV.9)

with Gσ∗ a Gaussian kernel of SD and w∗ its weight.

IV.4.4 Histogram based methods

Histogram Equalization (HE) [179] aims to take full advantage of the range of
pixel values by enhancing the image contrast. Consider λi an intensity value, and a
histogram h (λi). Rmin and Rmax are the desired value bounds, and λ̃i the intensity
level applied to λi.

λ̃i = Rmin + ⌊(Rmax − Rmin)
i
∑

j=0

h(λ j)⌋ (IV.10)

Contrast Limited Adaptive Histogram Equalization (CLAHE) [179] is based on
HE. Rather than acting on the image intensity distribution equally, it uses spatial con-
straints and attempts to avoid noise amplification. Here, HE is applied locally with a
fixed threshold λth.

IV.4.5 Whitening based methods

Zero-phase Component Analysis Whitening (ZCA) [180] is a whitening technique
that aims to normalize illumination by decorrelating features within images. This can
be achieved as follows:

P ′ = U · diag
�

1/
Æ

diag(S) + ϵ
�

· U T · P, (IV.11)

where diag(.) is the diagonal matrix, U the Eigen vectors and S the Eigen values of
singular value decomposition of covariance matrix. U T is the transposed matrix of U .
ϵ is the whitening coefficient.

Simplified Whitening is quite similar to standardization, but per-pixel mean and
per-pixel SD are computed instead of feature-wise mean and SD.
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In order to conduct the comparative study among the described normalization
methods, a patch-wise training scheme is adopted. Patches of 64 × 64 are sampled
from each input image. Each patch Pi sampled from the image I is labeled using the
MOS associated with I . The normalization is applied to individual patches rather than
the whole images, so as to account for local luminance and contrast, which vary in
different parts of the image.

IV.5 Experimental setup

TensorFlow [141] is used to implement the models used to conduct the described
studies. During training, the datasets are split into a training set with 60%, a validation
set with 20% of impaired images, and a testing set with the 20% remaining. To achieve
total separation of the training and testing content, the impaired images related to
the same pristine one are allocated to the same set. The same splitting scheme is used
for all configurations to ensure a fair and reliable comparison.

Table IV.2: Summary of training and evaluation setup of the aforementioned studies.

Data-augmentation Scores aggregation Adaptive sampling Normalization

Datasets CVIQ / OIQA CVIQ / OIQA CVIQ / OIQA /
MVAQD

CSIQ / LIVE /
TID2013

Server CPU: Intel Xeon Silver 4208 2.1GHz / RAM: 192G / GPU: Nvidia Telsa V100S 32G

Optimizer Adam [181] / l r = 1e− 4 / β1 = 0.9 / β2 = 0.999 / ε= 10−8

Batch size 32 32 64 128

5-fold cross-
evaluation

Evaluation
metric

PLCC / SRCC PLCC / SRCC /
RMSE

PLCC / SRCC /
RMSE /MAE

PLCC / SRCC /
RMSE / Krasula et
al. [45]

IV.6 Results and Discussion

In this section, we provide the obtained results and the corresponding discussion.

IV.6.1 Data-augmentation

Table IV.3 summarizes the performance of individual VO-based training in terms of
accuracy of prediction (PLCC) and monotonicity (SRCC), as well as the application
of combined VOs on both databases. The latter refers to the data-augmentation based
training. Regarding the performances of individual VOs, we can observe that the range
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of performance is not significantly different. It is confirmed by the standard deviation
given in the table. This actively demonstrates that, the various predicted scan-paths
are almost of similar importance, and none of them can be considered as non-valid
or outlying.

Table IV.3: Performance evaluation of the model. The Best performance is highlighted
in bold. The mean of 5 folds is provided

MOS NIQE BRISQUE

CVIQ OIQA CVIQ OIQA CVIQ OIQA

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

VO1 0.829 0.773 0.898 0.884 0.756 0.791 0.445 0.382 0.771 0.673 0.732 0.714
VO2 0.815 0.753 0.877 0.860 0.791 0.685 0.426 0.398 0.759 0.707 0.747 0.713
VO3 0.836 0.762 0.907 0.892 0.793 0.677 0.452 0.406 0.743 0.693 0.751 0.731
VO4 0.835 0.759 0.911 0.895 0.792 0.686 0.419 0.372 0.772 0.716 0.690 0.661
VO5 0.830 0.765 0.879 0.868 0.752 0.620 0.432 0.415 0.673 0.626 0.779 0.740
VO6 0.820 0.748 0.916 0.898 0.781 0.653 0.498 0.457 0.792 0.723 0.710 0.662
VO7 0.838 0.759 0.888 0.872 0.738 0.605 0.450 0.423 0.729 0.656 0.777 0.749
VO8 0.845 0.783 0.898 0.880 0.801 0.700 0.462 0.399 0.768 0.711 0.767 0.736
VO9 0.817 0.760 0.902 0.884 0.743 0.616 0.446 0.398 0.735 0.683 0.758 0.712
VO10 0.835 0.754 0.893 0.872 0.722 0.591 0.479 0.412 0.722 0.662 0.743 0.714

Avg 0.830 0.762 0.897 0.881 0.767 0.662 0.451 0.406 0.746 0.685 0.745 0.713
STD 0.010 0.010 0.013 0.013 0.028 0.059 0.024 0.023 0.034 0.031 0.028 0.030

All 0.871 0.801 0.920 0.904 0.827 0.704 0.519 0.478 0.799 0.738 0.811 0.788

Between the MOS, local quality (NIQE and BRISQUE) for the model training, the
former performed the best. In terms of difference, the range of correlation for the
MOS is the smallest among the studied cases. The obtained results contradict our ex-
pectations. Assigning the same MOS value to small regions from the same 360-degree
image looks at a first sight as not appropriate. Applying 2D models are adopted to ac-
count for local quality related to extracted regions. However, the used blind metrics
did not improve the prediction accuracy globally in terms of PLCC and SRCC.

The proposed data-augmentation by the use of all VOs combined improved the
performances for all the three cases, regardless of the used database, as can be seen
in Table IV.3. The PLCC (resp. SRCC) value shifted from an average of 0.830 (resp.
0.762) to 0.871 (resp. 0.801) for the MOS based training on CVIQ. A similar beha-
viour is observed on OIQA where an improvement is achieved over the performance of
individual observers. As for the use with NIQE and BRISQUE, an improvement is also
observed both for PLCC and SRCC. The level of improvement should be put into per-
spective over the range of performances, which is higher for the blind metrics. Based
on the previous correlation results, NIQE and BRISQUE do not appear as the best
alternative to replace the MOS for data-augmentation. However, other performance
data should be analyzed before drawing final conclusions.

When comparing between databases, one can observe a higher performance on
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OIQA compared to CVIQ, except with NIQE. The difference is obvious with the MOS-
based training supporting the previously discussed observation regarding the variety
and diversity of the content present on OIQA. This led to a significant performance
i.e. PLCC (resp. SRCC) value of 0.920 (resp. 0.904) compared to 0.871 (resp. 0.801)
on CVIQ.

Table IV.4: Computational complexity in terms of training time for data-augmentation
on CVIQ and OIQA databases. The mean of 5 folds is provided.

Database MOS NIQE BRISQUE

Time (s)
CVIQ 6285 3093 2577
OIQA 3212 2360 3320

With the intent to compare the computational complexity of the proposed data-
augmentation, we compute the training time for individual VOs as well as their com-
bination (data-augmentation). It is given on Fig. IV.11 for CVIQ and Fig. IV.12 for OIQA
where one can notice that, the MOS-based training has the lowest training time for
all VOs except for VO3, 5, 7 on CVIQ and VO1 on OIQA. This could be explained by the
lack of scores diversity during the learning process, leading to a faster convergence. At
the contrary, BRISQUE generates a considerably higher training time, which is even
more extensive for NIQE on both databases. This observation becomes invalid when it
comes to the proposed data-augmentation, as shown by Table IV.4. Hence, the MOS-
based case requires more than twice the NIQE/BRISQUE training time on CVIQ, and
on OIQA the BRISQUE-based training took the longest time. This can be explained
by the fact that, learning from a considerable amount of data that is associated with
the same quality score (i.e. MOS) tends to make the model converge slowly. More
data implies more diversity for the model to learn from. However, associating this di-
verse data with the same labels has a negative effect by increasing the computational
cost. With NIQE and BRISQUE, the model is able to converge quickly as more data is
available with distinct quality scores.

In addition to the computational time, we analyzed the evolution of the loss
for the data-augmentation case. Figs. IV.13 and IV.14 plot the contrast (max-min) /
(max+min) between training and validation losses for the five folds. A contrast equal
to 0 depicts an equal loss between training and validation. On the contrary, a contrast
equal or close to 1 indicates an important gap between both losses. In addition to the
contrast, Fig. IV.13 and IV.14 provide the final loss values for both training (T) and
validation (V) for each fold and each studied case on CVIQ and OIQA respectively. We
can see that the MOS-based learning has more difficulties to generalize either with
OIQA or CVIQ. In fact, the gap between T and V for MOS is much higher than those
of NIQE- and BRISQUE-based cases. This is also demonstrated by the provided curves
for both databases.
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Figure IV.11: Computational time for VOs individually on CVIQ.

IV.6.2 Aggregating patch qualities

As mentioned in Sec. IV.2.2, we use the data-augmentation configuration to further in-
vestigate the performances of different aggregation methods, as well as the proposed
one.

We summarize the performances of all pooling strategies in terms of PLCC and
SRCC in Table IV.5. The provided performances are computed as the median of the
five-fold cross-validation. Overall, one can notice that the widely used arithmetic
mean ranks among the worst approach on both databases, demonstrating its weak-
ness when it comes to quality pooling. Pooling strategies accounting for the variability
among quality scores should be considered in this case, as shown by the performance
results in Table IV.5. One can observe that harmonic and geometric means outper-
formed the arithmetic one on both databases. For instance, the harmonic mean per-
formances are approx. 0.8% PLCC, 1.0% SRCC, and 4.2% RMSE better than the arith-
metic mean on OIQA, and approx. 0.6% PLCC, 1.2% SRCC, and 4.0% RMSE on CVIQ.
The Minkowski mean and the five-number summary did not perform well compared
to the arithmetic mean. A slight improvement can be observed with the Minkowski
mean, whereas the five-number summary did not appear to express the nature of
the variability among the local qualities scores. The percentile pooling achieved the
best performance in terms of PLCC and SRCC on OIQA, and competitive results when
combined with fixation orders and fixation durations on CVIQ. This shows that ex-
pressing the phenomena of perceived quality being impacted by the most distorted
content improves the final quality pooling.

In the following, we analyze closely the performance of the Minkowski mean and
the Percentile pooling. The evaluation of PLCC/SRCC scores is given in Fig. IV.15
and IV.16, respectively. For the Minkowski mean, one can observe a decrease in both
accuracy and monotonicity with the increase of P. This observation is valid on both
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Figure IV.12: Computational time for VOs individually on OIQA.

databases, with a significant margin on CVIQ, approximately 6% with PLCC and 10%
with SRCC. As for the Percentile Pooling, an increase of performances can be observed
with a saturation at k = 25 on OIQA and k = 10 on CVIQ, followed by a decease of
performance. Based on these observations, the parameter for both methods should be
carefully chosen, as it is dependent on the variability and span of local qualities. In
addition, the difference among OIQA and CVIQ is due to the nature and diversity of
their content, as shown in [182]. This is also depicted by the provided curves, where
an important gap between PLCC and SRCC values can be observed on CVIQ compared
to OIQA independently of the used pooling methods.

With the intent to show the effectiveness of the patch-based CNN over multichan-
nel models, we provide in Table IV.6 a performance comparison with three state-of-
the-art models. These models adopt a multichannel paradigm using different strategies.
From the table, one can observe that patch-based CNN with a simple arithmetic mean
achieved competitive results compared to Sun et al. and Zhou et al.. However, it scored
worse than Xu et al. (approx. 3.8% PLCC and 4.5% SRCC) on OIQA and (approx.
3.0% PLCC and 8.7% SRCC) on OIQA. When the adaptive pooling is used, a differ-
ent behavior is observed. The patch-based model outperformed Sun et al. and Zhou
et al. on both databases, and scored slightly lower compared to Xu et al. on OIQA
and achieved the best accuracy on CVIQ. This slight difference of performance could
be considered as insignificant when weighted by the complexity generated by the
multichannel architecture. These performances support the previous observation re-
garding the usefulness of adaptive pooling of local qualities on the one hand. On the
other hand, patch-based CNN is as effective as multichannel networks, and sometimes
even better if proper training techniques are adopted.
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Figure IV.13: Contrast (max-min)/(max+min) between training and validation losses
for the five folds (0→ equal loss between training and validation and 1→ important
gap between both losses) on CVIQ. T and V represent the reached loss values for
training and validation, respectively.



