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Abstract: Despite the long history of fingerprint biometrics and its use to authenticate individuals,
there are still some unsolved challenges with fingerprint acquisition and presentation attack de-
tection (PAD). Currently available commercial fingerprint capture devices struggle with non-ideal
skin conditions, including soft skin in infants. They are also susceptible to presentation attacks,
which limits their applicability in unsupervised scenarios such as border control. Optical coherence
tomography (OCT) could be a promising solution to these problems. In this work, we propose a
digital signal processing chain for segmenting two complementary fingerprints from the same OCT
fingertip scan: One fingerprint is captured as usual from the epidermis (“outer fingerprint”), whereas
the other is taken from inside the skin, at the junction between the epidermis and the underlying
dermis (“inner fingerprint”). The resulting 3D fingerprints are then converted to a conventional 2D
grayscale representation from which minutiae points can be extracted using existing methods. Our
approach is device-independent and has been proven to work with two different time domain OCT
scanners. Using efficient GPGPU computing, it took less than a second to process an entire gigabyte
of OCT data. To validate the results, we captured OCT fingerprints of 130 individual fingers and
compared them with conventional 2D fingerprints of the same fingers. We found that both the outer
and inner OCT fingerprints were backward compatible with conventional 2D fingerprints, with the
inner fingerprint generally being less damaged and, therefore, more reliable.

Keywords: biometrics; fingerprint; optical coherence tomography; OCT; presentation attack detection;
PAD; authentication

1. Introduction

Over the past few years, biometric methods have been used more frequently in the
authentication of individuals. While traditional methods rely on having special knowledge
(e.g., passwords) or possessions (e.g., key cards), in biometrics, different physiological
characteristics of individuals are observed. Among the various biometric modalities, fin-
gerprint recognition is one of best known and most widely used. Despite the long history
behind the usage of fingerprints, there are a number of challenges that limit their use in
operational scenarios, e.g., automatic border control systems such as the European Visa
Information System (VIS) [1] and the Entry Exit System (EES) [2].

With commercial fingerprint scanners, capturing fingerprints in many non-standard,
but nonetheless relevant situations can be problematic. For example, excessively wet
or dry skin and skin damage (by injury or disease) can severely impair the quality of
fingerprint samples [3–5]. In infants, the skin is still very soft, which causes their fingerprint
patterns to be squashed when pressed against a sensor surface. This limits the use of
fingerprints in applications such as preventing child trafficking or tracking the identity of
newborns in hospitals [6,7]. Furthermore, many fingerprint systems are not resistant to
presentation attacks, in which an impostor presents artifacts of fingerprints with the intent
to impersonate the target victim [8]. The recognition of such attacks is called presentation
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attack detection (PAD) and remains an unsolved challenge for many attack scenarios.
Secure PAD-enabled fingerprint systems usually require several additional single-purpose
sensors for decision-making [9].

A promising solution to the mentioned problems is be the use of optical coherence
tomography (OCT). With an OCT scanner, the fingerprint capture process can be extended
into the third dimension, which means this approach could even provide an intrinsic
PAD solution without the need for additional sensors. Furthermore, the identification of
individuals in difficult situations could potentially be improved by using subsurface skin
features, making it more difficult or even impossible to successfully perform a presentation
attack with today’s artifact types. The aim of this work was, as a first step, to develop
a method for efficient segmentation of fingerprints from volumetric OCT scans using
standard PC hardware.

2. OCT Fingerprinting
2.1. OCT Basics

Optical coherence tomography (OCT) is a noninvasive imaging technique, which is
often referred to as the optical equivalent of ultrasonic pulse echo imaging. The method
uses low-coherence interferometry to capture depth-resolved images from within optical
scattering media (e.g., biological tissue) based on optical delay. While the effective imaging
depth is typically limited to less than one millimetre, the spatial resolution can be as high as
a few micrometers [10]. Most OCT implementations provide cross-sectional images, called
B-scans, by acquiring a series of axial measurements, called A-scans, and combining them
into one image. Similarly, a full-volume scan is created by capturing and stacking together
individual B-scans. The term en-face images or C-scan refers to an image created by slicing
the volume horizontally at a certain depth.

While there are many different implementations, all are based on the principles of the
Michelson interferometer: A low-coherence beam of light is divided by a beam splitter
into two beams, one directed to a mirror (the reference arm) and the other to the measured
object. After reflection, the beams recombine at the (same) beam splitter, where they cause
interference, which is picked up by a sensitive photodetector. Since interference can only
occur if the light has travelled a similar distance in both interferometer arms, this setup can
be adjusted very precisely to a desired measurement depth.

Generally, there are two fundamental OCT techniques: time domain (TD) and Fourier
domain (FD). Figure 1a shows the traditional TD variant, which was first demonstrated
by Huang et al. in 1991 [11]. In this method, the axial resolution corresponds to the
coherence length of the light source and the scan depth is controllable via the positions
of the reference mirror. Since only one point can be captured at a time, each A-scan
requires multiple consecutive measurements. Capturing a full-volumetric image, therefore,
requires mechanical scanning in all three directions, which would be too slow for real-time
fingerprint recognition.

