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Abstract

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus–host interactions.
We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)–host protein
interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically
probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-
19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in
human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and
histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect
was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and
validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked
differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection
or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective
compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and
cell-context specificity.
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Introduction
The global outbreak of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) requires the development or re-
positioning of effective and safe therapies against the virus
and coronavirus disease 2019 (COVID-19). In particular, drug
repurposing enables a fast track to identify small molecules that
target emergent viruses, including SARS-CoV-2, by focusing on
viral targeted host proteins and their cellular pathways as targets
for the therapeutic intervention. In response to infection, host

cells mount antiviral responses. However, SARS-CoV-2, like many
other viruses, has developed various strategies to escape cellular
antiviral responses, similarly to dengue, SARS-CoV-1 and MERS-
CoV [1–3]. It is therefore important to elucidate the interactions
of the SARS-CoV-2 with host proteins to gain better insights into
virus infection and pathogenesis, and to potentially reveal novel
options for therapeutic intervention.

Recent large-scale proteomic and genomic profiling studies
have elucidated various mechanisms by which SARS-CoV-2 alters
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host cells [4, 5]. Several studies have utilized virus–host protein–
protein interactions (PPIs) to construct networks of SARS-CoV-
2-induced pathways and to uncover novel targets and potential
host-targeting agents [6–8]. Some of these network-based studies
have also provided a comprehensive resource of the biological
pathways and potential drugs for the SARS-CoV-2 targeted host
proteins [9–11]. However, many of the small molecules identified
through computational network studies have not been experi-
mentally validated, which hinders the discovery of novel com-
pounds or combinations [12]. For instance, Gysi et al. experimen-
tally screened 918 compounds in VeroE6 cells and found that none
of the predictive algorithms offers consistently reliable outcomes
across all metrics and against investigational compounds in clini-
cal trials [13]. Another challenge in experimental testing of model
predictions is the high cell context specificity of the compound
responses, often making the screening results based on a single-
cell line challenging to reproduce in other relevant cell types.

Here, we developed a computational–experimental approach
that integrates virus–host protein interactions with both a human
PPI network and tissue expression profiles to (i) prioritize host pro-
teins that can be targeted by compounds in clinical development
and (ii) to experimentally probe how these compounds modulate
virus infection. The key feature of our integrated approach is that
it exploits the cell context-specific dependencies of the virus on
specific host proteins and pathways during replication. To expand
the host targets, biological pathways and compound spaces, we
used a random walk with restart, a probabilistic network prop-
agation algorithm, to identify additional host targets from the
extended set of nearest neighbours of virus-interacting host pro-
teins (VIPs). We explored the biological function and targeting
effect of such network-inferred proteins (NIPs), which may not
interact directly with the viral proteins but can be functionally
related to VIPs through various pathways within the SARS-CoV-2
interactome.

We tested selective inhibitors of the identified host proteins
in two cell lines (HEK293T cells expressing ACE2 and TMPRSS2
and lung epithelial Calu 3 cells) with multidose assays to under-
stand the dose- and context-specific effects of the inhibitors on
viral infection in relevant cell models. Interestingly, we identified
several host-targeting compounds that enhance virus infection,
suggesting that the target proteins act as antivirals. Further-
more, two host-targeting compounds showed modest suppressive
effects on virus infection, and no toxic effects in mock-infected
control cells, demonstrating that even though the network-based
approach identified therapeutically safe targets, it cannot dis-
tinguish between the virus suppressive and enhancing effects.
When comparing to other screens of SARS-CoV-2 compounds,
we observed cell context-specific differences in antiviral effects
across cell models. Collectively, our computational–experimental
approach and its findings support the discovery of novel host-
targeting modulators of virus infection, as well as of novel chem-
ical tools for probing how virus–host interactions regulate virus
infection.

Results
Viral interacting proteins are critically positioned
for network information flow
Similar to other viral infections, the SARS-CoV-2 life cycle is medi-
ated through a complex system of protein interactions, modelled
here as network graphs, with cellular proteins depicted as nodes
and their interactions as edges. To model the system-wide virus–
host interactions, we used a PPI network among 298 human pro-
teins identified previously as interacting with SARS-CoV-2 virus

proteins. Since the initial characterization of virus-interacting
host proteins (VIPs) was carried out in the HEK293T cell line [14],
we constructed our SARS-CoV-2 PPI network in this same cellular
context by mapping the interactions between the VIPs and their
nearest neighbours derived from pull-down experiments reported
in the Bioplex interactome [15]. The HEK293T PPI network consists
of 3978 protein nodes and 41 015 interaction edges, and it has
two connected components: a giant component of 3975 nodes
and a smaller component of 3 nodes (Supplementary Table S1a
available online at http://bib.oxfordjournals.org/). In the down-
stream network analyses, we focused on the giant component
that contains 297 VIPs and their 3678 nearest neighbour proteins
(non-VIPs) that are not targeted directly by the viral proteins
(Figure 1A).

