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Abstract
The growth of biometrics‐based authentication in various services raises the need to protect
biometric data at the storage level. Specifically, biometric templates need to be protected
after features are extracted to avoid the leakage of biometric data and subsequent linkability
issues. An approach based on discrete hashing is presented with the assistance of semantic
labels to generate discriminative and privacy preserving protected templates in this work.
The proposed approach can easily be adopted for a closed‐enrolment set in which enrol-
ment images are known a priori whereas the challenge of learning templates for a single
subject remains open. To extend this approach for individual subject, the concept of
auxiliary pseudouser enrolment data is introduced, through which a protected template can
be generated at the user level. Through the use of a moderately sized multimodal biometric
database of 94 subjects, the effectiveness of the proposed approach is illustrated to achieve a
robust and secure template protection with irreversibility, unlinkability and renewability.
With the set of experiments, the performance of the template protection approach is
established and benchmarked against the popular bloom‐filter technique. The proposed
approach results in a high genuine match rate (≈100% at a false accept rate of 0.01%) and
low equal error rate (EER ≈ 0%) and outperforms traditional approaches while satisfying
other requirements of biometric template protection when the closed enrolment set is
known. With auxiliary pseudousers, the performance of the proposed approach for user‐
level protected template creation results in an EER of 2.5%, indicating very low perfor-
mance degradation compared with the known enrolment dataset. Along with the set of
experimental validation of the proposed approach, a security analysis of the proposed
approach is presented to demonstrate the unlinkability of the biometric templates using a
state‐of‐art unlinkability metric.

1 | INTRODUCTION

The automated recognition of individuals based on physio-
logical characteristics such as the face, fingerprints, or iris or
behavioural traits such as the gait, keystrokes, or mouse dy-
namics is termed biometric recognition. The reliability of such
an approach in recognizing an individual with high confidence
has resulted in numerous applications such as border control
and access control to personal devices (e.g., smartphones),
establishing and verifying identity using biometrics. This suc-
cess has resulted in heavily focused research to make tech-
niques and algorithms robust enough to achieve higher
accuracy. However, there are a few major challenges when

adapting biometrics to everyday authentication scenarios using
smartphones owing to the sensitivity of biometric data.

1.1 | Background and related works

As the number of instance of a biometric characteristics owned
by an individual is limited (e.g. 1 face, 2 irises, 10 fingerprints),
unlike passwords, biometric data cannot be regenerated if
leaked. It is therefore essential to store biometric data in a
secure and protected manner in which the privacy and sensi-
tivity of the biometric data are preserved. The process of
securing biometric data is popularly referred to as biometric
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template protection (BTP). Due to the limited number of
biometric characteristics, one can be forced to use same
characteristic for multiple services, for example, the face can be
employed in banking applications as well as in border control
application. Thus, it is necessary to unlink biometric templates
across multiple services. Along with unlinkability, when a
template is compromised, it should be irreversible and tem-
plates should be renewed. Thus, an ideal BTP should provide
unlinkability, irreversibility and renewability to secure biometric
data, preserve privacy and protect the data of subjects ac-
cording to international standard ISO/IEC IS 24745 [1] and
European Union (EU) General Data Protection Regulation
(GDPR) 2016/679 [2].
To fulfill the requirements laid out by ISO/IEC IS 24745

[1] while complying with EU‐GDPR 2016/679 [2], a number
of earlier works proposed various techniques for BTP. These
techniques can be categorised under biometric cryptosystems
[3] and cancellable biometric systems [4–7]. Generally, the
template protection scheme can be enforced at the service
level where all enrolment biometric data are protected within
the database (e.g. protecting biometric data in civilian ID
management) or at a user level benefiting the service
(e.g. protecting biometric data of banking users at the device
level in accordance with the European Payment Services
Directive [8]). Whereas most previous work has proposed
template protection schemes at a service level where enrol-
ment data are known a priori [6, 7, 9], some work has also
proposed user‐level template protection [10, 11]. Of the
popular approaches, random projections‐based template pro-
tection [6] and biohashing schemes [7, 9] are based on pro-
jections and hashing on the enrolment dataset. In another
category of user‐level template protection, bloom filter‐based
template protection was proposed employing private keys at
the service level to avoid linkability challenges [10, 11]. In a
similar direction of hashing, two other works were reported
exploiting a kernel approach with hashing specifically designed
for spectral data consisting of a number of images to create
better kernel representations [12, 13]. Despite these advances,
the challenge of obtaining a stable template under variation of
biometric sample data (owing to pose, illumination and
expression) remains open for biometric modalities. Although
earlier works provide a good basis for BTP, no specific works
provides a common strategy for both service‐level (i.e. fully
available enrolment set) and user‐level template protection,
which motivates our current work to obtain stable hash rep-
resentation and also provide protected biometric templates at
the service and user levels.