FD-OCT, on the contrary, measures the wavelength-dependent reflectivity using a
broadband light source to observe a multitude of different wavelengths, as each wavelength
provides information on the strength of the periodic refractive index modulation (Fourier
component). By applying a Fourier transformation to the reflectivity, expressed as a
function of the wave-vector, a complete A-scan is obtained from a single measurement.
In this case, the axial range corresponds to the coherence length of the light source [10].
FD-OCT has two competing designs: spectral domain-OCT (SD-OCT) and swept source-
OCT (SS-OCT). While SD-OCT, depicted in Figure 1b, has a broadband light source and a
spectrometer to measure the spectrum, SS-OCT combines a single detector with a tunable
narrow-band light source, which can sweep rapidly over the required optical bandwidth.
Both approaches have in common that the reference mirror is static, which leads to the
obvious speed advantages, as there are less moving parts. However, the key feature of
FD-OCT over TD-OCT is the improved sensitivity as a result of the material reflectivity
detection as a function of wavelength [10].
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Figure 1. Basic OCT setup. (a) Time domain. (b) Spectral domain.

While the previously described OCT modalities measure single depth profiles, there
are other potential OCT variants that could directly produce cross-sectional images. Line
field-OCT (LF-OCT) is an FD variant that can capture entire B-scans in a single measure-
ment [12]. For this purpose, the light beam from a tunable narrow-band light source is
formed into a line, and a line-scan camera is used as a detector. To capture an entire volume,
the scanning beam only needs to be moved in one direction over the sample. Full-field-OCT
(FF-OCT) is a TD variant that captures the en-face images by using a camera (2D matrix
sensor) instead of a single photo detector [13]. For a complete volume scan, only the
reference mirror has to be moved. Unfortunately, this variant suffers from long acquisition
times due to the mechanical movement of the reference arm and the oversampling required
to compensate for the low signal-to-noise ratio as a result of measuring in the time domain.

2.2. Anatomy of Fingertip Skin

The protruding lines on the skin surface of fingertips, called friction ridges, have long
been used to authenticate individuals. Features extracted from the biometric characteristic
fingertip are hierarchically organized into three levels: Level 1 refers to the general ridge
flow pattern and type; Level 2 (Galton points) includes discontinuities such as ridge endings
and bifurcations; Level 3 (shape) adds dimensional attributes such as ridge width, shape,
and sweat pores. As these features become smaller at higher levels, more sophisticated
sensors must be used to capture them. For the first two feature levels, the de facto standard
for fingerprint capture devices demands a resolution of 500 ppi, whereas for Level 3, at
least 1000 ppi is recommended [14].

The outer part of human skin can be roughly subdivided into two layers: epidermis
and dermis. The surface of the epidermis represents the commonly used epidermal, surface,
or outer fingerprint. The interface between the two layers, called the epidermal–dermal
junction, consists of connective tissue arranged in double rows. In biometrics, this region is
called the dermal, subsurface, or inner fingerprint because it serves as a template for the
outer fingerprint. Newly formed skin cells migrate from this region to the skin surface,
where they constantly renew the outer fingerprint. This allows the outer fingerprint to
recover from superficial injuries that do not extend into the inner fingerprint region. The
analysis of the inner fingerprint was discussed by Plotnick as early as 1958 [15], but at that
time, there was no way to capture the inner fingerprint in vivo. With the advent of OCT, it
became possible to observe the inner fingerprint in live fingers at sufficient resolution. Due
to differences in the optical density of the individual skin layers and the air, the fingerprints
appear brighter than the rest of the image, see Figure 2a. The full volume scan can be
visualized using ray-marching, see Figure 2b.
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(a) (b)

Figure 2. OCT scan data. (a) A-scan (left) and B-scan (right). (b) 3D scan rendered with ray-marching.

3. Related Work

Observation and analysis of the specific anatomy of the fingertip skin beyond the
outer skin layer is rarely addressed in the biometric literature. This can be explained by the
currently still high cost of suitable OCT acquisition equipment, which is why most of the
work in this field has been carried out in funded projects at research institutes.

The first known work addressing the use of OCT in fingerprint biometrics was pub-
lished in 2006 by Cheng and Larin [16,17]. They showed that thin-film forgeries could
deceive commercial fingerprint scanners, but were detectable with an OCT scanner. In this
early study, a TD-OCT scanner was used, which could capture only a small fraction of the
fingerprint and still took several seconds to acquire the data.

Darlow et al. published several papers at the South African Council for Scientific and
Industrial Research (CSIR) in 2015 and 2016. First, they evaluated various digital filters
for speckle reduction [18], which is a multiplicative noise component, which cannot be
avoided in the OCT scanning process. Later, they published an algorithm that can find and
extract the inner fingerprint in OCT scan data [19,20]. Furthermore, they created a hybrid
fingerprint by fusing the internal and external components [21,22]. This allowed them to
reconstruct damaged areas in the outer fingerprint with information from the inner one.
Automatic PAD [23], as well as the identification of individuals with skin diseases using
the inner fingerprint have also been discussed [24].

