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Abstract— This paper generalizes results on synergistic hybrid
feedback control. Specifically, we propose a generalized definition
of synergistic Lyapunov functions and feedbacks which allows
the logic variable in traditional synergistic control, denoted the
synergy variable, to be vector-valued and change during flows.
Moreover, we introduce synergy gaps relative to components of
product sets, which enables us to define jump conditions in the
form of synergy gaps for different components of the synergy
variable. In particular, this enables us to formulate existing
hybrid output feedback control schemes within the synergistic
control framework. Furthermore, we show that our generalized
definition is amenable to backstepping. Finally, we give an
example of how traditional synergistic control can be combined
with ship maneuvering control with discrete path dynamics.

I. INTRODUCTION

Continuous-time systems with non-contractible configura-
tion manifolds cannot be globally asymptotically stabilized by
continuous-time feedback [1]. This is referred to as a global
topological obstruction to global asymptotic stability, and the
most famous example is a mechanical system with rotational
degrees of freedom constrained to the non-Euclidean space
SO(3).

Global topological obstructions can be overcome by em-
ploying hybrid feedback. Specifically, the synergistic hybrid
control framework has been applied to full state feedback
trajectory tracking control of rigid body orientation in [2].
The work also presents a procedure to construct synergistic
functions from modified trace functions, which were first
employed for control of orientation in [3]. The paper [4] intro-
duces a global synergistic tracking controller with integral ac-
tion. A synergistic approach that does not utilize velocity mea-
surements is presented in [5]. The work also provides a sys-
tematic procedure to construct synergistic functions by angular
warping, an idea first introduced in [6]. Global hybrid tracking
controllers for rigid body orientation explicitly exploiting the
double cover property of the unit quaternion representation are
presented in [7]. The aforementioned approach is utilized for
trajectory tracking of translation-underactuated rigid vehicles
in [8]. Synergistic control of rigid body planar and spherical
orientation is presented in [9] and [10], respectively, while
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synergistic control barrier functions were introduced in [11].
The concept of synergistic Lyapunov function and feedback
(SLFF) pairs were introduced in [12] and extended to adaptive
control with matched uncertainties in [13], while an extension
of the synergistic functions in [14] to a case where the logic
variable is allowed to flow, is introduced in [15].

The main contribution of this paper is the extension of
the SLFF definition from [12]. The proposed generalization
allows the logic variable, now referred to as the synergy
variable, to be vector-valued and possess flow dynamics.
Moreover, since the synergy variable is vector-valued, we
define synergy gaps relative to components of product sets.
These synergy gaps enable us to define flow and jump sets
and jump conditions in the form of synergy gaps for dif-
ferent components of the synergy variable. As a result, we
can show that the output feedback control method for rigid-
body orientation outlined in [16] is synergistic. The proposed
generalization encompasses the results for SO(3) and SE(3)
in [15], in which the scalar logic variable is also allowed
to change during flows. However, our proposed framework
also includes path-following control scenarios in which the
path variable exhibits jump dynamics, such as instantaneously
moving the desired state closer to the actual state. As a result,
ship maneuvering control as outlined in [17] and [18] can be
augmented with discrete path dynamics and combined with a
traditional synergistic control approach such as [9] to ensure
global asymptotic stability within the proposed framework.

This paper is organized as follows. In Section II, we extend
the definition of SLFF pairs to SLFF triples, for which the
synergy variables are allowed to have flow dynamics and be
vector-valued. Moreover, we show how the hybrid feedback
controller induced by an SLFF triple renders a given compact
set globally pre-asymptotically stable. Section III introduces
the notion of synergy gaps relative to components of product
sets, which is a distinct feature of vector-valued synergy
variables. Then, Section IV introduces a weaker notion of
SLFF triples, and we show that if an affine control system
admits a weak SLFF triple, then the same system augmented
with an integrator at the input admits a (non-weak) SLFF
triple. Section V presents a case study which combines the
classical synergistic control approach in [6] using the syner-
gistic Lyapunov functions in [9] with the ship maneuvering
control in [17]. Finally, Section VI concludes the paper.

