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ABSTRACT
The extracellular vesicles (EVs) role in intercellular commu-
nication of transferring the cargoes of biomolecules such as
proteins and nucleic acid between cells has been revealed
recently. EV-mediated molecular communications (MC) is in-
volved in targeted cells that receive EVs following the mech-
anisms of endocytosis. Such mechanisms comprise various
processes of EV binding, internalization, and recycling that
are characterized by specific factors of reaction. Accurate
estimation of these factors is essential for the MC receiver
assessment upon EV signaling. Here, we propose a fitting
model to approximate the reaction rate parameters based
on a suggested scenario corresponding to an experimental
setup. The results of relative error for the estimated rates
based on the simulated data are presented. The estimation
method given in this paper can help future works on data
analysis and minimizing the experimental resources.
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1 INTRODUCTION
In several billion years, cells adopted multiple strategies to
be able to communicate with each other. This accurate pro-
cess regulates complex organisms such as animals or plants
thanks to the production of thousands of molecules of dif-
ferent nature (proteins, hormones, lipids, RNA, etc.) [23].
Next to the receptor and the lipophilic pathways [9, 12], that
allows the transmission of a single input, there is the possi-
bility to transmit many inputs into the same “packet” called
vesicle [5].

We use the molecular communications (MC) paradigm to
model inter- and intra-cellular communication using chem-
ical signals such as extracellular vesicles (EVs) and closely
scrutinize the underlying mechanisms in EV-mediated com-
munications. The EVs that are propagating in the extracellu-
lar matrix might be degraded due to their interaction with
the hindering cells or half-life. This would be characterized
by a channel degradation rate in the communication link.
Also, the conditions governing the medium boundaries e.g.
in intra-cellular communication are determined by the EVs
internalization and binding rates to the cell membrane [3].
These rates also specify the uptakemechanism at the receiver.
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The EVs that are bound to the cell might be recycled into
the environment through a backward reaction as well [27].
Furthermore, there are some in vitro and in vivo evidences
[13, 22] that shown EVs are taken up by the same cells that
are released from, which should be taken into the account
for the release rate estimation.
All these issues necessitate estimating chemical reaction

rates involved in EVs reception, as a prior step in EV-based
MC. This also has applications in designing drug delivery
systems for therapeutic reasons or optimizing experimental
test-beds by providing initial results.
Data acquisition for the parameter estimation is usually

based on “in vivo”, “in vitro” or “in silico” (i.e. computer sim-
ulations) [19, 25] experiments. There are also various strate-
gies for the data analysis including Nano-Tracking Analysis
(NTA) [26], Confocal Microscopy Imaging (CMI) [20], Scan-
sion Electron Microscopy (SEM) and Transmission Electron
Microscopy (TEM) [11]. NTA is just aimed at overall uptake
estimation while the internalization and binding mechanism
could be distinguished by CMI, SEM and TEM at the expense
of performing several experiments and using more resources.
For the parameter estimation, Cock et al. proposed a sto-

chastic model for a first-order chemical reaction using the
maximum likelihoodmethod [8]. The number of biomolecules
involved in the chemical reaction is approximated by a Gauss-
ian distribution. However, this work lacks the backward re-
action due to the first-order assumption. Furthermore, the
estimation of reaction rates is given by [16] upon an ill-posed
inverse problem. This approach hardly satisfies the unique-
ness and stability of the results specially for noisy acquired
experimental data.

In this paper, we model the overall EVs uptake by a second-
order chemical reaction. This model encompasses all the
processes of EVs binding, internalization and recycling. It is
expressed in terms of ordinary differential equations (ODEs)
whose coefficients are estimated through a complex fitting
function that we derive in the frequency domain. This model
corresponds to an comparably simple experimental setup
shown in Figure 1 that we discuss later in this paper. Since
all the reaction rates are incorporated in this model, there
is no need to exploit advanced techniques such as confocal
microscopy imaging to evaluate internalization and bind-
ing process. All reaction rates can be estimated based on
a single experiment, which eliminates the need for several
more complex experiments that may be affected by changing
conditions.

