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Two separate, large cohorts reveal potential modifiers of
age-associated variation in visual reaction time performance
J. S. Talboom 1,2, M. D. De Both1,2, M. A. Naymik1,2, A. M. Schmidt1,2, C. R. Lewis1,2, W. M. Jepsen1,2, A. K. Håberg3, T. Rundek 4,
B. E. Levin4, S. Hoscheidt2,5, Y. Bolla2,5, R. D. Brinton2,5, N. J. Schork1,6, M. Hay2,5, C. A. Barnes2,5, E. Glisky2,5, L. Ryan2,5 and
M. J. Huentelman 1,2✉

To identify potential factors influencing age-related cognitive decline and disease, we created MindCrowd. MindCrowd is a
cross-sectional web-based assessment of simple visual (sv) reaction time (RT) and paired-associate learning (PAL). svRT and PAL
results were combined with 22 survey questions. Analysis of svRT revealed education and stroke as potential modifiers of
changes in processing speed and memory from younger to older ages (ntotal= 75,666, nwomen= 47,700, nmen= 27,966; ages
18–85 years old, mean (M)Age= 46.54, standard deviation (SD)Age= 18.40). To complement this work, we evaluated complex
visual recognition reaction time (cvrRT) in the UK Biobank (ntotal= 158,249 nwomen= 89,333 nmen= 68,916; ages 40–70 years
old, MAge= 55.81, SDAge= 7.72). Similarities between the UK Biobank and MindCrowd were assessed using a subset of
MindCrowd (UKBb MindCrowd) selected to mirror the UK Biobank demographics (ntotal= 39,795, nwomen= 29,640, nmen=
10,155; ages 40–70 years old, MAge= 56.59, SDAge= 8.16). An identical linear model (LM) was used to assess both cohorts.
Analyses revealed similarities between MindCrowd and the UK Biobank across most results. Divergent findings from the UK
Biobank included (1) a first-degree family history of Alzheimer’s disease (FHAD) was associated with longer cvrRT. (2) Men with
the least education were associated with longer cvrRTs comparable to women across all educational attainment levels.
Divergent findings from UKBb MindCrowd included more education being associated with shorter svRTs and a history of
smoking with longer svRTs from younger to older ages.
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INTRODUCTION
Reaction time (RT), an index of processing speed or efficiency in
the central nervous system (CNS)1, is an essential factor in higher
cognitive function2,3 and is profoundly affected by age4. In fact, of
the studied demographics, age is the main factor known to
influence RT4. Processing speed is an important limiting factor for
most aspects of cognition during aging, most notably memory5,6.
In studies where processing speed was used as a covariate, the
age-related variance in various episodic memory measures was
reduced or even eliminated7,8. Moreover, studies comparing
varied factors and tests of age-related episodic memory deficit
implicate age-related decline in processing speed as the main
mediator9–11. These findings collectively suggest that RT is a useful
index of age-related cognitive decline, healthy brain aging, and
neurodevelopment.
RT can be operationally defined as “simple,” which typically

involves a non-choice reaction to a visual stimulus (svRT). RT can
also be operationally defined as “complex,” which involves a
reaction to one or more visual stimuli after recognition (cvrRT) of
correct stimuli and inhibiting incorrect stimuli12. svRT demon-
strates variability between individuals, which is akin to paired-
associate learning (PAL) and is influenced by genetic and
environmental factors13. In addition, svRT effects are well noted
across the field of neurology; for example, AD and stroke patients
show lengthened svRT and higher inter-individual variability14,15.
However, due to the limitations of traditional research methods,
the body of work concerning RT examined only limited ranges of

demographic, health, medical, and lifestyle factors in small
cohorts. For example, prior work’s demographics consisted of
college-aged students, well-educated older adults16–18, or ath-
letes19–21.
Further, with notable exceptions22–24, many studies had few

participants (e.g., n < 1000) and were therefore powered to
detect only variables with large effect size and to lead to
spurious non-replicable findings25. Consequently, many RT
studies had minimal ability to reveal low-frequency factors or
those with subtle effect sizes and conduct more sophisticated
analyses (e.g., ANOVA vs. Growth Modeling) to find interactions
and moderators. Collectively, this suggests that if RT perfor-
mance can inform models of disease or normative and atypical
aging, we need a deeper understanding of the normal variation
of RT and the genetic and environmental factors associated with
RT performance.
This study aimed to characterize RT across a broad range of

demographic, health, medical, and lifestyle variables commonly
associated with cognitive performance and AD risk. To do this, we
utilized both the MindCrowd and UK Biobank cohorts26,27,
comprising over 233 thousand combined participants, to model
RT as a function of 11 or more demographic, health, medical, and
lifestyle factors. These factors have been previously associated
with aging and cognition28–33. Based on our prior work and earlier
RT research34, we hypothesized that RT, via its structure of factor
association and modifications, would reveal meaningful connec-
tions to healthy brain aging.
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RESULTS
MindCrowd
As of March 13th, 2020, after filtering (see Data Quality Control in
“Methods” section), MindCrowd, had recruited 75,666 qualified
participants (see Table 1 for Sociodemographic Characteristics and
Supplementary Fig. 1A for a histogram of age). We modeled svRT
as a function of Age3 and PAL Performance3 (i.e., curvilinear
associations), as well as 20 other factors (see Supplementary Fig. 2
for diagnostic regression plots, and Table 2 for each analysis’ n).
The omnibus model was significant (Fomnibus[58, 73406]= 858.20,
pomnibus < 2.2e−16, Adjusted R2= 0.40).

MindCrowd Curvilinear associations: age and paired-associate
learning (PAL)
Our model revealed that all three Age polynomials were
significantly associated with svRT. Age1 (i.e., linear association,
first-degree polynomial, aka slope), Age2 (i.e., quadratic associa-
tion, second-degree polynomial), and Age3 (i.e., cubic association,
third-degree polynomial). On average from younger to older Age,
a one-year difference (X= 1). (1) Age1 (shift in Y; pAge1= 3.06E−
18) was associated with 7 ms longer svRT. (2) Age2 (shift in Age1;
pAge2= 3.23E− 17) was associated with 0.15 ms of added svRT
length (i.e., 7+ .15 ms/year, Fig. 1a). (3) Age3 (shift in Age2; pAge3
= 1.46E− 34) was associated with a negligible 1.47E− 03ms shift
in added svRT length (i.e., 7+ (0.15+ 1.47E− 03) ms/year, Fig. 1a).
In contrast to Age’s association with longer svRT, each word pair
correct for PAL Performance. (1) PAL1 (pPAL1= 3.77E− 34) was
associated 9ms shorter svRT. (2) PAL2 (pPAL2= 2.35E− 14) was
associated with 0.32 ms of additional svRT shortening (i.e., 9+
0.32ms/year, Fig. 1b). (3) PAL3 (pPAL3= 7.28E−09) was associated
with a small 4.13E− 04ms shift in added svRT shortening (i.e., 9+
(0.32+ 4.13E− 04) ms/year Fig. 1b).

MindCrowd: sex, education, and handedness
Biological Sex was a significant predictor of svRT (pSex= 1.26E−
163). Being a man was associated with an average of 34 ms
(9.63%) shorter svRT response than being a woman (Fig. 1d).
Educational Attainment was also a significant factor associated
with svRT. Compared to “No High School Diploma,” participants
who had “Some College” (pCollege= 8.74E− 05), or a “College
Degree” (pCDegree= 2.95E− 17, Fig. 2a) were shorter. Attending
college and attaining a college degree was associated with a
respective near 15 (4.14%) and 32 (8.92%) ms shorter svRT
compared to not graduating from high school. Handedness was
also associated with svRT. Left-handed participants had a near
4 ms (1.09%) shorter svRT (pLeft= 0.03, Fig. 2b). This association
was present in individuals 20 to 40 years old (p40Left < 0.01, Fig. 2c)
but not in individuals 40 to 60 years old (p60Left= 0.07, Fig. 2d).

MindCrowd: health, medical, and lifestyle factors
For health and medical factors associated with svRT, we found that
Smoking Status (pSmoking= 1.26E− 03, Fig. 3a) and Reported
Dizziness (pDizzy= 0.04, Fig. 3b) were both significant predictors of
svRT. Smoking Status was associated with 7 ms (1.99%) length-
ened svRT, and Reported Dizziness was associated with nearly a
5 ms (1.37%) lengthened svRT. When compared to participants
reporting “no daily medications,” taking “Two” (pMeds2= 2.00E−
03), “Three” (pMeds3 < 0.01), and “Four” (pMeds4= 3.51E− 16) Daily
Medications were associated with an approximate 5 (1.64%), 6
(1.76%), and 18 (5.01%) ms longer svRTs, respectively (Fig. 3c).
Further, Diabetes Mellitus (pDiabetes < 3.36E− 05, Fig. 3d), and
Stroke (pStroke= 3.59E− 04, Fig. 3e) were related to 11 (3.16%) and
20 (5.73%) ms longer svRTs, respectively, when compared to
participants not reporting either condition. Of note, in this model,
both a first-degree family history of Alzheimer’s disease (FHAD;

Table 1. MindCrowd, UKBb MindCrowd, and UK Biobank’s
sociodemographic characteristics.