To investigate the role of the host proteins targeted by the
virus in the PPI network, we calculated several network infor-
mation measures that quantify the topological inter-connectivity
of the giant network component (Supplementary Table S1b avail-
able online at http://bib.oxfordjournals.org/). The connectivity (k),
i.e. the number of direct interacting partners of each protein,
showed that the SARS-CoV-2 VIPs have a higher connectivity
(mean 23.82), compared to the non-virus-targeted host proteins
(non-VIPs) (mean 20.36, P = 0.0026, Wilcoxon test; Figure 1B). The
central position of VIPs in the network information flow became
even more pronounced in terms of the betweenness centrality
(b), i.e. the number of shortest paths between each pair of nodes
that pass-through a given node, which showed that VIPs have
significantly higher centrality (mean 0.0012), compared to non-
VIPs (mean 0.00055, P = 3.084 × 10−11, Wilcoxon test; Figure 1C).
This observation is consistent with other studies that have shown
that viruses tend to target network hubs and bottlenecks in the PPI
network [16, 17], since viruses and host proteins are constantly
competing for binding partners that interact with proteins in
various pathways during the infection phase.

Identification of additional host proteins
that are indirectly regulated by VIPs
To further study the information flow through VIPs, we charac-
terized their neighbourhood sizes, i.e. the length of the shortest
paths from a VIP to any non-VIP nodes in the giant component
of the network. We found that most VIP nodes can be reached by
traversing as few as three or four edges from any other non-VIP
node. This is comparable to the average path length from a ran-
dom node to any other node in the network (mean 3.422, Supple-
mentary Figure S1 available online at http://bib.oxfordjournals.
org/). This topological network analysis provides information for
the positioning of host-directed modulators of virus infection
that are either directly interacting with viral proteins (VIPs) or
are components of viral-regulated pathways, where proteins do
not directly interact with viral proteins (i.e. non-VIPs) but are
nonetheless required for viral replication. In particular, the central
position of VIPs in the network makes it critical to investigate the
potential side effects of inhibiting these host targets, as network
hubs often interact with many other proteins involved in normal
cellular processes and biological pathways, targeting of which
may lead to toxic effects on the non-infected cell [18].

The above network analysis suggests that it is also important
to consider host proteins that are not directly targeted by viral
proteins yet are part of pathways regulated by viruses. For such
extended host target mapping, we employed random walk with
restart (RWR), a probabilistic network propagation algorithm [19],
which was applied here in the identification of proteins connected
to VIPs (see Supplementary Text available online at http://bib.
oxfordjournals.org/). The RWR algorithm explores the network
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Figure 1. Topological network analysis of the SARS-CoV-2 PPI network. (A) The giant component of the SARS-CoV-2–host PPI network that contains 297
VIPs and 3678 non-VIPs. The inset shows a subnetwork of select VIP nodes. When calculating the neighbourhood size from VIP to non-VIP nodes, the
connections marked in red show the shortest path distance from the MARK1 VIP node to NOTCH2 node in the network (neighbourhood size of 3). (B)
Degree, i.e. the number of connections, for VIP and non-VIP nodes (the bars show mean ± SEM). (C) Betweenness centrality, i.e. the number of shortest
paths through a given node, for VIP and non-VIP nodes (mean ± SEM). (D) Operation of the RWR (RWR) algorithm. The red seed nodes are the set of 298
VIPs from which the random walker starts exploring the network (marked by red arrows). After iterating through all nodes in the network, a probability
score is assigned to all nodes in the network, ranked from the highest to the lowest probability, which was used to identify 200 top-ranked NIP nodes.

vicinity and function of the protein seed set (here, VIPs), based
on the premise that proteins with similar functions tend to lie
close to each other in the PPI network. Thus, the RWR algorithm
identifies proteins within the network that may be functionally
similar to the VIPs by topologically scanning each node in the PPI
network from the VIP seed set and then assigns a probability score
to the non-seed proteins (Figure 1D). The proteins were ranked
based on the probability assigned by the RWR algorithm, so that
the higher the probability, the closer the proteins are to the VIPs.
In this way, we shortlisted 200 top-ranked proteins and termed
them as NIPs (Supplementary Table S1b available online at http://
bib.oxfordjournals.org/) (Figure 1A).

Biological pathway characterization
of the identified host targets
To investigate whether the network-inferred proteins (NIPs) also
share similar biological function with the VIPs, as suggested by

their network similarity, we performed gene set enrichment anal-
ysis, separately for the VIP and NIP targets, and then compared
the biological pathways and Gene Ontology (GO) terms between
the two target sets. A total of 11 biological processes were simi-
larly enriched in the NIP and VIP sets, including protein folding
(P = 6.70 × 10−8, 1.43 × 10−7), establishment of protein localization
to membranes (P = 6.80 × 10−8, 2.90 × 10−6) and protein targeting
(P = 6.59 × 10−6, 2.62 × 10−8) (Figure 2). Apart from these biological
processes that are known to be involved in viral processing [20, 21],
we also identified several common biological processes between
the two host target sets that are related to immune responses,
such as neutrophil activation, mediated immune responses and
degranulation (Supplementary Table S2 available online at http://
bib.oxfordjournals.org/). We further observed that the network-
predicted NIP targets shared other relevant pathways with the VIP
set in terms of KEGG pathways. For instance, the NIP and VIP tar-
gets were both enriched for proteins involved in processing in the
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Figure 2. GO biological process and KEGG pathways that are commonly
or uniquely enriched among the NIP and VIP targets. The enrichment P-
values were corrected for multiple testing with Benjamini–Hochberg test,
and the pathways with adjusted P < 0.05 were considered significant. The
dots are colour-coded based on their corresponding adjusted P-values and
the dot size corresponds to the gene ratio (i.e. genes of interest in the GO
term/total number of genes of interest.

endoplasmic reticulum (ER) pathway (P = 1.198 × 10−5, 3.72 × 10−5;
Figure 2), which is biologically plausible as the ER is involved in
viral replication and assembly [22].

