
Citation: Gholami, A.; Movahedifar,

M.; Khoshdast, H.; Hassanzadeh, A.

Hybrid Serving of DOE and

RNN-Based Methods to Optimize

and Simulate a Copper Flotation

Circuit. Minerals 2022, 12, 857.

https://doi.org/10.3390/

min12070857

Academic Editor: Lev Filippov

Received: 25 May 2022

Accepted: 30 June 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Hybrid Serving of DOE and RNN-Based Methods to Optimize
and Simulate a Copper Flotation Circuit
Alireza Gholami 1 , Meysam Movahedifar 2, Hamid Khoshdast 3,* and Ahmad Hassanzadeh 4,5,*

1 Department of Mineral Processing, Faculty of Engineering, Tarbiat Modares University,
Tehran 14117-13116, Iran; ar.gholami2744@gmail.com

2 Mineral Processing Division, Mining Engineering Department, Islamic Azad University, Sirjan, Iran;
maysam.movahedi68@gmail.com

3 Department of Mining Engineering, Higher Education Complex of Zarand, Zarand 77611-56391, Iran
4 Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science

and Technology, 7031 Trondheim, Norway
5 Maelgwyn Mineral Services Ltd., Ty Maelgwyn, 1A Gower Road, Cathays, Cardiff CF24 4PA, UK
* Correspondence: khoshdast@zarand.ac.ir (H.K.); ahmad.hassanzadeh@ntnu.no (A.H.)

Abstract: Prediction of metallurgical responses during the flotation process is extremely vital to
increase the process efficiency using a proper modeling approach. In this study, two new variants of
the recurrent neural network (RNN) method were used to predict the copper ore flotation indices,
i.e., grade and recovery within different operating conditions. The model input parameters including
pulp pH and solid content as well as frother and collector dosages were first analysed and then
optimized using a two-step factorial approach. The statistical analysis showed a reliable correlation
between operating parameters and copper grade and recovery with coefficients of 99.86% and 94.50%,
respectively. The main effect plots indicated that pulp pH and solid content positively affect copper
grade while increasing the frother and collector dosages negatively influenced the quality of the
final concentrate. Despite the same effect from pulp pH, reverse effects from other variables were
observed for copper recovery. Process optimization revealed that maximum copper recovery of
44.39% with a grade of 11.48% could be achieved under the optimal condition as pulp pH of 10, solid
content of 20%, and frother and collector concentrations of 25 g/t and 9.9 g/t, respectively. Then, the
predictive efficiency of long short-term memory (LSTM) and gated recurrent unit (GRU) networks
with proper structure were evaluated using mean square error (MSE), root mean square error (RMSE),
mean absolute percentage error (MAPE), and correlation coefficient (R2). The simulation results
showed that the LSTM network with higher R2 of 0.963 and 0.934 for copper grade and recovery,
respectively, was more effective than the GRU algorithm with the corresponding values of 0.956 and
0.919, respectively. The results show that the LSTM model could be useful in predicting the copper
flotation behaviour in response to changes in the operating parameters.

Keywords: copper ore flotation; recurrent neural network; predictive geometallurgy; long short-term
memory (LSTM); gated recurrent unit (GRU)

1. Introduction

Nowadays, simulation and modelling science are widely used as a reliable, fast, and
low-cost solution to predict the behaviour of mineral processing units. Using simulations
and modelling before or instead of experimental studies involving a large number of
laboratory tests can significantly reduce executive and manpower costs. Furthermore, the
flexibility of such approaches makes it possible to change or modify various stages of
the process design without the need for a significant change in the initial redesign [1,2].
So far, several methods have been developed for modelling and simulation of mineral
processing units, of which empirical and semi-empirical types and statistical models are
the most common.

Minerals 2022, 12, 857. https://doi.org/10.3390/min12070857 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12070857
https://doi.org/10.3390/min12070857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-0961-4730
https://orcid.org/0000-0002-6410-4736
https://doi.org/10.3390/min12070857
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12070857?type=check_update&version=1


Minerals 2022, 12, 857 2 of 26

Despite the widespread use of these models, especially in simulation software de-
velopment, each of the above approaches is associated with limitations that make their
application in real operational environments challenging. For example, empirical and
semi-empirical parametric models are developed based on a series of data sets from a
specific process or multiple processes. Therefore, their use in new processes with different
operating conditions leads to inefficiency and reduced accuracy in some cases. However,
most models have tried to manage this limitation to some extent by considering the calibra-
tion coefficients [3,4]. The development of statistical models is easier than empirical models.
However, the most important challenge of statistical models, in addition to being limited to
the initial data of model development, is to include parameters that usually lack physical
meaning. For example, variables that are the product of more than two major effects (the
primary variable) and are abundantly observed in the design of experiment (DOE)-based
models and cannot be interpreted in the model [5,6]. Besides, although mineral processing
processes have relatively simple mechanical and physical aspects, they have very complex
mechanisms, some of which still remain unknown. Metallurgical and operational factors
as well as their interactions are major factors responsible for such complexities. As such,
modelling and simulation of these processes have always posed a controversial topic.