The EU project INGRESS, which ended in 2017, focused on capturing the inner fin-
gerprint with a custom-built full-field (FF)-OCT scanner. Since this OCT variant directly
produces C-scans (en-face images), the finger had to be pressed against a glass pane to
flatten and stabilize it. The applied method generated an image of the internal fingerprint
based on multiple measurements over a small depth range, which were then averaged
to produce the final result. Auksorius and Boccara of the Institute Langevin developed
two different FF-OCT scanners during this project. The first device paired an InGaAs
camera and NIR illumination with a wavelength of 1300 nm [13], which is well suited for
skin penetration. However, this specific camera technology is notoriously slow, has a low
resolution, and is very expensive. The associated costs were the main reason for the second
development, which used a (standard) silicon camera and 900 nm illumination [25,26].
By modifying the system setup, a higher frame rate and resolution were achieved while
reducing the cost to only a fraction of the first system. The final setup was able to produce
17 mm× 17 mm en-face images of the inner fingerprint in just 0.3 s. This impressive result
was possible because only a few en-face images were needed. However, the depth of the
internal fingerprint is known to vary between individuals, which is an issue that was not
discussed. It should also be noted that, for full-volume scans, FF-OCT has significantly
longer acquisition times than the conventional scanning-type OCT variants used by most
other research groups.
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The German Federal Office of Information Security (BSI) conducted several projects
on OCT fingerprinting, and recent work was supported by the Norwegian Biometrics
Laboratory (NBL) at the Norwegian University of Science and Technology (NTNU).

An early study confirmed the general suitability of OCT for imaging the inner finger
structure, as well as the sweat ducts between the outer and inner fingerprint [27]. Further-
more, it was shown that, not only the presence of thin-film artifacts, but also the underlying
skin structure of the attacker can be detected. Based on these preliminary investigations,
Sousedik et al. proposed an efficient algorithm for boundary detection between layers in
an OCT fingerprint scan [28]. Since the algorithm tends to generate outliers, they further
developed their method by using a neural network to represent the fingerprint surface and
deal with these outliers [29]. They also derived quality metrics based on the integrity of
the boundaries, since the presence of outliers is often directly related to the non-compliant
behaviour of the captured person (e.g., finger movement during scanning).

In a follow-up project, an SD-OCT scanner was developed specifically for fingerprint
biometrics [30,31]. With its large scan area of 20 mm× 20 mm, the device can capture an
entire fingerprint in up to 1408× 1408× 1024 voxels at a fixed 100 kHz line rate. For this,
the scan head was mounted facing upwards, and a palm rest was installed to keep motion-
related distortions in the OCT data at an acceptable level. Another challenge faced was the
time-efficient processing of the gigabyte-sized datasets, from which all relevant information
had to be extracted within just a few seconds. This problem was later addressed at NTNU,
where Sousedik et al. developed a novel edge detection algorithm that can be very efficiently
executed on GPUs [32]. We therefore considered the BSI and NBL research on OCT
fingerprinting as the starting point for our own work.

4. OCT Capture Device

Prior to the actual research tasks, a suitable measurement setup had to be designed.
Since our main focus was on the development of suitable algorithms, a commercial OCT
scanner was procured from Thorlabs, a well-known optics manufacturer. The main compo-
nents include a base unit (TEL320), galvo-mirror scan head (OCTG-1300), and telecentric
scan lens (OCT-LK4). To enable a familiar scanning process as with conventional fingerprint
capture devices, we decided the OCT scanner should see the fingertip from below. The
fingertip should, however, not be pressed against an optical window (e.g., a glass plate)
to avoid deformation of the skin. Therefore, we developed a finger rest that suspends the
fingertip above the scan head, which is mounted in an upside-down orientation on a linear
actuator with micrometre accuracy. In this way, the measurement distance can be precisely
controlled by the software to align the fingertip with the top edge of the scan volume
for optimum image quality. The sensitive and heavy components were integrated into a
custom-built rolling container (see Figure 3) for protection, while maintaining a degree of
mobility. The OCT setup has the following characteristics:

1. Centre wavelength: 1300 nm;
2. Field of view: 16 mm× 16 mm;
3. Imaging depth: 3.5 mm (air)/2.6 mm (water);
4. Resolution: 20 µm (lateral)× 5.5 µm (axial);
5. Scan size: 1024× 1024× 1024 voxels;
6. Scan rate: 146 kHz line rate;
7. Scan time: ca. 8 s (for this scan size).
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(a) (b)

Figure 3. OCT container setup. (a) Running our measurement and processing software. (b) CAD
model showing the scan head mounted to a linear stage.

5. Fingerprint Segmentation

This section describes the main topic of this work, which is the segmentation of the
outer and inner fingerprint.