In the following, in Section 2, we first explain the biologi-
cal background of EVs for our purpose. Also, we study the
modeling for the chemical reaction of EVs and introduce a
closed form function for the estimation of uptake rates. In
Section 3, we give the simulation results and verify the closed

Extracellular vesicle

Group of cells

Experimental setup

Figure 1: Experimental set-up of EVs reaction rates
estimation. Isolated EVs are injected into the well in
which the targeted cells are cultured and is filled in by
the serum.

form function through particle-based simulation (PBS) and
finally, we conclude the paper in Section 4.

Figure 2: EVs Uptake. Vesicles are internalized by the
target cell through many different pathways: endocy-
tosis, fusion and juxtracine.

2 SYSTEM MODEL
EVs are generated by a “donor cells” in the Multi Vesicolar
Body (MVB) and then are released into the extracellular fluid
through the process of exocytosis and budding. They can
also originate from recycling a group of vesicles internalized
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before. As shown in Figure 1, the EVs in a well (dish of exper-
iment) can be taken up through the different mechanisms by
a group of cells cultivated at the bottom of the well. These
mechanisms, shown in Figure 2, are studied in the literature
as endocytosis (mediated with clathrin, caveoline and lipidic
RAFT, pinocytosis [17] and fusion with the cell plasma mem-
brane [18]. Ligand-binding (juxtracine pathway) can also
take part in the reception process of EVs by the cells [14, 24].
Internalization of EVs might happen directly (e.g. through
the fusion process) or after a stage of binding to the cell
membrane.
As we discussed before, being aware of the chemical re-

action rates on the cell membrane can help us to assess the
channel response and receiver performance in a EV-mediated
communication link. Here, we exploit a simplified reaction
mechanism given by

∅ 𝑘h←−−− A
𝑘b−−−→←−−−
𝑘r

B 𝑘i−−−→ ∅, (1)

where ’A’ and ’B’ indicate the stimulating and bound EVs,
respectively. In this model 𝑘b, 𝑘i, 𝑘r, 𝑘h denote binding, inter-
nalization, recycling and half-life rate of EVs, respectively.
Some of these parameters may get zero value regarding to
the type of endocytic mechanism. Endocytosis is influenced
by the number of endocytosis sites on the cell surface. Here,
we ignore the receptor saturation on the target cell for which
all the binding spaces on the cell membrane are occupied.
This is because the number of endocytosis sites is about 3000
in average per cell [21], while in this study we consider the
number of initial EVs in the well by 1000.However, the model
can be easily extended by taking receptor saturation into
account. Please note that this model is just to apply to some
of endocytosis mechanisms, which are already studied in the
literature. [1, 7, 10, 21].
In order to estimate the reaction rates, we suggest a sce-

nario of data acquisition as shown in Figure 1. In this setup,
targeted cells which are to be evaluated for the uptake mech-
anism are cultivated at the bottom of a well which is filled in
by 𝑞0 number of stimulating EVs. This process can be done
in parallel at several wells to get the remained number of
EVs at different time samples. At first, EVs should be isolated
from the wells through the several stages of filtration and
centrifugation. Then, we need to characterize EVs by using
NTA which can count the number of particles with varied
sizes. NTA calculate the particles’ hydrodynamic diameters
based on Stokes Einstein equation and gives the size distribu-
tion of EVs. The serum that EVs are injected in, specifies the
EVs half-life rate so 𝑘h is assumed to be known (or obtained
through another experiment).
Please note that we ignore the release of same EVs as

those taken up by the target cells and exclude the release
rate function in the formulation. However, EVs release could

be incorporated through a separate experiment in which the
cells are left in the EV-free wells and the number of generated
EVs is specified over the time.
This uptake experiment is represented through a set of

ODEs given by
𝜕𝑞B (𝑡)
𝜕𝑡

= 𝑘b𝑞A (𝑡) − 𝑘r𝑞B (𝑡) − 𝑘i𝑞B (𝑡), (2)

𝜕𝑞A (𝑡)
𝜕𝑡

= −𝑘b𝑞A (𝑡) + 𝑘r𝑞B (𝑡) − 𝑘h𝑞A (𝑡), (3)