In recent years, the use of expert system methods (ESM) such as artificial neural
networks, and genetic algorithms have been proposed to simulate complicated separation
techniques [7–9]. Intelligent algorithms process experimental data and transmit under-
lying knowledge in order to create a network structure. It is possible to apply ESM to
implement intricate functions in a wide range of fields such as process automation, con-
trol and monitoring, medical diagnosis, and image analysis. Nowadays, we can solve
difficult problems for humans and usual computers using efficiently trained intelligent
algorithms [10–12]. Forecasting with ESMs has been one of the main uses of the algorithms,
which have also shown excellent results. The good performance of ESMs has made them
popular in different scientific fields, including mining and mineral processing. For in-
stance, Jorjani et al. [13] used artificial neural networks to simulate the process of leaching
rare earth elements from apatite concentrate on an industrial scale and showed that a
reasonably accurate model could be developed using the improved ANN algorithm. In a
later study, Milivojevic et al. [14] simulated the nickel ore leaching process to demonstrate
that expert systems are more reliable than linear regression-based statistical models. In
another research, Hoseinian et al. [15] used a hybrid neural-genetic algorithm to simulate
copper recovery during a column leaching process of a copper ore sample on a pilot scale,
and found that using an appropriate algorithm could yield reliable prediction results. In
a recent study, using hybrid artificial neural networks and particle swarm optimization
(PSO), Sobouti et al. [16] simulated lead recovery during the leaching of lead concentrate.
The noteworthy aspect of the study was the wide range of operating parameters used in
the simulation, such as temperature, liquid/solid ratio, stirring speed, fluoroboric acid
concentration, and leaching time. They showed that an effective simulation of the process
could be achieved using an optimized ANN-PSO algorithm. Artificial neural networks
have also been successfully used to simulate mineral processing operations reported by
Vyas et al. [17]. In their study, ANN was used to simulate and predict the spent catalyst
bioleaching process with acceptable accuracy, and simulation results were presented in both
numerical and graphical forms. According to Ghobadi et al. [18], the copper flotation circuit
was modelled and optimized simultaneously using a genetic algorithm. They found that in
comparison to conventional mathematical methods, an oriented genetic algorithm reduces
the calculation time by 1/60 for a two-stage flotation system and can provide higher opti-
mization accuracy. In another study, Gholami and Khoshdast [19] found that with a limited
number of operating data, multiple metallurgical responses of the bioflotation process of
coal can be accurately simulated using the ANN method. Their investigation into different
algorithms for developing the ANN model demonstrated that the simulation accuracy is
greatly influenced by the choice of the network algorithm. Recently, Gholami et al. [20]
coupled historical data and deep learning techniques to predict the flotation behaviour of
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a copper mine in response to mineralogical and operational variables. They showed that
mixed statistical/intelligent methods can be a promising approach to accurately simulate
the flotation process with an accuracy of more than 95%.

The effective application of the recurrent neural network (RNN) method has also
been reported by a few researchers. For example, radial basis function neural network,
recurrent neural network, and multivariate nonlinear regression have been used to predict
the metallurgical performance of the flotation column [21]. It was shown that the recurrent
neural network forecasted the metallurgical performance of the flotation column better
than the radial basis function neural network and multivariate nonlinear regression models.
The same conclusions have also been recently reported by some other researchers [22,23]
to estimate the mineral grade in the field of flotation. Inapakurthi et al. [24] proposed
a method using RNN for simulation of industrial grinding circuit in the lead–zinc ore
beneficiation process. They also demonstrated that the RNN model can successfully control
a GC while tracking its set point without violating any constraints.

The main conclusion stemming from the above studies is that intelligent modelling
methods along with limited amount of data of operational/process parameters can be used
to simulate mineral processing operations successfully. Considering the results reported
in the above studies, the simulation has a high degree of accuracy in most cases, which
is highly desirable from an application perspective [25]. Hence, in this study, a mid-
size copper mineral processing plant was targeted to intelligent simulation using long
short-term memory (LSTM) and gated recurrent unit (GRU) networks as two well-known
RNN methods. Among intelligent modelling methods for time series and sequential data
predictions, RNNs are the commonly used ones. LSTM and GRU have a similar overall
structure, but LSTM is more complex. Therefore, in addition to accurate prediction of
output variables, a comparison of these two methods is also considered in this paper.
The main parameters on the efficiency of the flotation process including pulp pH, solid
content, and concentrations of frother and collector were first optimized by the DOE
method and then, were considered as inputs in the model. Moreover, an accuracy analysis
was performed to investigate the reliability of copper grade and recovery prediction.

2. Materials and Methods
2.1. A Brief Description of the Processing Plant

Studies were performed in the Takht Gonbad copper processing plant (Sirjan, Iran).
With a practical capacity of 230 t/h, this plant beneficiates a copper sulfidic ore with an
average copper grade of 0.45% to a concentrate with a grade of 22 ± 2% through several
stages of roughing and cleaning. The copper grade in the final tailings of this plant is about
0.1%. According to Figure 1, the crushed ore is first broken down by four ball mills with
capacities of 50 to 80 t/h to reduce the particle sizes to 80% finer than 100 µm. Comminuted
particles are fed to the hydrocyclone unit, classifying them into two fine and coarse parts.
The hydrocyclone overflow, consisting of particles 80% finer than 75 µm, is directed to
a conditioning tank with a capacity of 50 m3 to prepare the feed for the flotation circuit.
At this stage, flotation reagents including sodium isopropyl xanthate (Z11) and sodium
dithiophosphate (DTU) as copper mineral collectors, methyl isobutyl carbinol (MIBC) and a
polypropylene glycol with molecular weight of 395.61 g/mol (A65) as frothers, lime as pH
regulator, and NaHS as pyrite depressant (according to the mineralogical composition of the
input feed) are added to the pulp. The concentration of reagents is adjusted according to the
metallurgical conditions of the plant. The range of changes in the amount of consumption
of these reagents is presented in Table 1. Prepared pulp with a solid content of about 25%
(w/w) is first introduced into the rougher line with five 50 m3 tank cells. The concentrate of
this step is directed to an eight-cell row, including four cleaner and four recleaner cells to
increase the copper grade. The final concentrate of this stage leaves the circuit as the final
concentrate after several stages of recirculation in the cleaning circuit. The tailing is also
returned to the beginning of the rougher circuit. Rougher tailing transfers to the scavenging
circuit consisting of two 6-cell rows. The tailing of this unit is considered the final tailings
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of the plant, but the concentrate of the first two cells from both lines is returned to the
cleaning circuit, and the concentrate of the last four cells is fed to the rougher circuit.
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Table 1. Operating factors and their levels studied in the screening experimental design.

Factor Variable Unit Low Actual High Actual Mid Level Std. Dev.

A pH - 10 12 11 0.85
B Solid content (%) 20 30 25 4.26
C MIBC conc. (g/t) 5 35 20 12.79
D A65 conc. (g/t) 5 15 10 4.26
E DTU conc. (g/t) 5 35 20 12.79
F Z11 conc. (g/t) 5 25 15 8.53
G NaHS conc. (g/t) 0 10 5 4.26

2.2. Ore Sample and Reagents Used

A representative sample was taken from the hydrocyclone overflow as the feed of
the flotation circuit (Figure 1) to determine the physical and mineralogical characteristics
of the studied ore. Samples were collected using an automatic scoop sampler with an
adjustable container size. Light microscopy (Axio Imager 2 Pol, Zeiss, Jena, Germany) was
used to determine the mineralogical composition of the ore. The particle size distribution
of the sample was measured using the standard dry sieve analysis method. All the applied
reagents, including MIBC and A65 frothers, Z11 and DTU collectors, and NaHS depressant
were sourced from the company’s warehouse.