A. Preliminaries

The standard basis vectors in Rn are denoted e1, e2, . . . , en.
The special orthogonal group of dimension 2 is denoted SO(2)
and defined by SO(2) := {R ∈ R2×2 : detR = 1, RRT =



I}, where I is the identity matrix. A function V : X →
R≥0 is said to be proper if the set {x ∈ X : V (x) ≤ c}
is compact for each c > 0. A function φ : Rn → Rn is
passive if it is continuous and φ(x)Tx ≥ 0 for all x ∈ Rn.
It is strongly passive if it is continuous and φ(x)Tx > 0
for all x ∈ Rn \ {0}. A double arrow denotes set-valued
mappings, e.g. G : X ⇒ U , where X ⊂ Rn is the domain
of the mapping (the set where the mapping is not empty-
valued), and U ⊂ Rm is its codomain (any set that contains
all values G takes in its domain). The graph of G is the set
defined as gphG := {(x, u) ∈ X × U : u ∈ G(x)}. For a k-
times continuously differentiable mapping f : R → Rn, we
denote the derivatives by f ′, f ′′, f (3), . . . , f (k), with f (0) =
f . For a function V : Rm×Rl → R and a mapping f : Rm×
Rl → Rn, we define the gradient operator with respect to
the first argument of V and f by ∇1V (x, θ) =

(
∂V
∂x (x, θ)

)
T

and ∇1f(x, θ) := (∇1f1(x, θ) · · · ∇1fn(x, θ))
T, respectively.

The gradient with respect to the second argument is defined
similarly. Moreover, let x = (p,R) ∈ SE(2), v = (ζ, ω) ∈
R2 × R, V : SE(2) × Rl → R, f : SE(2) × Rl → Rn and
define ⟨d1V (x, θ), v⟩ := ⟨⟨∇1V (x, θ), xv∧⟩⟩ and d1f(x, θ) :=
(d1f1(x, θ) · · · d1fn(x, θ))T, where ⟨⟨a, b⟩⟩ = tr(aTb) is the
Frobenius inner product and

x :=

(
R p
0 1

)
, v∧ :=

(
Sω ζ
0 0

)
, S :=

(
0 −1
1 0

)
, (1)

∇1V (x, θ) =


∂V
∂x11

· · · ∂V
∂x1j...

. . .
...

∂V
∂xi1

· · · ∂V
∂xij

 (x, θ). (2)

Finally, the adjoint mappings ad : R3 → R3×3 and Ad :
SE(2) → R3 × R3 are defined by

adv :=

(
Sω −Sζ
0 0

)
, Adx :=

(
R −Sp
0 1

)
(3)

II. SYNERGISTIC LYAPUNOV FUNCTION AND FEEDBACK

This section extends the definition of SLFF pairs from [12]
by augmenting the SLFF definition with a feedback represent-
ing the flow dynamics of the synergy variables. Moreover,
we show that the hybrid feedback control law induced by
an SLFF triple renders a given compact set globally pre-
asymptotically stable.

Consider the system

ẋ = f(x, v) (x, v) ∈ X × Rk (4)

with state x ∈ X , input v ∈ Rk and where f : X×Rk → Rn.
Our goal is to design generalized synergistic controllers with
state θ ∈ Θ ⊂ Rm of the form

θ̇ = ν(x, θ) (x, θ) ∈ C

θ+ ∈ G(x, θ) (x, θ) ∈ D

v = κ(x, θ)

(5)

where C ⊂ X × Θ, D ⊂ X × Θ, ν : X × Θ → Rm, and
G : X × Θ ⇒ Θ are the flow set, jump set, flow map and
jump map of the controller, respectively. The controller state
θ is also referred to as the synergy variable. We assume the
following throughout the paper.

Assumptions.
1) X ⊂ Rn is closed;
2) f : X × Rk → Rn is continuous;
3) Θ ⊂ Rm is closed.

In the following, we generalize the notion of a synergy
gap of a nonnegative and proper function V introduced in
[12]. In particular, we evaluate the minimum of V over a set
Ψ ⊂ Θ which need not be finite (or even compact).

Definition 1. Let V : X × Θ → R≥0 be continuous and
proper, and let Ψ ⊂ Θ be closed and nonempty. The synergy
gap of V with respect to Ψ is defined as

µV,Ψ (x, θ) := V (x, θ)−min
ψ∈Ψ

V (x, ψ). (6)

The set-valued solution mapping associated with µV,Ψ is
GV,Ψ : X ×Θ ⇒ Θ, defined as

GV,Ψ (x, θ) := {ψ ∈ Ψ : µV,Ψ (x, ψ) = 0}. (7)

The fact that V is nonnegative, continuous, and proper is
sufficient for its synergy gap relative to any nonempty and
closed set Ψ ⊂ Θ to be continuous. Moreover, the associated
solution mapping has the key properties it has in traditional
synergistic control. Specifically, nonemptiness, outer semicon-
tinuity, and local boundedness. Consequently, even when Ψ
is not compact, the set of points where θ 7→ V (x, θ) attains
its minimum on Ψ is compact for each x ∈ X .