Cohort Descriptive or
factor level

n %

1. MindCrowd 18–85
years: age

M= 46.54 SD= 18.40 75,666 100

UKBb MindCrowd 40–70
years: age

M= 56.59 SD= 8.16 39,795 100

UK Biobank 40–70
years: age

M= 55.81 SD= 7.72 158,249 100

2. MindCrowd 18–85 years:
biological sex

Women 47,700 63.08

Men 27,966 36.91

UKBb MindCrowd 40–70
years: biological sex

Women 29,640 74.51

Men 10,155 25.49

UK Biobank 40–70 years:
biological sex

Women 89,333 56.45

Men 68,916 43.55

3. MindCrowd 18–85
years: Race

Asian 3511 4.64

Black/African American 1570 2.07

Mixed 497 0.66

Native American 447 0.59

Native Hawaiian/Pacific
Islander

271 0.36

White 68,450 90.46

UKBb MindCrowd 40–70
years: Race

Asian 750 1.88

Black/African American 740 1.86

Mixed 185 0.46

White 37,446 94.10

UK Biobank 40–70
years: Race

Asian 1612 1.02

Black/African American 980 0.62

Mixed 847 0.54

White 154,810 97.83

4. MindCrowd 18–85
years: FHAD

True 17,847 23.59

False 57,819 76.41

UKBB MindCrowd 40–70
years: FHAD

True 13,748 34.59

False 26,047 65.41

UK Biobank 40–70
years: FHAD

True 19,742 12.48

False 138,507 87.52

5. MindCrowd 18–85 years:
handedness

Left 8449 11.17

Right 66,903 88.42

UKBb MindCrowd 40–70
years: handedness

Left 4520 11.36

Right 35,034 88.04

UK Biobank 40–70 years:
handedness

Left 15,287 9.66

Right 142,962 90.34

6. MindCrowd 18–85 years: No high school diploma 1881 2.49

Educational attainment High school diploma 6695 8.85

Some college 22,950 30.33

College degree 44,140 58.34
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pFHAD= 0.78) and Hypertension (pHyper= 0.52) were not signifi-
cant predictors of svRT performance (Supplementary Fig. 3A–B).

MindCrowd: two-way interactions
For interactions, we found Age significantly interacted with PAL
Performance. Age × PAL Performance (pAge*PAL= 9.93E− 62). Ana-
lysis of simple slopes suggests that each word pair correct was
associated with shorter svRT from younger to older ages. That is,
at 20 (pAge20*PAL < 0.00), 40 (pAge40*PAL < 0.00), 60 (pAge60*PAL <
0.00), and 80 (pAge80*PAL < 0.00, Fig. 1c) years old. There was a
significant Biological Sex × Age interaction (pAge*Sex= 4.61E− 08),
indicating that the associated slowing of svRT at younger and
older ages in men, compared to women, was 0.36 ms (0.08%) less
per one year difference in age (Fig. 1c). These data suggest that

men’s age-associated svRT lengthening was slower when com-
pared to women. Of interest, in both women and men, we found
significant Age × Educational Attainment interactions. Compared
to Age × “No High School Diploma”, participants reporting having
“Some College” (pAge*College= 4.20E− 04) or a College Degree”
(pAge*CDegre= 2.07E− 12) was associated with longer RTs from
young to an older age. These results suggest that attending
college or getting a college degree was associated with a 0.65
(0.15%) and 1.31 (0.30%) ms shortened svRT performance per one
year difference in age, respectively (Fig. 2a). The MindCrowd
model revealed a significant Age × Reported Stroke interaction
(pAge*Stroke= 2.72E− 06). Participants who Reported Stroke were
associated with an approximate 2 ms (0.37%) longer svRT per a
one-year difference in age (Fig. 3e). Lastly, we found a significant
Age × Smoking Status interaction (pAge*Smoke= 5.67E− 07). This
interaction suggests that Smoking Status lengthens svRT by
adding 0.57 ms (0.11%) per year difference in age (Fig. 3a). See
Table 3 for a summary of MindCrowd’s results.

MindCrowd: mobile device
Participants who were identified as using a mobile device to take
MindCrowd (i.e., using a touchscreen, n= 7603, age M= 54.06 SD
= 14.54 years) were associated with longer svRTs and were older
(βAge–Mobile= 14.13, pAge–Mobile < 2e− 16)compared to those who
did not use a mobile device (n= 76,775, age M= 45.54 SD= 18.43
years, see Supplementary Fig. 4).

UKBb MindCrowd and UK Biobank
Of the total 75,666 MindCrowd participants, 39,759 between the
ages of 40 and 70 were selected to mirror the UK Biobank. This
subset is called UKBb MindCrowd from here on to differentiate it
from MindCrowd. After filtering (see “Methods” section: Data
Quality Control), the UK Biobank cohort had 158,249 participants,
derived from a data request we received on 9–19–2019 (See Table
1 for Sociodemographic Characteristics and Supplementary Fig.
1B–C for age histograms). We model both the UKBb MindCrowd’s
svRT (see Supplementary Fig. 5 for regression diagnostic plots) as
well UK Biobank’s cvrRT (see Supplementary Fig. 6 for regression
diagnostic plots) as a function of 11 shared survey questions (see
Table 4 for MindCrowd and UK Biobank’s sample sizes [ns]). The
omnibus UKBb MindCrowd (Fmcomni[20, 38871]= 1039, pmcomni <
2.2e− 16, Adjusted R2= 0.08) and UK Biobank (Fukbbbomni[20,
157903]= 1038, pukbbomni < 2.2e−16, Adjusted R2= 0.13) LMs
were both significant. Table 5 summarizes the results from UKBb
MindCrowd and the UK Biobank side by side.

UKBb MindCrowd and UK Biobank: age and sex
The UKBb MindCrowd cohort revealed Age as a significant
predictor of svRT (pAge= 2.00E− 16). The parallel analysis (see
“Statistical Methods” section) of Age in the UK Biobank cohort was
also significant (pAge= 2.00E− 16) for complex visual recognition
reaction time (cvrRT). For the association of Age and RT, UKBb
MindCrowd and the UK Biobank showed longer RTs or worse RT
performance from younger to older ages, with nearly 6 and 3ms
lengthened RT per year difference of age, respectively (Fig. 4a–b).
For UKBb MindCrowd, Biological Sex was a significant predictor of
RT (βSex=−40.00, pSex= 8.03E− 71), which was also the case in
the UK Biobank (βSex=−18.28, pSex= 2.00E− 16). Being a man in
both cohorts was associated with shorter RTs compared to being a
woman (Fig. 4c–d). Here the effect of Biological Sex on RT
between UKBb MindCrowd was 40ms (20.46%), and the UK
Biobank was 18 ms (5.16%).

Table 1 continued

Cohort Descriptive or
factor level

n %

UKBb MindCrowd
40–70 years:

No high school diploma 605 1.52

Educational attainment High school diploma 3176 7.98

Some college 11,139 27.99

College degree 24,875 62.51

UK Biobank 40–70 years: No high school diploma 10,978 6.94

Educational attainment High school diploma 46,248 29.23

Some college 77,271 48.83

College degree 23,752 15.01

List of ns and related percentages of commonly reported sociodemo-
graphic factors from MindCrowd, UKBb MindCrowd, and the UK Biobank.

Table 2. Summary of MindCrowd’s sample sizes (n).