2.3. Screening of Operational Variables

Due to the variety of the operating parameters, first, the effectiveness of each oper-
ational variable was evaluated using a fractional factorial experimental design utilizing
Design-Expert software (Demo version 7.0.0, from Stat-Ease Inc., Minneapolis, MN, USA).
The levels of each variable were selected based on monitoring the process over six months
(autumn and winter 2021). Table 1 lists the variables and their levels considered in the
screening design. The experimental design used for screening studies and their practical
results are presented in Table 2. These studies evaluated the grade and recovery of copper
in the rougher stage concentrate as the process responses.
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Table 2. The structure and practical results of the screening experimental design.

Operating Factors Responses

Run A: pH B: Solid Content
(%)

C: MIBC
(g/t)

D: A65
(g/t)

E: DTU
(g/t)

F: Z11
(g/t)

G: NaHS
(g/t)

Cu Grade
(%)

Cu Recovery
(%)

1 10 20 35 15 5 5 10 4.90 71.53
2 12 20 35 5 35 5 0 4.90 86.87
3 11 25 20 10 20 15 5 3.60 53.88
4 10 30 5 5 35 5 10 2.96 64.92
5 12 30 35 15 35 25 10 4.30 44.00
6 10 20 5 15 35 25 0 4.70 58.28
7 12 30 5 15 5 5 0 4.40 58.17
8 12 20 5 5 5 25 10 5.20 55.82
9 11 25 20 10 20 15 5 2.60 62.42

10 12 30 5 15 5 5 0 4.80 59.59
11 12 20 35 5 35 5 0 5.10 68.90
12 10 20 35 15 5 5 10 5.17 56.97
13 12 30 35 15 35 25 10 4.60 50.91
14 10 30 35 5 5 25 0 3.57 52.75
15 11 25 20 10 20 15 5 3.15 58.14
16 11 25 20 10 20 15 5 3.10 58.83
17 12 20 5 5 5 25 10 4.90 58.38
18 10 20 5 15 35 25 0 4.50 68.48
19 11 25 20 10 20 15 5 2.44 41.96
20 10 30 35 5 5 25 0 3.61 53.32
21 11 25 20 10 20 15 5 3.54 62.53
22 10 30 5 5 35 5 10 2.78 59.05

2.4. Statistical Optimization Studies

Influential operating variables for optimization studies were selected according to the
results of the screening studies as listed in Table 3. Then, a full factorial design was used to
investigate the real impact of each parameter, their interactions, as well as process optimiza-
tion. The optimization design with practical results is presented in Table 4. To evaluate
the nonlinear effects of each parameter, the centre point was used with six replications.
Moreover, each main experiment was replicated twice to achieve more reliable results and
eliminate bias in the effects. Alike the screening tests, copper grade, and recovery at the
rougher stage were considered as the process responses.

Table 3. Operating factors and their levels studied in the optimization experimental design.

Factor Parameter Unit Low Level High Level Mid Level Std. Dev.

A pH 10 12 11 0.92

B Solid
Content (%) 10 20 15 4.59

C A65 Conc. (g/t) 10 25 17.5 6.88
D Z11 Conc. (g/t) 0 20 10 9.18

Table 4. The structure and practical results of the optimization experimental design.

Operating Factors Responses

Run A: pH B: Solid
Content (%)

C: A65
(g/t)

D: Z11
(g/t)

Cu Grade
(%)

Cu Recovery
(%)

1 11 15 17.5 10 11.07 41.01
2 10 20 25 20 7.45 57.32
3 12 10 25 20 9.36 53.72
4 12 10 25 0 8.33 41.69
5 10 20 10 0 12.50 45.33
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Table 4. Cont.

Operating Factors Responses

Run A: pH B: Solid
Content (%)

C: A65
(g/t)

D: Z11
(g/t)

Cu Grade
(%)

Cu Recovery
(%)

6 11 15 17.5 10 11.00 44.18
7 10 10 10 0 12.30 40.67
8 12 10 25 20 9.21 58.05
9 12 20 25 20 12.93 44.11

10 10 10 10 20 3.82 27.09
11 10 20 10 20 14.10 38.82
12 12 10 25 0 8.39 42.41
13 10 20 10 20 14.05 38.59
14 10 20 25 0 16.83 37.40
15 10 10 25 0 7.81 50.11
16 10 10 25 20 4.00 62.39
17 11 15 17.5 10 10.97 46.31
18 11 15 17.5 10 10.89 50.27
19 12 20 25 20 12.89 45.49
20 11 15 17.5 10 10.99 53.26
21 12 10 10 0 10.80 55.61
22 10 20 10 0 12.40 47.01
23 10 10 25 20 4.20 61.19
24 11 15 17.5 10 11.10 50.42
25 12 20 10 0 10.60 47.07
26 10 20 25 0 16.11 39.09
27 12 20 10 20 12.80 44.21
28 12 10 10 0 10.50 56.77
29 12 20 10 20 12.50 47.39
30 10 10 10 0 12.50 44.46
31 12 10 10 20 7.81 40.29
32 12 10 10 20 7.75 40.85
33 12 20 25 0 11.90 45.40
34 10 10 25 0 7.88 50.21
35 12 20 25 0 11.70 45.66
36 12 20 10 0 10.80 46.32
37 10 20 25 20 7.51 58.60
38 10 10 10 20 3.75 27.00

2.5. Flotation Experiments and Calculations

All the experiments were carried out in a standard D-12 Denver® flotation machine
equipped with a 4 L cell. To perform each test in the screening (Table 2) and optimization
(Table 4) experimental designs, after setting the operating conditions according to the
run number in each design, the pulp mixture was agitated at impeller speed of 1000 rpm
for 5 min in the flotation cell to ensure that all ore particles were well suspended. After
conditioning, water was added to the cell to a specified level after conditioning. The pulp
level was maintained constant during each test by constantly adding water as required. At
the end of each experiment, the collected concentrates and tailings were weighed and dried
in an oven at 60 ◦C for 24 h. Samples were then sent to the analysis laboratory to determine
their copper content. The efficiency of the flotation process was evaluated in terms of final
recovery and the grade of Cu using the following equation [26,27]:

R =
C
F
× c

f
× 100, (1)

where R (%) is recovery, F (kg) and C (kg) are the total mass of feed and concentrate,
respectively, f (%) and c (%) are elemental grades (%) of feed and concentrate, respectively.
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2.6. Recurrent Neural Network Simulation
2.6.1. RNN-Based Methods