Proposition 1. The synergy gap µV,Ψ is continuous. The
associated set-valued solution mapping GV,Ψ is nonempty-
valued, outer semicontinuous, and locally bounded.

Proof. The claims follow from [19, Corollary 7.42].

The following definition extends the notion of SLFF pairs
from [12]. In addition to utilizing the generalized notion of
synergy gap from Definition 1, we allow the synergy variable
θ to flow.

Definition 2. Let A ⊂ X ×Θ be compact. A continuously
differentiable function V : X × Θ 7→ R≥0 and continuous
functions κ : X ×Θ → Rk and ν : X ×Θ → Rm define a
synergistic Lyapunov function and feedback triple (V, κ, ν)
relative to A with synergy gap relative to Ψ exceeding ρ > 0
for the system (4) if

1) V is proper and positive definite with respect to A;
2) The closed loop system(

ẋ

θ̇

)
=

(
f(x, κ(x, θ))
ν(x, θ)

)
︸ ︷︷ ︸

Fc(x,θ)

(x, θ) ∈ X ×Θ (8)

satisfies

⟨∇V (x, θ), Fc(x, θ)⟩ ≤ 0, ∀(x, θ) ∈ X ×Θ; (9)

3) µV,Ψ (x, θ) > ρ for each (x, θ) ∈ I \A, where I is the
largest weakly invariant subset for the system

ẋ = f(x, κ(x, θ))

θ̇ = ν(x, θ)
(x, θ) ∈ E (10)



and

E := {(x, θ) ∈ X ×Θ : ⟨∇V (x, θ), Fc(x, θ)⟩ = 0}. (11)

We remark that if ν(x, θ) = 0 for all (x, θ) ∈ X ×Θ and
Θ = Ψ is finite, then Definition 2 reduces to the definition
of an SLFF pair given in [12]. If Θ = R, and Ψ ⊂ R is
finite, then Definition 2 encompasses the class of potential
functions recently introduced in [15].

Analogous to SLFF pairs [12, Theorem 7], the existence
of an SLFF triple relative to A with synergy gap relative to
Ψ exceeding ρ > 0 guarantees global pre-asymptotic stability
of A for a synergistic closed loop system resulting from (4).

Proposition 2. Let (V, κ, ν) be an SLFF triple relative to A
with synergy gap relative to Ψ exceeding ρ > 0. Then A is
globally pre-asymptotically stable for the system

ẋ = f(x, κ(x, θ))

θ̇ = ν(x, θ)

}
(x, θ) ∈ C

θ+∈ G(x, θ) (x, θ) ∈ D

(12)

where

C := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≤ ρ},
D := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≥ ρ},

G(x, θ) := GV,Ψ (x, θ).

(13)

Proof. The sets C and D are closed since µV,Ψ is continuous
by Proposition 1. Moreover, the closed-loop flow map is
continuous, and G is nonempty-valued, outer semicontinuous,
and locally bounded by Proposition 1. Consequently, the sys-
tem (12) satisfies the hybrid basic conditions [20, Assumption
6.5] and is therefore well posed. From the definition of the
jump set and jump map in (13), V decreases strictly across
jumps by at least ρ. Since V is proper and positive definite
with respect to A by 1) of Definition 2 and V does not grow
along solutions to the system (12) by 2) of Definition 2 and
the nonincrease of V across jumps, it follows that A is stable
and that all solutions are bounded. Since V must vanish in A
by 1) of Definition 2, it holds that µV,Ψ vanishes in A as well.
Consequently, A ⊂ C. From 3) of Definition 2, it then follows
that I ∩C ⊂ A. The invariance principle [20, Corollary 8.4]
then guarantees that complete solutions converge to A. It
follows that A is globally pre-asymptotically stable.

Completeness of maximal solutions (and global asymptotic
stability of A for (12) ) is guaranteed if, in addition to the
conditions of Proposition 2, it also holds that

Fc(x, θ) ∈ TX×Θ(x, θ) (14)

for all (x, θ) such that µV,Ψ (x, θ) < ρ, where TX×Θ(x, θ) is
the tangent cone to X ×Θ at (x, θ). Indeed, TX×Θ(x, θ) =
TC(x, θ) at these points, and the claim follows from [20,
Proposition 6.10]. It should also be remarked that TX×Θ ̸=
TX × TΘ in general. See [19, Chapter 6], and in particular
Proposition 6.41, for further results on this matter.