5.1. The Outer Fingerprint

The outer fingerprint is located at the highly reflective air–skin boundary, which
appears as a bright thin layer in the volume scan. Since this layer is typically the most
clearly visible feature of the scan, it is relatively easy to find despite its curved shape. Our
fingerprint segmentation algorithm (see Section 5.3) can detect the outer fingerprint directly
in the full-volume scan, which it then outputs in the form of a heightmap, hereinafter
referred to as surface. Since the position of the finger is initially unknown, this surface
covers the entire scan area, not just the fingertip. We therefore needed to post-process
the surface using the fingerprint masking algorithm (see Section 5.4), which removes the
invalid data points.

5.2. The Inner Fingerprint

Due to signal degradation and increased noise below the skin surface, the inner finger-
print is usually much more difficult to recognize than the outer fingerprint. Our solution to
this problem was to move the scan lines independently towards the top edge of the volume,
according to the position of the outer fingerprint, while discarding all data points beyond
the volume boundaries. This flattening brought the dermal–epidermal junction closer to the
top of the volume and allowed for the truncation of the outer fingerprint from the dataset,
which would otherwise interfere with the inner fingerprint when we run the fingerprint
segmentation algorithm a second time. However, we found that an algorithmic flattening
of the dataset can transfer features of the skin surface to the lower skin layers, resulting
in a kind of hybrid fingerprint, which could impact the reliability of PAD. For this reason,
we propose to flatten the volume according to Equation (1) against the outer fingerprint
envelope ES provided by the fingerprint envelope algorithm (see Section 5.5). In this, ∆S
denotes the height (thickness) of the outer fingerprint layer, ensuring its complete removal.
Finally, the inner fingerprint surface is unflattened by reversing the shifts, restoring its real
shape and position in the volume.

V̄(x, y, z) ← V(x, y, z + ES(x, y) + ∆S) , ∀x, y, z

∆S := max{S(x, y)− ES(x, y)}
(1)
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Figure 4 gives an overview of how the algorithms are chained together. Their operation
principle is explained in the following subsections.
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Figure 4. Complete signal processing chain.

5.3. Algorithm: Fingerprint Segmentation
5.3.1. Fast and Robust Edge Detection

Inspired by the work of Sousedik et al. [32], we tried to identify the fingerprints at the
boundaries between the different layers in the scan observed along the scan lines. For this,
we applied a custom 1D edge detection filter with additional low-pass characteristics for
noise suppression individually to each scan line. The size of the filter’s convolution kernel
is adjustable, which enables support for different scan resolutions and allows the filter to
adapt to variations within a scan. The optimal kernel size depends on the height of the skin
layers and can therefore reach a significant fraction of the scan line length. Since it would
be very inefficient to perform convolution directly with this kernel, it was derived twice,
resulting in a sparse representation (Equation (2), Line 3), which, regardless of its size, has
exactly four non-zero filter taps and is therefore much faster to process.

κ
(0)
L = [ 1 2 3 4 . . . (L/2) (−L/2) . . . −4 −3 −2 −1 ]

κ
(1)
L = [ 1 1 1 . . . 1 (−L) 1 . . . 1 1 1 ]

κ
(2)
L = [ 1 0 . . . 0 (−L− 1) (L + 1) 0 . . . 0 1 ]

(2)

To facilitate the comparison of different kernels based on their absolute filter response,
their normalized form was used instead, which ensured that, when applied to the step
function, the peak response would be the same for any kernel size:

k(i)L = κ
(i)
L ×

2/L
L/2 + 1

, i = 0, 1, 2 (3)

With this, the convolution (∗) of the original kernel and a single scan line s can be
performed very efficiently based on Equation (4) in which the double-integral cancels the
second-order derivative, while the zero- and first-order derivatives contribute only the
integration constants. Since most operations are performed on the sparse kernel, the total
computational cost is almost independent of the kernel size.

(k(0)L ∗ s)(z) =
∫ z

z0

db
∫ b

z0

(k(2)L ∗ s)(a)da

+ (k(1)L ∗ s)(z0)× (z− z0) (4)

+ (k(0)L ∗ s)(z0)

The filter was optimized for particularly fast execution on the GPU by processing
each scan line in a separate GPU thread. To avoid costly caching of intermediate results
in off-chip memory, integration and convolution are performed simultaneously, requiring
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only a single pass over the scan line. As part of the surface detection (Section 5.3.6),
the filter was processed by our test system in about 40 ms per one million voxels stored
in a 32-bit floating point, which is the native output format of our OCT scanner. For
comparison, the same algorithm executed more than an order of magnitude slower on
the CPU. To further improve GPU performance, we decided to cast the data to unsigned
8-bit integers, since their value range covers the full dynamic range of the scan data, losing
only the decimal places. We found this conversion to be worthwhile, as it improved
memory consumption by 75%, data transfer time by 50%, and overall execution time by
25%, without significantly affecting the quality of the resulting fingerprint. There was no
additional delay, as the conversion can be performed in parallel with the capture process
using vacant CPU resources.