1.2 | Challenges and our contributions

We first consider the problem of arriving at stable hash
representation of biometric features. As with a traditional
biometric system, we first extract the features from biometric
data. We then address the problem of obtaining stable hash
templates. Furthermore, it has to be noted with caution that
hashing methods generally partition the entire dataset and

derive a single hash from each partition. Thus, the learned
templates can be optimal when the training or enrolment data
(features) are known a priori. Therefore, we acknowledge that
hashing approaches may not be effective when the entire
enrolment is not known, or for each user independently
(irrespective of the enrolment set). Such challenges hinder
arriving at stable hash for each user, which motivated the
second part of the current work. We therefore address the
problem of creating stable hash when the entire enrolment set
is unavailable in the second part, as explained in Section 1.2.2.

1.2.1 | Stable hash representation

To address the problem of arriving at stable hash, we propose
employing semantic label‐assisted discrete hashing to derive
protected templates. Our assertion is that the biometric feature
similarity relationship is preserved while deriving the hash
function by using labels from enrolment samples (also referred
to as similarity labels or semantic similarity labels). The use of
such labels aids as metadata to address performance limitations
posed by unsupervised hashing, specifically for biometric data.
The four major steps in our proposed approach consist of (1)
extracting features from biometric images, (2) learning a hash
projection for a given enrolment set and obtaining a protected
enrolment template, (3) using the projection matrix to create a
template for a probe (verification) image, and (4) comparing
the protected templates to arrive at decision to accept or reject
the claimed identity. Our first contribution comes in Step 2 for
this sequence by employing enrolment labels (semantic simi-
larity labels), as explained in Section 1.2.1. The approach can
be tailored to obtain a chosen length of features in protected
templates (e.g. 32, 64, 128, or 256 bits), making it compact and
applicable for biometric applications.

Renewability and unlinkability requirement
Although the use of semantic labels to derive a biometric
feature relation preserving hash function provides good bio-
metric performance, template protection demands the need for
renewability, reversibility and unlinkability, as discussed
earlier [1]. To meet these criteria, we incorporate a novel
component of induced protected keys before deriving hashing
templates to ensure the renewability and unlinkability of the
generated protected templates motivated by Bringer et al. [14].
Because the keys are application‐ or service‐specific, we induce
the unlinkability and reduce the guessability/brute force at-
tacks by employing keys randomly drawn from a normal dis-
tribution while generating the hash function as another novel
contribution. To this end, our approach has universal protected
keys that can be applied at a service level. The specific details
of each of these components are presented in Section 2. The
new and robust end‐to‐end template protection approach is
based on (1) the concept of leveraging the labels of enrolment
samples to achieve a stable hash function to derive the bio-
metric template, and (2) optimization of the hash function by
using a private key guaranteeing optimal performance along
with the goals of template protection.
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1.2.2 | User‐level protected template creation

Although our approach is well‐engineered for a known
enrolment set in which enrolment labels can be used as se-
mantic similarity labels, there is an inherent problem of
deriving templates for each user irrespective of other subjects
in an unknown enrolment set (i.e. the absence of a semantic
label matrix). We therefore propose another strategy for
creating user‐level protected templates in which the entire
enrolment set is unknown (i.e. unavailable semantic label ma-
trix). To this end, we employ the auxiliary data of nonexistent
biometric users (pseudousers) inspired by Gunasinghe et al.
[15] to scale our approach to cases in which the enrolment set
is unknown. Motivated by earlier work [15], we create a
pseudoauxiliary similarity label matrix for creating efficient
protected templates for each user in a specific service. With the
newly adopted strategy, the proposed approach also scales to
cases in which the enrolment set is not fully available when
creating the templates.

1.2.3 | Contributions

This work therefore presents a complete framework for
privacy‐preserving protected biometric template creation using
texture features (binarized statistical image features [BSIF])
[16, 17] and semantic label‐assisted hashing in which the
templates are irreversible, unlinkable and renewable. To
validate the approach proposed in this work, we present
experimental evidence for three independent biometric fea-
tures (face and periocular images) by employing a biometric
database captured in the visible spectrum using a smartphone.
Furthermore, as detailed earlier, we present an approach to
generating protected biometric templates for each user inde-
pendently of others in the enrolment set using the auxiliary
pseudouser biometric dataset such that it can be employed for
user‐level template protection. The main contributions of this
work are therefore:

1. That it presents a new framework for BTP using texture
features and semantic label‐assisted hashing through a
randomly generated application or service specific key
(drawn from normal distribution).

2. That it presents a framework to generate the hash‐func-
tion/hash‐projection matrix during enrolment and employs
it while comparing the probe attempt based on an available
enrolment set. The protected templates vary in size (as
compact as 32 bits), depending on the application, while
maintaining good accuracy.

3. That it presents an additional strategy for learning a user‐
level protected template through an auxiliary pseudouser
enrolment set to create protected templates at the user level
to exemplify the scalability of the proposed approach.