Chapter IV: Pre- and Post-processing 92

Figure IV.14: Contrast (max-min)/(max+min) between training and validation losses
for the five folds (0→ equal loss between training and validation and 1→ important
gap between both losses) on OIQA. T and V represent the reached loss values for
training and validation, respectively.
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Table IV.5: Performance evaluation of the pooling strategies in terms of PLCC, SRCC,
and RMSE. The best performance is highlighted in bold and second-best underlined

Database OIQA CVIQ

Metric PLCC SRCC RMSE PLCC SRCC RMSE

Arithmetic Mean 0.9162 0.9017 5.8185 0.9297 0.8786 5.0537
Harmonic Mean 0.9235 0.9105 5.5685 0.9352 0.8891 4.8582
Geometric Mean 0.9200 0.9066 5.6876 0.9326 0.8841 4.9537
Five-number summary 0.9061 0.8971 6.1415 0.9233 0.8721 5.2683
Minkowski Mean 0.9196 0.9045 5.7034 0.9322 0.8833 4.9660
Percentile Pooling 0.9434 0.9340 4.8156 0.9623 0.9329 3.6790
Fixation Order 0.9063 0.8931 6.1357 0.9305 0.8787 5.0273
Percentile Fixation Order 0.9392 0.9296 4.8265 0.9621 0.9329 3.6287
Fixation Duration 0.9164 0.9028 5.8096 0.9296 0.8792 5.0564
Percentile Fixation Duration 0.9403 0.9291 4.8658 0.9625 0.9324 3.6883
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Figure IV.15: Performance of Minkowski mean in terms of PLCC/SRCC on OIQA (left)
and CVIQ (right).
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Figure IV.16: Performance of Percentile pooling in terms of PLCC/SRCC on OIQA (left)
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Table IV.6: Performance comparison with state-of-the-art mutlichannel-based models

Database OIQA CVIQ

Multichannel Number (Backbone) PLCC SRCC PLCC SRCC

Xu et al. [100] 20 (Resnet-18) 0.952 0.944 0.959 0.953
Sun et al. [90] 6 (ResNet-34) 0.924 0.918 0.950 0.914
Zhou et al. [92] 6 (Inception-V3) 0.899 0.923 0.902 0.911
Ours Arethmetic Mean ✗ 1 (ResNet-50) 0.916 0.902 0.930 0.879
Ours Adaptive Pooling ✗ 1 (ResNet-50) 0.943 0.935 0.963 0.932

IV.6.3 Adaptive patch sampling

With the intent to evaluate the interest of using the proposed adaptive sampling and
demonstrate the advantage of considering 360-IQA specific characteristics, we com-
pare its performances with a standard sampling strategy. The latter takes patches from
the ERP directly without considering any 360-IQA peculiarities. This means that the
geometric distortion reflected by the stretched content in the polar regions is taken
as is.

Table IV.3 lists the obtained performances on OIQA, CVIQ, and MVAQD. The first
observation that emerges is that all configurations performed well on OIQA and CVIQ
independently of the used sampling strategy, demonstrating the effectiveness of trans-
fer learning. The performances on MVAQD lags behind those obtained on OIQA and
CVIQ in terms of accuracy, monotonicity and prediction errors. This could be related
to the dataset itself regarding the content variability. A more in-depth analysis shows
that ResNet-50 performs robustly well by achieving the best performances on all data-
sets. This is reflected by the obtained overall correlations and associated SD over the
five used folds.

According to the results on OIQA, ResNet-50 scored approx. 1.25% better with
adaptive sampling in terms of accuracy compared to EfficientNet-B3. Similar margins
can be observed with SRCC, RMSE and MAE. It appears that ResNet-50 is taking more
advantage of the used peculiarity during patch sampling of 360-degree images. The
opposite of this observation can be noticed on MVAQD where ResNet-50 achieved
less prediction error in terms of RMSE and MAE with the standard sampling. The
obtained performance by EfficientNet-B3 falls behind ResNet-50. It scored the worse
on all datasets, independently of the used sampling strategy.

Overall, one can say that the adaptive sampling is improving the performances of
both models as highlighted by the results, with important margins on MVAQD. The use
of ERP content lags behind the effectiveness of the latitude and radial based sampling.
Despite its popularity, ERP format is known for being geometrically distorted due to
the projection process on the one hand. On the other hand, ERPs do not represent the
subjectively actual rated content, as highlighted in the previous chapters. In this case,
the use of radial content in addition to latitude-based sampling complies with (i) the
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Table IV.7: Performance evaluation on OIQA, CVIQ, and MVAQD. The median and
standard deviation (SD) over five-folds are provided. Best performance is highlighted
in bold.

Model ResNet-50 EfficientNet-B3

Sampling method Adaptive Standard Adaptive Standard

OIQA

PLCC↑ (SD↓) 0.9614 (0.034) 0.9267 (0.025) 0.9494 (0.045) 0.9223 (0.038)
SRCC↑ (SD↓) 0.9529 (0.029) 0.9352 (0.026) 0.9474 (0.037) 0.9338 (0.041)
RMSE↓ (SD↓) 0.0642 (0.010) 0.0619 (0.007) 0.0783 (0.008) 0.0681 (0.007)
MAE↓ (SD↓) 0.0518 (0.008) 0.0501 (0.005) 0.0635 (0.006) 0.0532 (0.006)

CVIQ

PLCC↑ (SD↓) 0.9491 (0.025) 0.9267 (0.025) 0.9120 (0.027) 0.9105 (0.032)
SRCC↑ (SD↓) 0.9562 (0.054) 0.9352 (0.026) 0.8951 (0.056) 0.8941 (0.053)
RMSE↓ (SD↓) 0.0603 (0.028) 0.0619 (0.007) 0.0851 (0.014) 0.0753 (0.018)
MAE↓ (SD↓) 0.0482 (0.024) 0.0501 (0.005) 0.0709 (0.013) (0.0614 (0.016)

MVAQD

PLCC↑ (SD↓) 0.9016 (0.086) 0.8861 (0.118) 0.8509 (0.027) 0.8025 (0.028)
SRCC↑ (SD↓) 0.8941 (0.100) 0.8653 (0.108) 0.8242 (0.040) 0.7715 (0.033)
RMSE↓ (SD↓) 0.1406 (0.025) 0.1047 (0.030) 0.1616 (0.030) 0.1423 (0.030)
MAE↓ (SD↓) 0.1154 (0.020) 0.0868 (0.023) 0.1391 (0.026) 0.1199 (0.026)

way the human observers explore a 360-degree scene and (ii) the predictions made
on the viewed content using HMDs.

In addition to the performance analysis, we recorded the computational time re-
quired for one step during training. A training step is one gradient update, meaning
that a single batch size of training examples are processed. In our case, the batch size
was set to 64. ResNet-50 required 48.0 ms/step while EfficientNet-B3 required 60.2
ms/step. The architecture of ResNet-50 allows it to efficient computation with the
help of skip connections. In addition to the achieved performances by ResNet-50, it
required less time, making it more robust and computationally efficient overall.

IV.6.4 Patch normalization

Table IV.8 provides the list of the normalization methods used in this study.

Table IV.8: Labels for the used normalization methods.

Method Label Method Label Method Label

Scaling [0, 1] N1 LFS N5 Simp. whitening N9
Standardization N2 LRN N6 HE N10
Mean-Centering N3 DoG N7 CLAHE N11
LCN N4 ZCA N8
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IV.6.4.1 Global performance

Table IV.9 summarizes the overall performances of the adopted architecture with the
different normalization methods using CSIQ, LIVE, and TID2013. For simplicity, the
normalization methods are labeled according to Table IV.8. The best performances
are obtained on LIVE followed by CSIQ and then TID2013. It is known that the latter
is quite challenging as it contains 24 different distortions, making the generalization
ability of IQA models less robust. Also, it is of note that this database was collected in
an uncontrolled manner [139] compared to CSIQ and LIVE. Regarding the best nor-
malization, N4 outperformed the other methods by achieving the best performance in
terms of accuracy (PLCC), monotonicity (SRCC) and error (RMSE). This observation
is valid regardless of the used database, depicting the interest of input normalization,
on the one hand. On the other hand, LCN has been considered as an effective nor-
malization method for IQA [135, 176]. At the same time, methods N7, N8 and N9
performed poorly among the selected methods. These methods are not specifically
designed for IQA. Regarding the use of basic pixel values representations such as N1,
N2, and N3, one can observe that despite their simplicity, they obtain competitive
performance better than more elaborated methods.

Table IV.9: Performance comparison of the selected normalization on CSIQ, LIVE, and
TID2013. The median over five folds is taken. The best performance is highlighted in
bold and second-best underlined

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

CSIQ

PLCC 0.9009 0.9060 0.9139 0.9236 0.8737 0.9163 0.8935 0.7100 0.8498 0.8583 0.8893
SRCC 0.8470 0.8493 0.8686 0.8932 0.8050 0.8837 0.8272 0.7379 0.8165 0.7924 0.8158
RMSE 0.1105 0.1081 0.1139 0.1031 0.1227 0.1065 0.1147 0.1758 0.1424 0.1306 0.1165

LIVE

PLCC 0.9536 0.9400 0.9401 0.9569 0.9440 0.9399 0.9235 0.9175 0.9119 0.9413 0.9538
SRCC 0.9463 0.9324 0.9392 0.9528 0.9430 0.9390 0.9194 0.9081 0.9060 0.9402 0.9466
RMSE 0.0480 0.0543 0.0557 0.0477 0.0548 0.0567 0.0638 0.0661 0.0660 0.0561 0.0478

TID2013

PLCC 0.6520 0.6780 0.6841 0.7406 0.6686 0.6728 0.6265 0.6354 0.6739 0.6969 0.6798
SRCC 0.5424 0.6150 0.6014 0.6348 0.5581 0.5925 0.5407 0.5607 0.5729 0.5531 0.5703
RMSE 0.1043 0.1006 0.0990 0.0953 0.1044 0.1013 0.1068 0.1057 0.1006 0.0986 0.1008

IV.6.4.2 Statistical significance

We provide in Fig. IV.17 the overall statistical significance analysis on CSIQ, LIVE,
and TID2013. On the left side, we provide the better or worse in terms of quality
classification with growing difference in predicted score, providing insights on how
many times does the model correctly recognize the stimulus of higher quality. On
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Figure IV.17: Overall Statistical Significance on CSIQ, LIVE, and TID. (Left) better vs.
worse analysis and (Right) statistical significance. A white/black square: row method
is statistically better/worse than the column one; gray square: statistically indistin-
guishable.

the right side, the statistical significance among the considered methods is provided
to determine if the difference in performance is statistically significant. As it can be
seen, different results are obtained with each normalization, depicting an influence
of each method on the final performances. Overall, N2 and N4 stood out from the
other methods. On CSIQ, one can notice that these two methods outperformed the
others while being statistically indistinguishable compared to each other. On LIVE,
N1, N4, and N11 scored the best performances. Finally, on TID2013, we can find N4
and N11 outperforming the rest of the methods. As N2 is the standardization, which is
essentially a pixel value representation approach, one may claim that training CNNs
without normalization is a good choice. However, N4 and N11, which represent the
LCN and CLAHE, appear to improve the model’s performance by being statistically
superior to basic scaling methods, i.e. N1, N2, and N3. Among the three databases,
N7 to N10 performed poorly compared to the others while the LCN performed the
best, demonstrating its usefulness and explaining its popularity in the literature.

The overall statistical significance analysis highlighted the LCN, standardization,
and CLAHE performances over the other methods. However, considering each degrad-
ation separately, interesting findings are reflected. The statistical significance in terms
of better/worse and significance per degradation are provided in Fig. IV.18 and IV.19
for CSIQ and LIVE, respectively. Unfortunately, we could not include TID2013 in this
analysis due to the pages limitation. With CSIQ, one can notice that N6 appears to
be better than all the other methods on JPEG, F-Noise, and Contrast. This method is
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Figure IV.18: Statistical significance on CSIQ per individual degradation.

performing well locally for some distortions and poor globally as seen on the overall
performances. N4 achieved the best with AWGN, JP2K, and BLUR, and competitive
results with N6 on F-NOISE. This shows the effectiveness of LCN locally per degrad-
ation. However, on contrast impairment the LCN scored worse compared to N1, N2,
N3, N6, and N9. This is mainly due to the fact that contrast changes are not retained
when normalizing images using LCN, leading to poor performances with regard to
this degradation. One can also observe that satisfactory performances are obtained
with the basic methods N1, N2, and N3 with JP2K and BLUR distortions. However,
these performances were not enough to outperform N4 nor N6, supporting the idea
to perform proper normalization prior to CNN training. In terms of the worst per-
formances, N8 and N9 performed poorly among the selected normalization except on
contrast. On the latter, N10 and N11 gave the worst performance. It appears that the
histogram equalization based methods did not cope well with contrast distortions. It
is worth noting that these methods enhance the image contrast, and by doing so on
already contrast-distorted images, it results in a poor performance.
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Figure IV.19: Statistical significance on LIVE per individual degradation.