𝑞A (0) = 𝑞0, 𝑞B (0) = 0, (4)
where 𝑞A (𝑡) and 𝑞B (𝑡) stand for the number of EVs in the
environment and the EVs bound to the cells, respectively.
Reaction rates are estimated by measured 𝑞A (𝑡), through the
model function derived from (2)-(4). In the cell-line experi-
ment, EVs would be isolated from the wells at different time
points and counted by NTA device to specify 𝑞A(𝑡) function.
For now, we exploit the particle based simulation (PBS) to
generate 𝑞A (𝑡) artificially. We remove the initial conditions
given by (4) and insert the impulse function 𝑞0𝛿 (𝑡) to the
right-hand side of (3) and derive 𝑞𝐴 (𝑡) by taking Fourier
transform of (2) and (3) and solving the set of equations
in frequency domain. After some simple manipulations, we
have

𝑞0 − ( 𝑗𝜔 + 𝑘h)𝑞A ( 𝑗𝜔)
𝑞A ( 𝑗𝜔) =

𝑘b𝑘i + 𝑘b 𝑗𝜔
𝑘r + 𝑘i + 𝑗𝜔 , (5)

where 𝑞A ( 𝑗𝜔) is the Fourier transform of 𝑞A (𝑡) at different
angular frequency samples 𝜔 . It is observed in (5) that 𝑘b
is mainly dependent on the high frequency components of
𝑞A ( 𝑗𝜔).

In order to estimate the rates coefficients 𝑘b, 𝑘r, and 𝑘i,
the number of environmental EVs over time, 𝑞A(𝑡), is trans-
formed into the Fourier domain and the left-hand side of (5)
over which the model function ( i.e. the right-hand side) is
fitted, would be obtained, where 𝑘b, 𝑘r, and 𝑘i represent the
non-negative fitting coefficients. The curve fitting can be
solved, for example, by a nonlinear least-squares algorithm.
It should be noted again that 𝑘h is assumed to be known in
this work, since half-life of EVs is a well-studied and easy to
investigate issue. Nevertheless, 𝑘h can also be determined by
a reformulation of (5), although this will involve an overall
rate estimate error increase.

Eqs. (2)-(4) can be exploited for various types and sizes of
EVs for which different reaction rates would be obtained.

3 SIMULATION RESULTS
In this section we investigate the validity of the suggested
model and the estimation error through numerical particle-
based simulation. PBS results resemble the experimental
data from the microscopic point of view. The curve fitting
for parameter estimation is performed by the MATLAB Op-
timization ToolboxTM, which uses a trust-region-reflective
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Table 1: Default simulation parameters, which are ap-
plied throughout the numerical results, if not stated
otherwise.

Parameters Symbol Value Ref.
Binding rate 𝑘b 2.3 s−1 [19]
Recycling rate 𝑘r 0.11 s−1 [15]
Internalization rate 𝑘i 0.005 s−1 [2]
Half-life rate 𝑘h 3.85 × 10−4 s−1 [4]
Initial EV quantity 𝑞0 1000
Time step in PBS Δ𝑡 0.01 s
Maximum time in PBS 𝑇max 1800 s
PBS Monte Carlo runs 𝑁 104
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Figure 3: Obtained number of EVs in environment and
bound to the cell with respect to time for a single PBS
realization and ODE solution of (2) and (3). The consid-
ered parameters are given in Table 1.

method [6]. The simulation parameters and reference rate
parameters under consideration are given in Table 1. Figure 3
shows 𝑞A (𝑡) and 𝑞B (𝑡) for a single realization of the PBS. As
a comparison, the ODEs (2) and (3) are numerically solved
as well, taking into account the reference rate parameters
𝑘 , and the rate parameters 𝑘 estimated by the PBS. It can
be observed that the noisy PBS simulation follows the ODE
solution. Furthermore, the ODE solution for 𝑘 differs only
slightly from the solution with 𝑘 . From this, it can already
be concluded that (5) leads to a good estimation, at least
for the parameters under investigation. To have a precise
assessment of the estimation results, the normalized mean
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Figure 4: Normalized mean squared estimation error
for the reaction rates with respect to initial number of
EVs in the environment. The considered parameters
are given in Table 1.

squared estimation error (NMSEE) is defined as

NMSEE =
1
𝑁

𝑁−1∑︁
𝑛=0

�����𝑘 − 𝑘𝑘

�����2 . (6)