(A) Recurrent neural network: Since the long short-term memory (LSTM) and gated
recurrent unit (GRU) networks are improved variants of the recurrent neural network
(RNN) and are used in state-of-the-art deep learning applications, the structure of RNN
was discussed first. The RNN is a type of feedforward neural network that maintains
internal memory and is able to remember information throughout time. This property
makes it proper for processing time series and sequential data [28]. The network structure
and circuit diagram of RNN are shown in Figure 2.
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In the circuit diagram, RNN takes X0 from the input sequence and then delivers h0 as
the output, which together with X1 are the inputs of the next step. Similarly, h1 along with
X2 are the inputs to the next step, and so on. In such a manner, RNN constantly remembers
the information during the training. The current state formula is as follows:

ht = f (ht−1, xt), (2)

where xt and ht are the input and output sequence of a RNN unit, respectively. Equation (3)
is also used to apply tanh as the activation function, which helps to regulate the values that
flow through the network. Finally, yt is the network output [29]:

ht = tanh(Whhht−1 + Wxhxt), (3)

yt = Whyht, (4)

where W and h represent the weight and hidden vectors, respectively. Whh is the weight in
the previous hidden state, Whx is the weight in the current input state, and Why represents
the weight in the output state. tanh is an activation function that implements nonlinearity.
Although RNN is theoretically designed to predict time series, it is difficult to predict long
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time series in practice because of the length of information, which can cause a vanishing
gradient [30]. LSTM and GRU are the updated versions of RNN to overcome this challenge.

(B) Long short-term memory network (LSTM): LSTM is a special kind of RNN net-
work that was introduced first by Hochreiter and Schmidhuber [31] and is able to tackle
the problem of vanishing gradient and long length input processing of RNN. The LSTM
network has internal mechanisms called gates. These gates (including input gates, forget
gates, and output gates) control the data flow and also specify what data is important
in the sequence and should be retained and what data should be removed. In this way,
the network passes important information along the sequence chain to obtain the final
output [32]. A structure diagram of LSTM is shown in Figure 3.
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In Figure 3, xt, ht, and Ct are the input, the output, and the cell state at time t, re-
spectively. gf controls the information flow from the previous time step and is called the
forget gate. This gate determines whether or not the information from the previous step is
used. The update gate, which is indicated with gu, is responsible for controlling the new
information flow. This gate determines whether new information should be used at the
current time step. go is the output gate and specifies how much of the previous information
of time steps (previous and current) is transferred to the next time step. W, b, and σ are the
weight of the model, the bias of the model and the activation function, respectively. The
following equations represent the calculation process:

Ĉt = tanh(Wc·[ht−1, Xt] + bc), (5)

Ct = g f ·Ct−1 + gu·Ĉt, (6)

g f = σ
(

W f ·[ht−1, Xt] + b f

)
, (7)

gu = σ(Wu·[ht−1, Xt] + bu), (8)

go = σ(Wo·[ht−1, Xt] + bo), (9)

ht = go·tanh(Ct). (10)

(C) Gated recurrent unit network (GRU): GRU was introduced by Chung et al. [33]
to address the shortcomings of the traditional recurrent neural network and also to reduce
the overload of LSTM architecture. The GRU has only two gates, including update and
reset gates, compared with the LSTM. These gates are basically two vectors that are used
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to decide whether the information is transmitted to the output or not [34]. A structure
diagram of GRU is shown in Figure 4 and relevant equations can be found below:
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The reset gate specifies how much of the previous information is not needed (forgotten)
and how much of the previous step information is used in the current step. The update
gate specifies whether to use the previous state or current input (or a combination of both)
at a time step. xt is the input at time t, and σ is the activation function and ht and ht−1 are
the output at time t and t − 1, respectively. The calculation process is expressed by the
following equations:

Ĉt = tanh(W1·[gr·Ct−1, Xt] + bc), (11)

gu = σ(W2·[Ct−1, Xt] + bu), (12)

gr = σ(W3·[Ct−1, Xt] + br), (13)

Ct = gu·Ĉt + (1− gu)·Ct−1. (14)

where gr and gu are the outputs of reset gate and update gate at time t.

2.6.2. Modelling Process

RNNs are considered the state-of-the-art algorithm for sequential data. LSTM and
GRU are RNN-based algorithms that were developed with new designs to address the
weaknesses of traditional RNNs. In this study, four inputs were included as pH, solid
content (%, w/w), A65 concentration (g/t), and Z11 concentration (g/t); and the outputs
were Cu grade (%) and its recovery (%). To analyse the methods and estimate outputs,
four models were developed using the inputs. Table 4 shows the inputs and outputs as the
operation factors and responses, respectively. Although controlling the flow of information
is the same in both LSTM and GRU, LSTM wraps the hidden state into a memory unit,
and GRU just passes the full hidden content without any control directly to the next cell.
The models’ parameters, including number of hidden layers, number of epochs, etc., were
carefully examined and selected based on the complexity of the data and trial and error
procedure. Indeed, as a result of increasing the number of parameters, overfitting occurred.
An overfitted model has high accuracy on training data but low accuracy on test data. For
the number of epochs, increasing this parameter had no significant effect on the accuracy
of the model; it only increased the time it took to develop the model. The optimal amounts
of parameters were selected according to the mentioned points. In addition, the GRU and
LSTM algorithms are similar in general structure, and the most important difference is
that there are fewer parameters in GRU, which accounts for its faster training time. One
of the purposes of using these two algorithms in this project, in addition to effectively
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predicting the outputs, is to examine the results of these two models in order to select a
more appropriate algorithm. LSTM has a significant advantage over the GRU algorithm in
accordance with its more complex structure. Figure 5 shows the flowchart of the modelling
procedure to estimate the Cu grade and recovery using RNNs.
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Random forest (RF) and ANN with the Levenberg–Marquardt optimization algo-
rithm (ANN-LMA) as the two other popular prediction methods were also implemented
for comparison:

• Random forest is a powerful learning method for classification and regression prob-
lems by constructing a multitude of decision trees at training time. This non-parametric
method uses ensemble learning to avoid overfitting. To find the optimum number
of trees, different numbers were tested. Based on the results, 26 and 22 trees were
found to have the most accurate prediction for Cu grade and Cu recovery, respectively,
and increasing the number of trees did not have significant impact on the accuracy of
results. The optimum depth of the tree was also found to be 4 for both Cu grade and
recovery models, and increasing the maximum depth of trees resulted in overfitting;