5.3.2. Intensity Roll-Off Compensation

An inherent limitation of the OCT system used is the depth dependence of the sensitiv-
ity. This means that, when capturing curved objects, such as a fingertip, the intensity profile
is different for regions that are closer to the scanning head than for those farther away. As a
consequence, the outer parts of the fingerprint have lower intensity and contrast, which
makes segmentation of the fingerprint surface more difficult here. To mitigate this problem,
the volume intensity should be normalized. For this, we calculated the average per-depth
intensity for the entire volume and ran a linear regression to measure the intensity decline,
which was then used to artificially amplify the voxel values at the deeper layers.

5.3.3. Volume Pyramid

Segmenting the fingerprint surface based on the position of the maximum filter re-
sponse in each scan line would result in a very rough surface full of holes and peaks. This
is because edge detection is inherently susceptible to noise, of which there is plenty in
an OCT scan. To address this problem, we propose the use of a multi-resolution volume
pyramid for noise reduction, created by downsampling the scan volume multiple times in
all three dimensions. Sousedik et al. used a similar approach, but performed the downsam-
pling only in the horizontal plane and left the depth unchanged [32]. After implementing
and comparing both approaches, we concluded that downsampling in all dimensions as
the better alternative because it does not deform the finger by changing the aspect ratio.
Moreover, it was also about 15% more time and memory efficient.

5.3.4. Contrast Enhancement

Occasionally, the edge detection filter may have problems locating the fingerprint
surface in poor quality scans, e.g., due to suboptimal placement of the finger on the scanner.
To mitigate this problem, the volume pyramid was preprocessed to improve contrast at the
higher resolutions. Starting with the most downsampled volume VN , the volumes Vi were
successively upsampled and then voxelwise multiplied with their respective predecessor
volume Vi−1, and the result was normalized to avoid integer overflow. The basic idea of
contrast enhancement is that, up to a certain level of downsampling, the macrostructure of
fingerprints can be represented more reliably by downsampled voxels than by their higher-
resolution counterparts. Therefore, embedding this information in the higher resolution
volumes increases the likelihood that the fingerprint surface will be correctly identified
in low-contrast situations without sacrificing accuracy when the enhancement would not
be required. It should be noted that, when upsampling Vi to Vi+1, a simple doubling
or averaging of values can trigger the formation of clusters, creating artificial edges in
the high-resolution volumes. To resolve this problem, we used trilinear interpolation to
resample Vi at positions that each correspond to voxel coordinates in Vi+1 and are therefore
slightly offset from the voxel centre in Vi.

5.3.5. Fingerprint Region

Due to the high amount of noise in OCT data, edge detection results can only be
trusted within a relatively narrow band, called the (fingerprint) region R, which is centered
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around the expected true fingerprint surface. Since the position of this surface is initially
unknown, the region is set to encompass the entire volume. From there, it is incremen-
tally narrowed down as Algorithm 1 surface segmentation traverses the volume pyramid
towards full resolution.

Algorithm 1: Fingerprint segmentation
Data: Volume V, Mask M (optional)
Result: Surface S
Def. fw := region scaling factor (hardware dependent)
Def. wN := initial search region size (hardware dependent)
Def. LN := set of initial kernel sizes (scan size and resolution dependent)

1 Copy the full volume scan V from CPU memory to V0 located in GPU memory
. Intensity roll-off compensation:

2 Store the average intensities of the en-face slices V0(:, :, z) as a vector A(z)
3 Run a linear regression on A(z) to measure the deviation δ(z) from the average
4 Set V0(x, y, z)← V0(x, y, z)− δ(z) ∀x, y, z to normalize the intensity profile
. Volume pyramid and contrast enhancement:

5 Generate N > 0 additional versions of V0 where Vn+1 is the result of
downsampling Vn by a factor of two along all three dimensions (note: for
upsampling and downsampling, the GPU’s texture mapping unit is used in
linear interpolation mode)

6 for n := N − 1 down to 0 do
7 Upsample Vn+1 by a factor of two in all three dimensions into V̂n

8 Set Vn(x, y, z)← 2× Vn(x,y,z)×V̂n(x,y,z)
Vn(x,y,z)+V̂n(x,y,z)

: ∀x, y, z to enhance contrast

. Localization of the fingerprint region:
9 foreach 0 ≤ z < sizez(VN) do

10 Set Rz(x, y)← 〈 z− wN/2, z + wN/2 〉 : ∀x, y
11 Execute Sur f aceDetection(VN , Rz, LN , M) to obtain a surface candidate in

subvolume VN(:, :, Rz)

12 do in parallel ∀ x,y
13 Create a histogram h of the surface candidate positions in scan line x, y
14 Find the maximum histogram value h(p)
15 Find the minimum q ≤ p such that h(q) ≥ h(p)/2
16 Set region RN(x, y)← 〈 q− w/2, q + w/2 〉, i.e., around the outermost surface

candidate
. Segmentation of the fingerprint surface:

17 for n := N to 0 do
18 Run worker function 〈Sn, Fn, Kn〉 ← Sur f aceDetection(Vn, Rn, Ln, M)
19 if n = 0 break
20 From kernels in Kn, create a weighted histogram h using Fn as weights
21 In h, find the median m as an estimate of the histogram centre
22 Trim down h below kL and above kR so that the histogram area on either side

of m is halved, i.e., discard the kernels used for half the scan lines
23 Create a new kernel set containing at most kmax kernels with equidistant sizes

between 2× kL to 2× kR (note: we set kmax = 9; using more kernels can
improve accuracy, but will also increase computation time)