4. An extensive set of experiments is provided to validate the
proposed approach using face and periocular images along

with a detailed illustration of robustness for security aspects
(unlinkability and renewability) of template protection.

In the remainder of this article, Section 2 describes the
proposed BTP and Section 4 presents experiments, including a
brief discussion of the database in Section 3. In Section 5, we
present a detailed security analysis of the protection method,
and Section 6 presents concluding remarks and lists potential
future work.

2 | PROPOSED BTP FRAMEWORK

Under the assumption that the entire enrolment dataset is
available (e.g. civilian ID management), we first present the
proposed template protection framework as depicted in
Figure 1. Given a biometric image (face or periocular image),
we generate protected templates using the approach described
subsequently. The proposed approach consists of four steps
illustrated in Figure 1. The four main components (marked
with numbers in Figure 1) are:

[1] Feature extraction from the biometric sample (e.g. a face or
periocular image).

[2] Generation of a hash projection matrix (function) based
on the full set of enrolment samples and application‐
specific key (universal secret key for an application or
database).

[3] Generation of protected templates for enrolment set using
the generated global and application‐specific hash projec-
tion matrix.

[4] Generation of protected templates for probe sample using
the hash transformation matrix and subsequent compari-
son of protected templates to derive biometric
performance.

We present the details of each step in the following
subsections.

2.1 | Texture feature extraction

We employ BSIF [16] to extract the textural features from the
biometric samples. BSIF encodes binary features as the result
of convolving an input image with a set of independent filters
learned on natural images. The key motivation for using BSIF
is to leverage high performance for biometric verification by
using independently learned natural filters [16] and then to
provide a fair benchmark of the proposed approach for earlier
works that employed the same feature extraction technique
[18]. However, unlike the ensemble approach of earlier work
[18], in our work we simply employ one single filter in a block‐
based manner to extract histogram features resulting from the
BSIF‐based filtering operation. Therefore, unlike the high
feature dimension (65,536) in previous work, we use only 8192
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features in our work, reducing feature space and thus the
computational complexity of the approach.1

2.2 | Learning protected hash‐projection
matrix using private keys

Considering a set of n number of samples (enrolment samples)
with d dimensional features, all enrolment samples can be
represented as fxi ∈ R

d
g
n
i¼1, where xi corresponds to the

feature at point i (i.e. xi is the feature vector). Furthermore,
they can be equivalently denoted as X ∈ R

n�d for the sake of
simplicity, where XTi� ¼ xi. Alongside the feature vectors, the
enrolment set (training set) of supervised hashing accompanies
a semantic similarity matrix S ∈ f−1; 1gn�n, where Sij = 1
indicates the similarity between point xi and point xj, whereas
Sij = −1 indicates dissimilarity between points xi and xj. In
other words, these correspond to the label of the enrolment
samples of a particular biometric characteristic.2 From the set
of feature vectors represented by X , we learn the optimized
binary code matrix B ∈ f0; 1gn�q, where q represents the bit
length of the template and Bi� denotes q‐bit code for a training
(enrolment) sample i while preserving the similarity of feature
vectors with the help of S or semantic labels. For computa-
tional reasons, we represent the binary array B ∈ f0; 1g in
terms of {−1, 1}, where 0 is replaced by −1.
The derivation of hash function can simply be translated to

an optimization problem, as defined by Equation (1) [19]:

min
B∈f−1;1gn�q

‖qS − BBT‖2F ð1Þ

where norm |.| F represents the Frobenius norm of the matrix
and q is the bit‐length of the template. Equation (1) can be
written as Equation (2):

jjqS − BBT
�
�
�
�2

F ¼
Xn

i¼1

Xn

j¼1

ðqSij − Bi�BTj�Þ
2

ð2Þ

Equation (1) and subsequently Equation (2) can be noted
as optimization problems to minimize loss using the square
loss [20]. Inspired by Kang et al. [19], demonstrating the
theoretical guarantee of obtaining a stable hash function, we
adopt the same optimization approach to derive a hash func-
tion that serves the purpose of BTP and also improves
recognition accuracy. Thus, the optimization problem in
Equation (1) is solved by using a column sampling strategy to
obtain stable hash with performance guarantees [19].
Furthermore, for the case of BTP, the problem of irre-

versibility, unlinkability and renewability has to be consid-
ered while achieving good biometric performance. The goal is
thus to achieve a simple yet robust, renewable template while
ensuring unlinkability to avoid the linkage of two databases
[21]. To comply with this requirement, we present an approach
with a private key that is unique and application‐specific,
inspired by security analysis provide in Bringer et al. [14]. This
application‐specific private key is induced while generating and
optimizing the binary matrix B. Although one specific key can
be used to achieve good unlinkability, to guarantee a high
degree of irreversibility and unlinkability, we employ two
keys, k1 and k2, to derive the initial binary matrix with label
constraints such that B is a result of two private keys and can
be represented as Bk1;K2.