As with LIVE (Fig. IV.19), the same observation on CSIQ best performing methods
holds. N4 outperformed the other methods by providing significantly better results,
except on WN where it performed worse compared to N1, which is also reflected by
the associated better/worse analysis. Regarding the worst performances, N7-10 seem
unsatisfactory on LIVE, which is also the case on CSIQ.

To summarize, the best performing normalization method on the overall databases
is found to be the LCN, a widely used IQA-specific method, which was confirmed by
the achieved performances in terms of accuracy, monotonicity and error as well as
the statistical significance. When analyzing the performances per degradation, the
best performance was achieved by LCN and LRN on CSIQ and LCN on LIVE over basic
scaling methods and histogram equalization based ones. This demonstrates (i) the
usefulness of normalization, and (ii) that the use of a proper method may enhance
the performance and robustness of the CNN model.
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IV.7 Takeaways

The importance of pre-processing and data preparation in attaining good results can-
not be underestimated. Considering deep-learning models typically learn a predict-
ive model using training data, it is critical to ensure better consistency and repres-
entation of this data. From the described contributions in this chapter, one can con-
clude that each pre-processing step, including input sampling, normalization, data-
augmentation, and labeling, has the potential to improve independently and jointly
the learning rate of the model. Regarding the post-processing, adaptive aggregation
of patch scores to derive the global quality can enhance the prediction correlation.
The fact of weighting individual scores for patch-based CNNs with IQA-specific prop-
erties achieved comparative and even better performances compared to multichannel
models.

The main observations from this chapter are:

• Better results and generalization can be obtained with IQA-specific data aug-
mentation techniques. In our case, the visual scan-path yielded a good perform-
ances.

• Local quality labeling for patch-based training is a delicate task. The MOS-based
labeling outperformed 2D metrics in terms of performances, whereas less train-
ing time was required when using 2D metrics.

• Adaptive aggregation of patch qualities contributes significantly to the perform-
ances of the model.

• Patch-based CNN for 360 images provides competitive performances to mul-
tichannel CNNs. This is achieved with less complexity. We believe, improvement
can be made with more appropriate IQA-specific adaptations.

• Adaptive sampling improved the performances compared to standard sampling.
By taking patches on the sphere with a latitude and importance based sampling
strategy, the performances can be significantly improved.

• Adaptive data representation is more efficient compared to simple scaling of the
input data. The performance of neural networks can be significantly improved
with adapted normalization in general, and IQA-based ones in particular.

IV.8 Conclusion

With a focus on the performances gain, we presented in this chapter several analysis
related to pre- and post-processing for NR CNN based 360-IQA.

First we analyzed the use of visual scan-paths as data-augmentation for 360-
degree IQA, mainly for reducing over-fitting and improving the prediction perform-
ances. To do so, ten different scan-paths (simulating 10 virtual observers) were gen-
erated with eight possible fixation points each, are used as centers of the generated
viewports. Besides, a comparison is made between the use of blind metrics (BRISQUE
and NIQE) and MOS for local quality (quality of patches) for training the model.



Chapter IV: Pre- and Post-processing 101

The obtained results demonstrated an improvement when using data-augmentation
compared to individual virtual observers. The lack of diversity of the MOS values
associated with the same 360-degree image, does not allow to reach sufficient gen-
eralization of the model. In addition, it requires more computational time than the
cases using blind metrics.

We further investigate the use of adaptive aggregation strategies for 360-degree
IQA using a patch-based CNN. We found that the use of a simple arithmetic mean,
which is the most common and straightforward technique, does not account for the
variability among the quality scores, and therefore, the correlation performance tends
to drop. Adaptive pooling strategies are seen as a good answer to cope this limita-
tion, especially when IQA-specific characteristics are incorporated. Moreover, patch-
based CNN with adaptive pooling achieved competitive performances compared to
state-of-the-art multichannel models. As patch-based CNNs introduce less complexity
compared to multichannel, it makes it more appropriate with an adequate training
strategy for 360-degree IQA.

Afterward, an adaptive patche sampling strategy is designed. The performances
of the latter are compared to standard sampling under two configuration. To this
end, two pre-trained models were used, including ResNet-50 and EfficientNEt-B3.
The results demonstrated a robust performance of ResNet-50 in terms of prediction
accuracy. A good generalization was observed on all datasets, particularly with the
adaptive sampling strategy. This supports the use of 360-degree images peculiarities
and the superiority of the proposed sampling strategy. Still, several challenges need to
be resolved, especially patches’ labeling with the same MOS leading to less diversity.
The construction of a large and representative 360-IQA dataset would allow more
robust and generalized models.

Finally, we conducted an empirical analysis on input image normalization methods
prior to CNN training for IQA. Here, we focused on 2D-IQA in order to draw conclu-
sion for immersive content such as 360-degree images. The motivation behind such
choice lies in the need of large datasets, and 2D-IQA one are more large and diverse
compared to 360-IQA’s. Several methods are considered, ranging from IQA-specific
ones to others designed for specific image processing applications. The overall results
on three commonly used databases showed that normalizing input images is better
than utilizing basic scaling methods. The statistical significance analysis of the eval-
uated methodologies revealed the same findings. The best results were obtained by
the local contrast normalization, which outperformed the other methods by achieving
the best results across all databases and per degradation except contrast. In this lat-
ter case, the loss of information affected negatively the performance. Other methods
were also efficient in reaching satisfying results for some specific degradation. Ac-
cording to the findings, using adequate normalization to improve the performance of
CNN models is favorable. Accounting for the loss of information due to normalization
during training can improve the model’s robustness.





Chapter V

Perceptually-Weighted CNN For
360-IQA Using Visual Scan-Path And
JND

V.1 Introduction

IQA generally considers the quality of an image as the property of its entire con-
tent [183]. Due to this, existing IQA databases come with a global ground truth label,
i.e. MOS, per image. The unavailability of MOS per individual regions on the one
hand and the higher resolution of 360-degree images on the other hand, constrained
the community to adopt the multichannel paradigm for deep-learning based 360-IQA
model, as mentioned in Sec. I.2.2.2. As the a multichannel model is basically trained
to predict the global quality of 360-degree images, it partially solves the unavailab-
ility of MOS per individual regions. This chapter presents a multichannel CNN that
considers different perceptual characteristics of HVS represented, including (i) JND
probability maps and (ii) visual scanpaths.

First, we extract viewports on the spherical content of 360-degree images accord-
ing to visual scan-path predictions. This way, we reproduce the actual viewed con-
tent. Then, motivated by the effectiveness of well-known pre-trained CNN models
confirmed by our study in Chapter III, we use DenseNet-121 [120] to extract visual
features from the selected viewports and predicts their visual quality. We use the
JND probability map to account for HVS sensitivity to local distortions. The proposed
model estimates the weight of each extracted viewport by fusing JND information, ex-
tracted visual features, and visual scan-path attributes (fixation duration and fixation
order). In the following we describe the proposed model.

103
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V.2 Proposed model

The proposed approach involves two steps. The first focuses on data pre-processing
including scan-path prediction, viewports extraction, and JND probability maps gen-
eration. The second step consists of an end-to-end training. Details on each step are
given below.

V.2.1 Pre-processing

Inspired by the way 360-degree images are generally viewed, i.e. only portions of the
images called viewports are seen by the users through HMDs (see Fig. IV.4), we only
consider selected viewports to predict the quality. This can be justified by the fact
that a user can only see the current rendered field of view (FoV) from the spherical
representation. The next viewport depends on his head direction along the x, y, and z
axes. This way, quality prediction scenario tends to be in agreement with the viewing
experience of 360-degree images and geometric distortions caused by the sphere to
plane projection mentioned previously are avoided.

It is now widely admitted that when an image is viewed, the HVS gazes on sali-
ent details, which translates into eye fixations [153]. In our case, these regions are
considered as our viewports and are detected using the visual scan-path model pro-
posed in [154]. This model provides trajectories including the order and duration of
fixations. This information giving valuable data about the exploration behavior is fed
to the CNN model described in the next section. It corresponds to a sequence of N
ordered fixation positions and their corresponding duration, respectively denoted as
[FOr , FD] ∈ R+.

In our model, the above-mentioned information is predicted for ten different vir-
tual observers representing the diversity of human scan-paths. The predicted scan-
paths are considered as data augmentation, not for the training stage but to increase
the diversity and robustness of the cross-validation. This will help with the generaliz-
ation analysis. The motivation behind such an approach is that each virtual observer
(VO) will explore the same scene but will probably provide a different rating as in
real subjective experiments. Therefore, from each image in the dataset, we extract
eight viewports for each VO where fixation points are taken as the center of the view-
ports with 512× 512 resolution. This way, we generate ten different instances of the
training dataset. An illustration of the scan-paths prediction is given in Fig. V.1. As it
can be seen, each predicted visual trajectory, composed of eight ordered fixations, is
distinct. Besides, most fixations fall on the equatorial region where the human gaze
is usually biased. This demonstrates the consistency of the viewports sampling with
the human exploration behavior when using HMDs. During the end-to-end training,
each VO is used separately.

With the aim to perceptually account for the sensitivity of viewport content to
distortions, and give more cues to our model about distortion visibility, we used JND
probability maps. We believe that training the model to learn about HVS sensitivity
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Scan-path 1 Scan-path 2 Scan-path n
Virtual observer 1 Virtual observer 2 Virtual observer n...

...

Figure V.1: Different scan-paths considered as virtual observers (VOs). Each scan-
path is composed of eight ordered fixations. The radius of each fixation reflect the
fixation duration. The color blue represent the first viewed viewport and the red one
corresponds to the last viewport.

will perceptually improve the estimation of the weights to be given to each viewport
when deciding about the quality of the 360-degree image. Fig. V.2 gives samples of
extracted viewports and their respective JND probability maps. It shows the impair-
ments detection probability values and their variation depending on the complexity
of the region. Flat regions are prone to more visible distortions compared to more
complex ones.

Figure V.2: (Top) Examples of extracted viewports and (Bottom) their corresponding
JND probability maps.
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Figure V.3: Architecture of the proposed model: The green rectangle depicts the over-
all network structure, the magenta rectangle depicts the local quality predictor struc-
ture, and the blue rectangle depicts the JND features extractor network.

V.2.2 Network Architecture

Fig.V.3 depicts the architecture of the proposed method with its different components.
Given a set of viewports V pi ∈ R+ with i ∈ {0...N} extracted from a 360-degree image,
the model takes four inputs for each V pi including visual content, JND probability
map, fixations order and fixations duration. These inputs are fed to the local quality
predictor (LQP) (green rectangle) resulting in N× LQP modules running in parallel.
Then, the LQP module fuses different learned features and outputs a weighted quality
score for each V pi ∈ R+ denoted as WQV pi

. Finally, the model outputs the weighted
arithmetic mean of the local quality scores as follow:

Predic tedMOS =

∑N
i=1 WQV pi
∑N

i=1 WV pi

, (V.1)

where WQV pi
is obtained by:

WQV pi
=WV pi

×QV pi
. (V.2)

As shown in Fig. V.3, the main component is the LPQ which consists of three parts. The
first is a visual feature extractor (VFE). Here, we use the DenseNet-121 [120] model
with its original weights, i.e. ImageNet weights. The choice of the DenseNet model
is made based on a previous comparative study that we conducted and for which
it ranked first compared to VGG, ResNet, and Inception architectures. The study in
question is detailed in Chapter III. The VFE provides a learned visual feature map
V fV pi

∈ R+ that goes to a quality estimation module and is used also for the estimation
of the weight WV pi

. The second part consists of JND features extractor that takes the
JND probability map JN DmapV pi

∈ R+ of V pi ∈ R+ and outputs a feature map that
contributes to WV pi

estimation. The Learned JND features account for the different
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sensitivities of the HVS toward various distortion types and magnitudes. For the JND
probability maps detection, we used the 2D model proposed in [184] as it is applied
on the extracted viewports being assimilated to standard 2D images. Therefore WV pi

is obtained as follows:

WV pi
= Concat([M LP([FOr , FD]), JN DmapV pi

, V fV pi
]). (V.3)

The proposed network used for JND features extraction aims to learn from HVS
sensitivities [185]. It is composed of three convolutional blocks as illustrated in Fig. VI.2
(blue rectangle). Each block includes three layers, two convolutions (1×1 and 3×3)
kernels followed by a max-pooling layer. By adding a 1 × 1 convolutional layer be-
fore the 3 × 3 convolution, for the same height and width of the JND feature map,
we reduce the number of operations. It also adds non-linearity to the network and
allows to implement a smaller CNN while keeping a higher degree of accuracy [124].
Therefore, we are reducing the computational requirements and being more efficient
at the same time.