• LMA is known as the preferred method for minimization in nonlinear least squares
problems. LMA interpolates between the Gauss–Newton algorithm and the gradient
descent method. Compared with Gauss–Newton, Levenberg–Marquardt is more
robust and, in many cases, it will find a solution even if it starts very far from the
final minimum. ANN-LMA was found to be superior in Ref. [19] against other
metaheuristic algorithms. The proper structure for ANN-LMA was found to be
5-12-4-1 for the Cu recovery model and 5-10-5-1 for the Cu grade model based on trial
and error.
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The coding and modelling process was implemented using MATLAB software (Math-
Works R2021b v9.11, MathWorks, Inc., Natick, MA, USA). Before modelling, normalization
was applied to improve the networks training phase using Equation (15) [12]:

xn =

(
xi − xmin

xmax − xmin

)
, (15)

where Xn and Xi are normalized and actual values, respectively. Xmin and Xmax are the
minimum and maximum values of each subset (inputs–outputs). Besides the modelling
process, the Spearman correlation analysis, to find out the relationship between inputs and
outputs, and sensitivity analysis to calculate the effectiveness of each input data on the
outputs were also applied; the outcomes are presented in the Section 3.

3. Results and Discussion
3.1. Results of Ore Characterization

The mineralogical results showed that chalcopyrite and chalcocite are the predominant
copper-bearing minerals in the ore. The most important gangue minerals were pyrite and
clay minerals. The particle size distribution of the studied ore sample is shown in Figure 6.
The feed to the flotation circuit contains 80% by weight of particles finer than 78 µm.
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3.2. Statistical Analysis of Screening DOE

To determine the most important parameters affecting metallurgical responses, Pareto
charts were drawn based on the results of variance analysis. Pareto charts are quick
tools used to assess the significance level and the type of impact (increasing or decreas-
ing) of the parameters under study. In these charts, effects with a value greater than
t-value are identified as the significant factors. The type of effect is also shown by
the software and based on the relevant statistical calculations with different colours.
According to Pareto charts of grade and copper recovery in Figure 7, it can be seen
that the most significant operating parameters affecting the grade of concentrate are
solid percentage (B) > pH (A) > and concentration of A65 frother (C). Generally, the copper
grade decreases significantly with the increasing solid content mainly due to transporting
gangue minerals (i.e., pyrite, silicates and clay minerals) into the concentrate through the
false flotation process [35]. This result is in line with the outcomes presented by previous
studies [20,36]. Copper grade is also significantly affected by pH and A65 concentration.
Although the effects of DTU (E) and MIBC (C) concentrations are relatively high, these
effects are not statistically significant.
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Although the solid content (B) and the concentration of Z11 (F) are the most effective
factors affecting copper recovery, their effects are both negative. It should be noted that
since the interaction effects of the parameters in factorial designs cannot be analysed due to
bias, providing any physical interpretation for the main effects observed in these diagrams
cannot be reliable. For this reason, the results of this design have only been used to select
the most effective operational variables for detailed studies. In addition, according to the
type of effect, the amount of levels considered in the optimization plan was also modified.
For example, according to Figure 7, the effect of solid content on both responses is negative;
therefore, the levels of this parameter in the screening design (20–30) were reduced in the
optimization design i.e., 10–20, and similarly, the amount of levels was increased for the
frother concentration and decreased for the collector concentration. The pH levels were not
changed due to the operational limitations.

3.3. Statistical Analysis of Optimization DOE

The first step in analysing the impact of operational variables on the process responses
is developing a parametric model that can accurately predict the desired response in the
operating space, i.e., within the low to high levels intended for the variables [37]. In
the second step, after developing the initial model by the software, abnormal data were
identified by examining the model parameters and the model was optimized by the user to
achieve the best fitting results. The result of these measures for the data obtained in the
flotation experiments was the development of nonlinear models for all process responses
as below:

Cu Grade (%) = 10.17 + 0.35A + 2.15B− 0.39C− 1.16D− 0.65AB + 0.46AC + 1.30AD + 0.24BC +
0.62BD− 0.17CD + 0.54ACD− 1.26BCD + 0.68ABCD,

(16)

Cu Recovery (%) = 45.91 + 0.91A− 0.72B + 3.34C + 0.28D− 0.59AB− 3.41AC− 2.16BC + 0.91BD +
5.22CD + 1.71ABC− 0.97ABD− 1.53ACD− 1.78BCD− 1.90ABCD,

(17)

where the factors are described in a coded form. The validation parameters for the devel-
oped models are listed in Table 5. According to Fisher’s F-test and marginal probability
value (p model < 0.0001), which are shown in Table 5, all of the suggested prediction models
are significant. For assessing the significance of a predictive model, the residuals normal
probability plot is an effective tool [38]. According to the normal probability plots shown
in Figure 8, all responses were relatively uniform, confirming the assumptions of normality
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and the independent nature of residuals during the statistical analyses. In addition, the
high values of the adjusted correlation coefficients also indicate the significance of the
prediction models. The Pred R2 values were reasonably high, indicating that the model is
able to explain variability in the prediction of new observations with adequate accuracy,
which is in reasonable agreement with the Adj R2 values [39]. Another statistical measure,
called adeq precision, shows the signal-to-noise ratio, and any value over 4 is considered
desirable [6]. In this investigation, the ratios were 134.99 and 20.59 for copper grade and
recovery, respectively. These values show an adequate signal so that the models can be
used to navigate the design space and predict appropriately.

Table 5. Validation parameters showing the significance of the models for metallurgical responses.

Model F-Value p-Value R2 (%) Adj R2 (%) Pred R2 (%) Adeq Precision

Cu Grade 1251.23 <0.0001 99.86 99.78 99.57 134.99
Cu Recovery 24.07 <0.0001 94.50 90.58 88.62 20.59
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Model Equations (16) and (17) were used to assess the significance of operating
variables on process responses. Tables 6 and 7 show the ANOVA results within a confidence
interval of 95%. As shown in Tables 6 and 7, the effects of all operational variables on
process responses are statistically meaningful due to p-values less than 0.05. As seen in the
analysis of variance tables, no interaction was considered in the analyses. Moreover, except
in some cases for the copper recovery analysis, the dual interaction effects are significant.
The statistically meaningless interactions for copper recovery are those between pH and
solid content and Z11 concentration as well as the interaction between solid content and
Z11 concentration.
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Table 6. Analysis of variance results for copper grade to the rougher concentrate.