3 The role of number of keys is further
discussed in Section 2.3.

Bk1;k2 ¼ B
k1 ⊕ Bk2 ð3Þ

where Bk1 and Bk2 are two normally distributed random
matrices, which are further binarized based on simple thresh-
olding through keys k1 and k2.

F I GURE 1 Proposed approach for protected template creation. The hash representation with the embedded key is learned for the set of all enrolment
samples (i.e., subjects), as shown in the grey block. The learned hash projection matrix is then used to obtain the protected template for any biometric samples, as
indicated in the blue block
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The protected binary matrix to generate the hash function
is a bitwise XOR of two distributions satisfying conditions
imposed by keys, which are further presented as:

Bk1i ¼
1; if i ≥ k1
−1; otherwise

�

ð4Þ

Bk2i ¼
1; if i ≥ k2
−1; otherwise

�

ð5Þ

Thus, optimization problem in Equation (1) can be repre-
sented as:

Wk1;k2 ¼ min
Bk1 ;k2∈f−1;1g

n�q
jjqS − Bk1;k2B

T
k1;k2

�
�2
F ð6Þ

We simply adopt the column sampled optimization proposed
in Kang et al. [19] to derive the hash matrix based on private
keys. The final binary projection/hash matrix, satisfying con-
straints laid by the keys, is used to transform the features to
templates as provided by:

X0q ¼ XWk1;k2 ð7Þ

ðX0qÞi¼
1; if i ≥ 0
0; otherwise

�

ð8Þ

where X0 represents the transformed and protected binary
template of length q bits.

2.3 | Role of keys in proposed approach

As indicated in Equation (3), the proposed approach relies on
private keys. It can be intuitively noted that the number of keys
can be chosen to be any number p in a space of 1 < p < ∞, as
indicated in Equation (9):

Bk1;k2;…kp ¼ B
k1 ⊕ Bk2⋯ ⊕ Bkp ð9Þ

where p ∈ 1, 2, …∞.
Because the keys are used to generate binary vectors

from normal distribution, in theory the keys can span to ∞
space. However, because the drawn random normal distri-
bution is thresholded to get the binary vectors, the binary
vectors can start colliding. Because the proposed approach is
designed for a q‐bit protected template, the binary vector
derived using key k can be represented as Bk. If b is the
number of possible bits (i.e. 0 or 1), the number of possible
combinations for the q length binary vector can be repre-
sented as:

b!
q!ðp − qÞ!

f or q > p: ð10Þ

However, because the binary vectors derived using private
keys are employed for XOR operation, having a large number
of keys may result in sparse binary vectors. The sparsity
introduced in the binary vectors may result in colliding binary
vectors. Specifically, suppose Bkx1 hasm non‐zero entries in the
binary vector derived using key kx1 and Bkx2 has m non‐zero
entries in the binary vector derived using key kx2, and they
differ in m places. The probability that the ith entry of Bkx is
non‐zero is equal to probability that a random variable with
distribution binomial (m, r) (with the vector being binary) is
even. The upper‐bound probability Pup of both binary vectors
being exactly same therefore can be represented as given by
Equation (11):

Pup ¼ ð
1
2
ð1þ ð1 − 2rÞmÞÞr ð11Þ

Thus, although the maximum number of private keys is
unbounded, the binary vectors by themselves colliding are
bounded by the probability in Equation (11). When the binary
vectors start colliding, XOR operation involved in Equa-
tion (9) starts nullifying multiple features, which results in
underoptimized protected template creation. An optimal se-
lection can be made under such upper bounds while keeping
the template protection approach superior.

2.4 | Protected template at user level using
auxiliary pseudousers

As acknowledged earlier, the proposed approach is challenged
when the entire dataset corresponding to enrolment is un-
available. At the same time, regulations require that biometric
data verification occurs at the device level without biometric
data transfer to the remote verification infrastructure [8]. To
address this challenge considering both of these aspects, we
propose a strategy to derive a protected template for each user
independently of the enrolment set by employing a pseudouser
set inspired by Gunasinghe et al. [15]. In this extension of the
proposed approach, an unrelated biometric enrolment set is
employed with p number of users, which corresponds to p
semantic labels. Thus, for a specific user m of interest, we
construct the enrolment set with p pseudousers and the mth
user. With this strategy, we create protected templates inde-
pendently of the entire enrolment set of a particular service,
such as a banking service. The strategy of creating an auxiliary
pseudouser‐based protected template is provided in Figure 2.
The proposed approach scales easily for any number of users
without depending on the rest of the real enrolment dataset. In
case a particular template for a user is compromised, a new
template can easily be created by changing the key, and can be
replaced.
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2.5 | Protected template similarity

For a protected template of size q‐bit length, we use the
Hamming distance (HD) to measure dissimilarity between
templates owing to the binary nature of templates and the
robustness of the HD. Dissimilarity between two protected
binary templates, X0u and X0v, is provided by HDðX0u;X0vÞ,
which measures the number of disagreeing pairs of bits.