At the final stage of the network, a GAP layer is used according to the recommend-
ation in [124] to generate the feature vector. Finally, the third part is a MLP that takes
as input the duration and order of fixations given by the visual scan-path predictor
and encodes them to account for the visual exploration behavior. The MLP outputs
a visual information vector used for the estimation of WV pi

. The fixation duration in-
forms about which visual content is more likely to attract the user gaze. It also gives
the time spent in visualizing a portion of the scene. As for the fixation order, it informs
about the nature of the visual exploration path.

The weight estimation stage considers encoded duration and order of fixations,
JND, and visual feature maps. These different features are fused and used to estimate
the weights WV pi of V pi using four FC layers. In parallel, the visual feature map is
also regressed to predict the quality score QV pi of V pi. For this, a GAP is performed
on the output feature map of DenseNet-121 followed by an FC layer, a dropout layer,
and another FC layer for score prediction. The final score is computed using Eq. V.1.

For the end-to-end training, we used the L2 loss function to compute the error
between predicted and target scores. The loss function is defined as:

loss = (qpredic ted − qtar get)
2. (V.4)

Three different versions of the proposed model are developed. The first version
uses only fused visual features of the 8 extracted viewports from a given 360-degree
image. It consists of eight pre-trained DenseNet-121 and a trained quality estimator.
The second version accounts for scan-path features FOr and FD for weights estima-
tion. Finally, the third version is built on top of version two by incorporating the JND
probability maps for weight estimations.
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V.3 Results and discussion

V.3.1 Experimental setup:

Dataset: The proposed model is trained and evaluated on the CVIQ [90] database,
see Sec. II.2 for more details. We use the strategy discussed in Sec. V.2.1 where the
proposed model is compared across ten predicted scan-paths. Hence, the model is
trained under ten different iterations as illustrated in Fig. V.4. Each set associated
with a virtual observer is divided into 60/20/20 for training, validation, and testing.

. 

. 

N images

. 

.
. 
.

. 

.

Figure V.4: Data splitting for training the proposed model. (Red) testing sets (blue)
training sets.

Implementation: The proposed architecture is implemented using TensorFlow [141].
The training was performed using NVIDIA Tesla P100-PCIE-16GB and 26GB of RAM.
We used the early-stopping to stop the training if no performance gain is observed by
monitoring the validation loss.

Performance evaluation: The predicted scores are fitted using a five-parameter non-
linear logistic function. The performance of the proposed model are computed using
the ten VOs. The MIN and MAX represent respectively the least and best performance
among VOs.

V.3.2 Performance comparison

The performances of our model are compared with state-of-the-art quality models
including: 1) 2D full reference (FR) metrics like PSNR and SSIM, 2) Learning-based
NR 2D models such as BRISQUE [159], QAC [186], BPRI [187] and DipIQ [188], 3)
PSNR-based 360-degree models WS-PSNR, S-PSNR and CPP-PSNR, and 4) learning-
based NR 360-degree metrics SSP-BOIQA [32], and two version of the MC360IQA [90]
model, including origin and mean trained respectively without and with data augment-
ation. The MC360IQA is a multichannel paradigm with six ResNet-34-[87]. Table V.1
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Table V.1: Performance comparison with state-of-the-art quality models in terms of
PLCC and SRCC. Best performance is highlighted in bold.

Metric PLCC SRCC

FR

PSNR 0.7662 0.7320
SSIM 0.8972 0.8857
S-PSNR 0.7819 0.7574
WS-PSNR 0.7741 0.7467
CPP-PSNR 0.7755 0.7498

NR

BRISQUE 0.7641 0.7448
QAC 0.8681 0.8299
BPRI 0.8877 0.8576
DipIQ 0.8065 0.7381

Learning-based SSP-BOIQA 0.9077 0.8614
360-degree MC360IQAorigin 0.9271 0.9069

MC360IQAmean 0.9391 0.9153

SP360IQA-F-JND
MIN 0.900 0.866
MAX 0.949 0.928

summarizes the performances of aforementioned metrics on the CVIQ database. We
can notice that traditional 2D models and their extended versions have significantly
lower performance compared to 360-degree models. Therefore, they are not well
suited for this type of image as already demonstrated in benchmark studies [109].
SSP-BOIQA slightly improves the correlation with subjective MOS compared to SSIM
that measures the structural similarity according to the HVS characteristics. MC360IQA
versions provide good results. At its lowest performance (MIN), our model outper-
formed all state-of-the-art FR, NR, and 360-degree models except MC360IQA. Re-
garding the latter, the origin version is outperformed by the three versions of the
model with the VO providing the maximum performance. The mean version is in
turn outperformed by the F and F-JND version of the proposed model.

V.3.3 Ablation study

To evaluate the effectiveness of the considered additional inputs (scan-path visual in-
formation and JND maps), we conduct an ablation study. It focuses on performance
added to the model by the additional components. First, we predict the quality score
using only regressed visual features on 8 viewports extracted based on the virtual
observer scan-path denoted as SP360IQA. Second, we add the viewport weight es-
timation as described in Sec. V.2.2 by encoding scan-path visual information thought
an MLP (see Fig. VI.2). This version is denoted as SP360IQA-F. Finally, we optimize
the estimation of the weights by exploiting JND probability maps of the selected view-
ports to account for HVS sensitivity and provide perceptual distortion-ability to the
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model, denoted as SP360IQA-F-JND.

Table V.2: Standard deviation, maximum and minimum performance in terms of
PLCC, SRCC, and RMSE of virtual observers. Best PLCC values are highlighted in bold
and SRCC underlined.

SP360IQA SP360IQA-F SP360IQA-F-JND

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

MAX ↑ 0.929 0.911 0.150 0.945 0.921 0.111 0.949 0.928 0.113
MIN ↑ 0.780 0.750 0.090 0.889 0.863 0.084 0.900 0.866 0.080
SD ↓ ± 0.044 ± 0.045 ± 0.017 ±0.020 ±0.021 ±0.009 ±0.019 ±0.023 ±0.009

Figure V.5: Scatter plots of predicted quality scores versus MOS of the final model
SP360IQA-F-JND (Best performance on the left and worst performance on the right
among the VOs).

Table. V.2 provides the results of the conducted ablation study. The maximum and
minimum values of PLCC, SRCC, and RMSE regarding all VOs are given, in addi-
tion to standard deviations. One can observe that the proposed weight estimation
improves the performance when considering fixations order and duration for each
viewport. The minimum PLCC/SRCC shifts from 0.78/0.75 to 0.89/0.86 showing
that the model gained significantly in terms of accuracy and monotonicity. The pre-
diction errors measured by the RMSE is also improved by the SP360IQA-F over the
SP360IQA one. The incorporation of the JND further boosted the performances but
with a slight shift. Therefore, we conclude that using scan-path visual information
and JND features contribute to the prediction accuracy of our model. It also contrib-
utes to the generalization of our model as given by the SD values. Indeed, the latter
are decreased explaining that VOs are providing better and less spread performances.
Scatter plots of the predicted scores versus MOS of the best and least performing VO
are given in Fig. V.5. It supports the aforementioned discussions and shows consistent
distribution of the predictions.
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Figure V.6: PLCC and SRCC of individual VOs with regard to the version of the model.

Additionally, Fig. V.6 illustrate the achieved performances in terms of PLCC and
SRCC of all VOs with regard to the version of the model. As it can be seen, the perform-
ances of the native version without weights estimation lag behind those obtained by
the SP360IQA-F and JND versions, regardless of the used VO. This actively demon-
strates the usefulness of adaptive weights estimation of each viewport, on the one
hand. On the other hand, the incorporation of HVS properties, translated by the visual
trajectory behavior and JND, are significantly improving the overall performances of
the model. Among the VOs, there is a significant difference between Obs_2 and the
others in the SP360IQA version. However, when considering weight estimation, Obs_2
appears to have performed well. Such behavior depicts the accuracy of various scan-
paths, and considering only visual features may be dependent on the predictability of
the scanpath. Hence, perceptual features are required so as to cope with such lack, as
depicted with the provided curves.

V.4 Conclusion

We presented in this chapter a CNN-based model for 360-degree IQA. This model re-
lies on predicted scan-paths for the extraction of adapted viewports. In addition, to
account for the HVS properties, fixations order and duration are used together with
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JND to define weighting factors exploited for quality pooling. This adopted weighting
strategy has shown a significant improvement of the prediction performances. Addi-
tionally, taking advantage of the variability of visual exploration of 360-degree scenes
(visual trajectory) through virtual observers, is a significant added value for model
generalization analysis. Our model showed the usefulness of predicting quality on
the spherical content rather than projected one. We believe that using additional HVS
properties may greatly contribute to the improvement of prediction accuracy. So, a
more optimized network for learning HVS properties for 360-degree quality assess-
ment tasks will be investigated.

The SP360-IQA is currently under optimization. We intend to optimize the model
by adopting the weight sharing among the CNN channels. By doing so, the complexity
of the model will be significantly reduced. In addition, the model will learn from all
eights input simultaneously, and not each channel from its inputs. The weights are
then updated according to all inputs, including the visual features, JND information,
and the attributes associated with the visual trajectories.





Chapter VI

Attention-aware Patch-based CNN for
Blind 360-degree Image Quality
Assessment

VI.1 Introduction

As discussed in the previous chapters, the proposed CNN-based 360-IQA models adopt
the multichannel CNN paradigm. As the latter increases significantly the complexity of
the model with regards to the number of channels, it becomes of paramount important
to achieve a trade-off between complexity and robustness. In the meantime, patch-
based CNNs offer good performances while being less complex. The fact of having
a single channel CNN instead of multichannel one helps training the model more
efficiently with less computational requirement. Besides, patch-based training implies
patch sampling prior to training. The latter are used as data augmentation to cope
with the lack of training data for IQA tasks, as highlighted in Chapter IV. With a
proper, adaptive, and consistent sampling strategy, the robustness of the model can
be significantly enhanced [126].

To address several issues related to 360-IQA with deep neural networks, we pro-
pose in this chapter the use of deep CNN with a patch-based training scheme. The
proposed model is trained and evaluated from scratch on three available 360-IQA
databases. In order to resolve the lack of perceptually annotated data, we artificially
augment the available training sets by training the model on sampled patches ob-
tained from the 360-degree images. Here, an adaptive sampling is proposed by con-
sidering the importance of the content according to its location. Hence, a latitude-
based sampling from the radial content is adopted rather than a random sampling
on the projected representation. By doing so, we incorporate the exploration beha-
vior and the way human gaze is biased toward the equatorial region [133]. Prior to
training the model, the extracted patches are normalized using a local contrast based
normalization to only retain information that is perceptually relevant to the HVS, and
to speed up the training process. Then, an adaptive aggregation strategy for pooling

114
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local patch qualities to 360-degree image quality is employed. The main contributions
within the proposed model are listed as follows:

• Inspired by the exploration behavior of 360-degree images by the users, we pro-
pose an adaptive patch sampling on the sphere to tackle the issue of geometric-
ally distorted content of the projected versions. The ablation analysis proves its
superiority over standard sampling.

• We design a CNN model with spatial attention integrated to efficiently learn
weight maps, which represent the relative importance of activations within fea-
ture maps. Furthermore, we incorporate features from the earliest layers at the
final stage through long skip-connections.

• We present a method for aggregating patch quality to image quality using outlier
rejection and saliency. To begin, the standard deviation is utilized to exclude
scores that fall beyond an agreement range. The saliency is then used to weight
the selected local qualities based on their visual relevance. The relevance of the
associated content is considered using a weighted average pooling of local patch
qualities.

VI.2 The proposed model

The proposed method involves several steps. 1) data pre-processing, including patch
sampling and representation, 2) an end-to-end training, and 3) patch predicted qual-
ities aggregation to image quality by means of an adaptive strategy. Details on each
step are given in the following.