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)

Model 363.8967 13 27.99206 1251.234 <0.0001
A-pH 3.822613 1 3.822613 170.8693 <0.0001

B-Solid
Content 147.3186 1 147.3186 6585.085 <0.0001

C-A65 4.8672 1 4.8672 217.562 <0.0001
D-Z11 43.29151 1 43.29151 1935.114 <0.0001

AB 13.4162 1 13.4162 599.699 <0.0001
AC 6.826513 1 6.826513 305.1425 <0.0001
AD 54.2882 1 54.2882 2426.662 <0.0001
BC 1.814513 1 1.814513 81.10801 <0.0001
BD 12.5 1 12.5 558.7452 <0.0001
CD 0.973012 1 0.973012 43.49328 <0.0001

ACD 9.46125 1 9.46125 422.9142 <0.0001
BCD 50.6018 1 50.6018 2261.881 <0.0001

ABCD 14.71531 1 14.71531 657.7688 <0.0001
Pure Error 0.485733 21 0.02313
Cor Total 367.9095 37

Table 7. Analysis of variance results for copper recovery to the rougher concentrate.

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)

Model 2266.4 15 151.0933 24.07371 <0.0001
A-pH 31.7761 1 31.7761 10.309121 0.0043

B-Solid
Content 35.5092 1 35.5092 12.092561 0.0031

C-A65 356.5785 1 356.5785 56.81369 <0.0001
D-Z11 44.2345 1 44.2345 14.291302 0.0021

AB 11.3288 1 11.3288 1.805019 0.1934
AC 372.5085 1 372.5085 59.35182 <0.0001
AD 16.4738 1 16.4738 2.624772 0.1201
BC 149.5585 1 149.5585 23.82917 <0.0001
BD 26.3538 1 26.3538 4.198954 0.0531
CD 873.411 1 873.411 139.1607 <0.0001

ABC 93.91351 1 93.91351 14.96325 0.0009
ABD 29.9538 1 29.9538 4.772542 0.0404
ACD 74.48101 1 74.48101 11.86707 0.0024
BCD 100.891 1 100.891 16.07498 0.0006

ABCD 115.596 1 115.596 18.41792 0.0003
Pure Error 131.8018 21 6.276278
Cor Total 2408.51 37

3.3.1. Interpretation of the Main Effects

The main effect plots can be used to analyse the effects of the operating variables on
the process response. These plots are an effective tool for assessing the influence of each
variable on the target response. The response variation is shown in these plots for the level
of variables used in the experimental design. Design Expert software uses, by default,
the developed prediction model (Equations (16) and (17)) to calculate the response values
for parameters varying within their experimental levels. In contrast, other variables are
maintained at their mid-levels. The main effects plots of different operating variables are
shown in Figures 9 and 10 for copper grade and recovery, respectively.
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Figure 9. Main plots showing the effect of operating variables on copper grade.

According to Figure 9, the copper grade increases with the increasing pH. Obviously, as
the pH increases, the pyrite depression rate also increases, and as a result, the copper grade
in the concentrate improves. The effect of increasing the solid content on copper grade is
also positive and increasing. This effect can be attributed to the improved particle distri-
bution within the flotation cells, thereby increasing the probability of copper-containing
particles colliding with the bubbles and transporting them to the froth and concentrate.
However, as shown in Figure 10, copper recovery decreased with the increasing solid
content, which can be ascribed to the interaction between the solid content and the frother
concentration, as will be discussed later. Increasing the concentration of both frother and
collector reduces the grade of copper in the concentrate. With an increasing frother concen-
tration, due to increased bubble stability and increasing the rate of bubbly regime in the
pulp zone, the entrainment rate will most likely increase due to the swarm phenomenon,
and finally, the copper grade decreases as a consequence of the gangue particles transfer to
the concentrate [40,41]. The effect of increasing the collector concentration is also due to
the increase of hydrophobicity level and floatability of gangue minerals and, as a result,



Minerals 2022, 12, 857 16 of 26

their transfer to the concentrate. Therefore, the copper grade in concentrate is expected
to decrease. These phenomena, namely the increase in entrainment rate and the improve-
ment of gangue floatability, will increase the solid transfer rate into the concentrate and,
consequently, increase the recovery; this prediction is clearly seen in Figure 10.
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Increasing the pH, in addition to improving the grade of copper, has also increased
the recovery (Figure 10). As the pH increases, the efficiency of the xanthate collectors (Z11
in this study) improves, resulting in increased particles floatability. For this reason, particle
recovery is also expected to improve. The negative effect of solid content on the recovery
can be evaluated according to the interaction of this factor with the frother concentration,
which is presented in Section 3.3.2. Given that the main effect plot for each factor is plotted
while other factors are kept constant at their mid-level, the individual effect of the solid
content may lead to the misleading conclusion that increasing the solid content in any
condition causes reduction, leading to recovery.
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3.3.2. Evaluation of the Interactive Effects

The surface plots of the response of a process against other independent variables
can provide valuable insights into not only the individual effect of operating factors, but
the potential interaction between them as well [42,43]. Thus, the surface plots for the
studied flotation experiments were presented. As shown in Figures 11 and 12, the surface
response plots illustrate the nonlinear effects of most interactions among four variables.
As mentioned earlier, the interaction between solid content and frother concentration
(Figure 12) shows that maximum copper recovery can be obtained at a low level of frother
concentration, whereas individual effects yielded contrary results. This conclusion can be
directly attributed to the significant interaction between those variables. Due to this effect,
it seems that the balance between the amount of particles in the system and the number
of stable bubbles plays a significant role in improving the process efficiency. The same
behaviours are observed for copper grade, as it may be concluded that the highest copper
grade can be achieved at a high level for pH and solid content and a low level for reagents
dosages when referring to the main effect plots. However, Figure 11 clearly shows different
results. Similar results are observed in the case of copper recovery when evaluating the
interactions given in Figure 12.
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3.3.3. Process Optimization and Verification Studies

Maximum Cu grade and recovery were separately defined as target responses to find
suitable operating conditions for each case. The operating conditions and the predicted
results suggested by the software are given in Table 8. To assess the accuracy of the
predictions in Table 8, the plant was permitted to operate for 10 days under the suggested
operating conditions and the metallurgical responses were monitored by regular sampling
from each operating shift. Finally, an average value was reported as the final practical
result, as given in Table 8. Compared to the grade values, the higher differences between
the practical recovery results and predicted values are due to the lower accuracy of the
prediction model developed by the software (Table 5).