III. SYNERGY GAPS RELATIVE TO COMPONENTS OF
PRODUCT SETS

The control approach covered in Proposition 2 updates the
whole synergy variable θ when the instantaneous synergy
gap is equal to or exceeds the threshold ρ. This approach
offers relatively little flexibility in shaping the jump sets.
When Θ is a product set, one can formulate the synergy gap
and associated solution mapping relative to the components
of Θ. For simplicity, it is assumed that Θ comprises two
components, although the approach outlined in this section
can be further generalized.

Assumptions (continued).
4) Θ = Θa ×Θb, where Θa and Θb are closed.

We now adapt Definition 1 to exploit the additional struc-
ture of Θ induced by this assumption.

Definition 3. Let V : X × Θ → R≥0 be continuous and
proper, and let Ψ = Ψa×Ψb such that Ψa ⊂ Θa and Ψb ⊂ Θb
are nonempty and closed. The synergy gap of V with respect
to Ψa is defined as

µV,Ψa
(x, θ) := V (x, θ)− min

ψa∈Ψa

V (x, (ψa, θb)). (15)

The synergy gap of V with respect to Ψb is defined as

µV,Ψb
(x, θ) := V (x, θ)− min

ψb∈Ψb

V (x, (θa, ψb)). (16)

The set-valued solution mapping associated with µV,Ψa ,
GV,Ψa : X ×Θ ⇒ Θ is

GV,Ψa
(x, θ) :={ψa ∈ Ψa :µV,Ψa

(x, (ψa, θb))=0}×{θb}.(17)

The objects introduced in Definition 3 have similar prop-
erties as the ones introduced in Definition 1.

Proposition 3. The synergy gaps µV,Ψa
and µV,Ψb

are con-
tinuous. The set-valued solution mapping GV,Ψa

is nonempty-
valued, outer semicontinuous, and locally bounded.

Proof. Apply [19, Corollary 7.42] with (x, θb) as parameters
and θa as optimization variable to show the claims for µV,Ψa

and GV,Ψa . Continuity of µV,Ψb
is shown similarly.

Consequently, we may specialize the notion of an SLFF
triple to the case where Θ is product set.

Definition 4. Let A ⊂ X × Θ be compact, and (V, κ, ν)
satisfy 1) and 2) in Definition 2 for the system (4). We say
that (V, κ, ν) is a synergistic Lyapunov function and feedback
triple relative to A with synergy gap relative to Ψa exceeding
ρa > 0 if

3a) µV,Ψa
(x, θ) > ρa for each (x, θ) ∈ I \ A.

We say that (V, κ, ν) is a synergistic Lyapunov function and
feedback triple relative to A with synergy gap relative to
(Ψa, Ψb) exceeding (ρa, ρb) with ρa, ρb > 0 if

3b) µV,Ψa
(x, θ) > ρa or µV,Ψb

(x, θ) > ρb for each (x, θ) ∈
I \ A. Moreover, there exist (x, θ) ∈ I \ A such
that µV,Ψa(x, θ) < ρa and (x, θ) ∈ I \ A such that
µV,Ψb

(x, θ) < ρb.



In both cases, I is defined as in Definition 2.

It is clear that if (V, κ, ν) has synergy gap relative to Ψa
exceeding ρa > 0, then it has synergy gap relative to Ψ
exceeding ρa. If instead (V, κ, ν) has a synergy gap relative
to to (Ψa, Ψb) exceeding (ρa, ρb), with ρa, ρb > 0, then it has
a synergy gap relative to Ψ exceeding min(ρa, ρb) > 0. The
last part of item 3b) ensures that (V, κ, ν) is not an SLFF
triple relative to A with synergy gap relative to Ψa or Ψb,
and hence that ρa and ρb are well-defined.

A. Optional Jumps

When (V, κ, ν) is an SLFF triple relative to A with synergy
gap relative to Ψa exceeding ρa > 0, it is not necessary to
update θb to avoid the invariant sets where solutions may get
stuck. Jumping θb may nonetheless increase the performance
of the closed-loop system. We therefore define a closed-loop
system in which jumps of θb are optional.