Interestingly, the NIP target set also extended biological pro-
cesses beyond those captured by the VIP targets. For instance, NIP
targets were enriched for the cell cycle pathway (P = 3.62 × 10−4),
which highlights its importance in viral replication [23, 24]. These
network-based results also support previous studies that have
shown how SARS-CoV-2 hijacks the rough endoplasmic reticu-
lum (RER)-linked host translational machinery for its replication
[11]. In addition, NIP targets were enriched for pathways related
to protein export (P = 8.99 × 10−5), which also includes secretory
pathways that are hijacked by the virus to carry out their essential
functions, such as virus replication, assembly and egress, demon-
strating that viruses evade host cellular pathways to promote
their propagation [25]. These results indicate that the extended
target set consisting of the top-200 NIPs identified by the RWR

algorithm do not only populate similar pathways as VIPs but are
also implicated in various biological processes related to viral
infection.

Identification of host-targeted compounds
that modulate viral infection
To disrupt the SARS-CoV-2 interactome, we sought potent and
selective compounds that inhibit the identified host proteins
(both VIPs and NIPs). We prioritized drugs that are approved
for other indications and investigational compounds currently
being tested in clinical trials (phase 1–3), instead of preclinical
candidates that would take longer time to develop as COVID-
19 modulators. We first identified compounds that inhibit the
identified host targets (VIPs and NIPs) using target activity data
from the ChEMBL database [26]. For the VIP targets, 6458 unique
compounds were identified that cover 27 of the 298 targets (9%;
Figure 3A). For the NIPs, 2754 unique compounds were identified
that cover 25 of the top-200 targets (13%; Figure 3B).

Considering the number of compounds for VIP and NIP
targets, many of the identified proteins are targeted by multiple
compounds, suggesting that most of these host targets are already
well studied in drug discovery (Figure 3A and B, left distributions).
The distribution of compounds per target between the VIPs and
the NIPs were relatively similar (P = 0.75, Kolmogorov–Smirnov
test). Notably, most of the compounds have been reported to
show activity against a single target only among these target
sets, suggesting that the inhibitors may be selective against the
host targets in each set (Figure 3A and B, right distributions).
However, most of the compounds that selectively target VIPs
and NIPs are still in a pre-clinical phase (Figure 3C and D).
This systematic compound screen resulted in a total of 9079
potent inhibitors of the 52 host proteins (27 VIPs and 25
NIPs) (Supplementary Table S3 available online at http://bib.
oxfordjournals.org/), out of which only 101 (0.01%) are currently
approved for other indications (Figure 3E), i.e. representing
potential repurposing opportunities.

Selection of a subset of host targets that is most
relevant for COVID-19
To select the host targets and their inhibitory compounds for
experimental validation, we further shortlisted our target lists
from both the VIP and NIP sets, based on the expression levels of
the host proteins in cells relevant for COVID-19 using expression
data from the Human Protein Atlas [27]. Specifically, we chose
to use the target expression in lung epithelial cells and cells of
the upper and lower respiratory tract, since the virus infects the
upper respiratory tract, causing flu-like symptoms, and the lower
respiratory tract, causing severe respiratory disorders.

Among the VIP targets, we found that BRD4 [bromodomain
and extraterminal (BET) protein 4], RAB7A (Ras-related protein
7A), HDAC2 (Histone deacetylase 2) and IMPDH2 (Inosine-
5-monophosphate dehydrogenase 2) were relatively highly
expressed in the respiratory epithelial cells of the nasopharynx
and bronchus, as well as in the lung macrophages and alveolar
cells (Figure 4A). We de-prioritized RAB7A, because of its key role
in the maturation of late endosomes, which are not among the
primary sites through which SARS-CoV-2 enters human lung cells;
most SARS-CoV-2s enter lung cells through fusion at the plasma
membrane [28], while for the Omicron variants of concern (VOC),
the virus may also use the endosomal route [29, 30].
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Figure 3. Identification of potent compounds that inhibit the target proteins based on ChEMBL database (bioactivity <1000 nM, see Materials and
Methods). (A) The number of compounds identified for the 27 VIP targets (left histogram), and the number of VIP targets for each potent compound
(right histogram). (B) The number of compounds identified for the 25 NIP targets (left), and the number of NIP targets for each potent compound
(right). (C) Clinical development phase of compounds that target VIPs. (D) Clinical development phase of compounds that target NIPs. (E) Anatomical
Therapeutic Chemical (ATC) classification of the 101 approved compounds that target select VIPs and NIPs.

Among the NIP targets, USP10 (Ubiquitin-specific peptidase
10) and YWHAZ (Tyrosine 3-Monooxygenase/Tryptophan 5-
Monooxygenase Activation Protein Zeta) showed high-to-medium
expression in respiratory epithelial cells of the nasopharynx
and bronchus and in macrophages and alveolar cells of lung
tissue (Figure 4B). Even though only preclinical inhibitors of these
NIP host protein targets are currently available, we nonetheless
pursued USP10 in the experimental validation, as this protein
plays a role in stress granules and RNA processing, storage and
degradation that are used by flaviviruses such as West Nile and
dengue virus [31].

Based on the expression analyses of the protein targets in the
VIP and NIP sets, we shortlisted BRD4 that is targeted by the SARS-
CoV-2 envelope protein E, along with HDAC2 and IMPDH2 that are
targeted by the viral protease (NSP-5) and exoribonuclease (NSP-
14), respectively (Table 1). Among the NIP targets, we focused on
USP10 in the experimental validation, since it engages the host
VIP proteins G3BP1 and G3BP2 that directly engage the viral N
protein [14].