Table 8. The predicted and practical results for copper grade and recovery under optimal conditions.

Goal (Max) pH
Solid Content

(%) A65 Conc. (g/t) Z11 Conc. (g/t)
Predicted Responses (%) Practical Results (%)

G. R. G. R.

Grade (G) 10.00 20.00 25.00 0.14 16.44 38.41 15.32 34.03
Recovery (R) 10.00 19.93 25.00 9.91 12.00 47.72 11.48 44.39

3.4. Simulation Results
3.4.1. Correlation Coefficient Analysis

Correlation coefficient is an indicator that is used to measure the dependence or
relationship between two variables. The correlation coefficient between each variable and
the outputs (Cu grade and Cu recovery) confirms the existence of correlation. In this study,
the Spearman correlation coefficient was used, which is defined as Equation (18) [44]:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

, (18)
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where ρ is Spearman’s rank correlation coefficient, di is the difference between the two ranks
of each variable, and n is the number of samples. The correlation coefficient between each
variable and the outputs is presented in Figure 13 and Table 9. The coefficients indicate
that the variables had a good correlation and could be used to estimate Cu grade and
Cu recovery.
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Table 9. The correlation coefficient of the variables with Cu grade and Cu recovery.

Variable pH Solid Content (%) A65 Conc. (g/t) Z11 Conc. (g/t)

Cu grade (%) 0.7391 −0.8936 0.7234 0.3155
Cu recovery (%) 0.3653 −0.7880 0.4490 −0.8041

According to Table 9 and for this study, pH and A65 concentration had a good positive
correlation with Cu grade; on the contrary, the solid content had a strong negative effect
on Cu grade. It means that should the pH increase, the Cu grade decreases, as was
also reported in Ref. [45]. For the Cu recovery, Z11 concentration and solid content had
high negative correlation with this output, and pH and A65 concentration had positive
correlation, although their correlation coefficient is lower than 0.5. It is important to note
that in the correlation coefficient methods, the closer the coefficient is to 1 and −1, indicates
a direct or inverse relationship between the two variables. However, a cause-and-effect
relationship is not necessarily present, and the conclusion cannot be drawn on this basis.

3.4.2. Sensitivity Analysis

In order to determine the effect of each input on the amount of output, a sensitivity
analysis was also applied. In this paper, the input parameters were pH, solid content, A65
concentration, and Z11 concentration, and output parameters were Cu recovery and Cu
grade. To calculate the sensitivity analysis, the following equation was used [46]:

Rij =
∑n

k=1

(
xik × xjk

)
√

∑n
k=1 x2

ik ∑n
k=1 x2

jk

, (19)

where xi and xj are the input and output datasets, respectively. The effect of each input
parameter on the outputs is shown in Figure 14.
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Figure 14. Sensitivity analysis to determine the effect of each input parameter on Cu recovery (a) and
Cu grade (b).

It can be seen in the figure that the solid content influenced both Cu recovery and
grade the most. The results also confirm the correlation results to a great extent. Using
the results of different tests, the variables that had a greater impact on the outputs were
selected, which ultimately led to simulation models with greater accuracy and less error.

3.4.3. Model Prediction Analysis

The dataset was divided into three categories, including training (65%), validating
(15%), and testing (20%). The validation dataset helps to tune hyper-parameters during the
training of the models to prevent the models from over-fitting in the testing phase. The test
performance of the ‘RNNs’ models is shown in Figures 15 and 16.
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Mean square error (MSE), root mean square error (RMSE), mean absolute percentage
error (MAPE), and R2 were computed using the following equations in order to evaluate
the performance of each model [43,44]:

MSE =
1
n ∑n

i=1(yi − ŷi)
2, (20)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2, (21)

MAPE =
1
N ∑N

i=1
|ŷi − yi|

ŷi
, (22)

R2 =

 ∑N
i=1(yi − a)(ŷi − e)√

∑N
i=1(yi − a)2

√
∑N

i=1(ŷi − e)2

2

, (23)

where y is the actual data, ŷ is the estimated data, a is the mean of actual data, e is the mean
of the estimated data, and N is the number of sample sets.

The performance of the LSTM, GRU, RF, and ANN-LMA models in predicting Cu
grade and its recovery is shown in Tables 10 and 11. Based on the results, the performance of
the RNNs is better than the other models; however, in the estimation of Cu recovery, the RF
and ANN-LMA results are so close to the GRU. The RNN results are also close to each other
(LSTM provides better accuracy). Although RF has a better result than ANN-LMA due to
its tree structure in Cu grade estimation, when there are many calculations, a large number
of trees can make the algorithm too slow and ineffective for real-time predictions. Both
GRU and LSTM could validly estimate Cu grade and recovery. The results demonstrate that
LSTM and GRU are useful deep networks for predicting time series and sequential data.
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Table 10. Performance of the models to estimate Cu grade.

Model MSE RMSE MAPE R2

LSTM 5.5 × 10−3 0.074 5.7 × 10−5 0.963
GRU 8.7 × 10−3 0.093 6.3 × 10−5 0.956
RF 9.8 × 10−3 0.098 7.4 × 10−5 0.939

ANN-LMA 1.3 × 10−2 0.114 8.6 × 10−5 0.921

Table 11. Performance of the models to estimate Cu recovery.