Factor n

Biological sex Women= 47,700

Men= 27,966

Educational attainment No high school diploma= 1881

High school diploma= 6695

Some college= 22,950

College degree= 44,140

Handedness Left-handed= 8449

Right-handed= 66,903

Daily medications taken None= 33,672

One= 14,409

Two= 9651

Three= 6656

Four= 10,769

Reported dizziness Dizziness reported= 4749

No dizziness reported= 70,917

Smoking status Smoker= 5793

Non-smoker= 69,873

Diabetes mellitus Diabetes reported= 3887

No diabetes reported= 71,779

Reported stroke Stroke reported= 765

No stroke reported= 74,901

n listed for each of MindCrowd’s multiple regression coefficients (i.e., linear
model [LM] factors).
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UKBb MindCrowd and UK Biobank: education and
handedness
Akin to the association found in the MindCrowd analysis,
the UKBb MindCrowd and UK Biobank comparison found
that Educational Attainment was a significant RT predictor.
Indeed, for UKBb MindCrowd a “High School Diploma”
(βHSDiploma =−9.68, pHSDiploma = 2.70E− 01, 1.87%, “Some Col-
lege” (βCollege =−26.08, pCollege= 1.61E− 03, 5.06%) and a
“College Degree” (βCDegree =−49.07, pCDegree = 1.91E− 09,
9.51%), and in the UK Biobank a “High School Diploma”
(βHSDiploma =−9.68, pHSDiploma = 1.23E− 33, 1.74%), “Some Col-
lege” (βCollege =−10.26, pCollege = 1.30E− 40, 1.85%), or a
“College Degree” (βCDegree =−11.71, pCDegree = 1.46E− 41,
2.11%) were all significantly different from “No High School
Diploma” (Fig. 5a–b). Here, both UKBb MindCrowd and UK
Biobank large cohorts reported shorter RT was associated with
more education. Lastly, unlike the MindCrowd analyses, both
the UKBb MindCrowd (pHandedness = .40) and the UK Biobank
(pHandedness= 0.36) cohorts between the ages of 40–70 did not

find Handedness to be a significant predictor of RT performance
(Supplementary Fig. 7).

UKBb MindCrowd and UK Biobank: health, medical, and
lifestyle factors
In terms of health factors associated with RT, in the UKBb
MindCrowd cohort, Diabetes (βDiabetes= 11.48, pDiabetes= 3.31E−
03, 5.87%), Stroke (βStroke= 18.47, pStroke= 4.00E− 02, 9.45%),
(βHypertension= 7.99, pHypertension= 3.16E− 03, 3.58%), and Dizzi-
ness (βDizzy= 12.13, pDizzy= 2.52E− 03, 6.19%) were all signifi-
cantly associated with longer svRTs. These associations were
recapitulated by the UK Biobank. To that end, Diabetes Mellitus
(βDiabetes= 5.48, pDiabetes= 4.80E− 07, 1.55%, Fig. 5c–d), Reported
Stroke (βStroke= 10.61, pStroke= 6.15E− 07, 2.99%, Fig. 6a–b),
Reported Hypertension (βHypertension= 1.14, pHypertension= 0.02,
0.31%, Fig. 6c–d), and Reported Dizziness (βDizzy= 3.21, pDizzy=
3.71E− 14, 0.91%, Fig. 7a–b) were all significantly related to longer
cvrRTs; however, the association between Reported Hypertension

Fig. 1 MindCrowd: age, paired-associate learning (PAL), and biological sex. MindCrowd analysis (ages 18–85) of simple visual reaction time
(svRT). a Linear model fits (line fill ±95% CI, error bars ± SEM) of the median svRT by Age3 (curvilinear model). There was a curvilinear relationship
between svRT and Age1 (βAge1= 7.07, pAge1= 3.06E− 18), Age2 (βAge2=−0.15, pAge2= 3.23E− 17), and Age3 (βAge3= 1.47E− 03, pAge3 < 1.46E
− 34, n= 75,666). b Linear model fits (line fill ±95% CI, error bars ± SEM) of the median svRT by Age3 (curvilinear model). There was a curvilinear
relationship between svRT and paired-associate learning (PAL) performance PAL Performance1 (βPAL1=−8.89, pPAL1= 3.77E− 34), PAL
Performance2 (βPAL2= 0.32, pPALl2= 2.35E− 14), and PAL Performance3 (βPAL3=−4.13E− 03, pPAL3= 7.28E− 09, n= 75,666).
c Simple slope analysis of the linear model fit (line fill ±95% CI, error bars ± SEM) for the Median svRT × PAL Performance interaction
(βAge*PAL=−0.07, pAge*PAL= 1.26E− 59). At 20 (βAge20*PAL=−5.48, pAge20*PAL < 0.00, n= 1985), 40 (βAge40*PAL=−6.41, pAge40*PAL < 0.00, n= 739),
60 (βAge60*PAL=−7.75, pAge60*PAL < 0.00, n= 1789), and 80 (βAge80*PAL=−9.08, pAge80*PAL < 0.00, n= 344) years of age. d Linear model fits (line fill
±95% CI, error bars ± SEM) of the median svRT by Age3 (curvilinear model) with lines split by Biological Sex. Being a woman was associated with
longer svRT compared to being a man from younger to older ages (βSex=−34.26, pSex= 1.26E− 163, nWomen= 47,700, nMen= 27,966).
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and cvrRT was small (Fig. 6d). Further, in agreement with the
MindCrowd analysis, Smoking Status was significantly related to
svRT (βSmoke= 10.18, pSmoke= 0.01, 5.21%) in the UKBb Mind-
Crowd cohort; however, FHAD (βFHAD=−0.07, pFHAD= 0.97) was
not. This pattern of associations was reversed in the UK Biobank;
that is, Smoking Status was not a significant predictor of cvrRT
(βSmoke= 0.47, pSmoke= 0.22, Fig. 7c–d), but FHAD was (βFHAD=
2.36, pFHAD= 3.35E− 05, 0.69%, Fig. 8a–b).

UKBb MindCrowd and UK Biobank: two-way interactions
The “glmulti”35 R package defined two interactions in the UKBb
MindCrowd and UK Biobank analysis. In UKBb MindCrowd we
found a significant Age × Biological Sex interaction (pAge*Sex=
2.00E− 02, 0.33%). We found a comparable significant Age ×
Biological Sex interaction for cvrRT (pAge*Sex= 4.18E− 28, 0.16%)
in the UK Biobank. Across both MindCrowd and the UK Biobank,
these interactions indicated that RT was lengthened in men from
younger to older ages compared to women, was over 0.5 ms
shorter per one year difference in age (Fig. 4c–d). In addition, the
UK Biobank analysis revealed a significant Biological Sex ×
Educational Attainment interaction not found in UKBb Mind-
Crowd. Here, men with a “High School Diploma” (pSex*HSDiploma=
3.30E− 12, 3.35%), “Some College” (psex*College= 8.71E− 12,
3.14%) or a “College Degree” (psex*CDegre= 1.68E− 13, 3.18%)
were significantly associated with shorter cvrRT performance
when compared to women having “No High School Diploma” (Fig.
8c). Follow-up analyses of the simple effects via estimated
marginal means (EMM, see “Statistical Methods” section) revealed
that men who did not graduate high school (EMM= 558.91 ms),
compared to men with more education (EMMs= 542.99, 542.98,

and 540.41 ms), had markedly shortened cvrRTs, more in line with
the women’s cvrRT performance (EMMs= 566.80, 562.11, 561.40,
and 561.09 ms). The associated difference in cvrRT for men with
“No High School Diploma” compared to men with a “High School
Diploma” (βMen= 15.92, pMen= 2.00E− 16, 1.75%) was more
substantial than between women with “No High School Diploma”
compared to women with a “High School Diploma” (βWomen=
4.68, pWomen= 3.12E− 04, 1.69%, see Supplementary Fig. 8 for a
graph of the EMM).

DISCUSSION
Our study’s results illuminate a portion of the intricate relationship
between age and RT performance by identifying demographic,
health, medical, and lifestyle factors associated with either
attenuation or exacerbation of RT lengthening from younger to
older ages (see Fig. 9 for an illustrative summary of the results). A
large body of work on RT, leading back to Sir Francis Galton in
189036, has consistently demonstrated an age-associated shift in
RT37. It is not surprising that MindCrowd, UKBb MindCrowd, and
UK Biobank models revealed slowing of simple visual (svRT,
MindCrowd) and complex visual recognition RT (cvrRT, UK
Biobank) from younger to older ages. Likewise, the MindCrowd
model found that the relationship between svRT and age was
modestly curvilinear (Fig. 1a). While this curvilinear relation
between RT and age has been noted previously38, both cohorts’
large sample size combined with our application of an algorithm-
based model definition35 revealed a notable addition to this
picture. Specifically, in the MindCrowd analysis, we observed an
interaction between age and education (Fig. 2a) and smoking (Fig.
3a). Here, less education and smoking were related to the