VI.2.1 Inputs generation

Regions surrounding the equator of 360-degree images are known to be more visually
important than polar regions [133], on the one hand. On the other hand, adaptive
sampling is proven to be more effective than standard sampling, as demonstrated
in Chapter IV. Therefore, we adopt the sampling strategy described in Sec. IV.3 to
generate non-overlapping patches from the sphere.

VI.2.2 Patches normalization

Adaptive data representation is of paramount importance for any machine learning al-
gorithm. For CNNs, image normalization prior to feeding the model boosts the training
and helps the model to learn the useful information for the specified tasks. Based on
the conclusions from the data representation study described in Chapter IV, we adopt
the LCN normalization to normalize the sampled patches. The normalization is per-
formed on individual patches rather than the full 360-degree images. The particular
purpose for this, is to account for local luminance, which might vary in different parts
of the image. It is worth noting that, 360-degree images are in fact multiple snapshots
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Original WGN GB JPEG

Figure VI.1: Local normalization applied on patches with different distortions. (Top)
extracted patches, (bottom) normalized versions.

taken by multiple cameras and then stitched together. The setting of the cameras is
made in such a way to cover a 360-degree range even if we consider that the stitched
images has been corrected in terms of luminance uniformity. Consequently, the range
of the latter may vary spatially.

The proposed model takes locally contrast normalized patches as input. For each
value of pixel (i, j) from a sampled patch P, the corresponding normalized value
P ′(i, j) is computed using Eq. IV.5 described in Sec. IV.4.2. The visual results of this
step are illustrated in Fig. VI.1. As it can be seen, high-frequency details are preserved,
as they are more likely to influence the quality rating. Additionally, the normalization
appears to capture the effects of distortions, which may help to ensure the robustness
of the model.

VI.2.3 Model architecture

The architecture of the proposed model is illustrated in Fig. VI.2. In contrast to state-
of-the-art quality models for 360-degree images, the proposed model adopts the patch-
wise training. Therefore, an architecture with a deep CNN is designed rather than a
multichannel one. The latter is found to be highly complex, requiring more compu-
tational resources and is difficult to train. The proposed model is composed of four
convolutional blocks (Conv Block) with a doubling number of filters, ranging from 64
to 512. This way, the CNN model can learn more discriminative features and be able
to achieve a better representation of these features [136]. Each block is composed of
two Conv layers with 3× 3 filter size, each followed by a batch normalization (BN)
layer [189], and then a ReLU activation function. The structure of the Conv Block is
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Figure VI.2: Architecture of the proposed model. F and F ′ stand for feature maps,
and SP ′ i represents the predicted quality score associated with patch P ′.

depicted in Fig. VI.3. BN is used to make the model faster, stable and more robust to
bad initialization [189]. It is recommended to place BN right after the Conv layers and
before the activation function, which helps to produce activations with a stable distri-
bution [189]. All convolutions are used with zero-padding to preserve more features
and produce an output of the same dimension as the input.

Right after the second activation (ReLU) in each Conv Block, a spatial attention
(SPA) module is used. The latter outputs a refined feature maps F ∈ RDn×Hn×Wn , where,
D, H, and W stand for the height, width, and dimension in terms of number of chan-
nels of the deep features F, respectively, and n corresponds to the number of Conv
Blocks. Here, The spatial term refers to the domain space encapsulated within each
feature map. Therefore, the spatial attention represents the attention mechanism,
a.k.a. attention mask on the learned feature maps. It conveys "what" within each
feature map is important to learn and to focus on.

The composition of the SPA module is detailed in Fig. VI.3 (blue rectangle). It com-
prises a three-fold sequential operation. The first consists of a pooling stage in order
to encode and capture highly discriminative features before applying the attention.
Commonly, a max- or average-pooling is applied [96] at this stage, and in some cases
they are used together as in [190]. Differently, the proposed SPA module applies the
generalized mean pooling (GeM) [191], which generalizes the pooling equation for
each feature map XD of F ∈ RD×H×W as follows:

y = (
1
|X s

D|

∑

x∈X s

x pD)
1

pD , (VI.1)

where y represents the aggregated value, XD the set of values, s the pooling stride of
2×2, and pD ∈ [1,∞) is the hyperparameter that controls the pooling for each feature
map XD. When pD = 1, the GeM corresponds to average pooling. When pD→∞, the
GeM corresponds to max pooling. As the GeM pooling is a differentiable operation as
stated in [191, 192], pD can be considered as a trainable parameter. This helps updat-
ing it through backpropagation. Hence, the SPA module exploits the states between
average and max pooling by relying on backpropagation to learn the hyperparameter
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Figure VI.3: Architecture of the Conv Block with ⊗ element-wise multiplication and
⊕ element-wise addition. The 3× 3 and 1× 1 correspond to the kernel sizes for the
convolution layers, and 2× 2 represents the stride for the pooling layer (GeM).

pD, allowing it to use the adequate pooling method. The second part consists of cre-
ating the spatial attention mask MSPA(F) ∈ RH×W by means of the sigmoid activation
function σ(.) as follows:

MSPA(F) = σ(Conv1×1([GeM2×2(F)])) (VI.2)

MSPA(F) ∈ RH×W is generated using the aggregated maps obtained by GeM(.).
First, F ∈ RD×H×W goes through a Conv layer with 1×1 kernel size and a single filter,
resulting in F ∈ R1×H×W . The idea is to reduce the dimensionality of the generated
feature maps by creating a single-channel one. Then, the sigmoid activation function
σ(.) is applied on the output of the Conv layer. As sigmoid is a probabilistic activation
function, it will map all the values of the input F ∈ R1×H×W to a range between 0 and
1, generating the spatial attention mask MSPA ∈ RH×W . The latter is then applied to
all the feature maps in the output of GeM(.) using element-wise product as denoted
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in Eq.VI.3

FSPA ∈ RD×H×W = MSPA⊗ GeM2×2(F) (VI.3)

Within each SPA module, a short skip-connection is implemented, connecting the
output of GeM(.) with the refined feature map FSPA ∈ RD×H×W . Here, the connection
is accomplished by means of element-wise addition, as illustrated in Fig. VI.3. As a
result, the aligned features will be greater compared to non-aligned ones. The output
of the SPA module is then obtained as follows:

F ∈ RD×H×W = ReLU(FSPA⊕ GeM2×2(F)) (VI.4)

The output of the SPA module is first fed to the next Conv Block in a feed for-
ward fashion. Additionally, it is acknowledged that, the earliest convolutions in a CNN
capture low-level features, whereas latter convolutions focus on high-level semantic
features, on the one hand. On the other hand, the HVS is highly sensitive to low-
level features, such as spatial frequency, line orientation, texture and contrast [193–
195]. The use of such features at later stages in CNN could have the potential to im-
prove the model’s performances and stability for various image processing tasks [90,
196]. Therefore, the proposed model implements a long skip-connection by means of
hierarchical element-wise additions at each Conv Block. Here, the F ∈ RD×H×W are
hierarchically added together into F′ ∈ RD×H×W as follows:

F′ i = ReLU(F′ i ⊕ Conv1×1
f il ter= f il teri

(Fi−1)), (VI.5)

where i denotes the Conv Block number. The Conv1×1 with the same filter number as
the block i is required to match the dimension for the addition operation. At the last
Conv Block, both F and F′ are added together. Finally, GAP [124] is used to reduce
the spatial dimensions of the encoded feature maps by generating a feature vector
VF ∈ RD×1×1. This operation is known to decrease overfitting, and is accomplished as
follows:

y c =
1
N

∑

i, j

[F⊕ F’]ci, j, (VI.6)

where y c is the output value of feature map [F ⊕ F’]c at channel c, and (i, j) is the
pixel index of the corresponding feature value. The feature vector VF obtained by the
GAP operation is fed to the quality regression block, where the obtained features are
fused to estimate the quality score. The architecture of the regression block is illus-
trated in Fig. VI.4 and is composed of two FC layers with dimensions of 1024 and
512, respectively, each followed by a ReLU activation function and a dropout layer
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for regularization. A final FC layer with a single node and a linear activation is ad-
ded to deliver the final quality score. Weights initialization in the model is performed
according to He et al. [127] to start the training with a Gaussian probability distri-
bution initialization. The latter helps the model to avoid numerical difficulties due to
unstable initial weights [126].

FC (1024) + Relu +  
DropOut(0.5)

FC (512) + Relu +  
DropOut(0.25)

FC (1) +  
Linear

GAP

Figure VI.4: Architecture of the used regression block. "GAP" corresponds to global
average pooling, and "FC" stands for a fully connected layer. VF is the generated feature
vector.

VI.2.4 Loss function

Generally, IQA is considered as a regression task. Hence, the most commonly used
loss functions are the mean square error (MSE) and mean absolute error (MAE). It is
known that MAE is less sensitive to outliers in the data, but it is not differentiable at
zero. Whereas, MSE is differentiable everywhere, but it is highly sensitive to outliers.
The Huber loss [197] is both differentiable everywhere and robust to outliers. It com-
bines the best characteristics of both loss functions. Therefore, the proposed model
uses the Huber loss, defined as follows:

Lδ(y, SP ′ i) =

�

1
2(y − SP ′ i)

2 for
�

�y − SP ′ i

�

�≤ δ,
δ
�

�y − SP ′ i

�

�− 1
2δ

2 otherwise,
(VI.7)

where y is the ground truth score (MOS) and SP ′ i is the predicted one. δ ∈ R+ controls
the use of either MAE or MSE. Its value is defined as 1.35 based on [197].
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VI.2.5 Quality scores aggregation

As a patch-based strategy, the proposed model predicts a set of quality scores LQs
corresponding to N sampled patches from each 360-degree image I . To drive the
quality of the whole 360-degree image, one can apply a simple and straightforward
average of LQs. However, as demonstrated in Chapter IV, the quality over a scene
is non-uniformly distributed, meaning that certain regions are more likely than oth-
ers to contribute to the global quality. This is even more true for 360-degree images.
Moreover, the perceived quality is highly affected by the most distorted regions among
the selected ones [162], as the human gaze tends to fall on these salient regions when
exploring a scene. A simple arithmetic mean cannot express such aspects, notwith-
standing the non-uniformly distribution of the quality. Giving the same importance to
all local qualities by averaging LQs may not be consistent with (i) the scene explora-
tion and (ii) the quality distribution.

Figure VI.5: Illustration of saliency map to highlight the important regions. (a) a 360-
degree image, (b) its saliency, and (c) their superposition.

In response to the limitation of simply averaging LQs, the proposed model uses
visual saliency to weights local qualities in LQs. In this regard, it considers the rel-
evance of salient regions over less salient ones by means of visual attention. Hence,
for each 360-degree image I , a saliency map SalI is generated using the 360-degree
saliency model proposed by Xia et al. [198]. Fig. VI.5 illustrates the obtained sali-
ency map of a 360-degree image. As it is shown, important regions are highlighted
and are mostly located around the equator. By taking the influence of saliency into
consideration, patches in salient regions contribute significantly to the global quality
score with high weight values. SI is then computed by weighting the predicted local
qualities in LQs for patches sampled from the image I using the estimated weights Wi

with i ∈ {1, 2, ..., N}, and N is the number of patches.
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SI =

∑N
i=1 Wi × SP ′i
∑N

i=1 Wi

, (VI.8)

where the weights are obtained as follows:

Wi =

∑

RP
SalPi

(k) if SalPi
(k)≥th

∑

RI
SalI(k)

, (VI.9)

SalPi
represents the saliency region corresponding to the extracted patch Pi, RP and

RI represents the resolution of P and I , respectively. Differently from standard ap-
proaches where the weights are the summation of pixel intensities within a patch [176],
we compute the ratio with respect to the overall saliency of the image I . By doing so,
the weights will reflect the importance of the local quality of P with regard to the
global quality of I . Besides, only values greater than a threshold th are summed to-
gether, taking into consideration only higher saliency values. th is a tunable parameter
according to the predicted scores as well as the used databases.