3 | DATASET AND EVALUATION
PROTOCOL

In this section, we present the dataset and the corresponding
experimental protocols. A multimodal biometric dataset of face
and periocular images (left and right eye) captured from a
Samsung Galaxy S5 smartphone is employed [18]. The dataset
consists of data obtained from 94 unique subjects in 15
different attempts, in which 5 attempts correspond to high‐
quality enrolment samples and 10 correspond to probe sam-
ples with various lighting and environmental conditions. The
database is divided into a development and testing/evaluation
set, in which the development set consists of 21 subjects and
the testing set consists of 73 subjects. The development dataset
is used to tune the parameters of the proposed approach. The
testing dataset of 73 subjects has a total of 73 subjects � 15
samples = 1095 images for face and similarly, 1095 left peri-
ocular images and 1095 right periocular images.

3.1 | Evaluation protocol

To demonstrate the applicability of the proposed approach, we
evaluate it for the face and left and right periocular images
independently. However, we acknowledge that the creation of
protected templates for multimodal biometric is fully possible
when the features are combined. With five enrolment samples
and 10 probe samples for 73 subjects, a total of 3650 genuine

comparisons and 262,800 impostor comparisons are obtained
for each biometric modality, which agrees with the protocols
provided by earlier work using the same dataset for template
protection [18]. Furthermore, to provide recognition perfor-
mance of the template protection scheme, we provide the
baseline evaluation on unprotected templates using multiscale
block‐based BSIF features and benchmark them against single‐
scale block‐BSIF features with proposed template protection.

4 | EXPERIMENTS AND RESULTS

We present the experiments and corresponding results ob-
tained with the database for both unprotected and protected
templates. Details for each approach are presented in the
following subsections.

4.1 | Unprotected templates and bloom‐filter
templates

In the case of unprotected templates, we employ multiscale
BSIF filters of sizes 3 � 3, 5 � 5, 7 � 7, 9 � 9, 11 � 11,
13 � 13, 15 � 15 and 17 � 17, each size corresponding to
eight layers. Each image (face or periocular) is partitioned into
32 different blocks of size 8 � 20 pixels and 15 � 22 for face
and periocular images, respectively. Furthermore, the features
are represented as histograms, resulting in a feature vector of
size 8 � 256 for a total of eight separate filters. For 32 unique
blocks, the total feature size for an image is 65,536 features.
For the sake of simplicity and to provide a fair comparison
with earlier work [18], we binarize the features as 1 if the
histogram feature is greater than 0, and 0 otherwise. Further-
more, the HD is employed to measure the dissimilarity be-
tween templates in the unprotected domain.
The same set of features is further employed to obtain a

Bloom filter‐based template in which the feature vector is
restructured into a matrix of dimensions 256 � 256, in which

F I GURE 2 Auxiliary pseudouser enrolment‐based template creation at the user level. The protected template in this case is created for each biometric
sample (for instance, a face image) for reference and probe. The reference biometric sample is inserted into the pseudouser enrolment set to derive the hash
projection matrix and the learned projection matrix is used to obtain the protected template for the probe image
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each row corresponds to an extracted histogram [10, 22]. In
line with the unprotected templates, a simple binarization is
carried out on histogram features before the bloom filter
transformation is carried out. Again, we employ the HD to
measure dissimilarity between templates (bloom filters) in the
protected domain.

4.2 | Proposed template protection

We divide the image into 32 unique blocks of size 8 � 20
pixels and 15 � 22 for face and periocular images, respectively.
However, unlike the previous approaches, we employ single‐
scale BSIF features to obtain protected templates and thus
significantly reduce the length of the feature vectors. For the
sake of simplicity, we present the results of template protec-
tion achieved using a BSIF filter of 8 bits for a 3 � 3 filter.4

However, the results for different sizes of filters ranging from
3 � 3, 5 � 5, 7 � 7, 9 � 9, 11 � 11, 13 � 13, and 15 � 15 to
17 � 17 pixels are further presented to illustrate the effect of
filter size on template protection in Figure 3. Furthermore, we
experimentally demonstrate the ability of the compact size of
protected templates by setting q bits to q = {32, 64, 128,
256}.5

4.3 | Results

For all experiments, the disjoint dataset is employed as re-
ported in Stokkenes et al. [18]. We measure the recognition
performance on the testing set of the database in terms of the
genuine match rate (GMR) at particular false match rates
(FMR) and report the results for both protected and unpro-
tected templates. Furthermore, we present the equal error rate
(EER) along with the detection error trade‐off (DET) curves
and cumulative match curves.

4.3.1 | Results with proposed framework

Table 1 presents results for the proposed approach when the
entire enrolment set is known along with current state‐of‐art
approaches. For the sake of simplicity, we present the results
of templates with bit lengths q = 64 and q = 256 bits. The
results and Figure 4 (associated identification accuracy is
provided in Figure 5), key observations and the analysis show
that:

� The proposed approach achieved a high GMR at
FMR = 0.01% and a correspondingly low EER for all three
modalities.