Fig. 2 MindCrowd: educational attainment and handedness. MindCrowd analysis (ages 18–85) of simple visual reaction time (svRT).
a Linear model fits (line fill ±95% CI) of the median svRT by Age3 (curvilinear model) with lines split by Educational Attainment. Participants
who had “Some College” (βCollege=−14.73, pCollege= 8.74E− 05, n= 22,950), or a “College Degree” (βCDegree=−31.78, pCDegree= 2.95E− 17,
n= 44,140) were shorter than those with “No High School Diploma” (n= 1881). b–d Linear model fits (line fill ±95% CI) of the median svRT by
Age3 (curvilinear model) with lines split by Handedness. b From 18–85 years old, left-handed participants showed slightly shorter svRTs
(βLeft=−3.87, pLeft < 0.03), (c) an association found in 20–40 years old (β40Left=−3.16, p40Left < 0.01, Left-Handed n= 8,449), (d) but not 40–60
years old (β60Left=−2.69, p60Left= 0.07, Right-Handed n= 66,903).
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additional slowing of simple visual RT (svRT) on top of the svRT
slowing associated with transitioning from younger to older ages.
Lastly, the age by reported stroke interaction modeled in
MindCrowd was associated with longer RTs (Fig. 3e). This study’s
large sample size and broad age and surveyed data range places it
as one of the most substantial cross-sectional RT evaluations
across the aging spectrum. Our findings suggest that smoking and
stroke (i.e., cardiovascular health) and amount of education (i.e.,
cognitive demand or reserve) are factors, modifiable across aging,
that influence age-associated RT slowing.
In the UK Biobank cohort27, we found an association between

having an FHAD and lengthened (2.43 ms) cvrRT (Fig. 8b). This
effect of FHAD on RT or more so underlying process speed is in
line with our episodic verbal memory task (i.e., paired-associate
learning [PAL]) finding34, where we found FHAD was linked to
lower PAL performance. Furthermore, a prior functional magnetic
resonance imaging (fMRI) study examining medial-temporal lobe
activation using a cvrRT task found a ~100ms RT lengthening in
68 (mean age of 54) FHAD participants39. These data suggest that
genetic and environmental factors relating to AD risk are present
in individuals with an FHAD. Indeed, the first-degree relatives of
identified FHAD participants consisted of familial early-onset AD or
late-onset AD, which also has a high heritability of 79%,
suggesting that they are a higher risk category for developing
AD. Thus, such shared AD and FHAD factors may relate to

sensorimotor function and processing speed (i.e., RT) analogous to
alterations in cognition and memory (i.e., PAL).
We found a correlation between svRT and PAL performance

(Fig. 1b). This finding was in line with many prior studies, the
dependence of episodic memory on processing speed, a
dependence that grows with age and incident of age-related
disease (e.g., AD)5–8,40. The association of svRT with PAL may
highlight distributed systems and networks that underlie RT
performance. For example, svRT performance could depend on
the functioning of many cognitive areas that PAL requires and vice
versa. Another possibility is that properly functioning memory and
cognitive networks correspond to better RT performance.
Evidence for this is suggested by the fact that higher intelligence
is related to shorter RT41–43. However, diverse factors (e.g.,
exercise, time of day, meal proximity, and individual assessing
RT) affect RT performance40,43,44. Thus, making an accurate
estimation of RT’s effect on intelligence and vice versa changeling.
Together with our prior results, these findings suggest that RT
performance could be used as a metric to assess potential AD risk.
However, further research, including longitudinal studies, replica-
tion, and corroboration of RT’s link to age-related cognitive
decline and disease, are necessary to support this notion.
The difference in the effects of FHAD between UK Biobank and

MindCrowd (for both MindCrowd and UKBb MindCrowd analyses,
Supplementary Fig. 3A and Fig. 8a) could be due to the vast

Fig. 3 MindCrowd: health, medical, and lifestyle factors. MindCrowd analysis (ages 18–85) of simple visual reaction time (svRT).
a–b Smoking Status and Reported Dizziness were associated with lengthened svRT. a Linear model fits (line fill ±95% CI) of the median svRT
by Age3 (curvilinear model) with lines split by Smoking Status. Participants identifying as a smoker showed lengthened svRT (βSmoking= 7.07,
pSmoking= 1.26E− 03, Smoker n= 5793, Non-Smoker n= 69,873). b Linear model fits (line fill ±95% CI) of the median svRT by Age3 (curvilinear
model) with lines split by Reported Dizziness. Participants reporting Reported Dizziness showed lengthened svRT performance (βDizzy= 4.87,
pDizzy= 0.04, Reported Dizziness Reported n= 4749, No Reported Dizziness Reported n= 70,917). c–e Daily Medications, Diabetes, and
Reported Stroke were all associated with lengthened svRT. MindCrowd analysis (ages 18–85). c Linear model fits (line fill ±95% CI) of the
median svRT by Age3 (curvilinear model) with lines split by Daily Medications taken. Compared to participants reporting “no daily
medications” (n= 33,672), taking “Two” (βMeds2= 5.84, pMeds2= 2.00E− 03, n= 9651), “Three” (βMeds3= 6.24, pMeds3 < 0.01, n= 6656), and
“Four” (βMeds4= 17.82, pMeds4= 3.51E− 16, n= 10,769) lengthened svRT. d Linear model fits (line fill ±95% CI) of the median svRT by Age3

(curvilinear model) with lines split by Diabetes Mellitus. Participants reporting having diabetes were associated with lengthened svRT
(βDiabetes= 11.23, pDiabetes < 3.36E− 05, Diabetes Reported n= 3887, No Diabetes Reported n= 71,779). e Linear model fits (line fill ±95% CI) of
the median svRT by Age3 (curvilinear model) with lines split by Reported Stroke. A reported stroke was associated with longer svRTs (βStroke=
20.38, pStroke= 3.59E− 04, Reported Stroke n= 765, No Reported Stroke n= 74,901).
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difference in the fraction of FHAD participants in the UK Biobank
(FHAD= 13% of total) compared to UKBb MindCrowd (FHAD=
35% of total). While noting that we target those with FHAD for
recruitment into MindCrowd, this substantial disparity could also
be due to the accuracy of the UK Biobank’s FHAD. The UK Biobank
was calculated from three separate questions (i.e., mother, father,
and siblings AD diagnosis). Adding to this, the United Kingdom
uses a massive, detailed, nationwide electronic health record
system facilitating respondent health and medical survey accu-
racy. Compare this to our single question in MindCrowd, asking
participants of all ages to remember if a relative was diagnosed
with AD. Another possibility is the RT paradigm used; that is,
MindCrowd’s test of svRT compared to the UK Biobank’s use of
cvrRT. The fact that complex reaction time, requiring recognition
and the choice to “respond or not respond,” rather than just
stimulus-response, may underly this difference. UKBb MindCrowd
svRT performance showed a consistently shorter association from
young to old age compared to the UK Biobank cvrRT performance;
an observation noted in a prior study also measured both simple
and complex RT45. These findings are consistent with the idea that
complex RT requires more processing time12,46, and prior work
found the age-associated slowing of RT was higher for choice RT
than simple RT47. Lastly, the differences in FHAD associations
across MindCrowd and the UK Biobank are perhaps due to the UK
Biobank had over 2× the number of participants compared to
MindCrowd (i.e., 158 K vs. 76 K). The larger sample is expected to
produce better model definitions and increased statistical power.

Increased statistical power may also have enhanced accuracy,
validity, and reproducibility.
Numerous RT studies have found sex differences in RT

performance, which does not appear to be reduced by
practice16,20,45. Consistent with others45,47, men exhibited shorter
RTs in each model across cohorts (Figs. 1d and 4c–d). In addition,
the analysis of the UKBb MindCrowd and UK Biobank implicated
biological sex affecting RT slowing from younger to older ages.
The age interaction with biological sex suggests that being a
woman from younger to older ages is associated with longer RT
compared to being a man. These results essentially replicate a
previous sizable study (i.e., 7000 participants) evaluating RT45.
Similar to our own, this study found that (1) men consistently
outperformed women on all RT measures from younger to older
ages, (2) differences in RT performance from younger to older
ages were nonlinear, (3) including a third-degree polynomial for
age provided the best model fit, and (4) compared to men,
women displayed longer RTs consistently from younger to older
ages45. Collected with our prior study of PAL performance34, these
associations replicate prior work and suggest that biological sex
affects RT and age-associated shift in RT.
Educational attainment was associated with svRT in both

MindCrowd cohorts and cvrRT in the UK Biobank. Overall, having
more education (i.e., reporting higher milestones) was related to
shorter svRT and cvrRT (Figs. 2a and 5a–b). However, it is unclear if
individuals with higher processing speed naturally seek more
education and what other factors confound this relationship.

Table 3. Summary MindCrowd’s main results.