24 Apply a 3× 3 median filter to Sn for suppression of occasional outliers
25 Place the new region boundaries at a distance of fw ×m/2 above and below

Sn, and then, upsample the results into Rn−1

26 Copy the full resolution fingerprint surface S0 from GPU memory to S in CPU
memory
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In non-contact fingerprint scanning, region size varies greatly between individual
fingers and can therefore not be predetermined. The wider the region, the higher the risk
of noise-related outliers in the surface. The narrower the region, the less margin there is
to correct such outliers at a later stage. In both cases, the segmentation result are likely
suboptimal. For this reason, we optimize the region by setting its size to a resolution-
specific percentage of the weighted median kernel size used in a previous surface detection
run (Algorithm 2), where the weight is defined as the maximum filter response within
the previous region. The rationale for this approach is that kernel size usually correlates
with skin layer thickness, which means the derived region is neither too narrow nor does it
extend into the adjacent skin layers.

Algorithm 2: Surface detection
Data: Volume V, region R, kernels L, mask M
Result: Result Set RS

1 do in parallel ∀ x,y
2 Null result set: RS(x, y)← N/A
3 if scan line x, y is masked out by M, then break
4 foreach k in L do
5 To perform edge detection, filter scan line V(x, y, :) using kernel size k to

obtain filter response Fk(x, y, :)
6 During the filtering, identify in region R(x, y) the peak filter response

F̂k(x, y) and its position ẑ
7 Set surface Sk(x, y)←{

ẑ, if Fk becomes negative within distance k/2 on either side of ẑ

N/A, otherwise to remove unlikely candidates
8 Compute the surface normal Nk(x, y) using the available surface positions

within resolution dependent radius r around Sk(x, y)
9 For the same positions, observe variations in surface elevation parallel to

Nk(x, y), and find their weighted sample standard deviation s2
k(x, y) by

using F̂ as weights

10 Set RS(x, y)← 〈Sk(x, y), F̂k(x, y), k〉 ⇐⇒ s2
k(x, y) ≤ s2

j (x, y) : j, k ∈ K,
i.e., choose the surface candidate whose kernel is least affected by the noise

11 while ∃ x′, y′ : RS(x′, y′) = N/A (i.e., the surface contains holes) do
12 if RS(x, y) = N/A, then interpolate the missing values from adjacent scan

lines

5.3.6. Surface Detection

As the thickness of the skin layers varies from person to person and also within the
same finger, using a single kernel size for the entire fingerprint does not guarantee good
results. Therefore, we need to identify the optimal kernel size for each scan line separately.
For this purpose, Algorithm 2 filters the volume using a set of equidistantly sized kernels
and identifies the maximum filter response for each scan line within the fingerprint region.
As the algorithm inevitably encounters many unsuited kernel sizes, the position of the
maximum filter response is considered a potential surface position only if the response
declines to zero within the kernel boundaries on either side of the maximum filter response.
This condition increases the likelihood that false edges are discarded for mismatched
kernels. To select an optimal surface position, we have to make two assumptions: Firstly,
we assume that skin layer thickness does not change rapidly throughout the fingertip,
which means there should be at least one matching kernel for each scan line that also
performs well in adjacent scan lines. Secondly, the scan resolution is sufficiently high for
the surface curvature to be negligible in small areas. To assess the reliability of each kernel
at any given point on the fingertip, we calculate the weighted standard deviation from the
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surface positions provided by the same kernel within a small radius, using the peak filter
response as weight. The optimum surface position is then selected based on the kernel that
produces the lowest variance. We found that probing the scan data using various kernel
sizes results in much more reliable approximation of the fingerprint surface, especially in
low-quality scans. We found that probing the scan data locally with different sized kernels
leads to a much more accurate approximation of the true fingerprint surface than using the
same kernel globally, most notably in low quality scans. While the surface may still contain
holes in the places where none of the kernels has worked, these holes are easily collapsed
by repeated interpolation at their perimeter.

5.4. Algorithm: Surface Masking

A segmented fingerprint surface may spuriously extend beyond the fingertip, pro-
vided the scan area was not completely covered by the fingertip. Initially, we attempted
to isolate the fingertip based on general assumptions about the shape and orientation of
the finger. However, this approach failed with unfavourably shaped fingers or whenever
noise led to bad segmentation results that resembled a fingertip. We therefore propose a
shape-independent masking approach that relies solely on the voxel intensities.

Algorithm 3 compares the respective maximum voxel values above and below the
fingerprint surface taken from the outer fingerprint region. Since the external fingerprint is
detected exactly at the air–skin boundary, the values from below the surface are typically
much larger than the values from above the surface for only the scan lines covered by the
fingerprint. This means that, while most positions inside the fingerprint were classified
correctly, initially, about half of the outside positions were classified incorrectly. To remove
these errors, we blurred the mask using a box filter whose kernel size was set to the
expected pixel distance between the friction ridges. The resulting grayscale image was then
re-binarized using an adaptive thresholding technique (Otsu’s method). At this point, there
may be only a few isolated spots left that have not yet been assigned the correct mask value.
We detected and eliminated them by using a series of flood fill operations to determine the
contiguous outer contour of the fingerprint, whose edges are smoothed for the final result.