� Although the unprotected templates with multiscale BSIF
resulted in GMR = 90% for faces, the protected tem-
plates with a bloom filter resulted in a lower of 82%
indicating a loss of accuracy when templates are

protected. Similar observations can be made for peri-
ocular images. The loss of distinctive features owing to
the conversion of binary template and functioning of the
bloom filter seeking the presence of values in a block of
an image leads to the loss of accuracy.

� However, with the proposed approach, we achieved better
accuracy of GMR for faces and the periocular region (left
and right). The increase in accuracy can be attributed to two
primary aspects:
� Robustness of hash learning from the proposed
approach, which results in the choice of a highly
discriminative feature matrix for each subject when the
enrolment set is known.

� The use of labels in obtaining discriminative information
for each unique subject within the enrolment set, further
resulting in optimizing the key protected binary matrix
while maintaining similarity imposed by the labels (S in
Equation 1).

4.3.2 | Impact of bit length of templates

For the sake of simplicity, we have presented the performance
obtained with q = 32 and q = 256 bits in Table 1. In this
section, we analyse the impact of bit length q of the protected
template on performance in terms of both GMR and EER. We
employ the set of experimental protocols mentioned in Sec-
tion 3.1, but change the bit lengths to different values, q = {32,
64, 128, 256}, with a single BSIF filter of size 3 � 3. Results
pertaining to this set of experiments are presented in Table 2.6

The proposed approach with different lengths does not affect
the accuracy to a large degree and the observation holds for the
face and periocular region. The primary reason for this
observation is the robust nature of learning the discriminative
hash matrix through the use of the semantic similarity pre-
serving matrix.

4.3.3 | Impact of filter configuration on feature
extraction

The generation of strong biometric templates is closely
coupled to feature extraction. Therefore, in this section we
analyse the impact of different filter configurations and
measure their performance (GMR and EER). While main-
taining the evaluation protocol and fixing the bit length to
q = 32, we change the filter size of BSIF filters in different
runs. Figure 3 shows that both EER and GMR vary
nominally when the filter size is smaller. A drop in per-
formance can be noted when the features are extracted
using the 15 � 15 and 17 � 17 filters in which features are
not robustly extracted owing to the size of the block. The
filter size becomes closer to the size of BSIF filters,
resulting in non‐robust features. Nonetheless, performance
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F I GURE 3 Variation of equal error rate and genuine match rate for face characteristics with bit length (q = 32) for different size of binarized statistical
image feature filters

TABLE 1 Results obtained for unprotected templates, bloom filter template and proposed template protection (BSIF—3 � 3)

Unprotected Protected (bloom filter) [18] Proposed approach (q = 64) Proposed approach (q = 256)

Modality
GMR (%) @ FMR
0.01%

EER
(%)

GMR (%) @ FMR
0.01%

EER
(%)

GMR (%) @ FMR
0.01%

EER
(%)

GMR (%) @ FMR
0.01%

EER
(%)

Face 90.05 1.67 82.63 2.90 100.00 0.00 98.88 0.03

Left
periocular

83.31 3.20 68.02 5.39 98.14 0.49 98.03 0.98

Right
periocular

83.78 4.53 72.21 5.48 98.08 0.85 97.78 0.81

Abbreviations: BSIF, binarized statistical image feature; EER, equal error rate; FMR, false match rate; GMR, genuine match rate.

F I GURE 4 Performance (in DET) obtained with unprotected templates, Bloom filter protection and proposed approach (bit length of q = 256, binarized
statistical image features filter 3 � 3). *Proposed approach results in 0% equal error rate for face modality and therefore is not visible in the DET curve. DET,
detection error trade‐off

F I GURE 5 Rank identification accuracy (in cumulative match curves) of proposed approach for various bit lengths
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reported for the lowest bit length of templates is still
observed to be superior to the current state of the art.7

4.4 | Results with proposed framework and
pseudouser auxiliary data

To address the creation of protected user‐level templates
independently of the enrolment set, we employ the strategy
provided in Section 2.4. In our experiments, we employ the
FRGC v2 dataset [23] and randomly choose 50 subjects with
10 facial images for enrolment and 5 facial images for probe,
which we refer to as the auxiliary dataset. We follow the same
procedure for face detection, cropping and feature extraction
as mentioned in the previous section. Furthermore, for each
user in the database [18], we create the protected template
iteratively by employing the auxiliary dataset. In settings similar
to those of the previous experiment, we create templates with
various bit lengths in the range 32, 64, 128, and 256 (Figure 6).
We present results in the corresponding DET provided in
Figure 7. Key observations from this set of experiments are:

� As can be observed from Figure 7, the performance of
protected templates using pseudouser auxiliary enrolment
data is moderately lower (with EER = 2.5%) compared with
protected templates (with EER = 0.03%) when the com-
plete enrolment set is available for the template with q = 256
with a BSIF of 3 � 3.