Factor Value β SE t p

Intercept 355.88 11.99 29.68 1.89E− 192

Age1 One year difference (i.e., slope) 7.07 0.81 8.71 3.06E− 18

Age2 One year difference bend in the slope −0.15 0.02 −8.44 3.23E− 17

Age3 One year difference in slope bend 1.20E− 04 0 12.27 1.46E− 34

PAL performance1 One word pair difference (i.e., slope) −8.89 0.73 −12.19 3.77E− 34

PAL performance2 One word pair difference bend in slope 0.32 0.04 7.63 2.35E− 14

PAL performance3 Per word pair difference in slope bend 7.14E− 04 0 −5.78 7.28E− 09

Biological sex Men −34.26 1.25 −27.33 1.26E− 163

Educational attainment Some college −14.73 3.75 −3.92 8.74E− 05

Educational attainment College degree −31.78 3.76 −8.45 2.95E− 17

Handedness Left −3.87 1.76 −2.2 0.03

Daily medications taken Two 5.84 1.89 3.09 2.00E− 03

Daily medications taken Three 6.24 2.26 2.76 0.01

Daily medications taken Four 17.82 2.18 8.16 3.51E− 16

Reported dizziness True 4.87 2.35 2.07 0.04

Smoking status True 7.07 2.19 3.23 1.26E− 03

Diabetes mellitus True 11.23 2.71 4.15 3.36E− 05

Reported stroke True 20.38 5.71 3.57 3.59E− 04

Age × PAL performance Better PAL Performance shortens the age-associated shift
in svRT

−7.56E− 04 4.41E− 05 −1.72E+ 01 8.34E− 66

Age × smoking status Smoking status lengthens the age-associated shift in svRT 0.58 0.12 4.67 2.95E− 06

Age × reported stroke Reported stroke lengthens the age-associated shift in svRT 1.87 0.42 4.46 8.17E− 06

Age × biological sex Men shift toward shorter svRT −0.37 0.07 −5.59 2.23E− 08

Age × educational attainment Having some college vs. No high school diploma shortens the
age-associated shift in svRT

−0.76 0.18 −4.09 4.28E− 05

Age × educational attainment A college degree vs. No high school diploma shortens the age-
associated shift in svRT

−1.53 0.19 −8.14 4.08E− 16

List of MindCrowd’s main associations and interactions, β= unstandardized regression coefficient, SE= standard error, t= value of t-statistic, p= p-value.
Superscript numbers denotes the degree of the polynomial.
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Further work utilizing both cohorts is necessary to shed light on
the effects and modifiers of FHAD and cross-cohort discrepancies.
The model of the UK Biobank revealed an interaction between
biological sex and education on RT performance. The breakdown
revealed that men had similar RT performance if they attained a
high school diploma and above. However, men who did not
graduate high school showed markedly longer RTs, which brought
them in line with women’s RT performance. However, the
associated lengthening of RT for less-educated men was vastly
more than that found in less-educated women (reported “No High
School Diploma”made up 3.83% of women and 3.11% of men; see
Supplementary Fig. 8).
In MindCrowd, handedness, specifically being left-handed, was

associated with shorter svRTs. Prior studies have reported similar
associations, where left-handedness was correlated with shorter
svRT19,46,48. Hemispheric asymmetries in spatial processing are
thought to underly shortened svRT for the left hand47,49.
Handedness was not associated with svRT in UKBb MindCrowd
or cvrRT in the UK Biobank. One explanation for the divergent
findings is that MindCrowd includes younger participants (i.e.,
18–40-year-olds). Indeed, in MindCrowd, the association appears
to diminish from younger to older ages. Specifically, in Fig. 2b, the

separation of the regression lines between left-handed and right-
handed participants shrinks and eventually crosses around the 4th
decade of life. Figure 2c shows that the left-handed and right-
handed regression lines separate in 20 to 40-years-olds, while Fig.
2d shows that these regression lines are not separate in 40 to 60-
year-olds. While purely speculative, differences in social conven-
tions may have played a role. For example, some older
participants were forced to be right-handed, whereas younger
participants were not. In doing so, upping the amount of
unexplained variance in older, but not younger, participants
across MindCrowd and the UK Biobank.
The MindCrowd analysis incorporated all 13 available health,

medical, and lifestyle-related factors, of which six were present
and incorporated into the shared UKBb MindCrowd/UK Biobank
model (Tables 2 and 4). Before the launch of MindCrowd, these
factors were carefully selected based upon their known relation to
(1) age-associated alterations, (2) RT performance, and (3) PAL
Performance. Of the 13 health, medical, and lifestyle factors
evaluated in the MindCrowd analysis, we found associations
between svRT and the number of daily medications, reported
dizziness, smoking status, reported stroke, and diabetes mellitus.
Each health and medical factor were associated with longer svRTs

Table 4. UKBb MindCrowd and UK Biobank’s sample size (ns) summary.

Characteristic UKBb MindCrowd ns UK Biobank ns

Biological sex Women= 29,640 Women= 89,331

Men= 10,155 Men= 68,914

Diabetes mellitus Diabetes reported= 2807 Diabetes reported= 4969

No diabetes reported= 36,988 No diabetes reported= 153,276

Handedness Left-handed= 4520 Left-handed= 15,287

Right-handed= 35,034 Right-handed= 142,958

Reported stroke Reported stroke reported= 2807 Reported stroke reported= 1237

No reported stroke reported= 39,318 No reported stroke reported=
157,008

Reported hypertension Hypertension Rep.= 9676 Hypertension rep.= 32,593

No Hypertension Rep.= 30,119 No hypertension rep.= 125,652

Smoking status Smoker= 2783 Smoker= 91,312

Non-smoker= 37,012 Non-smoker= 66,923

Reported dizziness Reported dizziness reported= 2543 Reported dizziness reported=
42,210

No reported dizziness reported= 37,252 No reported dizziness reported
= 116,035

Educational attainment No high school diploma= 605 No high school diploma= 10,978

High school diploma= 3176 High school diploma= 46,247

Some college= 11,139 Some college= 77,270

College degree= 24,875 College degree= 23,750

FHAD FHAD Reported= 13,748 FHAD reported= 19,741

No FHAD Reported= 26,047 No FHAD reported= 138,504

Educational attainment × biological sex Women Women

No high school diploma= 426 No high school diploma= 6056

High school diploma= 2496 High school diploma= 27,742

Some college= 8740 Some college= 43,040

College degree= 17,978 College degree= 23,750

Men Men

No high school diploma= 179 No high school diploma= 4922

High school diploma= 680 High school diploma= 18,505

Some college= 2399 Some college= 34,230

College degree= 12,493 College degree= 11,257

List of the multiple regression coefficient (i.e., linear model factors) ns from UKBb MindCrowd and the UK Biobank.
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(Fig. 3). We should note that the number of daily medications is a
serving as a proxy for overall health. That is, the worse one’s
health, the worse one’s performance, the increased number of
medications treating the underlying health conditions. The UKBb
MindCrowd (svRT) and the UK Biobank (cvrRT) analyses found
similar associations between reported dizziness, reported stroke,
diabetes mellitus, indicating hypertension. Although each associa-
tion differed in magnitude between the two older cohorts, each
was related to lengthened RT. The UKBb MindCrowd to the UK
Biobank found a different association for FHAD (UKBb MindCrowd
= no association; UK Biobank= 2.43 ms longer), smoking status
(UKBb MindCrowd= 10ms longer; UK Biobank= no association).
Interestingly, despite some differences, only a few coefficient signs
differed between the UKBb MindCrowd and UK Biobank; indeed,
most estimations were well within an order of magnitude
between the two cohorts (e.g., age, educational attainment, and
age by biological sex interaction, Table 5).
Many factors are likely to account for the different associations

between smoking and FHAD between UKBb MindCrowd and the
UK Biobank (Figs. 7c–d and 8a–b). Some of these include
differences in demographics, genetic heterogeneity, and age26.
However, candidates include the fractions of participants report-
ing each factor (e.g., for diabetes mellitus: MindCrowd= 1%, UKBb
MindCrowd= 7%, and UK Biobank= 3%). Another factor is that

the UK Biobank’s participant number is twice the size of
MindCrowd and four times the size of UKBb MindCrowd. Despite
our study’s size, the observational and cross-sectional method
means that we cannot rule out effects due to confounding
variables.
Consequently, while numbers may be close, we do not assume

that the UKBb MindCrowd is similar and can be compared to the
UK Biobank. Furthermore, we observed that UKBb MindCrowd
consistently reported larger estimates and standard errors than
the UK Biobank. For example, the MindCrowd cohort’s estimation
of the sex difference association was consistently more extended
(~40ms), even in the UKBb MindCrowd cohort when looking at
the UK Biobank (~19ms). This difference demonstrates why the
study of neuropsychological traits and disease requires large sizes
to provide accurate estimations driving better predictive validity.
We strongly advocate for large-scale efforts like ours, the UK

Biobank50, and others22. Indeed, studies of this kind have
characteristics that provide the unique impact necessary to move
the fields of aging and age-related diseases forward. These
include: (1) statistical control, as our MindCrowd analysis
incorporated all 24 available factors, 11 of which were used in
the UKBb MindCrowd and UK Biobank model. (2) The inclusion of
each predictor controlled for its association on RT, which
potentially removed variability (noise), thus enhancing statistical