Proposition 4. Let (V, κ, ν) be a synergistic Lyapunov func-
tion and feedback triple relative to A with synergy gap
relative to Ψa exceeding ρa > 0. Then A is globally pre-
asymptotically stable for the system (12) with

C := {(x, θ) ∈ X ×Θ : µV,Ψa(x, θ) ≤ ρa},

D :=

{
(x, θ) ∈ X ×Θ :

µV,Ψa(x, θ) ≥ ρa

or µV,Ψ (x, θ) ≥ ρ

}
,

G(x, θ) :=



GV,Ψa(x, θ),
µV,Ψa(x, θ) ≥ ρa

and µV,Ψ (x, θ) < ρ,

(GV,Ψa∪GV,Ψ )(x, θ),
µV,Ψa(x, θ) ≥ ρa

and µV,Ψ (x, θ) ≥ ρ,

GV,Ψ (x, θ),
µV,Ψa(x, θ) < ρa

and µV,Ψ (x, θ) ≥ ρ,

∅ otherwise,

(18)

where ρ ≥ ρa.

Proof. It is clear that C and the sets

DΨa
:= {(x, θ) ∈ X ×Θ : µV,Ψa

(x, θ) ≥ ρa} (19)
DΨ := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≥ ρ} (20)

are closed since µV,Ψa
and µV,Ψ are continuous. Therefore,

D = DΨa
∪ DΨ is closed. The closed-loop flow map is

continuous on X × Θ. We know that GV,Ψa
and GV,Ψ are

nonempty-valued, outer semicontinuous, and locally bounded.
Denote then by G̃V,Ψa and G̃V,Ψ the restrictions of GV,Ψa

and GV,Ψ to DΨa
and DΨ , respectively. These restrictions

are also outer semicontinuous and locally bounded. Now, G
is defined such that gphG = gph G̃V,Ψa

∪ gph G̃V,Ψ . Thus,
G is nonempty-valued on D. Since outer semicontinuity of
a set-valued mapping is equivalent to its graph being closed,
it also follows that G is outer semicontinuous. Moreover, the
union of two locally bounded set-valued mappings is locally
bounded. Consequently, G is locally bounded. Hence, the
closed loop system (12) with data defined by (18) satisfies
the hybrid basic conditions. The rest of the proof proceeds
as the proof of Proposition 2, with the strict decrease of V
across jumps now being at least ρa.

Completeness of maximal solutions to the closed-loop sys-
tem with data (18) is guaranteed if the tangent cone condition
(14) holds for all (x, θ) such that µV,Ψa(x, θ) < ρa. In this
case, the system always admits complete solutions over the
course of which θb does not jump.

B. Independently Triggered Jumps

The following proposition introduces the concept of in-
dependentely triggered jumps, where both components of θ
jump when either of their jump conditions are met.

Proposition 5. Let (V, κ, ν) be a synergistic Lyapunov func-
tion and feedback triple relative to A with synergy gap rela-
tive to (Ψa, Ψb) exceeding (ρa, ρb), with ρa, ρb > 0. Then A
is globally pre-asymptotically stable for the system (12) with

C :=

{
(x, θ) ∈ X ×Θ :

µV,Ψa(x, θ) ≤ ρa

and µV,Ψb(x, θ) ≤ ρb

}
,

D :=

{
(x, θ) ∈ X ×Θ :

µV,Ψa(x, θ) ≥ ρa

or µV,Ψb(x, θ) ≥ ρb

}
,

G(x, θ) := GV,Ψ (x, θ).

(21)

The proof of Proposition 5 is very similar to the proofs of
Proposition 2 and Proposition 4 and is therefore omitted. An
example where independently triggered switching is used is
furnished by the quaternion output feedback control scheme
for rigid-body orientation in [7, Section V-B]. In this work, θa
corresponds to a traditional synergy variable for a feedback
controller, and θb corresponds to a traditional synergy variable
for an observer, and ν(x, θ) = 0 for all (x, θ) ∈ X ×Θ.

IV. BACKSTEPPING

This section begins by introducing a weaker notion of SLFF
triples for affine control systems. Then, given a system that
admits a weak SLFF triple, we construct a (non-weak) SLFF
triple for the same system augmented with an integrator at
the input.