� Intuitively, the moderate degradation can be attributed to
suboptimal protected template generation, compared
with optimal template generation using the complete
enrolment set.

� Despite moderate degradation, the performance re-
mains consistent across different template sizes depicted in
Figure 7.

5 | SECURITY ANALYSIS

Considering three requirements for a template protection
scheme, we present the security analysis of the proposed
approach. In the first part, we focus on implicit limitations of
the proposed approach. Then, we discuss the renewability of
the template and the unlinkability of the BTP.

5.1 | Implications and limitations of
proposed approach

The proposed approach relies on the private key and also pro-
tecting the auxiliary information of the projection matrix in
Equation (6). The inherent failure of the proposed approach can
be established not when the private keys are stolen, but when the
protected projection matrix in Equation (6) is compromised. As
with any biometric operation system, when such an attack is
carried out, templates are to be revoked and replaced with new
templates. Under such an attack, the performance of the attack

TABLE 2 Genuine match rate (GMR) and equal error rate (EER) of proposed protected template protection for various bit lengths (q) of templates
(biometric template protection—3 � 3)

Face Left periocular Right periocular

Bit length GMR (%) @ FMR 0.01% EER (%) GMR (%) @ FMR 0.01% EER (%) GMR (%) @ FMR 0.01% EER (%)

q = 32 95.95 2.37 96.08 0.71 97.51 0.69

q = 64 100.00 0.00 98.14 0.49 98.08 0.85

q = 128 99.73 0.01 97.29 1.00 98.60 0.80

q = 256 98.88 0.03 98.03 0.98 97.78 0.81

F I GURE 7 Performance (in detection error trade‐off) obtained with
proposed framework with pseudouser auxiliary data

F I GURE 6 Variation of genuine match rate for different bit‐lengths (q)
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TABLE 3 Unlinkability metric (Dsys↔ ) and irreversibility metric (j�bj, and rm − rate) for various bit lengths of templates

Face Left periocular Right periocular

Approach Dsys↔ j�bj rm − rate (%) Dsys↔ j�bj rm − rate (%) Dsys↔ jbj rm − rate (%)

Bloom filter [18] 0.078 7.10 55.00 0.085 8.58 46.00 0.085 8.58 46.00

Proposed (q = 32) 0.00 16.60 48.14 0.00 16.67 47.90 0.00 16.57 48.21

Proposed (q = 64) 0.00 32.90 48.59 0.00 33.94 46.97 0.00 33.54 47.59

Proposed (q = 128) 0.00 68.18 46.73 0.00 68.15 46.76 0.00 68.71 46.32

Proposed (q = 256) 0.00 137.11 46.44 0.00 136.30 46.76 0.00 135.67 47.00

Note: The results of the proposed approach can be directly compared with results in Stokkenes et al. [18] for BSIFs 3 � 3.

F I GURE 8 Unlinkability analysis with templates of length q = 32 for the face and left and right periocular region

success rate equals the performance of a protected biometric
system without an attack. The protection of auxiliary informa-
tion is beyond the scope of this work; thus, we assess the security
of the proposed approach for rest of the metrics of template
protection, as discussed subsequently.

5.2 | Renewability of templates

Because biometric templates are generated using block‐based
features from BSIF filtering and the use of private keys to
optimize the hash‐projection matrix, one can easily renew the
templates simply by changing the filters to renew the template.
Second, the hash function is based on block‐based features,
which makes it difficult to compromise the template and re-
duces the problem for renewability.

5.3 | Reversibility and entropy of templates

To evaluate the irreversibility of the templates, we employ the
metrics provided by earlier work [10, 24], in which the irre-
versibility of Bloom filter template protection was previously
shown. To estimate the irreversibility of the proposed template
protection approach, wemeasure the probability of guessing the
original feature vector from the protected template. Specifically,
we employ |b

¯
|, which is the average number of activated bits in

each protected template and is determined empirically for the
database. The |b

¯
| also represents entropy by indicating on

number of bits set to 1 out of the total bits.8 We also employ
rm − rate

‾
, which is described as the average remapping rate for

words, or the chance of reconstructing the template from a

given random binary string. Considering that no word con-
struction is involved in the proposed approach, we simply use
the metric to present the rate of reversibility with respect to the
length of the protected template. Table 3 shows that the
reconstructing probability is around 46% for all three
modalities.