Fig. 4 UK Biobank: age and biological sex. UKBb MindCrowd and UK Biobank analysis (ages 40–70) of visual reaction time (RT). a–b Age was
linearly associated with RT. a UKBb MindCrowd linear model fits (line fill ±95% CI, error bars ± SEM) of median simple visual RT (svRT) from
young to old Age. b UK Biobank linear model fits (line fill ±95% CI, error bars ± SEM) of median complex visual recognition RT (cvrRT) from
young to old Age. UKBb MindCrowd svRT (βAge= 5.75, pAge= 2.00E− 16, n= 39,795) and UK Biobank cvrRT (βAge= 3.40, pAge= 2.00E− 16,
n= 158,245) were associated with similar lengthening from younger to older ages. The average 50ms difference between UKBb MindCrowd
svRT (M= 478.66 ms) and UK Biobank (M= 528.74ms) is due to the choice component (i.e., do cards match or not > press button) of the UK
Biobank’s cvrRT task compared to UKBb MindCrowd’s stimulus-response (i.e., the pink sphere appears > press button) svRT. c–d Being a man,
as compared to being a woman, was associated with shorter visual RT. c UKBb MindCrowd linear model fits (line fill ±95% CI, error bars ± SEM)
of median svRT from young to old Age with lines split by Biological Sex. d UK Biobank linear model fits (line fill ±95% CI, error bars ± SEM) of
median cvrRT from young to old Age with lines split by Biological Sex. Both UKBb MindCrowd svRT (βSex=−40.00, pSex= 8.03E− 71, 20.46%,
Women [M= 489.75ms, n= 29,640], Men [M= 446.28 ms, n= 10,155]) and UK Biobank cvrRT (βSex=−18.28, pSex= 2.00E− 16, 5.16%, Women
[M= 534.98 ms, n= 89,331], Men [520.66 ms, n= 68,914) found that being a man was consistently associated with shorter RT when compared
to being a woman from 40–70 years of age.
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power. (3) The two models used for each of the analyses were
selected with little human input by automated application of
specific statistical criteria (see Inclusion of polynomials and
automatic model selection in “Statistical Methods” section). This
likely decreases bias, the probability of overfitting, and multi-
collinearity. (4) For this study, MindCrowd had over 76 K and the
UK Biobank over 158 K participants. Large sample sizes in each
cohort were expected to help reduce variance, enhance estima-
tion, select better models, and in turn, enhance statistical power.
Expanded statistical power may then enhance accuracy, validity,
and reproducibility.
Lastly, a recent genome-wide association study examining

associations between RT and single nucleotide polymorphisms
(SNP) in the UK Biobank and CHARGE and COGENT consortia
noted weak correlations between the reported cognitive-
associated SNPs among US and UK cohorts51. Here, MindCrowd
presents a future opportunity to resolve these weak associations
and get a better picture of potential cohort effects. Taken
together, these characteristics increase the likelihood of making
accurate inferences regarding associations while boosting pre-
dictive validity. These are both necessary and vital attributes when
searching for genetic associations and the structure underlying
healthy brain aging.

There are potential concerns that arise from web-based
studies52. Indeed, limitations of this study include the cross-
sectional design and the partial discrepancy in MindCrowd’s svRT
test compared to the UK Biobank’s cvrRT test and info collected
between the UK Biobank and MindCrowd (e.g., the omission of
“prefer not to answer” choices for race and education questions).
Acknowledging these drawbacks, we believe that the advantage
of meaningfully higher participant numbers and enriched cohort
diversity facilitated via online research remediates some dis-
advantages. For example, the range of error reported in recent
internet-based studies of self-reported quantitative traits like
height and weight was between 0.3 and 20%53–56. Previously, we
ran simulations on the association between FHAD and PAL by
randomly shuffling the FHAD responses (e.g., Yes to No, and No to
Yes), introducing increasing sequential amounts of “error.” We
found that even with a subtle effect such as FHAD on PAL
performance, due to our cohort size, 24% error would still have
only made us commit a Type1 error 50% of the time34. In line with
this notion, another publication demonstrated that online RT
studies produce reproducible results57.
Further, we developed an extensive and automated data

filtering pipeline (see Data Quality Control and Supplementary
Figs. 9–10) to address these concerns and enhance validity and
accuracy. These data (i.e., raw or filtered) were excluded before

Fig. 5 UK Biobank: educational attainment and diabetes mellitus. UKBb MindCrowd and UK Biobank analysis (ages 40–70) of visual reaction
time (RT). a–b More education was related to shorter visual RT. a UKBb MindCrowd linear model fits (line fill ±95% CI) of median simple visual
RT (svRT) from young to old Age with lines split by Educational Attainment. Participants who had a “High School Diploma” (βHSDiploma=−9.68,
pHSDiploma= 2.70E− 01, 1.87%, n= 3176), “Some College” (βCollege=−26.08, pCollege= 1.61E− 03, 5.06%, n= 11,139), or a “College Degree”
(βCDegree=−49.07, pCDegree= 1.91E− 09, 9.51%, n= 24,875) were shortened than those with “No High School Diploma” (n= 605). b UK
Biobank linear model fits (line fill ±95% CI) of median complex visual recognition RT (cvrRT) from young to old Age with lines split by
Educational Attainment. Like the UKBb MindCrowd cohort, participants who had a “High School Diploma” (βHSDiploma=−9.68, pHSDiploma=
1.23E− 33, 1.74%, n= 46,247), “Some College” (βCollege=−10.26, pCollege= 1.30E− 40, 1.85%, n= 77,270), or a “College Degree” (βCDegree=
−11.71, pCDegree= 1.46E− 41, 2.11%, n= 23,750) were all associated with shorter cvrRTs when compared to “No High School Diploma” (n=
10,978). c–d Diabetes Mellitus was associated with lengthened visual RT. c UKBb MindCrowd linear model fits (line fill ±95% CI) of median svRT
from young to old Age with lines split by diabetes mellitus. d UK Biobank linear model fits (line fill ±95% CI) of median cvrRT from young to
old Age with lines split by diabetes mellitus. For the UKBb MindCrowd, individuals who reported (βDiabetes= 11.48, pDiabetes= 3.31E− 03,
Diabetes Reported n= 2807, No Diabetes Reported n= 36,988) and UK Biobank cvrRT (βDiabetes= 5.48, pDiabetes= 4.80E− 07, Diabetes
Reported n= 4969, No Diabetes Reported n= 153,276), were associated with lengthened svRT.
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analysis (i.e., listwise deletion). Exclusion resulted in dropping 0.3%
and 6.1% of MindCrowd and UK Biobank participants, respectively.
One of the 25 critical factors had over 5% missing data (see
Supplementary Fig. 11 and Supplementary Tables 1 and 2).
Reported Dizziness in the UK Biobank had 64.36% missing data.
Hence, interpretation of this factor’s association with cvrRT should
only be considered for “hypothesis-generation58.” Evaluation of
selection bias between retained and excluded participants
revealed an overall lower probability of exclusion in MindCrowd
and higher likelihood in the UK Biobank (see Supplementary
Tables 3 and 4). Notable groups with a higher probability of
exclusion included those in the highest age ranges and those
reporting hypertension and dizziness. These higher probability
groups were found in both study’s cohorts.
Lastly, it is essential to note that our internet-based svRT task

was not designed to directly mirror conventional face-to-face RT
testing paradigms. Indeed, we find higher RTs and steeper slopes
from younger to older ages than studies assessing svRT via the
gold standard, laboratory-based assessments (e.g., refs. 47,59).
However, these paradigm differences are not likely to alter our
svRT test’s validity or reliability. One reason being our test is only
interpreted within MindCrowd to identify associated factors and
reveal individual differences. Despite test paradigm differences,
we believe that large cross-sectional studies like MindCrowd,
utilizing internet-based testing and remote biosample collection,

are vital to moving the field of aging and age-related disease
forward (see Opportunities: Unique impact above and50).
Understanding the modifiable and non-modifiable variables

associated with RT and related cognitive function will begin to
deconstruct the underlying architecture of elements accounting
for the vast heterogeneity seen in individual trajectories of age-
associated cognitive decline. Only then will it be possible to
develop a healthy brain aging model that is both valid and
reliable60. Such a model holds immense potential to attenuate
age-related and disease-related cognitive deficits, thus enhancing
cognitive healthspan. Any extension of cognitive healthspan,
better aligning it to the human lifespan, would be invaluable and
increasingly vital when aggregated across the aging population.
Mitigating age-related or disease-related cognitive decline, allow-
ing maintenance of independence by even only a few years,
would have many benefits. For example, the U.S. could save
billions of dollars in health care costs and lost caregivers’
productivity while improving the quality of life for the aging
population50. In this study, we revealed several potential factors
related to aging and processing speed. Of those, smoking and
education, as potentially modifiable factors throughout life, were
associated with longer and shorter RTs, respectively, from younger
to older ages. With MindCrowd recruitment ever-increasing, our
goal is to continue supplying and refining the knowledge
necessary to optimize cognitive performance throughout life.