Experimental assessment of the host target
inhibition on virus infection
Our computational prioritization approach identifies host targets
that are expected to modulate virus infection within the SARS-
CoV-2–host PPI network; however, similar to other network-based
models, it does not predict whether the inhibition of the host
targets leads to either virus suppressive or enhancing effects, nor
whether the host target inhibition results in any toxic side effects.
Therefore, in the experimental validation, we tested not only the
effects of the host-targeting compounds on SARS-CoV-2 infection
but also their effects on the viability of non-infected control cells.

We experimentally tested seven selected compounds that
inhibit the VIPs BRD4, IMPDH2 and HDAC2, along with spautin-
1, which inhibits the NIP USP10 and the VIP USP13 (Table 2).
The compounds were first tested for modulation of SARS-CoV-
2 infection in HEK293T cells that overexpress the key SARS-CoV-2
host factors ACE2 and TMPRSS2 [32]. Confirmatory experiments
were performed in Calu 3 human lung cells [33], which are well-
established targets for SARS-CoV-2 [28].
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Figure 4. Protein expression in cells of upper and lower respiratory tract across the (A) 27 VIP targets and (B) 25 NIP targets. The expression classes
originate from the Human Protein Atlas (colour legend).

Table 1. List of VIPs and NIPs shortlisted for the experimental assessment of compound effects

Protein class Host protein Viral protein Degree Betweenness
centrality

Implicated in other
viruses

Associated role

Epigenetic
regulators

BRD4 E 26 1.46 × 10−3 HPV-1/2/5/7/9/10, EEPV4,
HHV8, CRPV2

Regulate genes crucial for cell cycle,
progression, inflammation and
immune response

HDAC2 Nsp5 27 7.99 × 10−4 Adeno-associated
dependoparvovirus A,
HPV, FLUAV

Plays an important role in
transcriptional regulation, cell cycle
progression and developmental events

Enzymes IMPDH2 Nsp14 7 1.07 × 10−4 Dengue virus, HSV-1,
HIV-1, FLUAV, Measles
morbillivirus

Plays an important role in the
regulation of cell growth and purine
metabolic processes

USP10∗ N 8 1.75 × 10−4 HHV 8, FLUAV, Zika virus Plays a role in regulation of autophagy

∗This NIP interacts with VIP G3BP1/G3BP2.

Discovery of host modulators that enhance
SARS-CoV-2 infection
We noticed that several compounds that target chromatin regu-
lating proteins, such as BRD4 and HDAC2 and deubiquitinating
enzymes USP10 and USP13, did not show significant antiviral
activity in our disease system (Figure 5, efficacy curve). In con-
trast, inhibition of these proteins actually increased virus-induced
cytopathic effect (CPE) in the virus-infected cells, when compared
to the DMSO control. This increased CPE was reflected in a

negative antiviral efficacy (see Materials and Methods), and
suggest that these compounds enhanced virus infection. This
enhanced CPE (proviral effect) occurred at concentrations that
were not directly cytopathic to non-infected cells (Figure 5,
viability curve).

Compounds that showed such proviral phenotype included
vorinostat, a broad range inhibitor of histone deacetylases
(HDACs) (Figure 5A), and romidepsin, a more selective HDAC
inhibitor that targets HDAC1 and HDAC2 (Figure 5B). Similarly,
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Table 2. Compounds tested in 293T-ACE2-TMPRSS2 and Calu 3 cells in the present work

Clinical phase Compound
name

ChEMBL ID Host targets Mechanism of action ATCa

classification
Target
bioactivity (nM)b

Investigational Spautin-1 CHEMBL2391504 USP10/USP13 USP10/13 deubiquitinating
activity inhibitor

600/600

Autophagy inhibitor
JQ1 CHEMBL1957266 BRD4 BET bromodomain inhibitor 79.39

In clinical trial (II) Merimepodib CHEMBL304087 IMPDH2 Inosine-5′-monophosphate
dehydrogenase 2 inhibitor

10.33

Approved Mycophenolic
acid

CHEMBL866 IMPDH1/IMPDH2 Inosine-5′-monophosphate
dehydrogenase inhibitor

Immunosup-
pressant

37∗/8.57∗

Vorinostat CHEMBL98 BRD4/HDAC2 Histone deacetylase 1/2/3/6
inhibitor

Antineoplastic
agent

375/15.69∗

Romidepsin CHEMBL343448 BRD4/HDAC2 Histone deacetylase inhibitor Antineoplastic
agent

36/0.038∗

Fedratinib CHEMBL1287853 BRD4/CSNK2A2/
NEK9 MARK1/TBK1

Tyrosine-protein kinase
receptor FLT3 inhibitor

Antineoplastic
agent

164∗∗/120∗∗/
150∗∗/700∗∗/92∗∗

Tyrosine-protein kinase JAK2
inhibitor

The boldfaced host targets were identified by the network approach. aAnatomical Therapeutic Chemical; bIC50/EC50 or ∗Ki, ∗∗Kd from cell-based and
biochemical assays in the ChEMBL database (31).

the investigational compound, spautin-1, which inhibits the NIP
USP10 and VIP USP13, enhanced CPE at concentrations that
were not inherently toxic to non-infected cells (Figure 5C). To
further investigate this putative proviral effect, we tested these
compounds during SARS-CoV-2 infection also in Calu 3 human
lung cells, where the compounds again enhanced CPE during virus
infection at concentrations that were not toxic to non-infected
Calu 3 cells (Figure 5D–F).