Algorithm 3: Surface masking
Data: Volume V, outer fingerprint surface S
Result: Mask M
Def. wn := outer fingerprint region size

1 do in parallel ∀ x,y
2 In scan line V(x, y, :), find the maximum voxel values va and vb within a

distance wn above and below the surface S(x, y), respectively

3 Create mask M(x, y)←
{

1, if va < vb

0, otherwise

4 Box blur M, and then, re-binarize the result using Otsu’s thresholding technique
5 Apply a series of flood fill operations to identify the outer contour of the

fingerprint area
6 Eliminate any remaining false mask pixels based on their position relative to the

contour
7 Smoothen the contour by repeating Line 4
8 Apply M to S, and return M to reuse with the inner fingerprint

5.5. Algorithm: Surface Envelope

Flattening the volume against the outer fingerprint would lead to undesirable distor-
tions in the skin layers, which could corrupt the inner fingerprint. We therefore need a
variant of the fingerprint surface that retains the general shape of the finger but does not
contain information about the friction ridges. For this purpose, Algorithm 4 computes two
additional surfaces called the upper and lower surface envelope. While the upper touches
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the fingerprint at its ridge tops, the lower only grazes its valley bottoms. The envelope is
computed separately for each B-scan using an exhaustive search of the ridge tops, starting
at the highest ridge (i.e., the highest point on the fingerprint surface) from where other
ridge tops are found one-by-one in either direction. Observed from the current top, the next
top is observable on the horizon of the (generally) downwards curved surface. However,
since not all fingertips have a perfectly convex shape, the visibility range is limited to the
expected distance between ridges. A preliminary envelope surface is then created by filling
in the missing positions between adjacent tops using linear interpolation. This surface is
not yet reliable, as it can dip into the valleys wherever the friction ridges are crossed at too
shallow an angle. For this reason, the same process is repeated in the orthogonal direction,
creating a second surface whose errors are expected to not coincide with the first. The
envelope is then finalized by selecting the points from both preliminary surfaces that are
closest to the topside of the scan. Lastly, a simple box filter is applied to remove the surface
roughness caused by diagonal ridges or skin imperfections. The same algorithm is also
used to compute the lower envelope, as needed later for the creation of 2D fingerprints.
This is done using a version of the fingerprint surface that has been vertically mirrored at
the upper envelope to invert its peaks and valleys, and then the resulting lower envelope is
flipped back to its normal orientation.

Algorithm 4: Surface envelope
Data: Surface S, mask M
Result: Envelope Eup, Elow
Def. l := anatomy- and resolution-dependent constant set to the expected
maximum distance between adjacent papillary ridges

1 foreach x < sizex(S) do
2 Find S(x, y0) = top{S(x, :)}, i.e., the point closest to the top edge of this B-slice
3 Set i← 0
4 repeat
5 From S(x, yi), find S(x, yi+1) such that both endpoints can be connected by

a straight line that does not intersect the fingerprint surface and that is not
longer than l

6 Perform linear interpolation between the endpoints, and store the results in
a surface Sxy

7 until the mask boundary is reached;
8 Repeat Lines 1–7 to search from S(x, y0) for points in the opposite direction

9 Transpose S, and repeat Lines 1–8 to create Syx

10 Transpose Syx into ST
yx to reset the orientation

11 Set E(x, y)← top(Sxy(x, y), ST
yx(x, y)) ∀x, y in M to prevent sagging between the

papillary ridges
12 Box blur E to reduce surface roughness

13 Set Eup ← E as the upper envelope
14 In Lines 1 to 12, substitute S for Smirr to create Emirr, where Smirr := (2 ∗ Eup − S),

that is S mirrored against Eup
15 Set Elow ← (2 ∗ Eup − Emirr) as the lower envelope

5.6. The 3D-to-2D Conversion

The 2D fingerprints presented here are the result of a simple parallel projection of
their 3D surface, Equation (5). For this, the surface is flattened against its upper envelope.
The remaining surface undulations are then normalized based on the distance between
the upper and lower envelope to compensate for natural variations in ridge height. Any
surface positions outside the unit interval, resulting from imperfections in the envelopes,
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are simply clamped to the interval endpoints. The resulting image shows the ridges in
darker shades than the valleys.

FP2D ← clamp
(

S− Eup

Elow − Eup
, min = 0, max = 1

)
(5)

6. Evaluation
6.1. Segmentation Results

Figure 5a shows a single B-scan picked from the middle of a typical fingerprint scan.
In Figure 5b the same image is overlaid with cross-sections of the segmented fingerprint
surfaces and their respective envelopes. Figure 6 shows the entire 3D surfaces (Figure 6a,b)
and their respective 2D representation (Figure 6c,d). As can be readily seen, the outer and
inner fingerprint share the same ridge pattern. In this particular case, the outer surface is in
a less pristine condition than the inner surface. The inner surface appears to be unaffected
by superficial skin damage (scratches) and adhering dirt particles. However, the inner
fingerprint is not as clearly delineated as the outer fingerprint, most notably towards the
edges, where intensity roll-off (Section 2.1) becomes increasingly pronounced.