Fig. 6 UK Biobank: reported stroke and hypertension. UKBb MindCrowd and UK Biobank analysis (ages 40–70) of visual reaction time (RT).
a–b Reported Stroke was associated with lengthened visual reaction time (RT). a UKBb MindCrowd linear model fits (line fill ±95% CI) of
median simple visual RT (svRT) from young to old Age with lines split by Reported Stroke. b UK Biobank linear model fits (line fill ±95% CI) of
median complex visual recognition RT (cvrRT) from young to old Age with lines split by Reported Stroke. In both the UKBb MindCrowd svRT
(βStroke= 18.47, pStroke= 4.00E− 02, Reported Stroke n= 2807, No Reported Stroke n= 39,318) and UK Biobank cvrRT (βStroke= 10.61, pStroke=
6.15E− 07, Reported Stroke n= 1237, No Reported Stroke n= 157,008) analysis, experiencing a Reported Stroke was associated with
lengthened visual RT. c–d Reported Hypertension was associated with lengthened visual RT. c UKBb MindCrowd linear model fits (line fill
±95% CI) of median svRT from young to old Age with lines split by Reported Hypertension. d UK Biobank linear model fits (line fill ±95% CI) of
median cvrRT from young to old Age with lines split by Reported Hypertension. Unlike the MindCrowd analysis, hypertension was related to
longer svRTs in UKBb MindCrowd (βHypertension= 7.99, pHypertension= 3.16E− 03, Hypertension Reported n= 9676, No Hypertension Reported
n= 30,119) and cvrRT in the UK Biobank (βHypertension= 1.14, pHypertension= 0.02, Hypertension Reported n= 32,593, No Hypertension
Reported n= 125,652).
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METHODS
Study participants MindCrowd: overview
In January 2013, we launched our internet-based study at www.
mindcrowd.org. Website visitors 18 years or older were asked to consent
to our study before any data collection via an electronic consent form. As
of 3–17–2020, we have had 356,674 non-duplicate or distinct visitors to the
website. Of these distinct visitors, over 194,542 (54%) consented to take
part. The final data set had 75,666 (39% of consented individuals)
participants who completed a simple visual reaction time (svRT) and
paired-associate learning (PAL) tasks and answered 22 demographic,
lifestyle, and health questions. The authors confirm they obtained
informed consent from each participant and complied with all relevant
ethical regulations. Approval for this study was obtained from the Western
Institutional Review Board (WIRB study number 1129241).

Study participants MindCrowd: simple visual reaction time
(svRT)
After consenting to the study and answering five demographic questions
(i.e., age, biological sex, years of education, primary language, and country
where they reside), participants were asked to complete a web-based svRT
task. We chose svRT because it is a simple central and peripheral nervous
system-dependent task influenced by intelligence and brain injury61.
Participants were presented with a pink sphere that appeared at random
intervals (between 1 s and 10 s) on the screen, and they were instructed to
respond as quickly as possible after the sphere appeared by pressing the
enter/return key on their keyboard. Once the participant responded, the

sphere disappeared until the subsequent trial. Each participant received a
total of five trials. The sphere stayed on the screen until the participant
responded. The dependent variable, response time in milliseconds (ms),
was recorded from the sphere’s appearance on the screen to the
participant’s key press or screen touch.

Study participants MindCrowd: paired-associate learning
(PAL)
Next, participants were presented with the PAL task. For this cognitive task,
during the learning phase, participants were shown 12-word pairs, one-
word pair at a time (2 s/word pair). During the recall phase, participants
were given the first word of each pair and were asked to use their
keyboard to type in (i.e., recall) the missing word. This learning-recall
procedure was repeated for two more trials. Before beginning the task,
each participant received one practice trial consisting of three-word pairs
not contained in the 12 used during the test. Word pairs were presented in
different random orders during each learning and each recall phase. The
same word pairs and order of presentation were used for all participants.
The dependent variable/criterion was the total number of correct word
pairs entered across the three trials (i.e., 12 × 3= 36, a perfect score).

Study participants MindCrowd: demographic, medical, health,
and lifestyle questions
Upon completing the PAL task, participants were asked to fill out an
additional 17 demographic and health/disease risk factor questions. These
questions included: marital status, handedness, race, ethnicity, number of

Fig. 7 UK Biobank: reported dizziness and smoking status. UKBb MindCrowd and UK Biobank analysis (ages 40–70) of visual reaction time
(RT). a–b Reported Dizziness was associated with lengthened visual RT. a UKBb MindCrowd linear model fits (line fill ±95% CI) of median
simple visual RT (svRT) from young to old Age with lines split by Reported Dizziness. b UK Biobank linear model fits (line fill ±95% CI) of
median complex visual recognition RT (cvrRT) from young to old Age with lines split by Reported Dizziness. UKBb MindCrowd svRT (βDizzy=
12.13, pDizzy= 2.52E− 03, Reported Dizziness Reported n= 2543, No Reported Dizziness Reported n= 37,252) and UK Biobank cvrRT (βDizzy=
3.21, pDizzy= 3.71E− 14, Reported Dizziness Reported n= 42,210, No Reported Dizziness Reported n= 116,035) were lengthened if
participants Reported Dizziness. c–d Smoking Status was associated with lengthened svRT in UKBb MindCrowd, but not cvrRT in the UK
Biobank. c UKBb MindCrowd linear model fits (line fill ±95% CI) of median svRT from young to old Age with lines split by Smoking Status.
Compared to non-smokers, smokers were associated with longer svRTs (βSmoke= 10.18, pSmoke= 0.01, Smoker n= 2783, Non-Smoker n=
37,012). d UK Biobank linear model fits (line fill ±95% CI) of median cvrRT from young to old Age with lines split by Smoking Status. An
association between Smoking Status and cvrRT was not found in the UK Biobank (βSmoke= 0.47, pSmoke= 0.22, Smoker n= 91,312, Non-
Smoker n= 66,923).
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daily prescription medications, a first-degree family history of dementia,
and yes/no responses to the following: seizures, dizzy spells, loss of
consciousness (more than 10min), high blood pressure, smoking status,
diabetes mellitus, heart disease, cancer, reported stroke, alcohol/drug
abuse, brain disease, and memory problems). Next, participants were

shown their results and provided different comparisons to other test takers
based on the average scores across all participants’ sex, age, and education
demographics. On this same page of the site, participants were given the
option to be recontacted for future research (see Supplementary Table 5
for the list of MindCrowd questions asked).

Fig. 8 UK Biobank: FHAD biological and sex × educational attainment. UKBb MindCrowd and UK Biobank analysis (ages 40–70) of visual
reaction time (RT). a–b A first-degree family history of Alzheimer’s disease (FHAD) was related to longer complex visual recognition reaction
time (cvrRT)s in the UK Biobank, but not simple visual reaction time (svRT) in UKBb MindCrowd. a UKBb MindCrowd linear model fits (line fill
±95% CI) of median svRT from young to old Age with lines split by reported FHAD. An association between FHAD and svRT was not found in
the UKBb MindCrowd cohort (βFHAD=−0.07, pFHAD= 0.97, FHAD Reported n= 13,748, No FHAD Reported n= 26,047). b UK Biobank linear
model fits (line fill ±95% CI) of median cvrRT from young to old Age with lines split by reported FHAD. Compared to those reporting No FHAD,
FHAD was related to worse cvrRT performance in the UK Biobank (βFHAD= 2.36, pFHAD= 3.35E− 05, FHAD Reported n= 19,741, No FHAD
Reported n= 138,504). c–d In the UK Biobank, Biological Sex modified the association of Educational Attainment on cvrRT (Biological Sex ×
Educational Attainment interaction). Linear model fits (line fill ±95% CI) of the median cvrRT by Age with lines split by Educational Attainment
in c women and (d) men. Compared to c women having “No High School Diploma” (n= 6056), (d) men with a “High School Diploma”
(βSex*HSDiploma=−11.24, pSex*HSDiploma= 3.30E− 12, n= 18,505), “Some College” (βsex*College=−10.54, psex*College= 8.71E− 12, n= 34,230) or a
“College Degree” (βsex*CDegree=−12.8, psex*CDegre= 1.68E− 13, n= 11,257) were associated with shortened cvrRT. See Supplementary Fig. 8,
displaying simple effects parsed using estimated marginal means (EMM).