If these compounds enhance virus infection, one would expect
that they similarly enhance viral RNA expression in the infected
cells. We therefore measured the level of SARS-CoV-2 RNA expres-
sion by qRT-PCR at 24 h post-infection of 293TAT cells, and parallel
plates were assayed for CPE at 48 h as per our protocol. The qRT-
PCR assays showed that both spautin-1 and vorinostat conferred
an apparent proviral effect as they increased the abundance
of viral RNA (Figure 6A), consistent with their enhancement of
infection seen in the CPE assay (Figure 6B). These data confirm
that spautin-1 and vorinostat enhance virus infection, and have
proviral effects, and suggest that their host targets may therefore
have antiviral function.

To further study the proviral effects of epigenetic regulators,
we next examined the BRD4 inhibitor JQ1 in our CPE and viral
RNA assays during infection of 293TAT cells. Similar to the
other chromatin modifying enzyme inhibitors, JQ1 increased
SARS-CoV-2 RNA expression and conferred a proviral effect
(Figure 6C and D). Collectively, these observations suggest that
alterations in chromatin regulation may regulate susceptibility
for SARS-CoV-2. Interestingly, fedratinib, a selective oral JAK2
inhibitor recently approved in the United States for treatment
of adult patients with myelofibrosis [34], which has off-target
activity against the VIPs BRD4, TBK1, MARK1 and CSNK2A2,
also displayed a similar proviral effect in our disease system
(Supplementary Figure S2).

Network approach identifies context-specific
inhibitors of virus infection
Since a compound’s response is often highly context-dependent,
it is important to consider its effects also in other cell lines
and assays when determining the influence of a host target
modulation on viral infection. Therefore, we cross-compared the

host-targeting compounds identified by our network-based anal-
ysis with the profiling studies carried out by the National Centre
for Advancing Translational Sciences (NCATS) [35] with live virus
infectivity CPE assay. The NCATS has tested a wide collection
of 9187 compounds consisting of several approved, anti-infective
compounds that have been reported in literature and with target
information. To date, 7.7% (730/9187) of the compounds have been
classified as antivirals based on the NCATS criteria in Vero E6 cell
lines (compounds with curve rank >0).

A total of 260 compounds from our network-based analyses
were included in the NCATS compound list, and based on the
NCATS CPE assay, 18.1% (47/260) of the identified compounds
were classified as antivirals (Supplementary Table S4 available
online at http://bib.oxfordjournals.org/). Therefore, the network
approach led to a 2.4-fold improvement in success rate, compared
to the 7.7% success rate of the NCATS compound screen. As a
comparison, we also benchmarked the predictions from another
computational method that integrates three network-based drug
repurposing algorithms [13]. Among the 73 overlapping com-
pounds, 21.9% (16/73) were validated as antivirals by the NCATS
assay (see Supplementary Text for details available online at
http://bib.oxfordjournals.org/). The accuracies of these two com-
putational methods provide a reasonable upper bound of what
can be expected when using network-based protein prioritization
methods.

We further cross-referenced the compounds identified by
our method with the antivirals reported through various
publications using various assays and cell lines and cat-
alogued in the Coronavirus resistance database CoV-RDB
database (Supplementary Table S4 available online at http://
bib.oxfordjournals.org/) [36]. For instance, imatinib, an approved
inhibitor of Bcr-Abl kinase, which has off-target activity against
the NIP PDGFRA, showed antiviral efficacy in VeroE6 cells and
human airway epithelial cultures (Table 3) [37, 38]. Imatinib
was advanced to clinical trials, albeit without evidence for
clinical efficacy (ClinicalTrials.gov, trial numbers NCT04794088,
NCT04394416) [39].

Another example of effective antiviral that targets TMPRSS2
and the NIPs HPN and ST14 is nafamostat, an anticoagulant drug
that was shown to block SARS-CoV-2 infection in Calu-3, Caco2
and VeroE6 cells (Table 3). This compound was also advanced
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Figure 5. (A–C) Compounds that inhibit HDACs and USP10/13 enhance CPE during virus infection in 293TAT cells (i.e. appear to have proviral effects).
Cells were treated with the indicated concentrations of compounds for 2 h prior to infection with SARS-CoV-2 at a MOI of 0.01. Parallel wells contained
cells treated only with compounds to study toxicity. Forty-eight hours post infection, cell viability was assessed using the CellTiter-Glo assay and
effects on virus-infected cells (efficacy) and non-infected cells (viability) were calculated as described in Materials and Methods. Data points reflect
average and standard deviations of triplicate experiments per condition. (D-F) Confirmatory assays in Calu 3 cells. Cells were treated with the indicated
concentrations of compounds for 2 h prior to infection with SARS-CoV-2 at a MOI of 0.1. Parallel wells contained cells treated only with compounds.
Ninety-six hours post infection, cell viability was assessed using the CellTiter-Glo and effects on virus infection (efficacy) and viability were calculated
as described in Materials and Methods. Data points reflect average and standard deviations of triplicate experiments per condition.

to clinical trials in the RACONA study (NCT04352400) to test
its efficacy in lowering lung function deterioration and reducing
intensive care admissions in COVID-19 patients. However, intra-
venous administration of nafamostat mesylate in a randomized
controlled trial did not show evidence as an effective treatment
for COVID-19 in a limited cohort of 42 patients, but it was anyway
suggested for further investigation as an early treatment option
for COVID-19 [40].