Model MSE RMSE MAPE R2

LSTM 0.017 0.132 7.8 × 10−5 0.934
GRU 0.026 0.162 9.6 × 10−5 0.919
RF 0.028 0.167 1.1 × 10−4 0.915

ANN-LMA 0.029 0.170 1.3 × 10−4 0.914

Although the accuracy of the RNN models is close, the number of parameters and
time efficiency of the algorithms should be considered in practical applications [47,48].
The study showed that GRU performed faster with less CPU usage because it has fewer
parameters for training. LSTM is more sophisticated and provides more parameters such
as the number of weight matrices, number of bias vectors, learning rates, etc. This can be
considered as a penalty for such models, as described in detail by Hassanzadeh et al. [49].
A model’s learning rate controls how quickly it can adapt to a new problem and is a crucial
parameter for efficient training [29]. Larger learning rates result in rapid changes and
require fewer training epochs; however, smaller learning rates allow the model to learn
a more optimal set of weights, but may take significantly longer to train. The structure
of GRU is more straightforward. It has one gate less than LSTM, which reduces matrix
multiplication, and it can save time. However, through empirical research and as reported
by Cahuantzi et al. [50] and Yang et al. [51], the advantage of GRU is only relevant for small
datasets and when you have little memory. In other scenarios, when dealing with more
extensive sequences, LSTM is preferred. Generally, it can be concluded that if the dataset is
small, the GRU algorithm is preferable, whereas LSTM is favourable and more accurate
for larger datasets. Furthermore, parameter optimization for the purpose of studying the
influence of different setting parameters on these networks could be investigated in future
research. To find insights on the structure of the estimation models, the importance and
impact of each input variable on the outputs should be specified. The model estimation
error was calculated when input values were randomly shuffled in order to assess the
features importance. It is expected that permutation will increase the model’s estimation
error if the model relies on an input value for estimation. Due to the superior performance
of LSTM models for Cu grade and recovery, this process was applied to LSTM models and
the results are shown in Figure 17. Features importance results are well aligned with results
obtained through the Spearman correlation and sensitivity analysis. Besides, LSTM’s
success in developing models and extracting meaningful characteristics from training
data can also be confirmed by the results of feature importance and statistical analysis
(Section 3.2).



Minerals 2022, 12, 857 23 of 26

Minerals 2022, 12, x FOR PEER REVIEW 23 of 27 
 

 

The study showed that GRU performed faster with less CPU usage because it has fewer 
parameters for training. LSTM is more sophisticated and provides more parameters such 
as the number of weight matrices, number of bias vectors, learning rates, etc. This can be 
considered as a penalty for such models, as described in detail by Hassanzadeh et al. [49]. 
A model’s learning rate controls how quickly it can adapt to a new problem and is a crucial 
parameter for efficient training [29]. Larger learning rates result in rapid changes and re-
quire fewer training epochs; however, smaller learning rates allow the model to learn a 
more optimal set of weights, but may take significantly longer to train. The structure of 
GRU is more straightforward. It has one gate less than LSTM, which reduces matrix mul-
tiplication, and it can save time. However, through empirical research and as reported by 
Cahuantzi et al. [50] and Yang et al. [51], the advantage of GRU is only relevant for small 
datasets and when you have little memory. In other scenarios, when dealing with more 
extensive sequences, LSTM is preferred. Generally, it can be concluded that if the dataset 
is small, the GRU algorithm is preferable, whereas LSTM is favourable and more accurate 
for larger datasets. Furthermore, parameter optimization for the purpose of studying the 
influence of different setting parameters on these networks could be investigated in future 
research. To find insights on the structure of the estimation models, the importance and 
impact of each input variable on the outputs should be specified. The model estimation 
error was calculated when input values were randomly shuffled in order to assess the 
features importance. It is expected that permutation will increase the model’s estimation 
error if the model relies on an input value for estimation. Due to the superior performance 
of LSTM models for Cu grade and recovery, this process was applied to LSTM models 
and the results are shown in Figure 17. Features importance results are well aligned with 
results obtained through the Spearman correlation and sensitivity analysis. Besides, 
LSTM’s success in developing models and extracting meaningful characteristics from 
training data can also be confirmed by the results of feature importance and statistical 
analysis (Section 3.2). 

 
(a) 

Minerals 2022, 12, x FOR PEER REVIEW 24 of 27 
 

 

 
(b) 

Figure 17. The importance of features for the process responses in the LSTM models: (a) Cu grade 
and (b) Cu recovery. 

4. Conclusions 
The metallurgical response of a copper processing plant was predicted using two 

efficient variants of the recurrent neural network (RNN) method based on the effective 
operating parameters, including pulp pH and solid content as well as the concentrations 
of the frother and collector. For this purpose, the process was first evaluated using a two-
step screening/optimization DOE based on factorial designs. Statistical results based on 
analysis of variance showed that there is a reliable correlation between the metallurgical 
responses, i.e., copper grade and recovery in concentrate, and operating variables. 
ANOVA results indicated that all operating variables significantly affect the metallurgical 
responses, such that the copper grade increased by increasing the pulp pH and solid con-
tent and decreased as the dosage of frother and collector were increased. Contrary results 
were observed with respect to the copper recovery, with the exception that, like grade, 
copper recovery increased with the increase of pulp pH due to interaction effect with other 
factors. 

Afterwards, the optimization process was performed based on the identified signifi-
cant factors and by applying particular adjustment in terms of the technical aspects of the 
process. The effect of the studied variables was also interpreted based on the main and 
interaction effects to obtain a meaningful vision for the simulation step. The correlation 
coefficient, mean, root mean square, and mean absolute percentage errors as well as vari-
ance account for values for the training and testing datasets for the copper grade and re-
covery using the long short-term memory (LSTM), and gated recurrent unit (GRU) net-
works were compared. The results showed that the LSTM algorithm was more efficient 
than the GRU network and can be applied to predict the metallurgical responses during 
the flotation process. 

Figure 17. The importance of features for the process responses in the LSTM models: (a) Cu grade
and (b) Cu recovery.

4. Conclusions

The metallurgical response of a copper processing plant was predicted using two
efficient variants of the recurrent neural network (RNN) method based on the effective
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operating parameters, including pulp pH and solid content as well as the concentrations
of the frother and collector. For this purpose, the process was first evaluated using a
two-step screening/optimization DOE based on factorial designs. Statistical results based
on analysis of variance showed that there is a reliable correlation between the metallurgical
responses, i.e., copper grade and recovery in concentrate, and operating variables. ANOVA
results indicated that all operating variables significantly affect the metallurgical responses,
such that the copper grade increased by increasing the pulp pH and solid content and
decreased as the dosage of frother and collector were increased. Contrary results were
observed with respect to the copper recovery, with the exception that, like grade, copper
recovery increased with the increase of pulp pH due to interaction effect with other factors.

Afterwards, the optimization process was performed based on the identified significant
factors and by applying particular adjustment in terms of the technical aspects of the process.
The effect of the studied variables was also interpreted based on the main and interaction
effects to obtain a meaningful vision for the simulation step. The correlation coefficient,
mean, root mean square, and mean absolute percentage errors as well as variance account
for values for the training and testing datasets for the copper grade and recovery using the
long short-term memory (LSTM), and gated recurrent unit (GRU) networks were compared.
The results showed that the LSTM algorithm was more efficient than the GRU network and
can be applied to predict the metallurgical responses during the flotation process.
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