Fig. 9 An illustrative summary of the overall results. Data are shown across the MindCrowd (MC), UKBb MindCrowd, and the UK Biobank
(UKBb). The color (i.e., red= low negative and blue= high positive) indicates the size of the β (beta coefficient) estimate.” N.S.,” indicates if the
estimated β value was not statistically significant (α= 0.05).
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Study participants UK Biobank: study design and aims
The UK Biobank is a long-term study and research resource in the United
Kingdom (UK), which investigates links between genetic and environ-
mental exposure to disease development. The UK Biobank’s stated goal is
to “build a major resource that can support a diverse range of research
intended to improve the prevention, diagnosis, and treatment of illness
and the promotion of health throughout society.” The UK Biobank began
in 2006. The study is currently following about 500,000 participants in the
UK, enrolled at ages 40 to 69. Initial enrollment took place from 2006 to
2010. All participants are monitored for at least 30 years after recruitment
and initial assessment (i.e., termed “instance 0” by the Biobank). Potential
participants were invited to visit an assessment center, where they
completed a questionnaire. Participants were next interviewed about
lifestyle, medical history, and nutritional habits. Lastly, vital measurements,
such as weight, height, and blood pressure, were measured. The UK
Biobank aims to electronically record all health-related changes and events
across the entire 30-year study. Notably, this task is aided by the UK’s
integrated health system and corresponding electronic health record-
keeping, an approach that is not yet possible in the USA.

Study participants UK Biobank: data procurement
All UK Biobank data were derived from Application #43036, entitled
“Exploring and Accommodating Heterogeneity in Large-Scale Genetic
Analyses” as a “Collaborator Project.” The authors confirm that the UK
Biobank obtained informed consent from each participant and complied
with all relevant ethical regulations. Approval for this study was obtained
from the Research Ethics Committee [11/NW/0382].

Study participants UK Biobank: complex visual recognition
reaction time (cvrRT) and educational attainment
Each participant’s cvrRT was based on 12 rounds of the card-game Snap.
Participants were shown two cards at a time with a picture on them.
Participants pressed a button on a table in front of them as quickly as
possible if the images cards/matched. For each of the 12 rounds, the
following data were collected: the pictures shown on the cards (Index of
card A, Index of card B), the number of times the participant clicked the
‘snap’ button, and the latency to first click of the ‘snap’ button. This last
record of “latency to click the button” was used as the UK Biobank’s
criterion for regression analyses.
For Educational Attainment, the following conversions from UK Biobank

(UKBb) answer codes (see http://biobank.ndph.ox.ac.uk/showcase/coding.
cgi?id=100305) to MindCrowd (MC) values were made: (a) “UKBb -7 None
of the above” to “MC No high school diploma,” (b) “UKBb 2A levels/AS
levels or equivalent” to “MC High school diploma,” (c) “UKBb 3O levels/
GCSEs or equivalent” to “MC High school diploma,” (d) “UKBb 4 CSEs or
equivalent” to “MC High school diploma,” (e) “UKBb 5 NVQ or HND or HNC
or equivalent” to “MC Some college,” (f) “UKBb 6 Other professional
qualifications (e.g., nursing and teaching)” to” MC Some college,” (g) “UKBb
1 College or University degree” to “MC College degree.” All UKBb
participants selecting “-3 Prefer not to answer” were removed from the
final dataset before model selection and analysis. While we did our best to
ensure a similar education measure across UKBb MindCrowd and the UK
Biobank, we realize that there are fundamental differences between US
and UK schools that we cannot control or eliminate. Table 6 lists the
specific UK Biobank data fields from which we derived our factors.

Data quality control
For the MindCrowd analysis, a final data set, including all qualifying
participants up to 3–17–2020, was generated. See Supplementary Fig. 9 for
a flowchart detailing the following filtering steps. This dataset removed
participants: (a) with duplicate email addresses (only first entry kept), (b)
who did not complete all three rounds of the PAL test, (c) whose primary
language was not English, (d) who was not between 18–85 years old, (e)
whose RT trials were above or below 1.5 × the interquartile range (IQR) and
(f) whose median svRT was above or below 1.5 × the IQR range of all
participants of the same age (Supplementary Fig. 10 details RT and IQR
exclusion). Participants from either study were removed if they were
missing any data (listwise deletion). Lastly, for the UKBb MindCrowd and
UK Biobank analysis, participants were removed if their responses to a
demographic, medical, health, and lifestyle question did not match the
other study. For example, participants in the UK Biobank who responded
to the “Race” question with “Prefer Not to Answer” were removed. “Prefer

Not to Answer” was not a choice MindCrowd participants were given on
the “Race” question. Removing these participants was done to align UKBb
MindCrowd and UK Biobank cohorts as much as possible.

Statistical methods
Statistical analyses were conducted using R62,63 (v4.0.3). For all analyses,
multivariate linear regression was performed using the general linear
model (LM) to model Median svRT or Median cvrRT (i.e., criterion or
dependent variable) as a function of either 24 (MindCrowd) or 11
predictors (UK Biobank analysis). For the MindCrowd analysis, svRT was
modeled as a function of PAL Performance and Age raised to the power of
three (i.e., to fit and estimate nonlinear associations). Most figures were
created using “ggplot2” bundled together as a part of the R package,
“tidyverse64”. Continuous by continuous interactions (i.e., simple slopes)
were estimated using the R packages “interactions65,” “sandwich66,”
“jtools67”. Categorical by categorical interactions were estimated using
the R package, “emmeans”68. Adjustments for multiple comparisons were
evaluated using Tukey’s method via the “emmeans” package. Missing data
were assessed via the “finalfit69”, “visdat70”, and “naniar71” R packages (see
Supplementary Table 6 for a complete list of resources).
All measurements were taken from distinct samples. Model fit and

violations of parametric assumptions were evaluated separately in each
model. Here, we evaluated different residual plots, assessing normality,
homoscedasticity, outliers, residual autocorrelation, and multicollinearity.
The MindCrowd LM included all 22 demographic questions, health,
medical, and lifestyle questions. These questions were: Age, Biological Sex,
Race, Ethnicity, Educational Attainment, Marital Status, Handedness, Daily
Medications, Seizures, Reported Dizziness, Loss of Consciousness, Reported
Hypertension, Smoking Status, Heart Disease, Reported Stroke, Alcohol/
Drug Abuse, Diabetes Mellitus, Cancer, a First-Degree Family History of
Alzheimer’s disease, history of brain disease, whether the test was taken on
a mobile device, and the version of the MindCrowd site used. Not
surprisingly, the device used to take the RT test in MindCrowd was
associated with RT performance. For the UK Biobank analyses, these 11
variables included: Age, Biological Sex, Diabetes mellitus, Handedness,
Reported Stroke, Reported Hypertension, Smoking Status, Reported
Dizziness, Educational Attainment, and a First-Degree Family History of
Alzheimer’s Disease. Examination of each model’s variance inflation factors
(VIF) revealed no unexpected factors with a VIF > 5 (i.e., considered “highly”
colinear by convention, see Supplementary Table 7).
The MindCrowd analyses included Age and PAL Performance as first

through third-degree non-orthogonal polynomials (i.e., cubic regression).
This choice was based on empirical evaluations, using Bayesian informa-
tion criterion (BIC) weights (i.e., Schwarz weights)72. We generated, ran, and
recorded BICs across seven models (i.e., base and first-degree through
sixth-degree-[nonorthogonal] polynomial). BIC weights were calculated
from raw BIC values using the “qPCR73” (v1.4–1) R for each model. The
third-degree polynomial model reported the largest BIC weight, and it was
1.46E+ 270 times more likely to occur than the base (no polynomial)
model (BICHighW 9.99E− 01/BICLowW6.82E− 271= 1.46E+ 270)72. It is
worth noting that a prior study examining both complex and simple RT
also included age as a third-degree polynomial. Other similarities included:
a relatively large n= 7000, both sexes, an 18–94-year-old age range, and
several RT findings72.
For the MindCrowd, UKBb MindCrowd, and UK Biobank cohorts, we used

the R package “glmulti” (v1.0.8)35 to define our GLM models. “glmulti” uses
full information criterion model selection vs. shrinkage regression methods
(e.g., LASSO or LAR)35. We used “glmulti” to avoid the pitfalls of stepwise
selection methods or unintentional biased introduced via manual or p-
value-based model selection. We had “glmulti” define the “best” (i.e.,
lowest BIC) MindCrowd and UK Biobank models separately using its
“genetic” algorithm method with “marginality” set to True. We chose BIC as
opposed to other information criterion methods because BIC punishes for
model complexity. Two rounds of model selection were run to find
pairwise interactions due to package limitations (i.e., millions of potential
models). For round 1, the optimal model contained only the main effects
when all 22 factors were included. In round 2, the only factors selected in
the optimal main effects model were then included to select an optimal
model, including two-way interactions.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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