The IMPDH inhibitors mycophenolic acid (MPA) and merime-
podib have previously been shown to inhibit SARS-CoV-2 infection
in VeroE6 cells [41–43]. MPA also showed antiviral effect in lung

organoids and in nasal and bronchial epithelial explants (Table 3)
[44, 45]. In our CPE assay, MPA and merimepodib showed a modest
but reproducible antiviral effect, and no apparent toxicity in
293TAT cells (Supplementary Figure S3 available online at http://
bib.oxfordjournals.org/). These results indicate differences in
antiviral effects between cell lines, experimental assays and
studies, which need to be considered when interpreting hits
from any compound or target prediction method. Such cell
context specificity complicates the reuse of published data of
antiviral effects for the validation of cell line-specific compu-
tational predictions, making own experimental assays critical.
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Figure 6. Spautin 1, vorinostat and JQ1 enhance SARS-CoV-2 infection. 293TAT cells were treated with the indicated concentrations of compounds prior
to infection with SARS-CoV-2 at a MOI of 0.01. Parallel wells contained cells treated only with compounds. Twenty-four hours post infection, RNA was
extracted from one plate and the relative abundance of viral RNA was determined by qRT-PCR (A and C). Forty-eight hours post infection, cell viability
was assessed using the CellTiter-Glo assay and effect on virus-infected cells (efficacy) and non-infected cells (viability) were calculated (B and D). Data
points in A and B reflect average and standard deviations of triplicate and quadruplicate experiments per condition, respectively. Statistical testing was
done with a Student’s t-test (two-tailed).

Table 3. Compounds identified by our network-based approach and validated as antivirals in other studies

Compound Host targets Target class Cell line Efficacy (%) SI EC50 (μM) Resource

Mycophenolic acid IMPDH1 VIP VeroE6 45.67 >147 0.9 1, 2
Merimepodib IMPDH1/2 VeroE6 72.28 1
Fedratinib BRD4/CSNK2A2/NEK9

MARK1/TBK1
Huh 7.5 83 0.02 2

Romidepsin BRD4/HDAC2 HEK293T 194.4 0.09 ± 0.05 3
Linifanib PDGFRA NIP VeroE6 30.84 1
Bemcentinib VeroE6/Calu-3

Huh7.5
73.13 7.8/47 2.1/0.1 1, 2

Imatinib VeroE6/HAE 92.09/100.7117.51 16, >9.5, >5.8 2.5, 3.2
5.3/>10

1, 2

Pazopanib VeroE6 43.66 1
Masitinib VeroE6 63.83 12 2.3 1, 2
Sorafenib VeroE6 43.12 1
OSI-632 VeroE6 42.27 1
Nafamostat HPN/ST14 Caco2/VeroE6/

Calu-3
>500/>4.4 0.04/23/0.01 2

Quizartinib PRKACB VeroE6 43.88 1
SB-202190 VeroE6 117.73 1
Enzastaurin VeroE6 63.93 1

Supplementary Table S4 lists all the compounds identified in NCATS resource. SI, the compound concentration toxic to cells (CC50/EC50). EC50, the compound
concentration required to inhibit virus replication by 50%. CC50, the compound concentration required to reduce the cell viability by 50% compared to
uninfected control from NCATS or CoV-RDB resource. Resource: 1, NCATS; 2, Stanford University Coronavirus Antiviral & Resistance Database (CoV-RBD); 3, Liu
et al. (2020).
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Discussion
Over the past 2 years, hundreds of predictive tools for COVID-
19 diagnosis and prognosis have been developed based on the
accumulated proteomic, transcriptomic and clinical data sets.
However, based on systematic literature reviews, most of the pre-
dictive approaches developed to support medical decision-making
suffer from training data of low quality and poor reporting of the
models [46]. For instance, so far none of the models for prediction
of clinical outcome developed using chest radiographs and CT
scans are of potential clinical use, mainly due to methodological
flaws and high or unclear risk of bias in the imaging datasets used
for the model training [47]. Compared to supervised prediction
models, network-based models provide a holistic view of the bio-
logical system being studied (here, virus–host interactions), and
do not require large amount of outcome data for model training.
Network-based approaches can also broaden our understanding
of the mechanisms of viral infections, compared to black-box
machine learning models.

Consistent with previous studies, we demonstrated that VIPs
tend to be in essential positions for PPI network information flow.
Gysi et al. demonstrated that most of the drugs that successfully
reduced viral infection do not bind the proteins targeted by SARS-
CoV-2, indicating that these drugs rely on network- or pathway-
level mechanisms that cannot be identified using docking-based
strategies [13]. We therefore expanded the potential target space
to include additional host proteins that can be useful for disease
pathogenesis but may not be directly targeted by viral proteins.
Along with cell context specificity, it was found important to
consider interactions of the host proteins, as they can play pivotal
roles in virus modulation. To elucidate the importance of the host
proteins identified by the network approach, we screened for their
effects on SARS-CoV-2 infection using selective inhibitors of the
cellular proteins.