Figure 4 shows the influence of the initial number of EVs
𝑞0 in the environment on the NMSEE when estimating 𝑘b,
𝑘r and 𝑘i. For all rates, the estimation improves with increas-
ing 𝑞0. This is to be expected, since the deviation from the
expected value decreases with increasing number of EVs in
PBS. In other words, the PBS result approaches the solution
given in (2) and (3) as 𝑞0 increases. Thus, Figure 4 also val-
idates the proposed estimation approach according to (5).
The estimation errors of 𝑘b, 𝑘r, and 𝑘i are of the same order
of magnitude in the considered scenario.
Number of initial EVs, 𝑞0 might be overestimated or (as

indicated in Figure 5 by 𝑞0 ) due to the limited accuracy
of the NTA device. Figure 5 illustrates NMSEE for the rate
parameters versus the relative estimation error of 𝑞0 in per-
cent. As shown, for 𝑞0 = 103, NMSEE mainly changes for
𝑘𝑏 and increases at most by 0.05 and 0.08 respectively, for
20% overestimation and underestimation of the initial EVs in
the well. This demonstrates that the model is robust enough
against 𝑞0 variation. n each study, it is stated if other values
are selected.
Figure 6 shows the effect of time step size Δ𝑡 in PBS on

rate estimation. While Δ𝑡 for PBS can be chosen arbitrar-
ily, the choice in laboratory measurements is limited by the
available equipment and the total time required. Therefore it
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Figure 5: Normalized mean squared estimation error
for the overestimation (negative relative estimation er-
ror) and underestimation (positive relative estimation
error) of the number of initial EVs in the well.
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Figure 6: Normalized mean squared estimation error
for the reaction rates with respect to time step size in
PBS. The considered parameters are given in Table 1.

is interesting to investigate the influence of Δ𝑡 on the param-
eter estimation, especially if Δ𝑡 increases. As Δ𝑡 increases,
two effects cause the rate estimate to degrade. The first effect
is that fewer samples are available for estimation according
to (5), which worsens the fitting. A suitable interpolation be-
tween the measured values can reduce this effect. The second
effect is that PBS results become imprecise with increasing
step size due to very high reaction probabilities. It should

10−3 10−2 10−1 100 101
10−3

10−2

𝑘 in s−1

N
M
SE

E

𝑘b = 𝑘
𝑘r = 𝑘
𝑘i = 𝑘

Figure 7: Normalized mean squared estimation error
for the reaction rateswith respect to reaction rate value.
The considered parameters are given in Table 1.

be noted that this is only a problem of implementation of
PBS and not of practical measurements. For the considered
scenario, a significant degradation of the estimate starts from
Δ𝑡 > 0.01 s. A significant improvement of the estimate is not
observed for Δ𝑡 < 0.01 s.
Figure 7 shows the effect on the NMSEE of 𝑘b, 𝑘r, or 𝑘i

when these are varied, respectively. For this purpose, the
rates were varied by a factor of 10 from their default value.
The NMSEE is consistently low over the considered range.
However, it can be seen that the rate value has an influ-
ence on the estimation error and the simulation parameters
should be adjusted carefully. Larger reaction rates will, like
an increase of Δ𝑡 , lead to high reaction probabilities, which
limits the accuracy of the PBS. Consequently, Δ𝑡 should be
decreased. For lower reaction rates, 𝑞0 and the observation
window given by 𝑇max should be increased to acquire the
entire reaction dynamics.

4 CONCLUSION
Chemical reactions of extracellular vesicles (EVs) with target
cells are characterized in this paper by exploiting a suggested
fitting model for the reaction rates estimation. The model is
consistent with the various EVs endocytic mechanisms. The
estimated parameters could be applied in channel modeling
and receiver engineering in the framework of EV-mediated
molecular communications. Simulation results demonstrated
that the proposed fitting function provides less than 1% nor-
malized mean squared estimation error for a wide range of
reaction rates. However, the modeling of endocytosis can
be improved by considering the saturation of receptors at
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the target cell. The model is also well-adapted to the exper-
imental setup introduced in this paper, which is supposed
to be implemented in future work to minimize experimental
resources and time-efficient data analysis. Nevertheless, the
estimation method can be improved for a extended range of
chemical reaction rate variations.
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