5.4 | Unlinkability analysis and metrics

We achieve unlinkability through private key embedding, as
given in Equation (6) in which templates are based on keys.
Furthermore, these keys are used to generate the random
distributed binary matrix before optimizing the hash function.
With this background, we present the experimental evaluation
of the unlinkability of the templates generated using two
separate keys. The results are presented in accordance with a
proposed unlinkability metric [22] with two measures: D↔
and Dsys↔ , in which D↔ describes unlinkability for different
score values within the system and Dsys↔ estimates the overall
unlinkability of the system. Thus, the results of unlinkability
analysis is presented by the score distribution of two separate
templates and genuine‐impostor distribution, as presented in
Figure 8. The Figure 8 shows that the genuine and impostor
distributions have high overlap, making it impossible for the
attacker to link the template to a service.

5.4.1 | Unlinkability of protected templates

With the compromise of biometric templates, it must be
ensured that the template cannot be linked to other biometric
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services. We achieve unlinkability through private key embed-
ding, as given in Equation (6), in which the templates are based
on keys. These keys are used to generate the random distrib-
uted binary matrix before optimizing the hash function. With
this background, we present an experimental evaluation of the
unlinkability of the templates generated using two separate
keys. The results are presented in agreement with a proposed
unlinkability metric [22, 25], in which the measure is indicated
by Dsys↔ , which reports whether it is possible to say with a
degree of certainty that two protected templates stem from the
same subject. Given two score distributions, one generated by
mated comparisons with different private keys and one
generated by non‐mated comparisons with different keys, the
degree of unlinkability is measured depending on the overlap
of the distribution. A perfect overlap indicates a fully unlink-
able system whereas two disjoint distributions indicate a fully
linkable system. For unlinkability, the two measures used are
D↔ and Dsys↔ , where D↔ describes the unlinkability for
different score values within the system and Dsys↔ estimates the
overall unlinkability of the system. Thus, the results of
unlinkability analysis is presented by the score distribution of
two separate templates and genuine‐impostor distribution, as
presented in Figure 8. Figure 8 shows that the genuine and
impostor distributions have high overlap, making it impossible
for the attacker to link the template across different services.
Also, the template protection scheme is robust against attacks
for both face and periocular images. In addition to the analysis
of the template of length q = 32, we present the variation in
the unlinkability metric Dsys↔ for different template lengths in
Table 3. The metric indicates a low probability of linkability
attacks even with the compromise of protected templates.

5.5 | Unlinkability of templates with
pseudouser auxiliary data

In the previous analysis, we provided the unlinkability analysis
for the known enrolment set to demonstrate the applicability
of proposed method. In this section, we present the unlink-
ability of protected templates at the user level using the strategy
presented in Section 2.4. For the sake of simplicity, we present
the unlinkability analysis of protected templates for face

templates with q = 256, as seen in Figure 9, in which Dsys↔ ¼ 0
indicates near ideal unlinkability. The obtained unlinkability
indicates suitability for the application of the proposed
approach in real scenarios of biometrics.

6 | CONCLUSIONS

BTP is crucial for the success and adoption of biometrics in
various applications because of the sensitivity of the biometric
data. While keeping the performance of biometric system at par
without protected templates, one has to ensure that a strong
template protection scheme will provide irreversibility,
unlinkability and renewability. We have presented a frame-
work for generating biometric templates using semantic
label‐assisted discrete hashing. Experimental trials on different
modalities including the face and periocular region indicated
promising recognition performance of the proposed approach,
resulting in a GMR≈100% at an FMR= 0.01% (Table 2) for the
face. The templates can vary in length and the performance is
not compromised even under different compact lengths of
templates. The proposed template protection scheme is antag-
onistic to the size of filters in feature extraction, indicating stable
performance. With a new strategy of pseudouser auxiliary
enrolment set, we have also demonstrated scalability at user level
template protection for applicability in a real biometric scenario.

ORCID
Kiran Raja https://orcid.org/0000-0002-9489-5161
Christoph Busch https://orcid.org/0000-0002-9159-2923

END NOTS
1 The approach can be used with any chosen filter and the configurations do not
have major performance variations, as illustrated with the experimental evaluation
in Section 4.3.3.

2 The binary semantic similarity matrix is constructed for known enrolment sam-
ples with manual effort. The semantic label matrix for a specific enrolment sample
is a set of ones whereas the semantic label matrix for all other samples, excluding
the one considered for hash learning, is set to 0.

3 The experimental results are provided with single key and dual key‐based ap-
proaches in the Supporting Information Materials (Figure A.1.9). Although the
single key achieves good biometric performance, the dual key‐based proposed
approach induces high randomness and thus low linkability, as observed in the
Supporting Information Materials (Figure A.1.8).

4 The number of independent filters can be chosen to be specific to the application,
as noted in Section A.1.4 in the Supporting Information Materials, as long as the
extracted feature length is larger than length of intended protected templates.

5 The length of the bits can be further changed if needed.
6 The results can be visualized in Supporting Information Materials in Figures S6
and A.1.5 accompanying results presented in Table 2.

7 Higher GMR and lower EER are obtained on different template lengths (q);
however, because of limited space, all results are not presented here.

8 Alternatively, Figure A.1.10 presents the measured entropy for templates created
using the proposed approach.
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