Interestingly, our study identified several antiviral proteins
by virtue of the compounds inhibiting their targets acting as
proviral agents. In particular, inhibition of epigenetic regulators
BRD4 and HDAC2 by JQ1, vorinostat and romidepsin resulted in
an increase in viral RNA, suggesting that these proteins function
in an antiviral fashion (Figure 6). The viral protein Nsp 5, which
targets HDAC2 (Table 1), cleaves the SARS-CoV-2 polyprotein and
has developed strategies to inhibit the transport of HDAC into the
nucleus and potentially affect the ability of HDAC2 to mediate
inflammation and interferon response [14]. Also, HDAC2 has been
highlighted as one of the potential determinants of age-related
susceptibility to SARS-CoV-2 infection, since it is downregulated
in lungs of older individuals [48]. HDAC2 and BRD4 interact with
several other epigenetic modifiers in the SARS-CoV-2 network
(Figure 7). HDAC2 erases acetyl marks on histones H3 and H4
to promote predominantly repression of transcription, and BRD4
is a histone acetyl reader that is predominantly an activator of
transcription. Epigenetic modifications are significant in regulat-
ing cellular function, both in health and in disease. Chen et al.
showed that the viral protein E in its acetylated form can directly
bind to the second bromodomain of BRD4, and it has evolved
to antagonize interferon responses via inhibition of BET proteins
[49].

The epigenetic modulators play a diverse role in viral infection
and viruses have developed strategies to evade pathways
involving these proteins for their gain [50, 51]. For instance,
HDAC2 and BRD4 regulate a multitude of genes, including the
antiviral response genes, and their inhibition is generally growth-
suppressive, which may explain the proviral effect of their

inhibition in the context of the SARS-CoV2 infection. Another
important factor to consider when investigating the enhancing
and suppressive effects of targets and compounds on SARS-CoV-
2 infection is the cell context specificity of protein interactions
and the dependency of the compound effect on the cell context.
Additional studies will be required to define how HDAC2 and
BRD4, and the multitude of downstream genes that they regulate,
modulate SARS-CoV-2 infection.

Recently, Daniloski et al. showed a proviral effect of vorinos-
tat in human alveolar basal epithelial carcinoma cells express-
ing ACE2 [52]. On the other hand, computational analysis using
network clustering along with connectivity map (C-Map) anal-
ysis of SARS-COV-2 PPI network identified vorinostat as poten-
tially antiviral [53]. Such contradicting results may be due to
dependency of the compound’s effect on the cell context. To
explore cell context specificity, we tested JQ1 and IBET151, two
inhibitors of BRD4, in Calu-3 cells and observed that the com-
pounds showed antiviral effects, but with more pronounced toxic-
ity in non-infected cells (Supplementary Figure S4 available online
at http://bib.oxfordjournals.org/), making their clinical applica-
tion challenging.

The deubiquitinase proteins USP10 and USP13 may act as
antiviral cellular proteins, since spautin-1, an autophagy inhibitor
that targets these ubiquitinases, enhances SARS-CoV-2 infection.
In vivo and in vitro studies have shown that SARS-CoV-2 inhibits
autophagy in infected cells, suggesting the use of compounds
that induce autophagy as an antiviral treatment strategy
[54]. The roles of USP10 and USP13 in SARS-CoV-2 infection
therefore warrant further investigation. RAB7A is another protein
that might be worth pursuing for some variants of concern
(VOCs), such as Omicron that also use the endosomal entry
pathway [29].

Inhibiting a host target alone is unlikely to have the potency
one can achieve by inhibiting a viral protein such as a viral
RNA polymerase. However, host-targeted antiviral (HTA) agents
exploit the dependence of the virus on specific host proteins and
pathways during replication, and hence drug resistance may be
less likely with the HTAs. Combination therapies offer widespread
and well-documented advantages in the treatment of complex
diseases such as cancer, HIV and HCV [55–57], and combining
DAA and HTA agents may offer an effective way to combat drug
resistance. Since we observed a weak antiviral activity for the
IMPDH inhibitors MPA and merimepodib (Supplementary Figure
S3 available online at http://bib.oxfordjournals.org/), we further
explored whether their activity could be improved by combina-
tion with molnupiravir (MPV), a directly acting antiviral (DAA)
that targets the viral RNA-dependent RNA polymerase, which
has been approved for emergency use by the US Food and drug
Administration [58, 59]. We evaluated the two-drug combinations
against SARS-CoV-2 infections in 293TAT cells. The combinations
led to a minimal synergistic effect, but importantly, there was no
detectable toxicity in non-infected cells in either of the combina-
tion assays (Supplementary Figure S5 available online at http://
bib.oxfordjournals.org/).

The need for effective antiviral drugs is increasing but only a
few viral enzymes such as polymerases, polymerase co-factors
and proteases are available for targeting with DAAs, and these
are used as DAA combination therapies for HIV and HCV [60, 61].
Despite their increasing threat of causing infectious diseases, we
still do not have many widely available, effective antivirals for
SARS-CoV-2, SARS-CoV-1, Dengue, Ebola, Lassa and others [62].
Moreover, the interconnected nature of our societies, coupled with
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Figure 7. Network representation of selected targets and their protein–protein and compound–protein interactions with the validated compounds.
Targets and their nearest neighbours are shown in the network.

environmental disruption and habitat encroachment, magnifies
these threats. While employing HTAs is potentially more chal-
lenging, novel approaches such as synthetic lethality may offer
effective and safe solutions for more selective treatment options
by inhibiting virus-infected cells without affecting non-infected
cells, as has been earlier shown in cancer cells [63], and recently
for viruses [64–66]. Thus, we argue that HTA agents should remain
as part of the development pipeline. We especially posit that
combining HTAs with effective DAAs, such as molnupiravir and
paxlovid, can provide an effective antiviral strategy to combat
SARS-CoV-2 infection.