By assuming that (4) is affine in the control input v, we
obtain the system

ẋ = f0(x) + g0(x)v (x, v) ∈ X × Rk (22)

Definition 5. Let A ⊂ X ×Θ be compact. A continuously
differentiable function V : X × Θ 7→ R≥0 and continuous
functions κ : X × Θ → Rk and ν : X × Θ → Rm define
a weak synergistic Lyapunov function and feedback triple
(V, κ, ν) relative to A with a weak synergy gap relative to
Ψ exceeding ρ > 0 for the system (22) if

1) V is proper and positive definite with respect to A;
2) The closed loop system(

ẋ

θ̇

)
=

(
f0(x) + g0(x)κ(x, θ)

ν(x, θ)

)
︸ ︷︷ ︸

F0(x,θ)

(x, θ) ∈ X ×Θ

(23)

satisfies

⟨∇V (x, θ), F0(x, θ)⟩ ≤ 0, ∀(x, θ) ∈ X ×Θ; (24)



3) µV,Ψ (x, θ) > ρ for each (x, θ) ∈ I \A, where I is the
largest weakly invariant subset for the system

ẋ = f0(x) + g0(x)κ(x, θ)

θ̇ = ν(x, θ)

}
(x, θ) ∈ E ∩W (25)

where E is given in Definition 2, and

W :={(x, q) ∈ X×Θ : g0(x)
T∇1V (x, θ) = 0}. (26)

Augmenting the system (22) with an integrator at the input
results in the control system

ż = f1(z) + g1(z)u (z, u) ∈ Z × Rk (27)

where z = (x, v) ∈ Z := X × Rk, u ∈ Rk is the control
input and

f1(z) =

(
f0(x) + g0(x)v

0

)
, g1(z) =

(
0
I

)
. (28)

Now, let (V0, κ0, ν0) be a weak SLFF triple relative to the
compact set A0 ⊂ X ×Θ, define the set

A1 = {(z, θ) ∈ Z ×Θ : (x, θ) ∈ A0, v = κ0(x, θ)} , (29)

and consider the following SLFF triple

V1(z, θ) = V0(x, θ) +
1

2
|v − κ0(x, θ)|2Γ , (30a)

κ1(z, θ) = ∇1κ0(x, θ) (f0(x) + g0(x)v)

+∇2κ0(x, θ)ν0(x, θ)− γ1(v − κ0(x, θ))

− Γ−1g0(x)
T∇1V0(x, θ),

(30b)

ν1(z, θ) = ν0(x, θ)− ϑ1(∇2V1(z, θ)), (30c)

where Γ ∈ Rk×k is positive definite, and γ1 : Rk → Rk
and ϑ1 : Rm → Rm are strongly passive and passive func-
tions, respectively. The following proposition establishes that
(V1, κ1, ν1) is an SLFF triple for the system (27) with synergy
gap exceeding ρ > 0 relative to Ψ .

Proposition 6. If (V0, κ0, ν0) is a weak synergistic Lyapunov
function and feedback triple for the system (22) relative to A0,
with a weak synergy gap relative to Ψ exceeding ρ > 0, then
(V1, κ1, ν1) is a (non-weak) synergistic Lyapunov function
and feedback triple for the system (27) relative to A1 with a
(non-weak) synergy gap relative to Ψ exceeding ρ > 0.

Proof. The derivative of V1 along the solutions of (22) is

V̇1 = ⟨∇1V1(z, θ), f1(z) + g1(z)κ1(z, θ)⟩
+ ⟨∇2V1(z, θ), ν1(z, θ)⟩

= ⟨∇1V0(x, θ), f0(x) + g0(x)κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γγ1(v − κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γ∇2κ0(x, θ)(ν1(z, θ)− ν0(x, θ))⟩
+ ⟨∇2V0(x, θ), ν1(z, θ)⟩

= ⟨∇1V0(x, θ), f0(x) + g0(x)κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γγ1(v − κ0(x, θ)⟩
+ ⟨∇2V0(x, θ), ν0(x, θ)⟩
− ⟨∇2V1(z, θ), ϑ1(∇2V1(z, θ))⟩ ≤ 0.

(31)

Define E0,W0 and E1,W1 according to (11) and (26) for the
systems (22) and (27), respectively. It follows from (31) that

E1 = {(z, θ) ∈ X ×Θ : (x, θ) ∈ E0,
v = κ0(x, θ), ϑ1(∇2V1(z, θ)) = 0} ⊂ W1.

(32)

Let I1 ⊂ E1 denote the largest weakly invariant subset for
the system

ż = f1(z) + g1(z)κ1(z, θ)

θ̇ = ν1(z, θ)

}
(z, θ) ∈ E1 (33)

It follows that

I1 =
{
(z, θ) ∈ Z ×Θ : (x, θ) ∈ Ω0, v = κ0(x, θ),

ϑ1(∇2V1(z, θ)) = 0
}
.