Prior to weighting local qualities by the corresponding visual saliency, outliers re-
jection (OR) from the LQs is applied. Scores falling far from the median of LQs are
discarded, aggregating only those within an agreement interval. This technique is mo-
tivated by subjective quality ratings, in which only scores that concur are considered to
generate the MOS. The outliers are detected using the standard deviationσ(.) of LQs.
In this case, a score is identified as an outlier only if it falls outside a ±λ ∗ σ(LQs)
range, where λ ∈ R+ is a parameter used to determine the appropriate agreement
range with respect to the variability among LQs. This operation is described in Al-
gorithm 3. Formally, the final score SI is obtained as follows:

SI =

∑

i∈|s|Wi × Spi
∑

i∈|s|Wi
, with s = ±λ ∗σ(LQs) (VI.10)

VI.3 Experiments and results

VI.3.1 Experimental setup

VI.3.1.1 Datasets

The training and evaluation of the proposed model is carried out on three publicly
available 360-IQA datasets namely OIQA [108], CVIQ [90], and MVAQD [32]. Details
regarding each one are provided in Sec. II.2. We conduct the performance comparison
with SOTA models on the OIQA and CVIQ databases. As for an in-depth analysis of
the proposed model with ablation studies, we include MVAQD along with OIQA and
CVIQ.
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Algorithm 3 Outliers rejection

1: procedure DETECTOUTLIER(LQs, W )
2: V_LQs = ; ▷ List of valid local qualities.
3: V_W = ; ▷ List of corresponding weights.
4: s = ±λ ∗σ(LQs) ▷ Agreement range.
5: for i, SP ′i

in enumerate(LQs) do
6: if SP ′i

∈ s then
7: V_LQs← V_LQs+ SP ′i
8: V_W ← V_W +Wi

9: else
10: Reject SP ′i
11: end if
12: end for
13: Return V_LQs and V_W
14: end procedure

VI.3.1.2 Implementation Details

The proposed model is implemented using TensorFlow and trained on a server equipped
with Intel Xeon Silver 4208 2.1GHz, 192G RAM and a GPU Nvidia Telsa V100S 32G.
The batch size was set to 32 and the Adam optimizer [181] is used with β1 = 0.9
and β2 = 0.999. The learning rate is set initially to 1e − 3 with a learning decay of
1e−4/EPOCHS to help the optimization of the model. A five-fold cross validation is ad-
opted for a complete assessment within each of the selected datasets. Each fold was
trained for 100 epochs. During training, the datasets are randomly separated into
80% for training (20% from which was dedicated for validation) and 20% for test-
ing. To ensure a complete separation of the training and testing sets, the distorted
images linked to the same pristine source are allocated to the same set. This helps it
possible to test the model on unseen content, avoiding a very common mistake that is
frequently overlooked, in which datasets are split based on distorted images. There-
fore, the model’s assessment is made on already seen content, resulting in unreliable
assessments.

VI.3.1.3 Evaluation metrics

The evaluation criteria recommended by the VQEG, including PLCC, SRCC, and RMSE
are used for the evaluation in addition to the statistical significance method proposed
by Krasula et al. [45]. As explained in Sec. I.1.4, the statistical significance analysis
requires the SD of the MOS. Unfortunately, we were only able to collect the required
data for the OIQA dataset during the study. Thus, we only perform this analysis with
OIQA.

As one of the main motivation behind the development of the proposed model is
to achieve better accuracy while having less complexity compared to state-of-the-art
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models in general and multichannel ones in particular, we performed an inference
analysis. Hence, a complexity analysis is provided in terms of model’s parameters
and the number of floating-point operations (FLOPs). The latter provides insight on
the computations required by the model. A large number of FLOPs implies a higher
complexity, suggesting a longer calculation time. Since the inference analysis is in-
dependent of the training, we used a different hardware configuration. A computer
equipped with an Intel® Core™ i9-9880H @ 2.30GHz, 32GB of RAM, and an Nvidia
Quadro T2000 MAX-Q 4GB GPU is used to measure the computational complexity.

VI.3.2 Performance comparison with SOTA models

With the aim to illustrate the effectiveness of the proposed model, a comparison with
sixteen state-of-the-art IQA models, including 2D-IQA and 360-IQA models is per-
formed. For each category, traditional and deep-learning (DL) based models are selec-
ted. Traditional models consist of those based on pixel-wise fidelity or NSS. The selec-
ted models include PSNR, SSIM [72], MS-SSIM [199], FSIM [195], BRISQUE [159],
and BMPRI [200], DB-CNN [101], and DipIQ [188], representing 2D-IQA models.
S-PSNR [201], WS-PSNR [201], SSP-BOIQA [32], Yun et al. [97], and MFILGN [98],
MC360IQA [90], Zhou et al. [92], VGCN [100], and AHGCN [94], representing 360-
IQA models. The MC360IQA, Zhou et al., VGCN, and AHGCN are all deep learning
based solutions using the multichannel paradigm with a varying number of channels,
from six to twenty channels. Hence, they are considered as highly complex models.

The overall and per individual distortion performances in terms of PLCC, SRCC,
and RMSE are summarized in Table VI.1 for OIQA and Table VI.2 for CVIQ, where
the best and second-best performances are highlighted in bold and underlined, re-
spectively. The performances of the proposed model are reported as the median over
five-folds evaluation.

From the performances obtained on OIQA (Table VI.1), we observe that the pro-
posed model achieves the best performance on the overall database compared to both
360-IQA and 2D-IQA models. This observation is valid regardless of the used local
qualities’ aggregation method, demonstrating its superiority over SOTA models. In
particular, multichannel based models, where the proposed model outperformed the
MC360IQA in terms of PLCC (resp. SRCC) by approx. 5% (resp. 4.7%), Zhou et al.
by approx. 8% (resp. 4.2%), VGCN by approx. 1.4% (resp. 1.2%), and AHGCN by
approx. 0.7% (resp. 0.4%). A similar behavior can be observed with the prediction
error in terms of RMSE. This actively illustrates the accuracy of our model and its
ability to evaluate the quality of 360-degree images close to human judgment. Re-
garding the performances across different type of distortions, the SOTA models still
lags behind the performances of the proposed model for JPEG and GB. For JP2K and
WGN, the proposed model achieved competitive performances compared to VGCN,
AHGCN, and Yun et al. in terms of PLCC and SRCC. In terms of RMSE, however, the
proposed model achieved the lowest error across all distortions as well as the over-
all database. The superiority of the proposed model is highlighted once more. When
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Table VI.1: Performance comparison with SOTA models on the OIQA database. The
Best performance is highlighted in bold and the second-best is underlined. OursAvg,
OurOR, and OurOR+SAL stand for the proposed model with average, OR-based, and OR
+ saliency based aggregation of local qualities, respectively.

O
ve

ra
ll

JP
EG

JP
2K

W
G

N
G

B

R
ef

-
M

od
el

PL
C

C
↑

SR
C

C
↑

R
M

SE
↓

PL
C

C
↑

SR
C

C
↑

R
M

SE
↓

PL
C

C
↑

SR
C

C
↑

R
M

SE
↓

PL
C

C
↑

SR
C

C
↑

R
M

SE
↓

PL
C

C
↑

SR
C

C
↑

R
M

SE
↓

2D-IQA

FR
PS

N
R

0.
69

10
0.

68
02

10
.3

88
0.

86
58

0.
82

91
7.

85
70

0.
84

92
0.

84
21

7.
93

57
0.

93
17

0.
90

08
4.

63
92

0.
63

57
0.

63
74

10
.2

50
FR

SS
IM

0.
88

92
0.

87
98

6.
58

14
0.

94
09

0.
93

46
5.

31
93

0.
93

36
0.

93
57

5.
38

29
0.

90
26

0.
88

46
5.

49
65

0.
91

88
0.

92
38

5.
24

04
FR

M
S-

SS
IM

0.
84

27
0.

83
32

7.
74

42
0.

93
12

0.
91

88
5.

72
14

0.
92

65
0.

92
67

5.
65

60
0.

96
72

0.
94

84
3.

24
60

0.
86

23
0.

86
24

6.
72

50
FR

FS
IM

0.
92

74
0.

92
25

8.
25

01
0.

94
78

0.
93

51
7.

32
15

0.
95

45
0.

95
73

6.
59

24
0.

94
66

0.
91

76
6.

06
70

0.
94

44
0.

94
78

6.
43

72
N

R
B

R
IS

Q
U

E
0.

84
24

0.
83

31
11

.2
61

0.
91

60
0.

93
92

8.
99

20
0.

73
97

0.
67

50
15

.0
82

0.
95

53
0.

93
72

3.
42

70
0.

86
63

0.
85

08
9.

69
70

N
R

B
M

PR
I

0.
65

03
0.

62
38

15
.8

74
0.

91
60

0.
89

54
7.

88
61

0.
83

22
0.

82
14

12
.2

80
0.

96
11

0.
94

90
3.

53
40

0.
51

99
0.

38
07

12
.2

48

N
R

D
B

-C
N

N
0.

88
52

0.
86

53
9.

71
72

0.
97

55
0.

96
07

4.
93

50
0.

97
70

0.
97

86
3.

83
24

0.
97

72
0.

97
86

3.
83

23
0.

95
36

0.
88

65
5.

87
52

N
R

D
ip

IQ
0.

70
12

0.
69

17
10

.2
59

0.
82

91
0.

78
91

8.
78

33
0.

91
65

0.
91

82
6.

03
00

0.
95

56
0.

94
32

3.
77

42
0.

93
21

0.
89

83
4.

81
61

360-IQAFR
S-

PS
N

R
0.

71
53

0.
71

15
10

.0
52

0.
87

03
0.

82
85

7.
73

19
0.

85
55

0.
84

89
7.

78
11

0.
91

90
0.

88
46

5.
03

29
0.

69
29

0.
69

17
9.

57
36

FR
W

S-
PS

N
R

0.
69

85
0.

69
32

10
.2

94
0.

86
07

0.
82

78
7.

99
19

0.
84

35
0.

83
22

8.
07

19
0.

92
21

0.
88

53
4.

94
15

0.
66

09
0.

65
83

9.
96

52
N

R
SS

P-
B

O
IQ

A
0.

86
00

0.
86

50
7.

31
31

0.
87

72
0.

83
45

7.
62

01
0.

85
32

0.
85

22
7.

50
13

0.
90

54
0.

84
34

5.
45

10
0.

85
44

0.
86

23
6.

83
42

N
R

Yu
n

et
al

.
0.

94
37

0.
93

69
7.

19
11

0.
96

12
0.

95
36

6.
33

30
0.

96
97

0.
96

76
5.

39
41

0.
97

89
0.

97
37

3.
84

53
0.

96
45

0.
95

58
5.

15
82

N
R

M
C

36
0I

Q
A

0.
92

47
0.

91
87

4.
62

47
0.

92
79

0.
91

90
4.

50
58

0.
93

24
0.

92
52

4.
58

25
0.

93
44

0.
93

45
3.

79
08

0.
92

20
0.

93
53

4.
52

56
N

R
Zh

ou
et

al
.

0.
89

91
0.

92
32

6.
39

63
0.

93
63

0.
94

05
5.

69
11

0.
92

00
0.

93
43

5.
88

62
0.

96
82

0.
95

70
3.

33
04

0.
92

52
0.

92
00

4.
97

21
N

R
V

G
C

N
0.

95
84

0.
95

15
5.

96
70

0.
95

40
0.

92
94

6.
72

01
0.

97
71

0.
94

64
4.

77
21

0.
98

11
0.

97
50

3.
49

32
0.

98
52

0.
96

51
3.

32
70

N
R

A
H

G
C

N
0.

96
49

0.
95

90
5.

48
71

0.
96

49
0.

92
76

5.
88

60
0.

98
20

0.
96

43
4.

23
60

0.
97

06
0.

97
86

4.
34

10
0.

97
56

0.
97

59
4.

26
40

N
R

O
ur

s
A

vg
0.

96
68

0.
95

85
3.

57
07

0.
97

41
0.

94
29

3.
59

56
0.

97
31

0.
96

07
3.

42
49

0.
97

55
0.

96
43

2.
87

10
0.

98
80

0.
97

86
2.

18
28

O
ur

s
O

R
0.

97
09

0.
96

26
3.

35
38

0.
97

63
0.

95
71

3.
42

21
0.

97
37

0.
95

36
3.

38
43

0.
97

61
0.

96
07

2.
83

73
0.

98
65

0.
97

86
2.

28
43

O
ur

s
O

R
+

SA
L

0.
97

21
0.

96
29

3.
33

17
0.

97
79

0.
95

00
3.

31
25

0.
97

41
0.

95
36

3.
35

87
0.

97
64

0.
97

14
2.

70
05

0.
98

66
0.

97
86

2.
23

88



Chapter VI: Sal-360IQA 126

looking at the performance of 2D-IQA models, it is clear that DB-CNN outperforms 2D
traditional models, including FR models like SSIM and MS-SSIM. This demonstrates
the advantages of a deep learning-based model for quality assessment over traditional
approaches.