In summary, we have demonstrated that a network-based
approach of SARS-CoV-2 and VIPs and NIPs can be leveraged
to prioritize host modulators of viral infection. However, both
the compound sensitivity assays and PPIs can be highly context-
specific, hence it is important to consider the molecular charac-
teristics in relevant cell lines or in vivo models to provide more
actionable findings. Furthermore, testing of the compounds in
non-infected cells is critical for avoiding broadly toxic compound
responses and to identify either safer small molecules for ther-
apeutic applications or selective chemical tools to probe virus–
host interactions that regulate virus infection. The network model
predictions could be further improved by leveraging the informa-
tion from compound–target binding interactions already in the
network modelling phase, along with the use of gene expression
datasets across different cell lines perturbed by the explored
drugs, using the C-MAP approach.

Materials and methods
SARS-CoV-2 PPI network construction
The SARS-CoV-2 PPIs were extracted from Gordon et al. [14]. The
PPIs include physical interaction among 26 viral proteins and
332 human proteins identified using affinity purification mass
spectrometry in HEK293T cell line. We constructed the SARS-
CoV-2 network by overlaying the HEK293T PPI network with the
interactions from the BioPlex Interactome [15]. Out of the 332
viral-targeted host proteins, called viral interacting proteins
(VIPs), 298 had an interaction in the BioPlex database. For each of
the 298 VIPs, we considered the protein interaction partners that
were directly interacting with the viral-targeted proteins, that is,
their nearest neighbours, thus creating an induced subgraph from
the BioPlex HEK293T network. The final SARS-CoV-2 interaction
network included 3978 proteins and 41 015 interactions, which
were used for further downstream analysis. This PPI network is
context-specific, as we incorporated PPIs from HEK293T cell line
that was used by Gordan et al. [14], along with additional proteins
that are closest to the VIPs in terms of their connectivity to VIP
proteins.

Identification of host targets using protein
prioritization
We used a network-based protein prioritization approach, the
RWR, to identify host protein targets when starting from the VIP
source protein set. We used Arete Cytoscape plugin that provides
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an exact closed-form solution, rather than an approximate or iter-
ative solution for RWR, which is robust to the restart probability
parameter (r was set here equal to 0.7, which is the recommended
default value) [19, 67] (See Supplementary Text for further details
available online at http://bib.oxfordjournals.org/).

Biological characterization of the network
proteins
The GO and KEGG pathway enrichment analysis for the VIP and
NIP sets were carried out using the clusterProfiler R package
[68]. The protein names were mapped to the NCBI entrez ID
using the genome-wide annotation for human (org.Hs.eg.db) R
package [69]. The tissue expression of the proteins in the network
were analysed using HPAanalyze [70], an R package that provides
functions for retrieving, exploratory analysing and visualizing the
Human Protein Atlas data [27].

Identification of potent compounds
for the host targets
The predefined host target protein sets (VIPs and predicted NIPs)
were queried in the ChEMBL database [26], a public bioactivity
data repository, to find compounds that inhibit the identified
host targets. A compound is active against a protein target when
it binds to it and inhibits a specific molecular pathway. The
strength of this inhibition can be quantified using several affinity
measurements, such as IC50 and EC50, that refer to the in vitro
concentration of the compound required to inhibit half of the tar-
get volume or produce half of the overall effect, respectively. The
binding affinity that a compound has against a protein target can
be defined by Ki (the inhibition constant) or Kd (the dissociation
constant). We considered compounds with a bioactivity of less
than 1000 nM against the VIP or NIP targets as potent compounds
for these host targets. In cases where multiple compounds inhibit
a particular host protein, we selected the compounds with the
highest potency (lowest bioactivity value) as inhibitors for exper-
imental validations.

Experimental validation
Infectious SARS-CoV-2 was obtained from BEI Resources (Isolate
USA-WA1/2020 NR-52281). 293TAT cells were plated the day prior
to infection, while Calu3 cells were plated 2 days prior to infection.
Compounds at various dose ranges were then added to plates and
infectious SARS-CoV-2 was added to appropriate wells. Multiplic-
ity of infection (MOI) of live SARS-CoV-2 is indicated in each figure
legend. Mock-infected control wells received standard medium.
Plates were then incubated at 37◦C, 5% CO2 for 48 (293TAT) or 96
(Calu 3) h. CellTiter-Glo (CTG) assay (Promega, G9243) was used
to measure cell viability in virus-infected and drug-treated wells
and in parallel mock-infected and drug-treated wells. The assay
measures the number of viable cells in culture by quantifying
ATP, indicating the presence of metabolically active cells. Lumi-
nescence was read on a Biotek Synergy H4 plate reader. Each
condition was conducted in triplicate. For further experimental
details, please see Supplementary Text available online at http://
bib.oxfordjournals.org/.

Key Points

• Viruses exploit host machinery, making it important to
understand the virus–host dependencies to gain better
insight of the key regulators of viral infection.

• Using a context-specific SARS-COV-2–host PPI network,
a computational framework was developed to identify
host modulators of viral infection.

• Chromatin modifying host proteins HDAC2 and BRD4,
along with deubiquitinating enzyme USP10, acted as
antiviral proteins.

• IMPDH inhibitors mycophenolic acid and merimepodib
showed modest antiviral response to SARS-COV-2 infec-
tion, and no toxic effects.

• Cell context specificity is a critical factor when identify-
ing selective modulators of viral infection and potential
antiviral therapeutics.

• Topology-based network models cannot distinguish
between host proteins, the inhibition of which leads to
either virus suppressive or enhancing effects.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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