(34)

From Definition 1 and 3) in Definition 5 it holds that

µV1,Ψ ≥ µV0,Ψ (x, θ) +
1

2
|v − κ0(x, θ)|2Γ

−min
ψ∈Ψ

1

2
|v−κ0(x, ψ)|2Γ

≥ µV0,Ψ (x, θ) > ρ.

Consequently, (V1, κ1, ν1) is an SLFF triple with synergy
gap relative to Ψ exceeding ρ > 0.

V. SYNERGISTIC MANEUVERING FOR SHIPS

In this section, the proposed theory is exemplified by com-
bining the traditional synergistic control approach of [6], [9]
with the ship maneuvering control of [17], [18], where we
augment the path variable with jump dynamics. The con-
figuration space of a ship can be reasonably described by
SE(2) = R2 ⋊ SO(2). Configurations of the ship are then
represented as x = (p,R), where p ∈ R2 represents the ship
position and R ∈ SO(2) represents the ship heading.

The desired position of the ship is described in terms of a
sufficiently smooth planar path.

Definition 6. A Cr-path in X ⊂ Rn is a Cr-mapping η :
[0, 1] → X . If r ≥ 1, we say that a Cr-path is regular if
η′(s) ̸= 0 for all s ∈ [0, 1].

Given a regular C3-path η in R2, we synthesize a C2-path
in SE(2) by requiring that the heading of the ship is tangential
to the path. Such a path has the form s 7→ (pd(s), Rd(s)),
where

pd(s) := η(s)

Rd(s) :=
1

|η′(s)|
(
η′(s) Sη′(s)

)
.

(35)

A desired speed assignment for ṡ along the path, ud :
[0, 1] → R, is chosen as

ud(s) :=
Ud(s)

|p′d(s)|
, (36)

where Ud : [0, 1] → R is a continuously differentiable signed
desired ship speed along the path. In particular, ud is defined
such that if ṡ = ud(s), then ṗd(s) =

p′d(s)
|p′d(s)|

Ud(s). A two
times continuously differentiable path in the configuration



space xd : [0, 1] → SE(2) can now be defined as xd(s) :=
(pd(s), Rd(s)).

The general ship maneuvering problem comprises a geo-
metric task that represents convergence to the desired path,
and a dynamic task that represents the attainment of the speed
assignment ud on this path. It was presented in [18] as follows
under the assumption of maximal solutions being complete.

Problem Statement (Maneuvering Problem [18]).
• Geometric Task: Force the position and heading of the

ship to converge to the desired path,

lim
(t+j)→∞

∥x(t, j)− xd(s(t, j))∥ = 0. (37)

• Dynamic Task: Force the path speed to converge to the
desired speed assignment:

lim
(t+j)→∞

|ṡ(t, j)− ud(s(t, j))| = 0. (38)

We denote by v = (ζ, ω) ∈ R3 the velocity of the ship,
where ζ ∈ R2 is its linear velocity and ω ∈ R is its angular
velocity. A model for the ship kinematics and dynamics is
[21, Chapter 6.5]

ẋ = xv∧

v̇ = −γ(v) +M−1(d(v) + u)

}
(x, v)∈SE(2)×R3, (39)

where M = MT > 0 is the ship inertia tensor (including
hydrodynamic inertia), γ : R3 → R3 describes the Coriolis
and centripetal accelerations associated with M , d : R3 → R3

describes the hydrodynamic drag forces acting on the ship,
and u are idealized input forces produced by the actuators.

A. Backstepping Controller

We set X = SE(2) and Θ = Θa × Θb, where Θa =
{−1, 1}, Θb = [0, 1] and θ = (θa, θb) = (q, s). In particular,
q is a classical synergistic logic variable and s is a path
variable utilized in the ship maneuvering control problem.
Then, the kinematics of the ship and the flow of q and s may
be cast as a system of the form (22),

ẋ = xv∧ (x, v) ∈ SE(2)× R3. (40)

The set A0 ⊂ X ×Θ is now chosen as

A0 = {(x, θ) ∈ X ×Θ : x = xd(s)}. (41)

Compactness of A0 holds because the mapping (q, s) 7→
xd(s) is continuous and Θ is compact.

We now introduce a synergistic potential function which is
similar to [9] for the heading control of the ship. In particular,
let P : SO(2) × [0, 1] → R and, with δ > 0, the mapping
T : SO(2)×Θ → SO(2)

P (R, s) := (1− ⟨e1, Rd(s)TRe1⟩), (42)

T (R, θ) := exp(δqP (R, s)S)Rd(s)
TR. (43)

Let k0 > 0 and let K0 = KT
0 be a positive definite matrix.