Among the performances of the proposed model, the best is achieved when us-
ing OR and saliency together as the aggregation strategy. It appears that, discarding
predicted local qualities that are outside the agreement range ±λ∗σ(LQs) before av-
eraging the scores is improving the correlation performances. This is demonstrated by
the acquired performances on the overall database and across distortions compared
to considering all local qualities, except for GB. By simply averaging all local qualities
resulted in slightly better correlation performances for GB. Such a behavior can be
explained by the fact that the model agrees more on the quality of blurred patches
compared to other distortions. When using saliency to weight predicted local qualities
according to the importance of their corresponding patches after discarding outliers,
a similar behavior is observed. It is known that, saliency is affected by the distortion
in general and blur in particular, since the content is smoothed. Hence, using saliency
as a weighting strategy is not contributing significantly with the GB distortion.

Table VI.2 further summarizes the performances results of the proposed model as
well as SOTA models on the overall and on each distortion type of CVIQ. The first ob-
servation that emerges is that on overall, the best performances are obtained by deep
learning based 360-IQA models. Considering all content on CVIQ, the proposed model
achieved slightly worse in terms of accuracy compared to VGCN while outperforming
MC360IQA, Zhou et al., and AHGCN. In terms of monotonicity, our model achieved
the best correlation. As for the prediction errors, the MC360IQA scored the best, with
a slight difference. With regard to the performances obtained on OIQA (Table VI.1),
those ones on CVIQ seems to be slightly worse when compared to SOTA models. Here,
the diversity of the training dataset is affecting the accuracy of the model. It is worth
noting that CVIQ is less diverse compared to OIQA in terms of (i) distortion types and
(ii) content, which are paramount to better train the model. Regarding the perform-
ances across the different distortion types, the proposed model reached competitive
performances with multichannel ones. Despite less diversity on CVIQ, the proposed
model still perform well. For the JPEG distortion, some 2D models appear to perform
well, such as SSIM and FSIM. The latter obtained the best accuracy with images com-
pressed using H.265/HEVC. Such an achievement is due to the fact that these models
have access to pristine images.

The proposed model’s correlation performance appears to be influenced by the
aggregation strategy. Except for H.265/HEVC distortion, the average solution resulted
in the best outcomes, making adaptive pooling less effective on CVIQ. This is closely
tied to the nature of the content available on CVIQ. As the OR-based aggregation
decreased the performances, it implies that the predicted local qualities are mostly
close to the median. Therefore, less diversity exist among LQs.
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Table VI.2: Performance comparison with SOTA models on the CVIQ database. The
Best performance is highlighted in bold and the second-best is underlined. OursAvg,
OurOR, and OurOR+SAL stand for the proposed model with average, OR-based, and OR
+ saliency based aggregation of local qualities, respectively.
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VI.3.3 Cross-datasets evaluation

With the intent to demonstrate the generalization ability of the proposed model to
new content built using different conditions, we carried out a cross-dataset evalu-
ation. Hence, we trained our model on the OIQA datasets and tested its performance
on CVIQ and vice versa. Table VI.3 reports the obtained performances in terms of
accuracy (PLCC) and monotonicity (SRCC). As shown, our model outperformed the
others while requiring the lowest computational complexity, demonstrating its abil-
ity to generalize to new content and distortions. For instance, by training on OIQA
and testing on CVIQ our model achieved a PLCC (resp. SRCC) score of 0.9145 (resp.
0.9020), outperforming MC360IQA by (approx. 10% PLCC and 7% SRCC), VGCN by
(approx. 3% PLCC and 4% SRCC), and Zhou et al. by (approx. 8% PLCC and 9%
SRCC). By training on CVIQ and testing on OIQA, a similar behavior can be observed.
Here, the proposed model outperformed even an NSS-based model (MFILGN), il-
lustrating its superiority over standard approaches. Comparing among the training
datasets, we observe that training on OIQA resulted in significantly better perform-
ances. Here, the diversity in terms of content as well as distortion types appears to
significantly contribute to the generalization capability. Whereas, less diversity as in
the case of CVIQ, relatively poor performances are attained. Besides, OIQA comprises
GB and WGN, which are not available on CVIQ. This affects the ability of the models
to adapt to new distortions. Nevertheless, the proposed model attained satisfactory
performances compared to SOTA.

Table VI.3: Cross-database performances comparison of the proposed model with
SOTA with respect to their complexity. The best performance is highlighted in bold.

Trained / Tested on Complexity

OIQA / CVIQ CVIQ / OIQA # Params # FLOPs

MC360IQA
PLCC↑ 0.8249 0.7443

22.4 M 22.7 G
SRCC↑ 0.8442 0.6981

VGCN
PLCC↑ 0.8886 0.7911

26.7 M 220 G
SRCC↑ 0.8629 0.7832

MFILGN
PLCC↑ - 0.7885

- -
SRCC↑ - 0.7589

Zhou et al.
PLCC↑ 0.8470 0.7350

29.3 M 6.45 G
SRCC↑ 0.8250 0.7410

Ours
PLCC↑ 0.9145 0.8029

6.19 M 3.38 G
SRCC↑ 0.9020 0.7926

In terms of complexity, the proposed model with 6.19 million of trainable para-
meters and 3.38 G of FLOPs has drastically fewer parameters and requires the least
operations compared to the other models. In particular, VGCN (26.7M, 220G) requires
much computational complexity. This is due to its architecture, involving twenty ResNet-
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18 in parallel with a graph CNN and a subnetwork composed of the DB-CNN. In the
case of MC360IQA (22.4M, 22.7G) and Zhou et al. (29.3M, 6.45G), a higher com-
plexity is also illustrated. However, for the latter it is significantly lower in terms of
number of FLOPs compared to the other multichannel models. The reason lies in its
weights sharing among the CNN channels.

We further monitored the evolution of PLCC and RMSE performances of the pro-
posed model during training on the whole OIQA and CVIQ databases to analyze its
behavior. From Fig. VI.6, we first observe that training on OIQA converges faster than
CVIQ. Training on CVIQ required 407 epochs, whereas training on OIQA lasted 336
epochs. Such a behavior is due to the size of the training sets. With CVIQ, the training
set consists of 528 360-degree images, whereas OIQA has 320. As a result, the latter
is about 40% smaller than the former. Moreover, PLCC and RMSE seem to improve at
the same time in both databases, until reaching a tie by the 150th epoch for PLCC and
170th for RMSE. Overall, the results obtained on both databases are fairly competit-
ive, with OIQA marginally outperforming. This actively exhibits the proposed model’s
ability to represent the training data as well as generalize to new ones.
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Figure VI.6: Evolution of PLCC and RMSE during training the proposed model on
OIQA and CVIQ.

VI.3.4 Ablation study

We conduct several ablation studies to analyze the impact of various components
composing our model, including (i) the use of input normalization prior to training
the model, (ii) the use of the SPA module, short and long skip-connections, and (iii)
loss functions by comparing the use of the Huber loss to MSE and MAE.
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VI.3.4.1 Input normalization

By using local contrast normalization (LCN) on sampled patches prior to training the
model, an improvement up to 4% is achieved, as illustrated in Fig. VI.7. The perform-
ances in terms PLCC (resp. SRCC) are increased by approx. 1.38% (resp. 1.16%) on
OIQA, and by 4.31% (resp. 0.4%) on MVAQD. On CVIQ, the accuracy dropped slightly
by 0.09% whereas the monotocicity improved by 1.5%. In terms of prediction errors,
the adoption of LCN improves the prediction on both OIQA and MVAQD. Based on
the overall performance of the LCN, one may conclude that normalizing input patches
could be advantageous for using RGB content for IQA tasks. This lends credence to
the idea of applying IQA adaptive representations on the input data prior to training.
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Figure VI.7: LCN vs. RGB patches. (top) RGB and (bottom) LCN.

VI.3.4.2 Sampling methods

With the intent to evaluate the efficacy of using an adaptive sampling strategy and
demonstrate the advantage of considering 360-IQA specific characteristics, we com-
pare its performances with a uniform sampling strategy. The latter samples patches
uniformly from the sphere without considering their importance. Here, all patches
are sampled with the same size α0 (described in SEC. VI.2.1) along the latitude and
longitude. In addition, we further analyze the influence of the patch size on the per-
formance of the model. We set the resolution corresponding to α0 to 128 and 256
pixels. The correlations performances are provided in Table VI.4 and the statistical
significance analysis conducted on OIQA is illustrated with Fig.VI.8.

From Table VI.4, the first observation that emerges is that the overall perform-
ances of the uniform sampling lags behind that of adaptive sampling. Incorporating
360-IQA specific properties to sample patches on the sphere appears to improve the
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Table VI.4: Ablating the sampling methods with regard to the patches’ size, i.e. α0.

Sampling Uniform Adaptive

α0 size 128 px 256 px 128 px 256 px

OIQA
PLCC↑ 0.9600 0.9572 0.9612 0.9607
SRCC↑ 0.9524 0.9491 0.9563 0.9553
RMSE↓ 3.8535 4.2070 3.9344 3.9890

CVIQ
PLCC↑ 0.9592 0.9587 0.9618 0.9603
SRCC↑ 0.9390 0.9401 0.9553 0.9570
RMSE↓ 3.7900 3.8417 3.9227 3.7665

MVAQD
PLCC↑ 0.9450 0.8940 0.9512 0.9409
SRCC↑ 0.9022 0.8371 0.9402 0.9253
RMSE↓ 0.2809 0.9399 0.3296 0.3899

performances of the model. As it can be seen, a performance gain is achieved on all
datasets by using the adaptive sampling, with important margins up to 10% in terms
of SRCC when α0 = 256 on MVAQD. Regarding the influence of the size of α0, one
can observe that setting α0 = 128 outperformed α0 = 256 despite the used sampling
method, except on CVIQ. On the latter, using α0 = 256 resulted in a slight improve-
ment in terms of correlation monotonicity (SRCC) and prediction errors (RMSE). By
setting α0 = 128, more patches can be obtained, creating a rich training set with more
examples compared to setting α0 = 256. The amount of the training data certainly
matters because it affects the accuracy of the model. Looking closely into the case of
CVIQ with α0 = 256, one might assume that fewer patches introduce less redundancy
as all patches from the same image are labeled with the same MOS. This is also depic-
ted by the small margin in performances on OIQA that are within 1% of improvement.
However, by analyzing the statistical significance on OIQA in terms of the ability to
distinguish and classify the stimulus with better quality among image pairs, setting
α0 = 128 is found to be significantly superior as illustrated with the plots in Fig VI.8.
From these plots, several observations can be drawn. First, the scores obtained by
the both Better vs. Worse (Fig VI.8 a and c) analysis is significantly higher compared
to the different vs. similar (Fig VI.8 b) one. A difference up to approx. 10% can be
seen with the error bars, which represents 95% confidence intervals. This indicates
that distinguishing between different/similar pairs remains a difficult challenge when
compared to better/worse pairs, which correspond to the visual quality judgment by
the HVS. Second, the use of adaptive sampling with α0 = 128 significantly outper-
forms the other three settings, proving the superiority of (i) incorporating 360-IQA
characteristics and (ii) generating larger training sets. Based on the overall assessment
and statistical significance analysis, we chose α0 = 128 with the adaptive sampling
for training the proposed model.
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Figure VI.8: Statistical significance analysis on OIQA among the sampling methods
with respect to the size of α0 using the Krasula et al. method. "A-128/A-256" stand
for the adaptive sampling with α0 = 128/256 respectively. "U-128/U-256" stand for
the uniform sampling. For the significance plots, a white/black square: row model is
statistically better/worse than the column one; gray square: statistically indistinguish-
able.
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VI.3.4.3 SPA module and Skip-connections

Each convolutional block in the proposed model is augmented with a spatial attention
(SPA) module, as outlined in Sec. VI.2.3. The latter is required to assist the model in
focusing on significant features. This is mostly accomplished by the learnable weights
via backpropagation, which optimizes the attention masks MSPA(F) ∈ RH×W at each
step. The results of the ablation study are provided in Table VI.5 to evaluate the effic-
acy of the SPA module and the utilization of short- and long-skip connections. In addi-
tion, a computational complexity analysis is performed, and the results are provided
in the same table. The computational time for prediction is obtained as the average
of prediction times across 100 images. The comparison is conducted with the SAL-
360IQA [202], a previous version of the proposed model, where a pooling step using
min-, max-, and average-pooling is employed at each Conv Block instead of the SPA
module.

Table VI.5: Ablating the use of the SPA module and skip-connections. The Best per-
formance is highlighted in bold and the second-best is underlined.