(a) (b)
Figure 5. Segmentation results viewed on a B-scan. (a) Raw B-scan for reference (b) Overlaid with
outer and inner fingerprint surfaces and envelopes.

(a) 3D outer surface (b) 3D inner surface

(c) 2D outer grayscale (d) 2D inner grayscale

Figure 6. Cont.
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(e) 2D outer features (f) 2D inner features

Figure 6. Segmentation results for the same finger: outer (a) and inner (b) fingerprint surface, their
respective 3D-to-2D conversion result (c,d), and extracted minutiae points (e,f).

Upon close inspection, the double-rowed ridge tops (Section 2.2) can be seen in the
inner fingerprint, which are rounded in the outer fingerprint. Both fingerprints can be
binarized and their minutiae points extracted; see Figure 6e,f, which results in a near-perfect
match for most healthy fingers.

6.2. Runtime Evaluation

For OCT fingerprinting to become a useful complement to conventional methods,
the response time should be as short as possible. Operational requirements define a
maximum of 10 s for practical applications [33,34]. This time is mostly spent on the long
acquisition process, which lasts about 8 s, leaving 2 s for data processing. The desired
quality of the results was achieved on normal consumer hardware, with most of the
processing performed by GPU computing. The execution times are summarized in Table 1.
Since we were able to undercut the target, there is room for future extensions to the
processing chain.

Table 1. Computation times on 3rd gen. AMD Ryzen and Nvidia RTX 2060.

Operation Execution Time in ms

Copy volume from CPU to GPU memory 175
Volume flattening (GPU) 23
Outer fingerprint segmentation (GPU) 260
Inner fingerprint segmentation (GPU) 290
Surface masking (CPU) 20
2 × surface envelope (CPU) 50
2 × 3D-to-2D conversion (CPU) 4

Total time 822 ms

6.3. Compatibility with 2D Fingerprints

To assess the validity of our method, we performed a N:N comparison between OCT
fingerprints and plain 2D fingerprints. For this, we captured 130 fingers (13 subjects,
10 fingers each) using our OCT device and a commercial Dermalog LF10 fingerprint
scanner. A commercial fingerprint identification software Verifinger 12.3 was used for the
comparison. The metrics considered were mated comparison trials (FNMRs) and non-
mated comparison trials (FMRs). The equal error rate (EER) expresses the percentage of
misclassifications at the cross-over point of the FMR and FNMR curves. The failure-to-
extract (FTX) metric indicates the percentage of fingerprints for which the comparison
software was unable to extract features.

Comparing the outer fingerprints to the 2D fingerprints resulted in an EER of 5.5%
and an FTX rate of 1.5% (Figure 7a). For the inner fingerprints, the numbers improved to
an EER of 2.7% and an FTX rate of 0.7% (Figure 7b). For comparison, the 2D fingerprints
had an FTX rate of 0.6%.
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Manual inspection of the fingerprints revealed severe skin abrasions and scratches on
many of the outer fingerprints. The inner fingerprints, on the other hand, were completely
intact. Therefore, it is not surprising that they performed better than their outer counterparts.
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Figure 7. Comparison of OCT fingerprints and plain 2D fingerprints. (a) Outer fingerprint. (b) Inner
fingerprint.

6.4. Compatibility with Foreign Data

To further test the robustness of our method, we processed OCT fingerprints from
the OCT II project. Their data size is twice as large as ours, at 2 GB per scan. Since the
computation time increases linearly with data size, it doubled to about 1659 ms. Despite
the differences in the data size, field of view, and scan wavelength of their custom-built
OCT device (see Section 3), our method still worked as intended without any modifications.
We therefore have a high degree of confidence in the robustness of our method.

7. Conclusions and Future Work

In this work, we presented a complete digital signal processing chain for segmenting
fingerprints from OCT scans. Our GPU-optimized solution is capable of processing a
gigabyte-sized fingertip scan in less than one second using standard PC hardware. The
segmented OCT fingerprints have sufficient quality for minutiae point extraction and are
backward compatible with conventional 2D fingerprints. Our studies showed a high re-
silience of the inner fingerprint against superficial skin damage. While the outer fingerprint
can be severely compromised, the inner fingerprint is usually not affected, which gives
OCT a decisive advantage over conventional acquisition methods. In our future studies,
we intend to investigate this in more depth. To this end, we plan to improve the 3D-to-2D
mapping to emulate the traditional touch-based capture for which the existing fingerprint
matching devices are designed. Furthermore, we aim to develop an inherently secure PAD
mechanism that leverages the presence of the inner fingerprint and additional skin features
(e.g., sweat ducts) missing from today’s artifact fingers.
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