Then, (V0, κ0, ν0) defined as

V0(x, θ) =
1

2
|RT
d (p− pd(s))|2K0

+ k0P (T (R, θ), s) (44a)

κ0(x, θ) = Ad−1
xd(s)−1x(xd(s)

−1x′d(s))∨ud(s)

−K d1V0(x, θ) (44b)

ν0(x, θ) =

(
0

ud(s)

)
, (44c)

where K = KT is a positive definite matrix, is an SLFF triple
for (40) with synergy gap relative to {−1, 1} exceeding 1

2 .
We now augment (40) with the ship dynamics

ẋ = xv∧

v̇ = −γ(v) +M−1(d(v) + u)

}
(z, u)∈(SE(2)×R3)×R3,

(45)

and define

A1 = {(x, v, θ) : (x, θ) ∈ A0, v = κ0(x, θ)}. (46)

It then follows directly from Proposition 6 that

V1(z, θ) = V0(x, θ) +
1

2
|v − κ0(x, θ)|2M , (47a)

κ1(z, θ) =M d1κ0(x, θ)v +M∇2κ0(x, θ)ν0(x, θ)

+Mγ(v)− d(v)

− γ1(v − κ0(x, θ))

− d1V0(x, θ),

(47b)

ν1(z, θ) = ν0(x, θ), (47c)

is an SLFF triple for the system (45) relative to A1 with
synergy gap relative to {−1, 1} exceeding 1

2 . Consequently,
the synergistic controller

θ̇ = ν1(z, θ) (z, θ) ∈ C, (48)

θ+ ∈ G(z, θ) (z, θ) ∈ D, (49)
u = κ1(z, θ), (50)

where (C,D,G) are given by (18), renders A1 globally pre-
asymptotically stable for the resulting closed-loop system by
Proposition 4. Moreover, if ud(s) ∈ T[0,1](s) for all s ∈ [0, 1],
then all maximal solutions are complete and A1 is globally
asymptotically stable for the resulting closed-loop system,
which implies that the problem statement is solved.

B. Simulations

Simulation results are presented in Figs. 1 to 5. The model
parameters can be found in [22]. In the simulations, we have
chosen δ = 0.1, ρa = δk0, ρ = 1.2ρa, k0 = 5, K0 = 5I2,
K = 0.05I3 and γ1 = diag(10, 10, 7). The chosen path is
given by pd(s) := 5(cos(πs), sin(πs)). The ship is initialized
at p = (5, 2) with an initial heading of ψ = −85◦, an initial
velocity of v = 0 and a desired speed of Ud = 0.3m/s.

From Fig. 1 we observe that the position references are
successfully tracked after an initial transient phase. An op-
tional jump is immediately triggered such that q is mapped
to −1 and s is mapped to approximately 0.08. An optional
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Fig. 1. The position p = (x, y) and desired position pd = (xd, yd).
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Fig. 2. The body linear velocity ζ1 and ζ2 and the first and second
component of κ0.

jump is triggered around t ≈ 2 s as seen in Fig. 1. The error
in the x-direction is slightly decreased while the error in the
y-direction is slightly increased. Moreover, from Fig. 2 we
note that the difference between ζ1 and κ0,1 decreases over
the jump in s. In Fig. 4, we observe that s is decreased over
the jump, while q remains the same. Moreover, from Fig. 5,
we observe a discontinuity in u2 at the time of the jump.

VI. CONCLUSIONS

In this paper, we have generalized the definition of synergis-
tic Lyapunov functions and feedbacks to allow the traditional
logic variable of synergistic control to be vector-valued and
change during flows. Since the logic variable is allowed to be
vector-valued, we have introduced the notion of synergy gaps
relative to components of product sets, which enables existing
hybrid output feedback control laws to be reformulated within
the synergistic framework. Furthermore, we have shown that
the properties of an SLFF triple are preserved through inte-
grator backstepping. Finally, we have given an example in
which a classical synergistic control apporach is combined
with a ship maneuvering control approach to enable discrete
path dynamics and global asymptotic stability properties.
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Fig. 3. The heading angle ψ=atan2(R21,R11), desired heading angle
ψd=atan2(Rd,21,Rd,11), angular velocity ω and the third component of
κ0.
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Fig. 4. The speed U = (ζ21 + ζ22 )
1
2 , desired speed Ud and synergistic

variables q and s.
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Fig. 5. The control forces and moment u.
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