OIQA CVIQ MVAQD Computational complexity

Version Skip-conx PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ #Params↓ #FLOPs↓ Time↓

SAL-
360IQA

✗ 0.9611 0.9547 3.8950 0.9589 0.9531 3.8308 0.9507 0.9428 0.3311 9.89 M 5.15 G 0.52s

Ours ✗ 0.9618 0.9537 3.9118 0.9627 0.9555 3.6519 0.9428 0.9296 0.3839 5.74 M 3.34 G 0.38s
Short 0.9664 0.9583 3.6214 0.9615 0.9534 3.7132 0.9546 0.9468 0.3430 5.74 M 3.34 G 0.35s
Long 0.9647 0.9567 3.6818 0.9565 0.9587 3.9390 0.9474 0.8863 0.3437 6.19 M 3.38 G 0.36s
Short +
Long

0.9668 0.9585 3.5707 0.9607 0.9634 3.7475 0.9512 0.9402 0.3296 6.19 M 3.38 G 0.36s

The performances in Table VI.5 suggest that the proposed model is robust. An ac-
curacy up to 0.97, 0.96, and 0.95 expressed by the PLCC is obtained on OIQA, CVIQ,
and MVAQD, respectively. The remaining evaluation metrics exhibit similar behavior,
supporting its robustness. This demonstrates the effectiveness of the adopted training
strategy, including the adaptive patch sampling, normalization, and model design.
When comparing among the proposed model and its version without the SPA module
and skip-connections, the latter reaches the best performance overall, while exhib-
iting less complexity. The complexity is decreased by approx. 50%, 42%, and 39%
in terms of #Params, #FLOPs, and prediction time, respectively, as illustrated by the
complexity analysis.

The ablation study on the use of skip-connections revealed that it can improve sig-
nificantly the performances as depicted by Fig. VI.9. In particular, the short-connection
within the SPA module. Aligning each feature map (before applying attention) with
its refined version (after the attention), makes the aligned weights greater compared
to non-aligned ones. This helps to highlight even more the important features within
the spatial dimension of each feature map. In the case of long-connection, it appears
that a significant improvement is attained. Here, reusing the earliest features at the



Chapter VI: Sal-360IQA 134

last stage through hierarchical element-wise summation brought additional informa-
tion that could be lost between the first Conv Block and the last one. When compared
to short-connection, the latter is adding more values to the overall performance of
the model, as it can be seen with Fig. VI.9. Using only short- vs long-connection, the
model is able to classify image pairs into better/worse significantly better when using
only long-connection. However, combining both skip-connections yielded no statist-
ically significant difference when compared to using only short-connections. Besides,
when combining short and long skip-connections with the SPA module, the model
achieves the best overall performances, as highlighted in Table VI.5. As a result, the
latter is adopted as our model’s final architecture.
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Figure VI.9: Statistical significance analysis on OIQA for the SPA module/skip-
connections using the Krasula et al. method. 1: No SPA/No skip-connections,
2: SPA/No skip-connections, 3: SPA/Short-connection, 4: SPA/Long-connection, 5:
SPA/Short+Long connections. For the significance plot, a white/black square: row
model is statistically better/worse than the column one; gray square: statistically in-
distinguishable.

VI.3.4.4 Loss functions

The Huber loss, which combines the properties of MSE and MAE, was applied to train
our model. To ascertain it effectiveness, we conduct a comparison analysis with the
use of MSE and MAE by the Krasula et al. methods on OIQA. The results are illus-
trated with Fig. VI.10 in terms of (a) capacity to classify into different/similar pairs
using the AUC and (b) the percentage of correct classifications into better/worse pairs
denoted as C0. According to the provided plots, the Huber loss appears to be signi-
ficantly superior to MSE and MAE with both AUC different/similar and C0 better/-
worse analysis. This actively demonstrate its interest regarding the contribution to
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square: statistically indistinguishable.
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ation.

the accuracy of the model. It is proven that better/wore classification is less challen-
ging than different/similar classification. Yet, an accuracy of approx. 0.93 is achieved
with the Huber loss compared to 0.91/0.90 with MSE/MAE. Besides, MSE performed
significantly better than MAE for the AUC different/similar while being statistically
indistinguishable for C0 better/worse.

In addition to the performance comparison, we provide in Fig. VI.11 the contrast
between the training and validation losses to analyze the evolution of training losses.
The contrast is computed as (val_loss − loss)/(val_loss + loss). The latter provides
insights on the training behavior, including 1) under-fitting happening when it can
neither model the training data nor generalize to new one, 2) over-fitting when a
model learns the detail and noise in the training data to the extent that it negatively
impacts its performance on new data, and 3) good-fit when reaching a stable learning.
A contrast equal to 0 depicts an equal loss between training and validation, whereas
a contrast equal or close to 1 suggests an important gap between both losses, with
val_loss being higher and the opposite if equal or close to −1. From the curves, there
appear to be no sign of under-fitting regardless of the used loss function, depicting the
efficacy of the adopted training strategy. The MAE appears to have less gap between
the training/validation losses, compared to Huber or MSE. The behavior of the latter
can be explained by the fact that the training loss is improving faster than the valid-
ation one. However, the achieved losses by the Huber loss are smaller than MSE and
MAE, with an important margin compared to MAE. For instance, the Huber loss at-
tained a training/validation losses of 0.0003/0.003 compared to MSE : 0.0005/0.006
and MAE : 0.024/0.071 for the same fold. This supports the observations drawn above
from the statistical significance analysis.

VI.3.4.5 Local qualities aggregation

A patch-based CNN model is basically trained on individual patches extracted from
the input images. This means that the model is trained only on these patches, without
having access to the whole 360-degree images. Therefore, N local qualities corres-
ponding to N patches are predicted. The mapping of these individual scores to a single
quality score could be challenging. This operation must be performed by adaptive ag-
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Figure VI.12: Evaluating the performances of the OR-based local qualities’ aggrega-
tion by varying the value of λ.

gregation to improve the correlation with the human judgement of perceived quality.
As described in Sec. VI.2.5, the proposed model uses an aggregation strategy based
on OR. To investigate the effect of varying the λ parameter on the performances of
the correlation, we conducted a comparison analysis in terms of PLCC and SRCC on
OIQA, CVIQ, and MVAQD. The performances are shown in Fig. VI.12. As it can be
seen, the PLCC is strongly affected by the value of λ, in particular on OIQA. The PLCC
decreases with bigger λ values until λ = 2.5 and then slightly increases again. The
same can be observed with SRCC. As for CVIQ, the PLCC appears to be stable and less
affected by λ. This supports the observation drawn in Sec. VI.3.2 where the predicted
local qualities seemed to be within an agreement. However, the SRCC increases with
λ= 1.5 and then decreases before it stabilizes. Here, the λ parameter is affecting the
monotonicity over the accuracy. For MVAQD, both PLCC and SRCC slightly improve
at different λ values before decreasing. These behaviors suggest that the variation
among local qualities is variable with respect to the used datasets.

VI.4 Conclusion

In this chapter, an attention aware patch-based CNN model for blind 360-IQA was
presented. Spatial attention is used to help the model focus on spatially meaningful
features. Skip-connections within the spatial attention module were also integrated to
align the preserved features via spatial attention. The exploration behavior, as well as
a latitude-based selection, were used to sample patches appropriately on the sphere
for training the model. The latter has shown a significant improvement over standard
sampling, not accounting for 360-IQA peculiarities. Patch quality aggregation was
accomplished adaptively using saliency and outlier reduction, which resulted in better
correlation performances with the ground truth. The proposed model demonstrated a
good performance across different databases and distortions. In comparison to SOTA
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models in general, and multichannel ones in particular, the proposed model attained
competitive or much better performances while maintaining the lowest complexity.
This demonstrates the value of the adopted (i) appropriate patch sampling, (ii) data
representation, (iii) model architecture, and (iv) aggregation strategy. Furthermore,
the proposed model’s generalization capacity demonstrated its superiority in adapting
to new content and distortions through cross-database evaluations.





General Conclusion

With the increase of immersive media demands and users’ expectations, providing a
good QoE became the focus of content providers, such as Meta, Netflix, Youtube, etc.
In addition, as the technologies allowing users to use immersive applications became
accessible to the general public, the need for appropriate tools contributing to the
evaluation and improvement of QoE becomes urgent. Proper examination of immers-
ive media in terms of their immersive capacity and quality requires the accessibility of
measurement instruments and test protocols for the assessment of different aspects.
IQA among other tools can be used to attain this goals.

The objectives of the presented thesis are to first investigate and understand factors
influencing 360-IQA from the subjective and objective perspectives. The main contri-
butions pertain to both aspects of IQA, with an emphasized focus on the objective
one. Due to the Covid-19 pandemic, conducting more subjective experiments was
quite challenging.

First, part of the research work conducted in this thesis was dedicated to explore
the influence of HMDs on subjective quality ratings. The hypothesis that the HMD
has a significant impact on observers’ quality ratings was confirmed overall and per-
distortion levels. The obtained results allowed to determine to what extent the HMD
may influence the final ratings as well as the generation of cyber-sickness. In addi-
tion, the observations drawn from the conducted subjective experiments allowed to
question the reliability of existing studies, in particular the construction of 360-degree
databases.

Second, we deeply investigated the use of CNNs for 360-IQA at various scales and
from different perspectives. This was achieved by an extensive benchmark of widely
adopted CNNs by including different architectures, image representations, and train-
ing strategies. Various configurations were considered, comprising the use of projected
and radial content, multichannel paradigm and patch-wise training, and retraining on
well-known 2D IQA databases. The obtained results showed that recommendations
coming from other image processing communities may not hold for IQA in general,
and 360-IQA in particular. The conclusion of this study served for the design of ac-
curate and predictive 360-IQA models based on CNN either with transfer-learning or
designed from scratch.

Next, various contributions intended to improve the 360-IQA processing chain
were described. The main focus of these contributions were the pre- and post-processing.
Pre-processing, in addition to data representation and preparation are crucial for

140



General Conclusion 141

achieving predictability and robustness. The obtained results supported these assump-
tions, and allowed to draw solid conclusions on the usefulness of adaptive (i) data-
augmentation, (ii) patches sampling, and (ii) data representation. As for the post-
processing, adaptive aggregation was found useful compared to simple methods, and
that the correlation with subjective scores can be significantly improved.

Finally, based on observations from the various studies conducted in this thesis, we
designed two NR 360-IQA models based on CNNs. The first one named SP36IQA is a
viewport-based multichannel CNN model that incorporates visual scanpaths and JND
probability maps, in addition to visual features. The important feature of this model is
the adaptive weights estimation of each considered viewport. For this, features based
HVS properties are used. The second model named SAL-360IQA, is a patch-based CNN
model featuring spatial attention and skip connections. The spatial attention is used to
help the model focus on spatially meaningful features. The skip-connections are used
at two stages. The first is within the spatial attention module to align the preserved
features via spatial attention. The second stage consists of a long skip-connection
inter convolutional blocks so as to reuse features from earliest layers at later ones.
In comparison to SOTA models in general, and multichannel ones in particular, the
proposed model reached competitive or much better performances while maintaining
lower complexity.
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Limitations and future work

This thesis has several contributions to 360-IQA. We proposed CNN based models to
blindly predict the quality of 360-degree images. In addition, several recommenda-
tions on the use of CNNs for this purpose were stated.

Even though this thesis covers the solution to several issues related to SQA and
OQA of 360-degree images, the link between subjective understanding and objective
evaluation is a promising direction that is still uncovered. In our opinion, the prom-
ising direction to trace could be the incorporation of HMD-induced distortion into
the process of objectively evaluating 360-degree images. As the observers rates the
quality of 360-degree images using HMD, the rendered content is only seen by the
observers. The rendering effects are not considered in OQA frameworks, which could
be seen as inconsistent with subjective evaluation.

Regarding the usage of CNNs for 360-IQA, we concluded that patch-based ones are
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more appropriate if a suitable training strategy is used. However, labeling individual
patches with the same MOS introduces redundancy. Since not all patches provide
the same details or are of equal quality, this might lead to unstable training, on the
one hand. On the other hand, the high resolution of 360-degree images makes it
more inappropriate to assign the quality of the whole image to small portions of it.
Accordingly, solving the labeling issue would benefits to training CNNs for IQA in
general, and 360-IQA in particular.

Regardless of the degree of immersion 360-degree content can deliver to viewers,
stereoscopic 360-degree content can provide even more immersion. It allows users
to have both stereoscopic and 360-degree experiences. This may help to improve the
users’ QoE. In the meanwhile, quality assessment may prove more challenging since
it must deal with stereoscopic and 360-degree content at the same time. Only a few
efforts have been made to evaluate the quality of stereoscopic 360-IQA. To the best of
our knowledge, only the works reported in [208–213] focused on stereoscopic 360-
IQA. Therefore, the latter is a promising direction to follow. All the observations and
conclusions drawn from this thesis may pave the way toward this goal.
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